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Abstract 18 

Adulteration and counterfeiting are ongoing problems for alcoholic drinks, including beers, 19 

wines, and spirits. To fight against them, official analytical methods need to be complemented 20 

with faster, trustworthy, non-invasive and in-situ ones, which have been named as vanguard 21 

methods, to increase the efficiency in the detection probability of truly adulterated alcoholic 22 

drinks. The analytical methodology proposed here synergistically combines a novel 23 

measurement analytical technique (spatially offset Raman spectroscopy, SORS) with 24 

chemometrics methods, i.e., principal component analysis (PCA), soft independent modeling 25 

of class analogies (SIMCA), partial least squares regression-discriminant analysis (PLS-DA), 26 

support vectors machine, (SVM) and quantitative partial least squares regression (PLSR).  27 

The applicability of the proposal is tested with Tequila to (i) differentiate among 100% agave 28 

and mixed white packaged Tequilas, and (ii) to predict the alcoholic content. SORS spectra of 29 

51 samples were obtained in the 300-2000 cm–1 range, from which classification and 30 

regression models were developed. The best classification performances were obtained with 31 

PLS-DA and SVM with 100% sensitivity, specificity and overall classification rate. PLSR 32 

exposed a better trend of the samples than PCA in the exploratory analysis; and yielded 33 

predictive models capable of foreseeing alcoholic contents with average errors lower than 4%. 34 

These results demonstrate the potential of this fast, in-situ analytical approach to be used as a 35 

vanguard analytical method to screen adulterated or counterfeited Tequilas and to assess the 36 

conformity of the alcoholic stated in the label.  37 

 38 

Keywords 39 

Chemometrics; Spirits fraud; Spatially offset Raman spectroscopy; Tequila authentication. 40 

  41 
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1.  Introduction  42 

Criminal activity against consumers continues non-stop, in fact European Union Intellectual 43 

Property Office (EUIPO) and European Union Agency for Law Enforcement Cooperation 44 

(EUROPOL) have indicated in a last report published in March 2022 that the production of 45 

illicit food products, especially drinks, is increasingly professional and sophisticated [1]. 46 

However, in terms of health and food safety, the weightiness of food and drink fraud will 47 

depend on the type of fraud. In some cases, the consequences are limited to consumer 48 

deception, since offenders pass off lower value products as higher value foods or drinks for 49 

illicit financial profit. Specifically in drinks the most frequent fraud is that committed in 50 

alcoholic beverages, so-called spirits. In fact, in the last two years, adulteration of this type of 51 

product has been detected, such as the case of the Whiskey fraud in Spain in 2020 [2] or the 52 

adulteration of alcoholic beverages in Santo Domingo in April 2022, which resulted in the 53 

death of several people [3].  54 

There is a battery of recognized and well-described analytical methods for detecting different 55 

types of adulteration for each particular alcoholic beverage, most of them based on the 56 

identification and quantification of specific chemical markers. Despite traditional analytical 57 

methods proved to be reliable, accurate and are suitable tools for production control, they 58 

often do not comply with the principles of green chemistry, since they involve the use of 59 

environmentally unfriendly reagents, are time-consuming and frequently expensive, 60 

considering them as rearguard methods [4]. This gives opportunity for the development and 61 

application of alternative analytical methods, which are characterized by being miniaturized, 62 

transportable, simple, rapid, low-cost and capable of providing overall analytical information 63 

that is reliable and representative. The application of these type of alternative analytical 64 

methods, which have been named as vanguard methods, increase the efficiency of control 65 

laboratories since they make possible the analysis of only suspicious samples by rearguard 66 
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methods [4]. The term vanguard method does not refer to the fact that the methodology 67 

presented in this study is highly recent and innovative, as might be inferred at first. It suggests 68 

that such a methodology could be applied as a first analytical approach to quickly process 69 

laboratory samples. In this sense, a vanguard method is often a forward screening method that 70 

allows the selection of suspect samples that will subsequently be subjected to a full backward 71 

analytical method, i.e., a reaguard method. 72 

In this sense, the use of non-targeted spectroscopic analytical techniques, such as 73 

conventional Raman or medium and near infrared spectroscopies, constitute established 74 

methodologies that fit most requirements to get vanguard analytical methods as they require 75 

minimum or null sample preparation. Despite of providing unspecific signals (spectroscopic 76 

