
Parallel Cellular Automaton Tumor
Growth Model

Alberto G. Salguero1(B), Manuel I. Capel2, and Antonio J. Tomeu1

1 University of Cádiz, Cádiz, Spain
{alberto.salguero,antonio.tomeu}@uca.es

2 University of Granada, Granada, Spain
manuelcapel@ugr.es

Abstract. “In silico” experimentation allows us to simulate the effect
of different therapies by handling model parameters. Although the com-
putational simulation of tumors is currently a well-known technique, it is
however possible to contribute to its improvement by parallelizing simu-
lations on computer systems of many and multi-cores. This work presents
a proposal to parallelize a tumor growth simulation that is based on cel-
lular automata by partitioning of the data domain and by dynamic load
balancing. The initial results of this new approach show that it is pos-
sible to successfully accelerate the calculations of a known algorithm for
tumor-growth.

Keywords: Cellular automaton · High performance computing
Mathematical oncology · Tumoral growth simulation
Parallel programming · Speedup

1 Introduction

Tumor growth from a transformed cancer-cell into a clinically apparent mass 
spans a range of spatial and temporal magnitudes. Cellular Automata (CA) 
can accurately describe the complexity of tumor development [6,20] and this 
is reproduced by computer simulation. The development of appropriate CA-
based software tools will enable tumor prognosis without the need for patients 
to undergo annoying medical examinations or painful invasive tests.

In order to speed up these computer simulations, recent contributions [16] 
show advanced techniques for modelling tumor growth such as the use of efficient 
data structures for supporting deterministic cellular automata (DCA). Multi-
paradigm and multiscale models of cancer dynamics [13] have been developed to 
predict tumor growth and therapeutics.

There have been some approaches based on CA optimization to further extend 
multiparadigm tumor growth models [2,3,12,14,15,17] and these mainly aim to 
improve computer simulation performance by guaranteeing efficient data memory 
program access [16], or by considering the dynamic evolution of the memory space 
(grids, trees...) that holds crucial data in simulations [18].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98702-6_21&domain=pdf
Manuel
Resaltado



176 A. G. Salguero et al.

In our opinion, the different optimizations based on improving sequential data
structure access are not decisive enough to achieve the high-performance com-
puting power actually required by programs simulating cell behaviour. The pos-
sibility of using multicore and GPU parallelism as a promising multiplatform and
framework to develop new programming techniques to speed-up the simulation
computation time has only just started to be explored in recent years [5,8,11].

In order to be able to speed up in parallel programs, this paper presents a
CA-based model for tumor growth simulation and identifies the synchronization
instructions for implementing this model in a multicore processor in Java.

2 Tumor Growth Model

There are various mathematical definitions of cellular automata. We chose the
one established in [1] as the most generally accepted in Computational Sciences,
adapted to represent lattice-based biological models [4], and applied to simulate
dynamic tumor growth in [16].

One tumor cell in the model is an individual entity that takes up one node
of a finite 2D lattice ζ and which can carry out the following actions: migrate
to another node on the grid, proliferate by mitosis, die or remain quiescent. A
live cell can proliferate by generating a cell’s daughter through mitosis whenever
there is space available in its neighborhood (given by the Moore neighborhood).

According to Poleszczuk-Enderling’s model [16] of reference, the most effi-
cient way of processing tumoral cells consists in keeping a linear list of the tumor
cells in the lattice that occupy sequential positions in memory. The list is entirely
processed in each simulation step and this yields a new list of cells to be processed
in the next one and so on and so forth.

The lattice is used here merely to keep the current state of the tumor. Only
the changes in cells are actually written to it. Only two lists are in fact needed to
implement the tumoral growth simulation procedure: one listing the cells still to
be processed and the second one storing the tumor cells for the next simulation
step. This scheme is similar to the one proposed by [10] and which is, to the best
of our knowledge, the best sequential solution to the tumor growth simulation
problem to date. However, our model uses multicore processors to improve the
speed of the tumor growth simulation.

In order to speed up the tumor growth simulation model, two fundamental
problems must be solved: firstly, to find a good strategy to maintain balanced
cell distribution between threads; and secondly, to prevent access to the data
structures (the lattice and lists of active cells) by each thread from blocking
other threads for an unacceptable amount of time that could worsen program
performance. It is important to note that insertions and deletions on the lattice
cell lists must be performed under mutual exclusion to avoid loss of information.

