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Abstract. Random Forest (RF) learning algorithm is considered a clas-
sifier of reference due its excellent performance. Its success is based on
the diversity of rules generated from decision trees that are built via
a procedure that randomizes instances and features. To find additional
procedures for increasing the diversity of the trees is an interesting task.
It has been considered a new split criterion, based on imprecise proba-
bilities and general uncertainty measures, that has a clear dependence of
a parameter and has shown to be more successful than the classic ones.
Using that criterion in RF scheme, join with a random procedure to se-
lect the value of that parameter, the diversity of the trees in the forest
and the performance are increased. This fact gives rise to a new classi-
fication algorithm, called Random Credal Random Forest (RCRF). The
new method represents several improvements with respect to the classic
RF: the use of a more successful split criterion which is more robust to
noise than the classic ones; and an increasing of the randomness which
facilitates the diversity of the rules obtained. In an experimental study,
it is shown that this new algorithm is a clear enhancement of RF, espe-
cially when it applied on data sets with class noise, where the standard
RF has a notable deterioration. The problem of overfitting that appears
when RF classifies data sets with class noise is solved with RCRF. This
new algorithm can be considered as a powerful alternative to be used on
data with or without class noise.

Keywords: Classification, ensemble schemes, Random Forest, imprecise prob-
abilities; uncertainty measures

1 Introduction

The classification task (D. J. Hand, 1997), in the data mining area, starts from
a set of data about observations or cases described via attributes or features;
where each observation has an assigned value (label) of a variable under study,
also called class variable. The final aim of this task is to extract knowledge from
data to predict the value of the label of the class variable when a new observation
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appears. In order to build a classifier from a data set, different approaches can
be used, such as classical statistical methods (D. Hand, 1981), decision trees
(Quinlan, 1993), artificial neural networks or Bayesian networks (Pearl, 1988).

Decision trees (DTs) also known as classification trees are a type of classifiers
with a simple structure where the knowledge representation is relatively simple
to interpret and it can be seen as a set of decision rules in a tree format. DTs
began to increase their importance with the publication of the ID3 algorithm
proposed by (Quinlan, 1986). Afterwards Quinlan proposed the C4.5 (Quinlan,
1993) algorithm, which is an improvement of the previous ID3 and obtains better
results. One important characteristic of the standard procedures to build DTs is
that few variations of the data, used to learn, produces important differences in
the models. This is known as instability or diversity (Tsymbal, Pechenizkiy, &
Cunningham, 2005) of decision tree classifiers, where the constructed rules may
be significantly different from the original ones if the input training sample is
slightly changed. That is, the rules generated from two similar samples may be
very different.

The fusion of information obtained via ensembles or combination of sev-
eral classifiers can improve the final process of a classification task, this can be
represented via an improvement in terms of accuracy and robustness. Some of
the more popular schemes are bagging (Breiman, 1996), boosting (Freund &
Schapire, 1996) or Random Forest (Breiman, 2001). The inherent instability of
decision trees (Breiman, 1996) makes these classifiers very suitable to be em-
ployed in ensembles. In a ensemble scheme, there is little gain combining similar
classifiers, so the improvement of the ensemble relies on the diversity of the
base classifiers, provided that this diversity does not diminish the accuracy of
the ensemble members. A revision of ensemble methods and diversity can be
found in (Dietterich, 2000a; Brown, Wyatt, Harris, & Yao, 2005; Ren, Zhang, &
Suganthan, 2016).

Random Forest (RF) is a fine supervised classification method based on
the combination of the Breiman’s “bagging” and random selection of features
(Breiman, 2001) in order to construct a collection of decision trees with con-
trolled variance. Advanced classification models based on RF have been recently
published (Menze, Kelm, Splitthoff, Koethe, & Hamprecht, 2011; Zhang & Sug-
anthan, 2014, 2015, 2017). In the original algorithm of RF, the decision trees are
built without pruning. In this way, a tree tends to be more different from the rest
than the pruned version of the tree. Besides, RF algorithm has two stochastic
elements: (a) Bagging employed for the selection of the instances used as input
for each tree; and (b) the random set of features considered as candidates for
splitting each node. These stochastic aspects increase the diversity of the trees
and significantly improve the overall predictive accuracy of RF when the out-
puts of these trees are combined. It could be interesting to find other concepts
for increasing the trees diversity in RF, without giving up the accuracy of the
ensemble members. These new concepts can be found in the new theories of
imprecise probabilities.
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The good results obtained by the RF classifier in several areas have motivated
that RF is one of the most used models in the literature of applications in the
data mining area. Some very recent references about its use, combined with other
models as Neural Networks (NNs), are the following ones: combinations between
NNs and RF in (Bai, 2017; Azqhandi, Ghaedi, Yousefi, & Jamshidi, 2017; Wang
et al., 2015); ensembles of NNs, RF and other models in (Krauss, Do, & Huck,
2017); and different applications in big data about crash risk analysis, visual
classification and other ones in (Gauba et al., 2017; Jiang, Abdel-Aty, Hu, &
Lee, 2016; Li et al., 2016).

The classical theory of probability has been the principal tool to construct
learning procedures in the data mining area. But, few years ago, generalizations
of this theory have arisen, such as (Klir, 2005): theory of evidence, measures of
possibility, intervals of probability, capacities of 2-order, etc. Each one represents
a model based on imprecise probabilities (see (Walley, 1996)).

The Credal Decision Tree model1 (CDT) of (Abellán & Moral, 2003), uses
imprecise probabilities and general uncertainty measures (Klir, 2005) to build a
decision tree. The CDT model represents an extension of the classical ID3 model
of (Quinlan, 1986), replacing precise probabilities and entropy with imprecise
probabilities and maximum of entropy. This last measure is a well accepted
measure of total uncertainty for some special type of imprecise probabilities
(Abellán, Klir, & Moral, 2006). In the last years, it has been shown that the
CDT model presents good experimental results in standard classification tasks
(see (Abellán & Moral, 2005), (Abellán & Masegosa, 2009)). The treatment of
the imprecision is different when imprecise probabilities are used. This fact has
been experimentally shown in (Abellán & Masegosa, 2012; Mantas & Abellán,
2014a; Abellán & Mantas, 2014; Mantas & Abellán, 2014b), where the models
are applied on data set with label noise, i.e. data sets where the class variable
has some incorrect labels, due principally to deficiencies in the data learning
and/or the process for capture of data2.

The performance of CDTs depends of a hyperparameter s used in its split
criterion (Abellán, 2006). The adjustment of this hyperparameter is necessary in
terms of the noise level of the data set to be classified (see (Mantas, Abellán, &
Castellano, 2016)). Different values of s produce different CDTs when they are
constructed to classify the same data set. In this way, diversity of CDTs without
giving up accuracy can be obtained by changing the value of this parameter s
when a data set is classified. Besides, as it can be read in (Mantas et al., 2016),
the controlled modification of the value for s do not diminish the accuracy of
the decision tree drastically.

The diversity of trees in the forest created by the RF algorithm is achieved by
using trees without pruning, bagging and random selection of features. If we use
the split criterion of the CDT procedure in the base tree of the RF algorithm, a

1 The term credal comes from the use of a special type of imprecise probabilities:
closed and convex set of probability distributions

2 A complete and recent revision of machine learning methods to manipulate label
noise can be found in (Frenay & Verleysen, 2014).
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new element for increasing the diversity of the trees in the forest can be inserted.
For each new DT in RF, a random selection for the value of s can be carried out.
Thus, an increase of diversity in the trees of the forest with acceptable accuracy
is obtained and this fact is important for improving the predictive accuracy of
RF.

The method of the RF algorithm where the forest is built with DTs using
the split criterion of the CDT and the value of the parameter s is randomly
selected, will be named as Random Credal Random Forest (RCRF). It has been
designed and implemented in this paper. Finally, an exhaustive experimental
comparison has been carried out, in order to compare RCRF and other ensem-
ble methods as the original RF algorithm and other, successful under class noise,
bagging schemes. This experimental study is presented in this work in order to
show that RCRF algorithm obtains better classification results than the original
RF algorithm and the rest of ensemble methods. In particular, RCRF algorithm
correctly classifies data sets with or without noise. This is an important improve-
ment of the standard RF algorithm because this algorithm suffers the overfitting
problem when noisy data sets are classified.