instrumental fingerprints), they became popular to determine the composition/adulteration of 77 

food and beverages to ensure the authenticity and traceability [5]. One essential and inherent 78 

subsequent step after the application of spectroscopic techniques is the use of multivariate 79 

chemical data analysis or chemometrics, which together have created a synergistic and 80 

powerful analytical methodology that is regularly applied in the food industry to extract 81 

important and non-evident (or hidden) information from the raw spectra by developing 82 

mathematical models [6,7,8].  83 

Quite recently, a new and more advanced Raman spectroscopy modality, termed spatially 84 

offset Raman spectroscopy (SORS), appeared and it shows highly promising capabilities for 85 

spirit quality and authenticity control. The fundamentals of SORS are like the conventional 86 

Raman spectroscopy, although in SORS the Raman signal is obtained at certain millimeters 87 

off the laser spot, making it possible to collect photons emitted from samples contained within 88 

opaque packaging materials [9]. This means that it is possible to carry out the analysis directly 89 

on the product within the container, without the need to alter the original package/sample, 90 

making SORS one of the few truly non-invasive analytical techniques. Even though this novel 91 
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approach was first developed for the pharmaceutical industry, it expanded rapidly to the food 92 

industry to analyze packaged beverages in a fast and non-destructive manner [9]; for instance: 93 

Vodka, Gin and Whisky through their containers [10]. However, no applications have been 94 

found to authenticate Tequilas.  95 

Tequila is a representative spirit from México that holds an Official Designation of Origin 96 

(DOT - from the Spanish term 'Denominación de Origen Tequila'), which is regulated by the 97 

Mexican Government and the Regulatory Council of Tequila (CRT) through the official 98 

Mexican standard NOM-006-SCFI-2012 [11]. Tequila can be classified in five classes 99 

according to their aging process in oak or holm oak containers: 'Silver or White', 'Aged', 100 

'Extra-aged' and 'Ultra-aged' according to whether maturation lasts for <2 months, ≥2 101 

months, ≥2 years or ≥3 years, respectively. 'Gold Tequila' corresponds to commercial 102 

mixtures of White Tequila with Aged, Extra-aged or Ultra-aged Tequilas [11]. Additionally, 103 

two categories of Tequila can be distinguished: (i) 100% agave Tequila if only sugars from 104 

the juice of the Agave Tequilana Weber blue variety are used for the fermentation process, 105 

and (ii) 'mixed Tequilas' if any combination with other sources of reducing sugars (never 106 

more than 49%) are added to the process. The commonest commercial product is white 107 

Tequila, so, this paper focused on it. 108 

Currently, many adulteration and counterfeiting cases are still reported, not only at Mexico 109 

but in other countries. The main adulteration practice is to substitute ethanol with methanol 110 

or, less frequently, with propanol, ethylene glycol, aldehydes and others [12]. In 2021, a 111 

production of 527 million of liters of Tequila was reported by the CRT whose quality and 112 

authenticity were evaluated using representative samples extracted from the distilleries and 113 

analyzed independently at the CRT. All the aforementioned classes of Tequila are inspected 114 

by the CRT using standardized analytical techniques, such as liquid and gas chromatography 115 

or atomic absorption spectroscopy, to adhere to current official analytical methods. Several 116 
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quality parameters are determined, e.g., furfural, esters, aldehydes, methanol, higher alcohols, 117 

reducing and total sugars. An exemplary routine verification is whether the alcoholic content, 118 

using a digital densimeter method at 20ºC, which is established in the Mexican standard 119 

NMX-V-013-NORMEX-2019 [13], is between 35 and 55% (v/v).  120 

The studies found in the literature concerning the assessment of tequila authenticity are 121 

focused on (i) some chemical markers, (ii) a specific spectral region of interest (ROI), or (iii) 122 

Red, Green and Blue (RGB) color coordinates obtained after the Tequila analysis by 123 

chromatographic and spectroscopic analytical techniques [14,15,16,17,18,19]. For example, 124 

Contreras et al. [20] applied UV-Vis spectroscopy to identify adulterated and fake Tequilas 125 