By using different lists for each region it is possible to prevent blocking access
to the current-state cell list. The next-state lists must always be accessed by using
blocking access primitives, since cells can migrate between regions when program
threads access such lists.



Parallel Cellular Automaton Tumor Growth Model 177

Fig. 1. Lattice division: (A) region assigned to a unique thread; (B) center subregion;
(C) bottom part of the seam subregion; (D) top part of the seam subregion

The main objective of the model proposed in this work is to enable concurrent
processing of the cells without the need for programming blocking access both
to the cell lists and the lattice that holds the current state of the tumor mass. In
order to achieve this purpose, the lattice is first divided vertically into as many
regions as threads available. Each of these regions is further divided into three
parts or subregions: top seam part (C), central part (B) and bottom seam part
(D), as shown in Fig. 1. The central parts of the regions are therefore separated by
what we call “seams”, which are divided into two parts. This layout guarantees
the existence of at least two types of subregions between subregions of the same
type. This allows the model to concurrently process the cells in subregions of the
same type without needing to block access since threads do not enter subregions
which are being accessed by other threads. In the case of cell migration to another
region, no other thread may access the target subregion at the same time. In
order to make use of this property, the proposed model first processes the cells in
the bottom seam subregions, then processes those in the central parts and finally
those in the top seam subregions (see Fig. 2). All this processing is carried out
concurrently and without blocking the threads, except for making them wait
until the remaining threads have processed the same type of subregion.

For the model to work efficiently, it is important to perform a correct load
balancing between the number of cells that each thread obtains for processing.
Once the entire next state of the tumor has been calculated, the main thread is
responsible for adjusting the regions, if appropriate.

Subregions must have a minimum height so that no single cell can migrate
between non-adjacent subregions. In the proposed model, the minimum height
value is δ, the length of the longest displacement of a cell in each simulation step.

2.1 Seams Adjustment During Simulation

As the tumor grows, it is necessary to adjust the seams to equally distribute cells
among all the threads. The main thread is responsible for performing this task



178 A. G. Salguero et al.

Fig. 2. A step in the parallel simulation

once the remaining threads have finished calculating the next state of the simu-
lation. For reasons of efficiency, the main thread does not update the subregion
to which each cell belongs. When the cells are again evaluated by the threads in
the next step, the cells are assigned to the corresponding subregion. However,
this may cause a cell to directly migrate from the top part of a seam (C) in one
region to the central part of another region without passing through the bottom
seam subregion, as shown in Fig. 3a. In substep 2, when the upper seam has been
moved upward, the a cell still remains in the list of the top seam part (C). In
substep 3, both threads simultaneously process the top seam parts (C), and this
may cause incorrect concurrent access to the list of cells in the center area (B)
or the need to use blocking access primitives. To avoid this situation, the seams
are displaced in a three-tier process that is performed in three1 consecutive and
different steps of the simulation, as shown in Fig. 3b:

1. Increase the thickness of the seam in δ rows in the same direction of the
displacement (step 2 in Fig. 3b).

2. Decrease and increase the size of the subregions that share the seam in δ rows:
the part of the seam that was increased in the previous step is decreased and
the other part is increased, maintaining the same seam thickness (step 4 in
Fig. 3b).

3. Decrease the thickness of the seam to the default value in the region that has
increased its size (step 5 in Fig. 3b).

In this case, cell a can be safely added to list (B) in substep 6 because cell b
cannot be processed in the same substep (they are still in different subregions).
Since both cells have been assigned to the same thread in substep 3, they cannot
be processed at the same instant. For this reason, there is no need to use blocking
access primitives in substep 7, when both cells modify the center list (B).

1 For the sake of simplicity, only substeps where changes have been made to the lists
are shown in Fig. 3. Substeps 3 and 4 are actually part of the same overall step.



Parallel Cellular Automaton Tumor Growth Model 179

Fig. 3. Incorrect (a) and correct (b) parallel seam adjustment. The small letters in
rectangles indicate the current list the cells belong to (t = top seam part, b = bottom
seam part, c = center).

The seam adjusting process is automatically started when a significant dif-
ference of cells between two adjacent regions is detected. After some tests, it
has been observed that the best results are obtained when this difference is
greater than 5–15%. The exact value depends on the number of threads in the
simulation.

It should also be noted that for reasons of efficiency it is not possible to
adjust two consecutive seams. Since the main thread does not reassign migrated
cells, it is not possible to determine the number of remaining cells in affected
regions. Although this value could easily be calculated, it is important to note
that the remaining threads are blocked until the main thread adjusts the seams,
so it is crucial for seam adjustment to be performed as quickly as possible.