The rest of the paper is organized as follows. Section 2 presents the nec-
essary previous knowledge about the new split criterion used and the Random
Forest algorithm. Section 3 describes the RCRF algorithm and its base classifier.
Section 4 justifies the definition of the new ensemble method RCRF. Section 5
describes the experimentation carried out. Section 6 comments the results of the
experimentation. Finally, Section 7 is devoted to the conclusions.

2 Previous knowledge

2.1 Credal Decision Tree procedure

The known recursive process to build a decision tree is normally based on the
followings points: (i) the use of a split criteria to select the feature to be insert
in a node and branching; (ii) a criteria to stop the tree from branching; and
(iii) a method for assigning a class label (or a probability distribution) at the
leaf nodes. Alternatively, can be also used (iv) a post-pruning process used to
simplify the tree structure.

Many different approaches for inferring decision trees, which depend upon the
aforementioned points, have been published. Quinlan’s ID3 and C4.5 (Quinlan,
1993) stand out among all of these. The split criteria used by these algorithms
are Info-Gain (IG) for ID3 and Info-Gain Ratio (IGR) for C4.5. Both procedures
have been extensively used in the literature of the area of data mining.

The use of different split criteria normally implies different graphical struc-
tures of the trees. Hence, it can be considered as the most important part of the
algorithm to build a DT. The split criterion employed to build Credal Decision
Trees (CDTs) (Abellán & Moral, 2003), is different to the classic criteria and it
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is based on imprecise probabilities and the application of uncertainty measures
on credal sets.

2.1.1 Split criterion

The classical criteria use normally, as base measure of information, the Shan-
non’s entropy measure; and the one that we use here, based on imprecise prob-
abilities, uses the maximum entropy measure. The maximum entropy measure
verifies an important set of properties on theories based on imprecise probabili-
ties that are generalizations of the probability theory (see (Klir, 2005)). Here, we
will introduce the split criterion used by the CDT algorithm in a comparative
way with the classic ID3. The new criterion can be considered as a parametric
extension of the one of the ID3.

Let C be the class variable with states {c1, · · · , ck}; and X be a general
feature whose values belong to {x1, . . . , xt}. Let D be a data set. The Info-Gain
(IG) criterion was introduced by Quinlan as the basis for his ID3 model (Quinlan,
1986), and it is explained as follows:

- The entropy of C for the data set D is the Shannon’s entropy (Shannon,
1948) and it is defined as:

HD(C) =
∑
i

p(ci)log2(1/p(ci)), (1)

where p(ci) represents the probability of the class i in D.
- The average entropy generated by the attribute X is:

HD(C|X) =
∑
i

PD(X = xi)H
Di(C|X = xi), (2)

where PD(X = xi) represents the probability that X = xi in D. Di is the
subset of D where (X = xi).

Finally we can define the Info-Gain as follows:

IG(C,X)D = HD(C)−HD(C|X) (3)

The feature that represents the greatest gain in information is selected for
branching.

The Imprecise Info-Gain (IIG) (Abellán & Moral, 2003) is based on impre-
cise probabilities and the application of uncertainty measures on credal sets. It
was introduced to build the called Credal Decision Tree model (CDT). Proba-
bility intervals are obtained from the data set using Walley’s Imprecise Dirichlet
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Model (IDM) (Walley, 1996) (a special type of credal sets (Abellán, 2006)). The
mathematical basis applied is described below.

With the above notation, p(cj), j = 1, .., k defined for each value cj of the
variable C, is obtained via the IDM:

p(cj) ∈
[

ncj

N + s
,
ncj + s

N + s

]
, j = 1, .., k; (4)

with ncj as the frequency of the set of values (C = cj) in the data set, N the
sample size and s a given parameter. The value of the parameter s regulates
the convergence speed of the upper and lower probability when the sample size
increases. Higher values of s produce an additional cautious inference. (Walley,
1996) does not give a decisive recommendation for the value of the parameter s,
but he proposes two candidates: s = 1 or s = 2, nevertheless he recommend the
value s = 1. It is easy to check that the size of the intervals increases when the
value of s increases.

This representation gives rise to a specific kind of credal set on the variable
C, KD(C) (Abellán, 2006). The set is defined as

KD(C) =

{
p | p(cj) ∈

[
ncj

N + s
,
ncj + s

N + s

]
, j = 1, .., k

}
. (5)

In the Example 1 we can see a practical case where a credal set associated
with the IDM is shown.

Example 1. Let C be a class variable with three possible states {c1, c2, c3}. We
consider a data set, D, where we have the following frequencies {c1 : 1, c2 : 2, c3 :
4}. Then the associated credal set from the IDM, for s = 1, is the following set
of probability distributions:

KD(C) =

{
p | p(c1) ∈

[
1

8
,
2

8

]
; p2 ∈

[
2

8
,
3

8

]
; p2 ∈

[
4

8
,
5

8

]}
.

Hence,

KD(C) = CH

{
(
1

8
,
2

8
,
5

8
); (

1

8
,
3

8
,
4

8
); (

2

8
,
2

8
,
4

8
)

}
,

where with CH we express the convex hull of those probability distributions.
This credal set can be seen in Figure 1, where we use a simplex 2-dimensional

representation of a credal set on the 3-dimensional space IR3.

On this type of sets of probability distributions (convex and closed sets, i.e.
credal sets (Abellán, 2006)), uncertainty measures can be applied. The procedure
to build CDTs uses the maximum of entropy function on the above defined credal
set. This function, denoted as H∗, is defined as follows:

H∗(KD(C)) = max
{
HD(p) | p ∈ KD(C)

}
(6)

The procedure to obtain H∗ for the special case of the IDM reaches its
lowest computational cost for s ≤ 1 (see (Abellán, 2006) for more details). For
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Fig. 1. Simplex representation of the credal set from Example 1. One point in the
triangle of height one represents a probability distribution (p(c1), p(c2), p(c3)) ∈ IR3

such that p(ci) is the distance of this point to the opposite side of the vertex ci.

C2C1

C3

2/82/8

4/8

5/8

3/8

1/8

that value, that procedure is simple and treats to share a mass of s among on
all the cases of the class variable with minimum frequency, starting from the
lower possible values of probability taken from the intervals of the IDM. In the
Example 1, the value of s = 1 will be assigned to the case c1

p(c1) =
1

8
→ 2

8

p(c2) =
2

8
→ 2

8

p(c3) =
4

8
→ 4

8

Hence, the value of maximum entropy is attained on the probability distribution
( 28 ,

2
8 ,

4
8 ). If s has a value upper 1 then the procedure will be repeated using

portions of mass ≤ 1 (see (Mantas et al., 2016)). For example, for s = 2.5, the
procedure can be called 3 times.3. (for the values s = 1, s = 1 and s = 0.5)

The scheme to induce CDTs is like the one used by the classical ID3 algorithm
(Quinlan, 1986), replacing its Info-Gain Split criterion with the Imprecise Info-
Gain (IIG) split criterion which can be defined by the following way:

IIGD(C,X) = H∗(KD(C))−H∗(KD(C|X)), (7)

3 The more efficient general algorithm of (Abellán & Moral, 2003) can be applied too.
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where H∗(KD(C|X)) is calculated via a similar way than HD(C|X) in the IG
criterion.4 Here, the feature with the greatest gain of information is selected for
branching, as with the IG criterion. The criterion has a clear dependence of the
parameter s, then it can be noted as IIGD

s (C,X).

It must be taken into account that for a variable X and a data set D,
IIGD

s (C,X) can be negative. This situation does not occur with the Info-Gain
criterion. This important characteristic allows that the IIG criterion discards
variables that worsen the information on the class variable. This is an important
property of the CDT model, which uses the IIG criterion, that can be consid-
ered as an additional criterion to stop the branching of the tree. In the Example
2 we can see a case where both criteria give us different type of situation for
branching.

Example 2. Let C be a class variable with two possible states {c1, c2}. We con-
sider that in a node J , for a DT, we have the following frequencies {c1 : 9, c2 : 4}.
In this node, we also consider that we have only 2 attribute variables X1, X2,
with possible values X1 ∈ {x1

1, x
1
2}, and X2 ∈ {x2

1, x
2
2, x

2
3}. The frequencies of

each combination of states in the node J are the following ones:

X1 = x1
1 → (5 of class c1, 3 of class c2)

X1 = x1
2 → (4 of class c1, 1 of class c2)

X2 = x2
1 → (2 of class c1, 2 of class c2)

X2 = x2
2 → (5 of class c1, 2 of class c2)

X2 = x2
3 → (2 of class c1, 0 of class c2)

Considering the IG criterion, we always have an improvement in the gain
of information. The values obtained with this criterion are the following ones
(using the natural logarithm):

IG(C,X1) = 0.6172− 8

13
0.6615− 5

13
0.5004 = 0.0177

IG(C,X2) = 0.6172− 4

13
0.6931− 7

13
0.5983− 2

13
0 = 0.0818

Then the feature X2 is inserted in the node J , because it produces the greater
gain of information by the IG criterion.