(between white and rested tequila) or Perez-Beltran et al. [21] employed FTIR and data fusion 126 

approach for distinguishing between pure and mixed White Tequilas. However, surprisingly 127 

no studies have been found where the full RAMAN spectrum is used as an unspecific 128 

instrumental fingerprint but characteristic of each tequila together with chemometric tools for 129 

tequila authentication. 130 

In this regard, the innovation of this work lies in developing a fast and non-invasive vanguard 131 

analytical method for the in-situ screening quality control of spirits using SORS. Its 132 

applicability is demonstrated to ensure Tequila from Mexico in the following terms: (i) 133 

discriminate White Tequilas (100% agave vs mixed), and to (ii) predict and verify the 134 

alcoholic content. For this, SORS spectra were used together chemometric tools to develop 135 

suitable classification and quantitation multivariate analytical methods. Classification 136 

methods were validated in terms of sensitivity, specificity, precision, negative prediction 137 

value, among other 21 classification performance metrics and estimated following the study 138 

published by Cuadros-Rodríguez et al. (2016) [22]. In addition, the quantitative method for 139 

determining the alcohol content was validated according to the ASTM E2617 standard [23]. 140 

 141 
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2. Materials and methods 142 

 143 

2.1. Tequila samples 144 

A total of 51 White Tequila samples were provided by the CRT in México, and analyzed in 145 

Spain, as described in the 'spatially offset Raman spectroscopy (SORS) measurements' 146 

section. Thirty White Tequilas belonged to the 100% agave White Tequila category (TB - 147 

from the Spanish term 'Tequila Blanco') and twenty-one to the mixed White Tequilas (TBM - 148 

from the Spanish term 'Tequila Blanco Mixto'). The alcoholic content of all these samples was 149 

determined by the CRT using a digital densimeter at 20ºC [13]. 150 

 151 

2.2. Spatially offset Raman spectroscopy (SORS) measurements 152 

Vaya Raman SORS equipment (Agilent Technologies, Santa Clara, CA, USA) was used. The 153 

excitation radiation was 830 nm with a maximum power laser of 450 mW, obtaining Raman 154 

spectra in the low frequencies range, from 350 to 2000 cm–1, with 12 to 20 cm–1 spectroscopic 155 

resolution. The SORS measurements of the 51 white Tequila samples were performed directly 156 

through amber vials lasting 30 s, approximately.  157 

 158 

2.3. Similarity analyses  159 

In order to make sure that this methodology can be transferable to any other situation, 160 

similarity analyses were performed. SORS measurements were directly performed on four 161 

original bottled Tequilas marketed in Spain (2 mixed White Tequilas, 1 mixed Rested Tequila 162 

and 1 mixed Tamarind flavored White Tequila). Afterwards, 2 mL of each of them were 163 

transferred to amber glass vials, similar to those used to transport the Mexican Tequila 164 

samples, and measured. Once both spectra for each sample were acquired, the similarity 165 

among them was assessed calculating the corresponding nearness similarity index [24], which 166 
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is based on the proximity of two vectors in space and is calculated from the standardized 167 

Euclidean distance, as depicted in Eq. (1). 168 

NEAR(XSORS, XCRS) = 1 − [√
(XSORS − XCRS) x (XSORS − XCRS)T

(XSORS + XCRS) x (XSORS + XCRS)T
]          (1) 169 

where XSORS and XCRS symbolized both SORS and conventional Raman spectra, respectively, 170 

and the superscript T denotes the transposed matrix [25]. 171 

 172 

2.4. Multivariate data analyses  173 

SORS raw data were exported from CSV format (comma-separated values) to MATLAB 174 

environment (Mathworks, Massachusetts, USA, v. R2013b). The exported spectra contained 175 

1651 variables, each. The training set was constituted by 41 samples (24 of TB type and 17 of 176 

TBM type) whilst the external validation set contained 10 different samples (6 TB and 4 177 

TBM). Splitting was performed applying the Kennard-Stone selection method (so-called 178 

CADEX algorithm), which was deployed on the TB and TBM classes independently in order 179 

to select the samples of the validation set. 180 

The multivariate data analyses were carried out using the PLS_Toolbox software (v. 8.6.1, 181 