3 Model Implementations and Measurements

Some experiments have been conducted in order to verify the efficiency of the
solution proposed in this work. In these experiments we measured the time taken
by a Java application to follow the proposed model and we compared the results
with the best known implementation to date [10]. A single cell has been placed
at the center of the lattice in every case. The lattice in processed by the threads
in parallel, according to model explained in previous section. The application
developed follows the Poleszczuk-Enderling model for the simulation of tumoral
growth. The model decides whether a cell dies, remains quiescent, or proliferates
by mitosis (if there is enough space around the cell to do so) according to a set of
probability distributions, which enables us to use a simulation based on a Monte
Carlo stochastic submodel. We have employed the default parameters values
provided by Poleszczuk-Enderling. More specifically: the cells may be divided
ten times before proliferative capacity exhaustion; the probability of division is
1/24; the probability of symmetric division is 0.1; the probability of spontaneous
death is 1/24; and the probability of migration is 10/24.



180 A. G. Salguero et al.

Fig. 4. Execution time for an Intel Core i7 implementation on 4 cores and 8 threads
(hyperthreading activated) of the EP-parallel tumor growth simulation

Since the final result in the concurrent version depends on the order in which
the cells are evaluated by the threads, it is never possible to obtain the exact
same result. The shape of the resultant tumor mass is roughly the same for
the same initial configuration and simulation parameters. However, since the
border of the tumor is diffuse, the exact number of cells in the tumor mass
may vary a lot. Therefore, the time spent on each simulation step cannot be
compared among different simulations. Instead, the number of cells processed by
time unit is used as reference. Five different configurations with n = {1, 2, 4, 6, 8}
threads have been used on the i7, while seven different configurations with n =
{1, 2, 4, 6, 8, 10, 12} threads have been used on the Xeon.

Figure 4 shows that a huge number of cells must be processed in each sim-
ulation. Around 300 simulation steps are necessary for the tumor to reach the
cell-lattice border regions for the case of n = 8 threads, for example. The threads
associated with these regions are idle until then. The load will only be equally

Fig. 5. Speed-up gain for Xeon E5-2670 and Core i7-6700 of EP-parallel tumor growth
with respect to the sequential EP simulation



Parallel Cellular Automaton Tumor Growth Model 181

distributed among all the threads after 500–600 simulation steps. The speed-up
gain for {2, 4, 6, 8}-thread configurations is shown in Fig. 5. The same behavior
is also observed when the experiment is performed in one of the nodes of the
University of Cádiz. No noticeable improvement has been found for more than
six threads.

4 Conclusion and Future Work

The application of parallelization techniques to cellular automata-based tumor
growth simulations on multicore and many core or processor clusters is a research
field which has not yet reached full maturity. By introducing a data parallel
scheme with several computing threads, we have proposed a parallelization app-
roach for a basic tumor growth simulation model. Different processing loads were
deployed on selected multicore processor architectures for a Java parallel pro-
gram and compared with the tumor growth model with dynamically growing
data domains given in reference [16]. This model manages to accelerate the sim-
ulation algorithm by optimizing the cellular automaton data structures while
allowing data regions to be accessed by single thread at a time.

The obtained results showed better speedup in computations than the tumor
growth simulation program of reference in [16]. However, there is still room
for the improvement of the model. Good acceleration is obtained when using
half the number of cores in the architecture. From then on a worsening on the
performance is observed. In the tests we have carried out, it has been detected
that the load-balancing mechanism is not fast enough to equally distribute the
workload among all the threads when the tumoral mass grows. This is because
the edges of the tumor are very diffuse, which causes very rapid changes in the
number of cells in each region of the lattice.

Our future work will be directed towards obtaining a new implementation of
our tumor growth model for GPU based on the data domain model array with
dynamic growth, initially based on the sequential model in [16]. The proposed
model is being improved with the inclusion of dynamic tumor growth character-
istics that have been mentioned by various authors [13], such as tumor vascular
prominence (angiogenesis) or tumor nutrient intake, which can be modeled using
hybrid lattice-gas cellular automata [9].