But with the IIG criterion we have the following values, for s = 1:

IIGs=1(C,X1) = 0.6518− 8

13
0.6850− 5

13
0.6368 = −0.0002

IIGs=1(C,X2) = 0.6518− 4

13
0.6931− 7

13
0.6615− 2

13
0.6368 = −0.0157

Now, with this criterion, there is no branching in the node J and a leaf node is
produced.

4 For a more extended explanation see (Mantas & Abellán, 2014b).
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2.1.2 Algorithm

The procedure for building credal trees is very close to the one used in the
well-known Quinlan‘s ID3 algorithm (Quinlan, 1986), replacing its Info-Gain
split criterion with the Imprecise Info-Gain . It can be described as follows.

Each node No in a decision tree, produces a partition of the data set (for the
root node, D is considered to be the entire data set). Furthermore, each node No
has an associated list L of feature labels (that are not in the path from the root
node to No). The procedure for building CDTs is explained in the algorithm
in Figure 2. Here, the procedure starts with No as the root node, and for the
first call to the algorithm (the one associated with the root node), the data set
D′ = D.

Procedure CDT(No,L,D,s)

1. If L = ∅, then Exit.
2. Let D′ be the partition associated with node No
3. Compute the value

α = maxXj∈L

{
IIGD′

s (C,Xj)
}

4. If α ≤ 0 then Exit

5. Else
6. Let Xl be the variable for which the maximum α is attained

7. Remove Xl from L
8. Assign Xl to node No
9. For each possible value xl of Xl

10. Add a node Nol
11. Make Nol a child of No
12. Call CDT(Nol,L,D′,s)

Fig. 2. Procedure to build a CDT.

In this algorithm, when an Exit situation is attained, i.e. when there are no
more features to introduce in a node, or when the uncertainty is not reduced
(steps 1 and 4 of the algorithm, respectively), a leaf node is produced.

In a leaf node, the most probable state or value of the class variable for the
partition associated with that leaf node is inserted.5

2.2 Random Forest

The base classifier of the RF algorithm is denominated Random Tree (RT). The
RF algorithm builds a forest of RTs. If M is the number of features in a data set

5 To avoid obtaining unclassified instances, if we do not have one single most probable
class value, we can select the one obtained in its parent node, and so recursively (see
(Abellán & Masegosa, 2010)).
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then a number m << M is specified.6 This value of m is held constant during
the forest building and will be used to select features in each node randomly.
For each RT, if N is the number of instances in a data set, then RF selects a
random sample with replacement of N instances from the original data. This
sample will be the training set for building the DT. This type of decision tree,
RT, is built with the following characteristics:

1. At each node of the random tree,
1.1. m features are selected at random out of the M original features.
1.2. The split criterion is calculated on these m features. The feature with

the best value is used to split the node.
2. There is no pruning after building each random tree.

If a new instance must be classified in the RF algorithm, the features of this
instance are presented to each RT in the forest. Each RT returns a classification
value, a vote for that class. Finally, the classification value given by RF is the
one associated with the most voted state of the class variable, over all the DTs
in the forest.

The original split criterion used by RF was the Gini Index, also based on clas-
sical probabilities, which was used by the CART7 algorithm (Breiman, Friedman,
Olshen, & Stone, 1984). In this work the Information Gain criterion is used due
to the fact that Weka software (Witten & Frank, 2005) has been used for the
experimentation and this software utilizes the Info-Gain criterion in the RF im-
plementation. Nonetheless, the Gini Index and the Info-Gain measure disagree
only in 2% of all cases (Raileanu & Stoffel, 2004), which explains why empirical
works (see (Raileanu & Stoffel, 2004; Kulkarni, Petare, & Sinha, 2012)) con-
cluded that there is not significant variation in accuracy, i.e. it is not feasible to
determine which one of the two split criterion performs better.

3 The Random Credal Random Forest classifier

The RCRF procedure is similar to the RF approach presented in the previous
paragraph. The main difference is that RCRF uses a new base classifier, called
Random Credal Random Tree (RCRT), instead of RT algorithm. RCRT utilizes
the Imprecise Info-Gain measure to split each node instead of using Info-Gain
or Gini Index. Besides, a random value for the parameter s is selected for each
new built RCRT.

The procedure for building a RCRT is similar to the one of the CDT, adding
random procedures to select features and value of s parameter. With the same
notation than the one used for the algorithm of the CDT, the algorithm of RCRT
is explained in Figure 3.

The selected feature to split each node in step 9 and the ramification of
RCRT depends on the IIG criterion. This criterion is calculated in terms of the

6 Normally the value used for m is the integer part of log2 (number of features)+1
7 ClAssification and Regression Tree.
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Procedure RCRT(No,L,D,s)

1. If L = ∅, then Exit.
2. Calculate the m value.
3. Let L′ a subset of m features randomly selected from L
4. Let D′ be the partition of D associated with node No
5. Compute the value

α = maxXj∈L′

{
IIGD′

s (C,Xj)
}

6. If α ≤ 0 then Exit

7. Else
8. Let Xl be the variable for which the maximum α is attained

9. Remove Xl from L
10. Assign Xl to node No
11. For each possible value xl of Xl

12. Add a node Nol
13. Make Nol a child of No
14. Call RCRT(Nol,L,D′,s)

Fig. 3. Procedure to build a RCRT.

parameter s. If the value for s is randomly selected, different RCRTs are obtained
by the features inside the nodes and by the size of the trees. This property is
important in order to provide diversity for the ensemble members in the RCRF
algorithm.

Now, the procedure to obtain the forest of DTs from RCRF can be exposed
in the Figure 4.

Procedure RCRF(D,L)

1. Fix nT the number of trees to be used
2. For i = 1 to nT do

3. Select randomly the value of s from the set {1, 1.5, 2, 2.5, 3, 3.5} and name it s′

4. Let D′ be a partition of size |D| obtained from D with replacement
5. Call RCRT(No,L,D′,s′) to build DTi

Fig. 4. Procedure to obtain a forest of DTs via RCRF.

As with RF, when a new instance must be classified in the RCRF algorithm,
the features of this instance are presented to each DT (RCRT) of the forest
{DTi}nTi=1. Each DTi returns a classification value and the final classification of
RCRF is the one associated with the most voted state of the class variable.
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4 Justification of the new classifier

The base classifier of RCRF, RCRT, represents a modification of the CDT algo-
rithm adding randomness in the set of features taken into account to be inserted
in a node; and on the value of the s parameter. In the RCRF procedure, if the
value for s is randomly changed for each RCRT, then the diversity of the trees is
increased (as we will see in the next subsection) and this produces a richer variety
of rules from the decision trees. In other words, the information obtained from
data is increased. Moreover, as it has been shown in previous works (Abellán,
2013; Abellán & Masegosa, 2012; Mantas & Abellán, 2014b), that the new split
criterion IIG, used in the base classifier of RCRF, gives us better results than
the classic ones, specially in noise domains. Hence, the new model has an in-
creased randomness join with a more success base classifier procedure. Hence,
the principal differences of the new model with respect to the RF procedure can
be summarizes as follows:

· The randomness in the forest of RCRF is increased with respect to the one
of RF.

· RCRF uses as base classifier a DT with a more successful split criterion than
the one used by the DT in RF.

· The above mentioned split criterion, based on imprecise probabilities, pro-
duces more robust to noise models.

All these characteristics imply an important improvement of the RF ensemble
method. The experimental results of the RCRF algorithm will show this.

4.1 Diversity of the trees

An important property for the classical RF algorithm is to have diversity in
the elements of the forest. In RF, this diversity is obtained with the Bagging of
instances used as input for each tree, the random selection of variables for each
node and the absence of post-pruning process when the tree building is finished.
In the RCRF algorithm, this diversity is increased via the random procedure
to select the s parameter. The RCRT base classifier is constructed selecting the
value of the parameter s via a random procedure for each tree. This characteristic
provides a new element to add diversity in the trees of the forest.