2019, Eigenvector Research In., Manson, WA, USA). The applied chemometric tools were 182 

principal component analysis (PCA) and partial least squares regression (PLSR) for 183 

exploratory analysis, soft independent modeling of class analogy (SIMCA), partial least 184 

squares-discriminant analysis (PLS-DA) and support vector machines (SVM) for 185 

classification, and PLSR was also used to quantify the alcoholic content of the samples. Mean 186 

centering and smoothing were used as pre-processing techniques depending on the 187 

multivariate method, as described in 'exploratory analyses' and 'classification analyses'. The 188 

proper number selection of the PCs and LVs of the models was based on the study of their 189 
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root mean square error for calibration (RMSEC), or for prediction (RMSEP) and for cross-190 

validation (RMSECV) plots, and the total explained variance, avoiding overfitting in each 191 

case.  192 

 193 

3. Results and discussion 194 

 195 

3.1. SORS analyses and characterization  196 

When SORS analyses are performed, two measurements are acquired: one at zero offset and 197 

another one with a laterally spatial offset of 0.7 mm from the point of incidence of the laser to 198 

the collection point [9]. This separation favors the photons from the lower layers to be 199 

radiated from a spot laterally shifted from the incidence zone while the photons on the upper 200 

package are radiated from the same incidence zone [26]. Afterwards, internal pre-processing 201 

and normalization are performed by the equipment and a final Raman spectrum is obtained 202 

with no contribution of the container. The Raman spectra of the two categories of white 203 

Tequilas can be observed in Fig. 1. 204 

 205 

Fig. 1 

 206 

The intense peak located at 882 cm–1 and the peak at 1053 cm–1 are attributed to the stretching 207 

and deformation modes of the skeletal C-C-O moieties, whilst the peak at 1090 cm–1 is 208 

associated to the stretching mode of the C-O bond. The peaks at 1279 cm–1 and 1455 cm–1 are 209 

assigned to the deformation wagging mode and to the wagging mode of CH2, respectively 210 

[15,27]. Additionally, the two small peaks around 1610 cm–1 and 1728 cm–1 are associated to 211 

the cyclic ketone structure, which is the basis of furanic compounds in Tequila. Noteworthy, 212 
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those peaks are more intense for the TB category than for the TBM one, as TB proceeds only 213 

from fermentable sugars of the Agave Tequilana Weber blue variety (through the Maillard 214 

reaction [28] when cooked). On the contrary, TBM might or might not present these spectral 215 

Raman peaks because this category of Tequilas can be produced from mixtures of fermentable 216 

sugars, so that the production of furanic compounds might not occur [29].  217 

These acquired signals (Raman spectra), which are here used to evaluate the authenticity and 218 

quality of White Tequilas, are non-specific instrumental fingerprints and make it necessary 219 

the application of multivariate data analyses, as described in the following subsections. 220 

 221 

3.2. SORS and conventional Raman spectra similarity analyses 222 

A point-by-point comparison, using the nearness similarity index (NEAR), among the four 223 

pairs of spectra (data vectors) corresponding to the Tequila samples marketed in Spain was 224 

performed to assess their similarity when the spectroscopic measurements are performed 225 

through the original Tequila glass bottle or through amber glass vials (used as reference). The 226 

expected NEAR results of the standardized Euclidean distance range from 0 to 1, being 1 the 227 

maximum similarity among the spectra. Fig. 2 displays the spectra of the four analyzed 228 

samples within their original glass bottles and the spectra of the samples transferred to the 229 

vial.  230 

 231 

Fig. 2 

 232 

As it can be observed in Fig. 2, each pair of overlapping spectra are similar at first glance and 233 

this fact is further confirmed when the Nearness similarity index is calculated, obtaining 234 

NEAR values >0.92, which indicates that both spectra are largely similar with almost null 235 
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influence of the original glass bottles over the measurements (the remaining ca. 0.08% can be 236 

considered as random noise). According to these results, it is evident that the methodology 237 

presented here has potential application to the in-situ quality control and authentication 238 

analysis of Tequila.  239 

 240 

3.3. Exploratory analyses 241 

An exploratory analysis was performed to screen the natural grouping of the 51 Tequilas. For 242 

this study, the spectral data was previously mean centered. First, a PCA was built considering 243 

5 principal components (PCs) and explaining 75.9% of the cumulative variance, whose main 244 

scores plot, is displayed in Fig. 3. Nonetheless, it can be observed that the samples do not 245 

follow any specific trend among categories. 246 

 247 

Fig. 3 

 248 

Furthermore, PLSR was used to explore these samples. The model was built with 5 latent 249 

variables (LV) explaining 71.1% of the cumulative variance in the X block and 85.8% in the 250 