References

1. Adamaztky, A., De Lacy, B., Tetsuya, A.: Reaction-Diffusion Computers. Elsevier
(2005)

2. Alarcón, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumor
growth in inhomogeneous environments. J. Theor. Biol. 225(2), 257–274 (2003)

3. Aubert, M., Badoual, M., Fereol, S., Christov, C., Grammaticos, B.: A cellular
automaton model for the migration of glioma cells 3(2), 93–100 (2006)

4. Bandman, O.: Implementation of large-scale cellular automata models on multi-
core computers and clusters. In: International Conference on High Performance
and Simulation (HPCS), 1–5 July 2013. https://doi.org/10.1109/HPCSim.2013.
6641431

https://doi.org/10.1109/HPCSim.2013.6641431
https://doi.org/10.1109/HPCSim.2013.6641431


182 A. G. Salguero et al.

5. Blecic, I., Cecchini, A., Trunfio, G.A.: Cellular automata simulation of urban
dynamics through GPGPU. J. Supercomputing 65, 614–629 (2013). https://doi.
org/10.1007/s11227-013-0913-z

6. Capel-Tuñon, M.I., et al.: Towards modal modelling of biological systems. Techni-
cal report: Michigan State University, pp. 1–12 (2008)

7. Chopard, B., Droz, M.: Cellular Automata in Modeling of Physical Systems. Cam-
bridge University Press, Cambridge (1998)

8. D’ambrosio, D., Filippone, G., Rongo, R., Spataro, W., Trunfio, G.A.: Cellular
automata and GPGPU: an application to lava flow modeling. Int. J. Grid High
Perform. Comput. (IJGHPC) 4(3), 18 (2012)

9. Deutsch, A., Dorman, S.: Cellular Automata Model of Biological Patterns. Char-
acterization, Applications and Analysis. Birkhuser (2005)

10. Enderling, H., Anderson, A., Chaplain, M., Beheshti, A., Hlatky, L., Hahnfeldt,
P.: Paradoxical dependencies of tumor dormancy and progression on basic cell
kinetics. Cancer Res. 69, 8814–8821 (2009)

11. Gibson, M.J., Keedwell, E.C., Savic, D.A.: An investigation of the efficient imple-
mentation of cellular automata on multi-core CPU and GPU hardware. J. Parallel
Distrib. Comput. 77, 1125 (2015)

12. Jiao, Y., Torquato, S.: Emergent behaviors from a cellular automaton model for
invasive tumor growth in heterogeneous microenvironments. PLOS Comput. Biol.
7, Article ID: e1002314. https://doi.org/10.1371/journal.pcbi.1002314

13. Khan, M.A., Shefeeq, T., Kumar, A.: Mathematical modeling and computer simu-
lation in cancer dynamics. Int. J. Math. Model. Simul. Appl. 4(3), 239–254 (2011)

14. Patel, A.A., Gawlinski, E.T., Lemieux, S.K., Gatenby, R.A.: A cellular automaton
model of early tumor growth and invasion: the effects of native tissue vascularity
and increased anaerobic tumor metabolism. J. Theor. Biol. 213(3), 315–331 (2001)

15. Piotrowska, M.J., Angus, S.D.: A quantitative cellular automaton model of in vitro
multicellular spheroid tumour growth. J. Theor. Biol. 258(2), 165–178 (2009)

16. Polesczuk, J., Enderling, H.: A high-performance cellular automaton model of
tumor growth with dynamically growing domains. Appl. Math. 5, 144–152 (2014)

17. Ribba, B., Alarcón, T., Marron, K., Maini, K., Agur, Z.: The use of hybrid cellular
automaton models for improving cancer therapy, pp. 444–453 (2004)

18. Rybacki, S., Himmelspach, J., Uhrmacher, A.: Experiments with Single Core, Multi
Core, and GPU-based computation of cellular automata. In: 2009 First Interna-
tional Conference on Advances in System Simulation, pp. 62–69 (2009)

19. Tomeu, A.J., Salguero, A.G., Capel, M.I.: A parallelisation tale of two languages.
Ann. Multicore GPU Program. 2(1), 81–94 (2015)

20. Trisilowati, Mallet, D.G.: Experimental modeling of cancer treatment. ISRN Oncol-
ogy, 2012, Article ID 828701 (2012). https://doi.org/10.5402/2012/828701

https://doi.org/10.1007/s11227-013-0913-z
https://doi.org/10.1007/s11227-013-0913-z
https://doi.org/10.1371/journal.pcbi.1002314
https://doi.org/10.5402/2012/828701

	Parallel Cellular Automaton Tumor Growth Model
	1 Introduction
	2 Tumor Growth Model
	2.1 Seams Adjustment During Simulation

	3 Model Implementations and Measurements
	4 Conclusion and Future Work
	References