In the following proposition we will see that increasing the value of s we
have greater probability intervals that imply a greater value of the measure of
information of the IIG criterion (the maximum entropy measure). This is the
reason that explain why the choice of a feature can change when the parameter
s is increased:

Proposition 1. Let D a data set of size N . Suppose that C is the class variable
and its possible values are {c1, . . . , ck}. Given a specific s, consider the following
convex set of probability distributions (credal set):
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KD
s (C) = {p|p(cj) ∈

[
ncj

N + s
,
ncj + s

N + s

]
, j = 1, . . . , k},

where ncj is the number of instances in D whose class value is cj, ∀j = 1, . . . , k.

Then s1 > s2 ⇒ H∗(KD
s1(C)) ≥ H∗(KD

s2(C)).

Proof.

Let 1 ≤ i ≤ k and s1 > s2. It is easy to prove that
nci

N+s1
<

nci

N+s2
:

nci

N + s1
<

nci

N + s2
⇔ 1

N + s1
<

1

N + s2
⇔ N + s2 < N + s1 ⇔ s2 < s1.

In the same way, it is possible to prove that
nci+s1

N+s1
>

nci
+s1

N+s2
, because

nci+s1

N + s1
>

nci + s1
N + s2

⇔ (N + s2)(nci + s1) > (N + s1)(nci + s2) ⇔

⇔ Ns1 + s2nci > Ns2 + s1nci ⇔ N(s1 − s2) > nci(s1 − s2).

Since s1 > s2 the above inequality is fulfilled if and only if N > nci and we know
that it is right. In consequence, we have that[

nci

N + s1
,
nci + s1
N + s1

]
⊂

[
nci

N + s1
,
nci + s1
N + s1

]
∀i = 1, . . . , k

and this fact implies that

KD
s2(C) ⊂ KD

s1(C).

Hence,

H∗(KD
s2(C)) ≤ H∗(KD

s1(C)).

�

Using the above proposition, we can prove mathematically that a change in
the value of the parameter can change the feature selected, via the following
proposition.

Proposition 2. A change in the value of the s parameter can produce different
feature selected by the IIG split criterion
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Proof. Suppose that we have two features X1 and X2 whose possible values are,
respectively, {x1

1, . . . , x
1
t1} and {x2

1, . . . , x
2
t2} and that, for a given parameter s2,

IIGD
s2(C,X1) = H∗(KD

s2(C))−H∗(KD
s2(C|X1)) > H∗(KD

s2(C))−H∗(KD
s2(C|X2))

= IIGD
s2(C,X2)

If s1 is another parameter of the IDM and s1 > s2, according with Proposition
1,

H∗(KD
s1(C)) > H∗(KD

s2(C)),

but also

H∗(KD
s1(C|Xj)) > H∗(KD

s2(C|Xj)), j = 1, 2.

The IIG measure for each one of these features with this new parameter is

IIGD
s1(C,Xi) =

= H∗(KD
s1(C))−H∗(KD

s1(C|Xi)), i = 1, 2

Hence:

IIGD
s1(C,Xi)− IIGD

s2(C,Xi) =

= H∗(KD
s1(C))−H∗(KD

s2(C))− (H∗(KD
s1(C|Xi))−H∗(KD

s2(C|Xi))), i = 1, 2

The difference H∗(KD
s1(C))−H∗(KD

s2(C)) is the same for X1 and X2, unlike

H∗(KD
s1(C|Xi)) − H∗(KD

s2(C|Xi)), which depends on the partitions gener-
ated by Xi, for i = 1, 2.

For this reason, it is possible that IIGD
s2(C,X1) > IIGD

s2(C,X2) although
IIGD

s1(C,X1) < IIGD
s1(C,X2).

Then, a change in the parameter s can change the choice of the split feature
in the tree. �

The fact proven in Proposition 2 is shown with the Example 3. In this ex-
ample, a toy data set of binary classification is used. It will be seen that three
distinct features for splitting the data set are selected in a node by using three
different values for s (0, 1 and 2).
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Example 3. Let C be a class variable with two possible states {c1, c2}. We con-
sider that in a node J , for a DT, we have the following frequencies {c1 : 5, c2 :
10}. In this node, we also consider that we have only 3 attribute variables
X1, X2, X3, with possible valuesX1 ∈ {x1

1, x
1
2},X2 ∈ {x2

1, x
2
2} andX3 ∈ {x3

1, x
3
2}.

The frequencies of each combination of states in the node J are the following
ones:

X1 = x1
1 → (4 of class c1, 10 of class c2)

X1 = x1
2 → (1 of class c1, 0 of class c2)

X2 = x2
1 → (4 of class c1, 4 of class c2)

X2 = x2
2 → (1 of class c1, 6 of class c2)

X3 = x3
1 → (3 of class c1, 9 of class c2)

X3 = x3
2 → (2 of class c1, 1 of class c2)

Considering the IIG criterion of (7), the following values of information gain
are obtained for each variable X1, X2, X3, and for values of s = 0, 1 and 2 (for
s = 0 the IIG criterion is equivalent to the IG criterion):

IIGs=0(C,X1) = 0.9183− (0.8056 + 0.0000) = 0.9183− 0.8056 = 0.1127

IIGs=0(C,X2) = 0.9183− (0.5333 + 0.2761) = 0.9183− 0.8094 = 0.1089

IIGs=0(C,X3) = 0.9183− (0.6490 + 0.1837) = 0.9183− 0.8327 = 0.0856

IIGs=1(C,X1) = 0.9544− (0.8570 + 0.0667) = 0.9544− 0.9237 = 0.0307

IIGs=1(C,X2) = 0.9544− (0.5333 + 0.3786) = 0.9544− 0.9119 = 0.0425

IIGs=1(C,X3) = 0.9544− (0.7124 + 0.2000) = 0.9544− 0.9124 = 0.0420

IIGs=2(C,X1) = 0.9774− (0.8908 + 0.0667) = 0.9774− 0.9575 = 0.0199

IIGs=2(C,X2) = 0.9774− (0.5333 + 0.4286) = 0.9774− 0.9619 = 0.0155

IIGs=2(C,X3) = 0.9774− (0.7522 + 0.2000) = 0.9774− 0.9522 = 0.0252

From the previous values, it can be seen that the selected feature in the node
J is different if we consider different values for the s parameter. In all cases, the
feature with greater gain of information is selected:

– The feature X1 is inserted in the node J when s = 0 is used.
– The feature X2 is inserted in the node J when s = 1 is used.
– The feature X3 is inserted in the node J when s = 2 is used.

Deepening in the results of Example 3, with s = 1 the chosen variable for
split is X2, whereas with s = 2 the attribute for split is X3. Here we have the
following situations:
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· H∗(KD
s=1(C|X2)) =

8
15H

∗(KD
s=1(C|X2 = x2

1)) +
7
15H

∗(KD
s=1(C|X2 = x2

2)) =
8
15 × 1 + 7

15 × 0.8113 = 0.5333 + 0.3786 = 0.9119.

· H∗(KD
s=2(C|X2)) =

8
15H

∗(KD
s=2(C|X2 = x2

1)) +
7
15H

∗(KD
s=2(C|X2 = x2

2)) =
8
15 × 1 + 7

15 × 0.9182958 = 0.5333 + 0.4285 = 0.9619.

· H∗(KD
s=1(C|X3)) =

12
15H

∗(KD
s=1(C|X3 = x3

1)) +
3
15H

∗(KD
s=1(C|X3 = x3

2)) =
12
15 × 0.8904916 + 3

15 × 1 = 0.7124 + 0.2 = 0.9124.

· H∗(KD
s=2(C|X3)) =

12
15H

∗(KD
s=2(C|X3 = x3

1)) +
3
15H

∗(KD
s=2(C|X3 = x3

2)) =
12
15 × 0.940286 + 3

15 × 1 = 0.7522 + 0.2 = 0.9522.

It can be observed that the maximum of entropy of the partitions generated
by X2 = x2

1 and X3 = x3
2 do not change when the s value passes from 1 to

2 because in both cases, the maximum of entropy reaches its maximum value
when s = 1. However, the change of the maximum of entropy of the partitions
generated by X2 = x2

2 and X3 = x3
1 are notable, being more significative in the

first partition. According with Eq. (5), the credal sets are smaller as long as N
is bigger and thus, it is easy to check that, in general, the smaller is the sample
size the more notable is the difference in the maximum of entropy when the s
value increases. The size of the partition generated by X3 = x3

1 is bigger than
the size of the partition generated by X2 = x2

1. This is the reason why when
the s value is incremented from 1 to 2 the increment of H∗(KD

s (C|X = Xi)) is
higher for i = 2 than for i = 3 and, therefore, IIGs=2(C,X) has a higher value
for X = X3 than for X = X2, although IIGs=1(C,X) has a higher value for
X = X2.