Y block. Fig. 4 shows the LV2 vs LV3 scores plot, where the TB category concentrates 251 

(although not unequivocally) in the upper-right region of the plot and the TBM category to 252 

the left. The different results among PCA and PLSR lies basically in the very nature of the 253 

PLS latent variables that capture both variance and correlation [30], yielding best results when 254 

PLSR is applied, as it was also found when looking for groups among FTIR fused data of 255 

100% agave and mixed White Tequilas [21]. Additionally, there are some samples placed out 256 

of the 95% confidence limit that might be considered as outliers (see Figures 3 and 4), 257 

however, it was noticed through the normalized (or reduced) Hotelling T2-leverages vs. Q 258 
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residuals plot that those samples had a normal behavior, discarding the existence of outliers. 259 

Thus, all samples were included in the following data analyses.  260 

 261 

Fig. 4 

 262 

3.4. Classification analyses 263 

The next step after the exploratory analysis was the development of non-targeted multivariate 264 

analytical methods to discriminate among TB and TBM. For all classification models, mean 265 

centering and smoothing (Savitski-Golay, 15 points for filter width and 1st order polynomial) 266 

were used as preprocessing techniques. Smoothing is a low-pass filter that removes high-267 

frequency noise [30]. The target class is TB as it is the category with more probability to be 268 

adulterated due to its economic profit. The results of the final classification models are 269 

discussed next. 270 

▪ One Class-SIMCA 271 

The developed SIMCA models were generated using two strategies: (i) two input-class 272 

classification (2iC-SIMCA) models, in which the model is trained using two classes (TB 273 

and TBM), and (ii) one input-class classification (1iC-SIMCA) model, in which the 274 

model is trained only with the 'target class' (TB). Within the 1iC-SIMCA strategy, two 275 

options were evaluated: (a) using the aforementioned calibration and validation data sets 276 

and (b) augmenting the validation set using all the 21 TBM and the previous 6 TB 277 

samples. It was found that the 1iC-SIMCA approach presented the best results using 5 278 

PCs.  279 

The 1iC-SIMCA classification plot (Fig. 5a) depicts the normalized (or reduced) 280 

Hotteling's T2 and Q statistics of the target class, at a 95% confidence level. Samples 281 
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from the validation set with normalized T2 and Q values < 1 (left-bottom quadrant) are 282 

those considered as the target class (TB), whereas samples with T2 and Q values > 1 283 

(right-bottom quadrant) are considered as non-TB (or TBM). In this sense, samples 284 

TBM13 and TBM102 are misclassified as TB and sample TB70 as TBM, indicating that 285 

further confirmatory analyses should be performed. These results are used to create the 286 

corresponding validation contingencies of the classification model, as shown in Fig. 5b. 287 

 288 

 Fig. 5 

 289 

▪ PLS-DA 290 

The PLS-DA model was built using 4 latent variables, which explained 78.3% and 44.1% 291 

of the cumulative variance of both X- and Y-variable blocks, respectively. A threshold 292 

value of 0.5 was established as a decision criterion for the classification of the samples; 293 

scores (weights) >0.5 correspond to TB and <0.5 to TBM, as can be observed in the 294 

classification plot represented by Fig. 6a. The validation contingencies of the PLS-DA 295 

classification model are shown in Fig. 6b. Note that all validation samples were correctly 296 

classified, even though some samples from the training set were misclassified. This 297 

demonstrates the powerful generalization capabilities of the PLS-DA model. 298 

 299 

Fig. 6 

 300 

▪ SVM 301 

Support vectors machine (SVM) was performed using the radial basis function (RBF) 302 

kernel algorithm with the gamma and cost values studied in the 10-6-10 and 10-3-102 303 
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ranges, respectively, and PLS compression with 4 LVs. The classification results for both 304 

the training and validation samples are displayed in Fig. 7a. The results are almost the 305 

same as the PLS-DA ones, suggesting that sample TB70 should undergo further 306 

confirmatory analyses, since it is very close to the threshold value. The SVM validation 307 

contingencies are displayed in Fig. 7b. 308 

 309 

Fig. 7 

 310 

As a matter of comparison, the classification performance metrics for the classification 311 

models were calculated from the results of the validation contingencies (see Table 1) [22], 312 

considering TB as the target class. The most popular metrics are discussed here; however, the 313 

detailed explanation of each of them is out of the scope of this work and interested readers are 314 

kindly forwarded to ref [22] for specific details on this topic.  315 

 316 

Table 1  

 317 

In principle, satisfactory classifications lead to classification performance metrics close to 1 318 

and bad models to 0. For instance, Table 1 shows that PLS-DA and SVM models have a 319 

sensitivity (SENS) = 1, whilst 1iC-SIMCA a and b yields SENS = 0.83, which indicates that 320 

PLS-DA and SVM models classify better the TB samples than 1iC-SIMCA. Specificity 321 

(SPEC) indicates that the TBM samples are correctly classified, being better for PLS-DA and 322 

SVM models with a value = 1 than for 1iC-SIMCA a and b with SPEC = 0.50 and 0.33, 323 

respectively. In fact, the 1iC-SIMCA b model, validated with all the TBM samples, provided 324 

worse classification results than 1iC-SIMCA a, validated with fewer TBM samples. 325 
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Additionally, the positive predictive value (PPV) (so-called precision) informs on the 326 

proportion of agreements in relation to all assigned values of TB class whilst the negative 327 

prediction value (NPV) takes into account the ratio between agreements and the total number 328 

of TBM samples. For PLS-DA and SVM those metrics were = 1, whereas for the 1iC-SIMCA 329 

a and b models PPV were = 0.71 and 0.26, and NPV = 0.67 and 0.88, respectively. The 330 

overall classification rate (OCR) was 100%, 100% and 83% for PLS-DA, SVM and 1iC-331 

SIMCA, respectively, and the Matthews correlation coefficient (MCC) –which might be 332 

considered a compendium of the overall classification ability of the models– was 1.0, 1.0 and 333 

0.36 for the same classification models.  334 

When the validation set 'a' is applied on the 1iC-SIMCA model, the validation results are 335 

relatively good; however, the results are fictitious as this set does not represent the reality of 336 

the sample population. The good results are due to the fact that in the validation set 'a' only 4 337 

TBM samples (non-target class) are considered, but when the number of TBM samples is 338 

increased (validation set 'b'), the model does not classify well. That is, the model classifies 339 

almost all TBM samples as belonging to the TB class, which is related to the results shown in 340 

the exploratory analysis and the no clustering tendency of the classes, so it is not possible to 341 

establish regions for each of them. Therefore, the SIMCA class modelling method is not 342 

suitable for the purpose of this study. 343 

The classification ability of the models obtained in this study (PLS-DA and SVM models) are 344 

better than others previously reported for different purposes (despite a direct, straightforward 345 

comparison is not possible) applying PCA-linear discriminant analysis (LDA), with an overall 346 

classification rate (OCR) of 90.02%, SENS = 0.90 and SPEC = 0.96 [17]. Furthermore, in a 347 

previous study [18] in which nine models were built using mean-centered UV-Vis 348 

spectroscopic data to differentiate various classes of Tequila, it was found that nonlinear 349 

models behaved better than linear ones (EFFIC > 0.94).  350 
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In this context, it is worth noting that class modeling methods, such as 1iC-SIMCA, are 351 

particularly suitable for real-world authentication problems where the target class is always 352 

defined from the authentic or genuine product and is modeled with a large number of samples, 353 

since it is less common to find adulterated samples. This approach has a great potential when 354 

the ideal scenario with sufficient number of authentic samples (target class) are available, 355 

being capable to properly identify new samples obtained from non-authentic products and 356 

differentiate them from those specimens of genuine ones. However, for this particular study, 357 

the available samples to build a more reliable 1iC-SIMCA model were limited, since Tequila 358 

Blanco 100% agave is only produced in certain regions of México and the accessibility of a 359 

variety of samples is rather narrow. A good alternative to address this situation is the use of 360 

discriminant methods, such as PLS-DA and SVM, particularly in this study, because it aimed 361 

at classifying two mutually excluding classes ('100 agave' and 'mixto') of the same quality sort 362 

of tequila ('Tequila Blanco'). In fact, it was evidenced that the validation results of the 1iC-363 

SIMCA model depend on the number and type of samples included in the test set, but PLS-364 

DA and SVM models provided better ability to correctly classify samples from both classes. 365 