From the above example, propositions and reasonings, it can be seen that if
the values of s are modified when RCRTs are built, then different trees can be
obtained according the features selected in each node. It can be concluded that
the random selection for the value s increases the diversity of the elements of a
forest when the RCRF algorithm is used.

5 Experiments

To compare the results of the new method, presented here, with the ones of the
original RF and other ensemble classifiers with excellent performing under label
noise, we have carried out a series of experiments on 100 well-known data sets
in the field of machine learning, obtained from the UCI repository of machine
learning (Lichman, 2013). The chosen data sets are very different in terms of
their sample size, number and type of attribute variables, number of states of
the class variable, etc. Table 1 gives a brief description of the characteristics of
the data sets used.

Two experimental studies have been carried out. In the first one, the RCRT
base classifier of RCRF is checked. In this experiment, the value of the parameter
s is fixed instead of having a random value. This RCRT procedure with a fix
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Table 1. Data set description. Column ‘N’ is the number of instances in the data sets, column

‘Feat’ is the number of features or attribute variables, column ‘Num’ is the number of numerical

variables, column ‘Nom’ is the number of nominal variables, column ‘k’ is the number of cases or

states of the class variable (always a nominal variable) and column ‘Range’ is the range of states of

the nominal variables of each data set.

Dataset N Feat Num Nom k Range

acute-inflamm-nephritis 120 6 1 5 2 2
acute-inflamm-urinary 120 6 1 5 2 2
anneal 898 38 6 32 6 2-10
appendicitis 106 7 7 0 2 -
arrhythmia 452 279 206 73 16 2
audiology 226 69 0 69 24 2-6
autos 205 25 15 10 7 2-22
balance-scale 625 4 4 0 3 -
bank-marketing 4521 16 7 9 2 2-12
banknote-authe 1372 4 4 0 2 -
blogger 100 5 0 4 2 2-5
breast-cancer 286 9 0 9 2 2-13
bridges-version1 107 11 3 8 6 2-54
bridges-version2 107 11 0 11 6 2-54
bupa 345 6 6 9 2 -
car 1728 6 0 6 4 3-4
cleveland-heart-dis 303 13 6 7 5 2-14
cmc 1473 9 2 7 3 2-4
credit-rating 690 15 6 9 2 2-14
crx 690 15 6 9 2 2-14
cylinder-bands 540 39 18 21 2 2-429
dermatology 366 34 1 33 6 2-4
dresses-sales 500 12 1 11 2 5-25
ecoli 366 7 7 0 7 -
fertility-diagnosis 100 9 9 0 2 -
flags 194 29 2 27 8 4-194
german-credit 1000 20 7 13 2 2-11
glass 214 9 9 0 7 -
glioma16 50 16 16 0 2 -
haberman 306 3 2 1 2 12
hayes-roth 160 4 4 0 4 -
heart-statlog 270 13 13 0 2 -
hepatitis 155 19 4 15 2 2
horse-colic 368 22 7 15 2 2-6
hungarian-heart-dis 294 13 6 7 5 2-14
hypothyroid 3772 30 7 23 4 2-4
ionosphere 351 35 35 0 2 -
iris 150 4 4 0 3 -
kr-vs-kp 3196 36 0 36 2 2-3
labor 57 16 8 8 2 2-3
leaf 340 15 15 0 30 -
letter 20000 16 16 0 26 -
leukemia-haslinger 100 50 50 0 2 -
liver-disorders 345 6 6 0 2 -
lsvt-voice-rehab 126 310 310 0 2 -
lymphography 146 18 3 15 4 2-8
mfeat-morphological 2000 6 6 0 10 -
mfeat-pixel 2000 240 0 240 10 4-6
mol-biology-promoters 106 57 0 57 2 4
mol-promotor-gene 106 57 0 57 2 4

Dataset N Feat Num Nom k Range

mol-splice-junction 3190 60 0 60 3 4-5
monks1 556 6 0 6 2 2-4
monks2 601 6 0 6 2 2-4
monks3 554 6 0 6 2 2-4
mushroom 8124 22 0 22 2 1-10
nursery 12960 8 0 8 4 2-4
optdigits 5620 64 64 0 10 -
page-blocks 5473 10 10 0 5 -
parkinsons 195 22 22 0 2 -
pendigits 10992 16 16 0 10 -
phoneme 5404 5 5 0 2 -
pima-diabetes 768 8 8 0 2 -
postoperative-patient 90 8 8 0 3 2-4
primary-tumor 339 17 0 17 21 2-3
qsar-biodegradation 1055 41 41 0 2 -
qualitative-bankruptcy 250 6 0 6 2 3
robot-failure-lp1 88 90 90 0 4 -
robot-failure-lp2 47 90 90 0 5 -
robot-failure-lp3 47 90 90 0 4 -
robot-failure-lp4 117 90 90 0 3 -
robot-failure-lp5 164 90 90 0 5 -
saheart 462 9 8 1 2 2
seeds 210 7 7 0 3 -
segment 2310 19 16 0 7 -
seismic-bumps 2584 18 14 4 2 2-3
sick 3772 29 7 22 2 2
solar-flare2 1066 12 0 6 3 2-8
sonar 208 60 60 0 2 -
soybean 683 35 0 35 19 2-7
spambase 4601 57 57 0 2 -
spect 267 22 0 22 2 2
spectf 349 44 44 0 2 -
spectrometer 531 101 100 1 48 4
splice 3190 60 0 60 3 4-6
sponge 76 44 0 44 3 2-9
synthetic-control 600 61 61 0 6 -
tae 151 5 3 2 3 2
teaching-assistant-eval 151 5 3 2 3 2
thoracic-surgery 470 16 3 13 2 2-7
tic-tac-toe 958 9 0 9 2 3
trains 10 32 0 32 2 1-8
turkiye-student 5820 32 32 0 13 -
user-knowledge 403 5 5 0 5 -
vehicle 946 18 18 0 4 -
vote 435 16 0 16 2 2
vowel 990 11 10 1 11 2
waveform 5000 40 40 0 3 -
wine 178 13 13 0 3 -
wisconsin-breast-cancer 699 9 9 0 2 -
zoo 101 16 1 16 7 2
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value of s will be called Credal Random Tree (CRT). CRT has been performed
with different values of s. The aim of this study is established a good range to be
used in the RCRT procedure, that is, we look for a a good interval to use for the
random process to select the value of s in the base classifier RCRT. The average
results about accuracy for CRT with different values of s will be described later
on.

In the second study, RCRF algorithm is compared with the original RF
algorithm and bagging schemes of other two based models: C4.5 (Dietterich,
2000b) and CDT (Abellán & Masegosa, 2012). The motive of the use of bagging
schemes is that this scheme has shown the best performance in noise domains in
the literature. We also use as reference the algorithm that we call Credal Random
Forest (CRF) that is the RCRF ensemble method using the base classifier CRT
with s = 1. This value for s is the standard one used in the previous papers
about credal trees (Abellán & Moral, 2005; Mantas & Abellán, 2014b), motivated
principally by computational reasons (Mantas & Abellán, 2014b) and by its
origin (Walley, 1996). All the trees of the previous ensemble methods are used
without a pruning process in order to keep the same experimental conditions for
all the algorithms to be compared. Resuming, the algorithms considered in the
second study are the following ones:

- Bagging C4.5 (BA-C4.5)
- Bagging CDT (BA-CDT)
- Random Forest (RF)
- Credal Random Forest (CRF)
- Random Credal Random Forest (RCRF)

In the two studies, the algorithms are compared using the original data sets
obtained from the UCI repository, adding different percentages of random label
noise only in the training set.

The Weka software (Witten & Frank, 2005) has been used for the experi-
mentation. The methods RCRF, CRF, RCRT and CRT were implemented using
data structures of Weka. We added the necessary methods to the implementa-
tion of the algorithms RF and RT provided by Weka software to design RCRF,
CRF, RCRT and CRT with the same experimental conditions.