However, this discriminant strategy is not free from the drawback of misclassifying new 366 

samples coming from non-genuine products with some different composition from those 367 

already used in the training step, which is a risk that practitioners must evaluate and take into 368 

account when extending the application of the method. 369 

3.5. Alcoholic content quantitation 370 

A PLSR-based quantitation analytical method was calibrated to predict the alcoholic content 371 

of the Tequila samples. As detailed above, the reference values were obtained by the CRT 372 

following the official method. The PLSR model was built using mean centering to preprocess 373 

the spectra and including 5 LVs in the model which explained 73.6 and 97.1% of the 374 

cumulative variance for the X- and Y-variable blocks, respectively. Fig. 8 compares the PLSR 375 
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predicted alcoholic contents against the total alcoholic content reported by the CRT. The 376 

evaluation of this model was performed with the quantitation performance metrics, as 377 

observed in Table 2. 378 

 379 

Fig. 8 

 380 

Table 2  

 381 

The first quantitation performance metric is the coefficient of determination (R2) with a value 382 

= 0.971, evidencing a good fitting. The following four metrics are related to different sorts of 383 

errors the model might present (root mean square error, mean absolute error, median absolute 384 

error and standard error of validation), all of them with values less than 4%; the sixth metric is 385 

the standard deviation of validation residuals (SDV = 2.7%), indicating that the agreement of 386 

the predictions of the empirical model with the reference values is high, which results in a 387 

quite good predictive ability. 388 

Note that PLSR has been previously applied to predict the alcoholic content of different 389 

Tequilas using FTIR, obtaining very good results [19]. Moreover, a vector network analyzer 390 

with an open-ended coaxial probe kit was used for the same purpose [31]. 391 

PLSR has also been applied to quantitate the furfural, 2-acetylfuran and 5-methylfurfural 392 

content in White Tequilas and Mezcals samples with acceptable results [29]. It would have 393 

been interesting to compare the results obtained here with those of another report in which 394 

SORS was applied to study the adulteration of Vodka, Gin and Whisky with methanol, but 395 

prediction of the alcoholic content was not considered [10].  396 

 397 
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4. Conclusions  398 

Economic losses for the industry of alcoholic beverages and societal health problems are two 399 

relevant consequences of the adulteration and counterfeiting of commercialized spirits, which 400 

have not ceased over the years. To streamline the authentication surveillance of these 401 

products, current official rearguard methods need to be complemented with vanguard, faster 402 

and reliable in-situ screening analytical methods. In this regard, the present study reports for 403 

the first time the combination of the SORS analytical technique and chemometrics to 404 

discriminate between 100% agave and mixed White Tequilas and to predict their alcoholic 405 

content. It should be noted that the potential of the in-situ non-invasive SORS measurement 406 

implemented here has been verified by means of a similarity analysis. This demonstrated that 407 

the spectra obtained after analyzing Tequilas through the original bottle and through amber 408 

vials are almost the same, obtaining nearness indexes close to 1. Afterwards, models were 409 

developed and assessed with several classification performance metrics, which indicated that 410 

satisfactory classifications and predictions were achieved. PLS-DA and SVM presented the 411 

best OCR = 100%, evidencing that the combination of SORS and some chemometric methods 412 

is able to discern among 100% agave and mixed White Tequilas. Finally, a PLSR quantitation 413 

model demonstrated an excellent ability to predict the alcoholic content of the samples. 414 

The approach presented here offers an alternative analytical method for routine authentication 415 

tasks undergone by official regulatory bodies. It is reliable and fast for in-situ screening 416 

purposes and, can complement and accelerate the quality control and authentication processes 417 

of commercial spirits, such as Tequila. 418 
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Table 1. Summary of classification performance metrics for 1iC-SIMCA, PLS-DA and SVM 

models. 
 