The implementation of RF algorithm provided by Weka was used with its
default configuration where the number of randomly chosen attributes at each
node is equal to the first integer less than log2 (number of features)+1. The only
difference with the default configuration is that the number of trees used for that
method was equal to 100 decision trees. The same number was used for RCRF,
CRF and the bagging algorithms. Although the number of trees can strongly
affect the ensemble performance, this is a reasonable number of trees for the
low-medium size of the data sets used in this study, and moreover it was the
number of trees used in related researches, such as (Freund & Schapire, 1996).

Using Weka’s filters, the following percentages of random noise to the class
variable: 0%, 5%, 10%, 20% and 30%, have been only added in the training data
set. The procedure to introduce noise was the following: a given percentage of
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instances of the training data set was randomly selected and, then, their cur-
rent class values were randomly changed to other possible values. The instances
belonging to the test data set were left unmodified. To compare the results of
all the classifiers, 10 times a 10-fold cross validation procedure was repeated for
each data set.

5.1 Results

Table 2 shows the results obtained in the first study. It presents the average
results of accuracy of the CRT algorithm for each added noise level with the
following values for the parameter s = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0.
These values are similar to those used for comparing credal trees with different
values of s in (Mantas et al., 2016) and (Abellán, Mantas, & Castellano, 2018).
In this table, the best algorithm for each noise level is emphasized using bold
fonts, the second best is marked with italic fonts. It can be observed that CRT
algorithm with the values for s close to 0 do not obtain good results in any noise
level. For data sets without noise or with low level noise (5%), it can be seen that
the values for s close to 1.0 are the bests. On the other hand, when the noise
level is increased, high values for s are the best choice. Based on the different
values of s studied in (Mantas et al., 2016; Abellán et al., 2018) and the results
obtained in this analysis, it can be concluded that a range of values for s equal
to {1.0, 1.5, 2.0, 2.5, 3.0, 3.5} could be useful in the RCRF algorithm.8 The aim
is to achieve a new algorithm with acceptable results without having to adjust
parameters in terms of the noise level of the data sets.

Table 2. Average accuracy results of the CRT algorithm with different values of s when data sets

with added noise are classified.

Algorithm noise 0% noise 5% noise 10% noise 20% noise 30%

RT (CRTs=0) 76.75 73.64 70.62 64.08 58.24
CRTs=0.5 77.47 74.75 72.13 65.48 59.23
CRTs=1.0 78.10 76.00 73.74 67.67 61.39
CRTs=1.5 78.16 76.51 74.89 69.45 63.29
CRTs=2.0 78.09 76.65 75.23 70.57 65.12
CRTs=2.5 78.03 76.65 75.40 71.35 66.21
CRTs=3.0 77.75 76.58 75.41 71.70 67.09
CRTs=3.5 77.73 76.54 75.34 71.81 67.64
CRTs=4.0 77.67 76.37 75.56 71.91 67.94

With the interval of values for randomly selecting the parameter s obtained
in the previous paragraph, the RCRF algorithm was used to classify the data

8 We can observe in Table 2 that for s = 4 we can obtain good results for high level of
label noise, but we have checked that they are very similar than the ones obtained
with s = 3.5. This is the reason to consider that set of values for s. It is a shorter
and more compact set than the one considered in (Mantas et al., 2016; Abellán et
al., 2018).



20

sets. Table 3 presents the average accuracy results of the methods used in the
second study: BA-C4.5, BA-CDT, RF, CRF and RCRF. In this table, the best
algorithm for each added noise level is emphasized using bold fonts, the second
best is marked with italic fonts. Tables that present the detailed accuracy results
of the ensemble methods obtained in the second study, when they classify data
sets with different levels of label noise, are described in Appendix A.

Table 3. Average accuracy results of the ensemble methods when they are built from data sets

with added noise.

Algorithm noise 0% noise 5% noise 10% noise 20% noise 30%

BA-C4.5 82.84 82.15 81.02 77.82 72.76
BA-CDT 82.34 81.81 81.23 77.81 73.98
RF 84.01 82.95 81.86 77.76 72.60
CRF 84.89 84.04 83.10 79.58 74.64
RCRF 84.98 84.35 83.73 80.93 76.71

Following the recommendation of (Demšar, 2006), a series of tests have been
used in order to compare the ensemble methods of the second study using the
Keel software (Alcalá-Fdez et al., 2009). The following tests to compare multiple
classifiers on multiple data sets have been utilized:

Friedman test (Friedman, 1937, 1940): a non-parametric test that ranks
the algorithms separately for each data set, the best performing algorithm
being assigned the rank of 1, the second best, rank 2, etc. The null hypothesis
is that all the algorithms are equivalent. If the null-hypothesis is rejected,
all the algorithms can be compared to each other using the Nemenyi test
(Nemenyi, 1963).

All the tests were carried out with a level of significance of α = 0.05. Hence,
Table 4 show Friedman’s ranks about the accuracy of the methods when they
are applied on data sets with different levels of added noise. The best algorithm
for each noise level is emphasized using bold fonts, the second best is marked
with italic fonts. Tables 11, 12, 13, 14 and 15 in the Appendix A, show the p-
values of the Nemenyi test on the pairs of comparisons when they are applied on
data sets with different percentage of added noise. In all the cases, Nemenyi test
rejects the hypotheses that the algorithms are equivalent9 if the corresponding
p-value is ≤ 0.005. When there is a significative difference, the best algorithm is
distinguished with bold fonts.

For the sake of simplicity, the results of the Nemenyi’s test about the pairwise
comparisons can be seen graphically in Figure 5. Here the critical difference
is expressed as a vertical segment and the columns express the values of the
Friedman’s ranks. When the high of the correspondent segment is lower than

9 In this case, the critical difference used on the Friedman’s ranks is 0.610 (see
(Demšar, 2006)).
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the high of the columns, the differences are statistically significant in favor of
the algorithm represented in the lower column.

Table 4. Friedman’s ranks about the accuracy of the ensemble methods when they are applied on

data sets with different percentages of added noise.

Algorithm noise 0% noise 5% noise 10% noise 20% noise 30%

BA-C4.5 3.66 3.71 3.75 3.71 3.71
BA-CDT 3.94 3.80 3.39 3.01 2.74
RF 2.89 3.39 3.54 3.89 4.00
CRF 2.36 2.26 2.51 2.78 2.90
RCRF 2.16 1.85 1.81 1.62 1.66

Fig. 5. Values of the Friedman’s rank of the methods. The segment on the top expresses
the size of the critical difference associated with the experiments and the Nemenyi’s
test for the pairwise comparisons.
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To extend the comparison of the ensemble algorithms when the methods are
applied on data sets with label noise, a recent measure to quantify the degree
of robustness of a classifier under noise have been used. The measure is the
Equalized Loss of Accuracy (ELA) of (Sáez, Luengo, & Herrera, 2014), and it
can be defined as follows:

- The Equalized Loss of Accuracy (ELA) measure is a new behavior-against-
noise measure that allows us to characterise the behavior of a method with
noisy data considering performance and robustness. ELA measure is ex-
pressed as follows:
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ELAx% =
100−Ax%

A0%
(8)

where A0% is the accuracy of the classifier when it is applied on a data
set without added noise and Ax% is the accuracy of the classifier with it is
applied on a data set with level of added noise of x%.
The ELA measure quantifies the performance without noise considering
which classifier is more suitable to work with noisy data sets. This charac-
teristic makes it particularly useful when comparing two different classifiers
over the same data set. The classifier with the lowest value for ELAx% will
be the most robust classifier.

In Table 5, it can be seen the average results of the ELA measure for each
ensemble method of the second study.

Table 5. Average results of the ELA measure for each ensemble method and noise level (in bold

it is marked the best one and in italic the second best).

Algorithm noise 5% noise 10% noise 20% noise 30%
BA-C4.5 0.2155 0.2291 0.2677 0.3288
BA-CDT 0.2209 0.2280 0.2695 0.3160
RF 0.2030 0.2159 0.2647 0.3262
CRF 0.1880 0.1991 0.2405 0.2987
RCRF 0.1842 0.1915 0.2244 0.2741

6 Analysis of results

From the results above presented, the following points can be exposed taking
into account the general and particular statistical comparatives (Friedman and
Nemenyi’s test):

• In general, RCRF is the algorithm with the best results on data sets with
and without label noise. The Friedman’s ranks always show that the best re-
sults are obtained with this procedure. RCRF has always significantly better
results than RF.