 

1iC-SIMCA 
PLS-DA SVM 

a b 

Metrics Target class (100% agave White Tequila, TB) 

Sensitivity (SENS) 0.83 0.83 1.00 1.00 

Specificity (SPEC) 0.50 0.33 1.00 1.00 

False positive rate (FPR) 0.50 0.67 0.00 0.00 

False negative rate (FNR) 0.17 0.17 0.00 0.00 

Positive predictive value (PPV) (precision) 0.71 0.26 1.00 1.00 

Negative predictive value (NPV) 0.67 0.88 1.00 1.00 

Youden index (YOUD) 0.33 0.17 1.00 1.00 

Positive likelihood rate (LR(+)) 1.67 1.25 – – 

Negative likelihood rate (LR(-)) 0.33 0.50 0.00 0.00 

Classification odds ratio (COR) 5.00 2.50 – – 

F-measure (F) 0.77 0.40 1.00 1.00 

Discriminant power (DP) 0.39 0.22 – – 

Efficiency (or accuracy) (EFFIC) 0.70 0.44 1.00 1.00 

Misclassification rate (MR) 0.30 0.56 0.00 0.00 

AUC (correctly classified rate) (CCR) 0.67 0.58 1.00 1.00 

Gini coefficient (Gini) 0.33 0.17 1.00 1.00 

G-mean (GM) 0.65 0.53 1.00 1.00 

Matthews' correlation coefficient (MCC) 0.36 0.15 1.00 1.00 

Chance agreement rate (CAR) 0.54 0.39 0.52 0.52 

Chance error rate (CER) 0.48 0.35 0.48 0.48 

Kappa coefficient (KAPPA) 0.35 0.09 1.00 1.00 

PROB (TB/TB) 0.71 0.26 1.00 1.00 

PROB (nTB/nTB) 0.67 0.88 1.00 1.00 

PROB (TB/nTB) 0.33 0.13 0.00 0.00 

PROB (nTB/TB) 0.29 0.74 0.00 0.00 

The hyphen "–" signifies that the performance feature cannot be determined since it involves a division 

between zero. 

a and b: models validated using 10 (6 TB and 4 TBM) and 27 (6 TB and 21 TBM) samples as external 

validation sets, respectively. 
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Table 2. Performance metrics in the quantitation of the alcoholic 

content of the Tequila samples that constitute the validation set. 

 

Metrics Value (%) 

Coefficient of determination (R2) 0.971 

Root mean square error (RMSE) 3.32 

Mean absolute error (MAE) 1.82 

Median absolute error (MdAE) 2.61 

Standard error of validation (SEV) 3.14 

Standard deviation of validation residuals (SDV) 2.65 
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Figure legends 

Figure 1. Raman spectra of a '100% agave' White Tequila sample (TB) and a 'mixed' White Tequila 

(TBM) one.  

 

Figure 2. Similarity plots of four sample pairs of White Tequila (S1-S4) measured through the 

original bottle (BS) and amber vial (VS), considered as the reference spectrum. 

 

Figure 3. Exploratory PC1 vs PC2 scores plot from the 51 samples PCA model showing two different 

categories of White Tequilas. TB: 100% agave White Tequila (n=30) and TBM: mixed White 

Tequilas (n=21).  

 

Figure 4. Exploratory LV2 vs LV3 scores plot from the 51 samples PLS model showing two different 

categories of White Tequilas. TB: 100% agave White Tequila (n=30) and TBM: mixed White 

Tequilas (n=21). 

 

Figure 5. (a) Classification plot (a) and (b) validation contingencies for the one input-class SIMCA 

classification model. Class 1: target class (TB: '100% agave' Tequila); class 2: non-target class (TBM: 

'mixed Tequila') (The magenta-marked samples in figure 5a are the misclassified samples). 

 

Figure 6. (a) Classification plot and (b) validation contingencies for the PLS-DA classification model. 

Class 1: target class (TB: '100% agave' Tequila); class 2: non-target class (TBM: 'mixed Tequila'). 

(The dashed line in figure 6a indicates the 0.5 threshold level). 

 

Figure 7. (a) Classification plot and (b) validation contingencies for the SVM classification model. 

Class 1: target class (TB: '100% agave' Tequila); class 2: non-target class (TBM: 'mixed Tequila'). 

(The dashed line in figure 7a marks the 0.5 threshold level). 

 

Figure 8. PLSR alcoholic predictions (% v/v) for White Tequila samples. (a) Calibration curve, and 

(b) alcoholic content plot of the validation set samples. The circles are colored according to the 

predicted alcoholic content from the vertical color scale. Each sample displays the predicted value 

against the real value of alcoholic content, which is underlined.   



28 / 35 
v2.4-clean 

<Figure 1>  
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<Figure 2>  
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<Figure 3>  
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<Figure 4>  
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<Figure 5>  
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<Figure 6> 
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<Figure 7> 
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