• RCRF, RF and CRF are the best algorithms when they classify data sets
without noise according to the tests carried out, being RCRF significantly
better accuracy than RF. But the statistical differences are not significative
among RCRF and CRF or CRF and RF. In this situation the worse methods
are the BA-CDT and BA-C4.5. When these two methods are compared with
the rest via the Nemenyi’s test, only RF has no significant differences with
BA-C4.5, the rest of comparisons shown statistical significant differences.
Hence, RF can be considered the third best in the comparative study.

• With low level of label noise (5%), RCRF and CRF have positive statistical
significant differences with respect to the rest. Here RF has no differences
with the worse methods: again BA-CDT and BA-C4.5. As occurs with no
noise, RCRF and CRF have not significant differences.
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• With medium level of noise (10% and 20%) we can observe important changes.
With 10% RCRF wins to all the methods (via Nemenyi’s test). Here, RF
is the second worse procedure. With 20%, RCRF has also the best possi-
ble results: it wins statistically, via the Nemenyi’s test, to all the rest of
procedures. Here, RF has a bad performance being the worse method.

• With the highest level of noise (30%), RF is the worse method with important
differences with the rest. Here, RCRF wins to all the rest of methods and
CRF only wins to RF and BA-C4.5. Now, BA-CDT has good results being
the winner in the statistical comparative with RF and BA-C4.5. BA-C4.5 is
the second worse procedure.

• According to the ELA, RCRF algorithm is the most robust classifier for all
noise levels. The second one is the CRF algorithm. On the other hand, RF
is more robust to noise than the bagging schemes for levels of noise equal
to 5%, 10% and 20%, and RF is even most robust than BA-C4.5 with the
greatest level of noise (30%).

From the previous comments, the experiments show that it can be concluded
that RCRF is a good classification algorithm for data sets with or without noise.
The overfitting problem of the RF algorithm is avoided with the new algorithm
presented in this paper.

7 Conclusions

In this paper the scheme of the Random Forest method has been modified using
a new split criterion based on imprecise probabilities, called Imprecise Info-
Gain. The performance of this new split criterion depends of a parameter s.
The value of s has been also randomly selected for each tree of the forest. In
this way, the diversity of the trees in the RF algorithm is increased without
diminishing the accuracy of the ensemble members. This is a good property for
improving the classification accuracy of the RF ensemble. These modifications
of RF represents a new method of classification with important characteristics
that imply some advantages with respect to the classic RF algorithm: (i) the use
of a more successful split criteria; (ii) an increasing of the randomness to obtain
more diversity in the forest; and (iii) the application of imprecise probabilities
that imply a more robust to noise model.

It has been shown, via an experimental study on a large set of data sets, that
the new procedure improves significatively the original RF. Besides, when noisy
data sets are classified, this improvement increases and it is also statistically
significant. Classic bagging ensembles, very successful models on noise domains,
are also compared with the new procedure in an experimental study. The new
procedure achieves better results than the ones of the rest of method used here
as reference. All these assertions have been reinforced via appropriate statistical
tests.

Hence, a new method of supervised classification has been presented: Ran-
dom Credal Random Forest. This model solves the problem of overfitting that
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presented the RF method when noisy data sets are classified. The new classifier
represents a very powerful tool to be applied on data sets without worrying about
the noise level of the data. In all the grounds where RF has a good performance,
the new classifier can be a better alternative.
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Appendix A Tables about accuracy results

Tables 6, 7, 8, 9 and 10 show the accuracy results obtained by the ensemble
methods when they classify data sets with different added noise levels.

Tables 11, 12, 13, 14 and 15 show the p-values of the Nemenyi test on the pairs
of comparisons when they are applied on data sets with different percentage of
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added noise. In all the cases, Nemenyi’s procedures rejects the hypotheses which
have a corresponding p-value ≤ 0.005. When there is a significative difference,
the best algorithm is distinguished with bold fonts.

Table 6. Accuracy results of the ensemble methods when they are used on data sets without added

noise.

Data set B
A
-C

4
.5

B
A
-C

D
T

R
F

C
R
F

R
C
R
F

acute-inflamm-nephritis 100 100 100 100 100
acute-inflamm-urinary 100 99.42 100 100 100
anneal 98.9 98.89 99.68 99.71 99.63
appendicitis 86.50 87.15 85.88 86.80 87.71
arrhythmia 75.35 74.49 69.12 69.93 73.14
audiology 81.83 80.41 80.36 81.28 80.92
autos 85.45 80.27 84.29 85.32 85.02
balance-scale 81.56 82.41 80.3 81.94 82.76
bank-marketing 89.88 89.76 89.68 89.86 89.76
banknote-auth 98.95 98.77 99.34 99.31 99.26
blogger 75.90 76.10 82.40 82.60 81.70
breast-cancer 70.43 70.35 70.02 73.53 73.79
bridges-version1 64.75 63.15 54.88 68.61 70.52
bridges-version2 60.71 61.15 54.55 65.95 66.41
bupa 71.54 70.46 72.03 72.60 73.51
car 94.33 93.55 94.7 94.44 93.3
cleveland-heart-dis 80.23 78.68 81.56 81.26 81.18
cmc 52.19 53.21 50.69 52.09 53.52
credit-rating 85.68 86.07 86.14 86.87 86.91
crx 85.71 86.13 86.14 86.87 86.91
cylinder-bands 57.91 74.15 76.28 81.83 84.26
dermatology 97.13 94.18 96.91 97.87 97.7
dresses-sales 55.78 60.26 56.38 59.28 60.24
ecoli 84.88 83.82 84.67 85.27 84.91
fertility-diagnosis 87.80 88.00 85.30 86.50 86.90
flags 58.94 58.53 61.40 63.67 63.09
german-credit 73.01 74.64 76.08 76.38 76.42
glass 74.49 75.51 79.71 78.87 77.85
glioma16 77.60 81.40 79.80 79.20 79.60
haberman 70.17 73.76 65.44 72.56 73.02
hayes-roth 81.63 81.00 81.63 81.19 81.94
heart-statlog 80.96 81.41 82.26 82 82.19
hepatitis 81.76 80.99 83.58 83.37 83.94
horse-colic 85.51 84.91 85.59 85.18 85.19
hungarian-heart-dis 78.92 81.18 80.25 80.54 82.69
hypothyroid 99.62 99.59 99.51 99.7 99.73
ionosphere 92.57 91.23 93.48 93.65 93.74
iris 94.47 95.07 94.53 94.6 94.87
kr-vs-kp 99.46 99.4 99.27 99.34 99.26
labor 82.60 83.87 87.10 87.53 87.87
leaf 69.94 70.35 77.24 77.41 76.09
letter 94.03 92.44 96.6 96.54 96.18
leukemia-haslinger 80.00 78.30 85.70 85.70 85.60
liver-disorders 73.42 72.21 72.03 72.6 73.51
lsvt-voice-rehab 78.67 81.75 82.56 82.88 83.67
lymphography 79.96 76.24 83.42 82.34 81.99
mfeat-morphological 72.82 73.68 70.06 73.96 74.40
mfeat-pixel 83.86 87.2 96.37 96.65 96.61
mol-biology-promoters 85.02 83.61 90.81 92.85 92.86
mol-promotor-gene 85.11 83.58 91.77 93.00 92.55

Data set B
A
-C

4
.5

B
A
-C

D
T

R
F

C
R
F

R
C
R
F

mol-splice-junction 94.51 93.70 95.85 96.39 96.43
monks1 100 97.00 100 99.95 99.85
monks2 65.50 63.74 66.63 71.04 72.86
monks3 98.92 98.92 97.98 98.92 98.92
mushroom 100 100 100 100 100
nursery 98.68 96.66 99.17 96.86 96.01
optdigits 95.84 95.55 98.3 98.38 98.4
page-blocks 97.36 97.32 97.46 97.6 97.6
parkinsons 89.87 88.43 92.11 91.87 91.81
pendigits 98.32 98.45 99.21 99.21 99.15
phoneme 89.11 87.93 91.40 91.25 90.87
pima-diabetes 76.14 75.8 76.01 75.86 76.13
postoperative-patient 68.67 70.89 61.00 70.56 70.78
primary-tumor 44.22 43.93 43.45 44.72 44.9
qsar-biodegradation 86.14 85.25 87.13 87.08 87.07
qualitative-bankruptcy 98.36 98.28 99.72 99.72 99.88
robot-failure-lp1 77.35 78.06 86.40 85.42 86.44
robot-failure-lp2 65.15 56.20 65.95 66.90 66.85
robot-failure-lp3 62.95 56.05 71.85 71.65 72.10
robot-failure-lp4 86.54 84.57 91.37 90.92 91.27
robot-failure-lp5 66.00 68.65 73.27 72.93 72.90
saheart 68.61 69.82 68.02 67.83 68.31
seeds 92.71 91.19 93.57 93.57 93.71
segment 97.75 97.45 98.16 98.19 98.03
seismic-bumps 92.82 93.39 93.07 93.06 93.06
sick 98.97 98.97 98.43 98.59 98.64
solar-flare2 99.49 99.53 99.43 99.53 99.53
sonar 80.07 80.78 84.63 84.55 84.97
soybean 92.28 90.47 93.31 94.95 94.6
spambase 94.73 94.65 95.68 95.57 95.44
spect 82.18 83.38 81.99 83.24 83.23
spectf 89.75 83.54 91.63 91.63 91.98
spectrometer 56.61 54.48 57.42 57.91 56.1
splice 94.7 94.4 95.88 96.31 96.48
sponge 93.91 92.63 95 95 95
synthetic-control 95.67 94.27 98.22 98.80 98.95
tae 60.88 60.88 68.25 67.37 64.25
teaching-assistant-eval 59.03 54.73 68.25 67.37 64.25
thoracic-surgery 84.02 85.06 83.28 83.77 84.55
tic-tac-toe 93.05 90.19 97.10 96.95 95.04
trains 78.00 56.00 54.00 62.00 62.00
turkiye-student 36.38 38.63 36.51 37.87 39.00
user-knowledge 90.33 89.98 91.31 90.79 90.60
vehicle 75.22 74.78 75.18 74.96 75.36
vote 96.78 96.34 96.43 96.55 96.59
vowel 94.04 92.17 98.16 98.22 97.62
waveform 83.4 83.51 85.2 85.15 85.01
wine 95.34 95.84 97.74 97.51 97.51
wisconsin-breast-cancer 96.45 96.14 96.58 96.55 96.81
zoo 92.8 92.4 96.33 96.25 96.05
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Table 7. Accuracy results of the ensemble methods when they are used on data sets with a

percentage of added label noise equal to 5%.

Data set B
A
-C

4
.5

B
A
-C

D
T

R
F

C
R
F

R
C
R
F

acute-inflamm-nephritis 99.67 99.67 96.67 99.58 99.75
acute-inflamm-urinary 99.50 98.75 95.75 98.42 98.75
anneal 98.83 98.78 98.2 99.11 99.28
appendicitis 85.06 86.34 84.37 85.18 86.49
arrhythmia 75.05 74.27 68.56 69.16 71.68
audiology 81.32 80.36 78.82 80.52 80.56
autos 83.54 78.56 80.04 82.2 82.5
balance-scale 81.71 82.25 79.21 82.05 82.94
bank-marketing 89.48 89.53 89.35 89.76 89.64
banknote-auth 98.65 98.78 98.75 98.99 99.04
blogger 75.30 75.90 81.60 81.90 81.00
breast-cancer 69.03 70.63 68.26 72.56 73.09
bridges-version1 62.28 57.05 52.32 62.95 69.55
bridges-version2 58.92 56.46 51.83 62.78 66.46
bupa 69.93 68.98 71.24 71.30 72.08
car 92.88 93.28 94.12 93.99 93.11
cleveland-heart-dis 79.9 79.67 80.84 80.73 80.5
cmc 51.17 52.5 49.55 50.94 52.65
credit-rating 84.87 85.77 85.23 86.39 86.72
crx 85.97 85.78 85.23 86.39 86.72
cylinder-bands 57.98 70.94 74.26 78.85 81.94
dermatology 96.53 94.31 96.53 97.37 97.7
dresses-sales 55.72 58.80 55.46 58.32 58.98
ecoli 84.05 83.93 84.25 84.64 84.56
fertility-diagnosis 86.00 87.90 85.30 86.20 86.60
flags 56.49 58.79 60.79 62.61 62.80
german-credit 72.81 73.96 74.96 75.91 76.15
glass 74.67 75.03 77.97 77.99 76.81
glioma16 79.00 78.80 81.20 82.60 81.60
haberman 70.07 72.23 64.63 70.97 73.65
hayes-roth 81.44 81.00 80.81 81.06 80.63
heart-statlog 79.89 79.85 80.89 80.85 81.26
hepatitis 81.12 81.76 82.88 83.25 83.26
horse-colic 85.21 84.15 85.12 84.88 84.83
hungarian-heart-dis 79.23 79.9 80.37 80.28 82.28
hypothyroid 99.53 99.55 99.35 99.62 99.63
ionosphere 92.25 91.54 92.97 93.14 92.77
iris 94.33 94.6 91.87 92.93 94
kr-vs-kp 99.08 99.16 98.3 98.87 98.95
labor 82.93 82.83 86.93 86.63 87.27
leaf 70.44 69.71 75.41 76.03 74.88
letter 93.85 92.58 95.41 96.23 95.99
leukemia-haslinger 79.80 79.70 84.50 85.30 85.10
liver-disorders 72.22 71.65 71.24 71.3 72.08
lsvt-voice-rehab 77.58 80.27 81.72 81.47 81.87
lymphography 79.63 77.02 83.77 82.52 81.94
mfeat-morphological 71.18 73.26 69.34 71.50 72.83
mfeat-pixel 83.71 86.63 96.11 96.4 96.49
mol-biology-promoters 81.95 84.01 89.22 89.94 89.80
mol-promotor-gene 82.04 83.91 88.36 90.43 91.05

Data set B
A
-C

4
.5

B
A
-C

D
T

R
F

C
R
F

R
C
R
F

mol-splice-junction 94.11 93.44 95.16 95.60 96.05
monks1 99.60 96.73 97.00 98.47 98.62
monks2 63.49 63.11 65.68 69.23 70.35
monks3 98.77 98.76 95.65 98.72 98.83
mushroom 99.99 99.98 99.95 100 100
nursery 97.87 97.01 98.59 97.34 96.1
optdigits 95.65 95.73 98.31 98.42 98.46
page-blocks 97.31 97.33 97.13 97.45 97.49
parkinsons 87.48 87.73 90.43 91.11 90.80
pendigits 98.46 98.44 99.15 99.17 99.12
phoneme 88.00 87.74 90.06 90.42 90.11
pima-diabetes 75.88 74.88 74.88 75.15 75.48
postoperative-patient 67.56 70.44 59.67 69.11 70.44
primary-tumor 43.01 43.28 43.15 44.54 44.37
qsar-biodegradation 85.38 85.00 86.02 86.10 86.36
qualitative-bankruptcy 98.68 98.36 97.68 99.36 99.48
robot-failure-lp1 76.60 77.19 86.24 85.78 86.36
robot-failure-lp2 64.65 55.30 65.35 66.20 66.05
robot-failure-lp3 59.00 55.10 70.60 69.35 70.00
robot-failure-lp4 85.76 82.75 90.93 90.68 91.09
robot-failure-lp5 66.60 67.90 73.19 73.11 72.91
saheart 67.68 68.76 67.87 67.91 67.92
seeds 91.57 91.67 92.48 92.10 92.52
segment 97.59 97.38 97.09 97.42 97.71
seismic-bumps 92.68 93.38 92.66 92.93 93.01
sick 98.68 98.66 98.4 98.5 98.55
solar-flare2 99.16 99.5 98.61 99.53 99.53
sonar 79.43 80.35 83.18 83.92 83.03
soybean 91.95 90.5 92.17 94.61 94.61
spambase 94.12 94.17 94.58 94.54 94.79
spect 81.91 82.64 81.16 82.82 83.57
spectf 87.40 83.39 89.74 89.57 89.77
spectrometer 55.86 52.94 56.84 57.24 56.26
splice 94.02 94.04 94.89 95.53 96.13
sponge 92.75 92.57 94.61 94.32 94.73
synthetic-control 95.77 94.33 98.28 98.50 98.80
tae 58.75 59 64.61 63.27 62.46
teaching-assistant-eval 57.17 53.60 64.61 63.27 62.46
thoracic-surgery 83.68 84.98 82.55 83.34 84.32
tic-tac-toe 91.06 88.73 94.91 95.04 93.67
trains 78.00 56.00 54.00 62.00 62.00
turkiye-student 35.85 38.48 36.15 37.19 38.56
user-knowledge 90.00 89.87 90.42 90.47 90.30
vehicle 74.51 74.1 74.92 74.97 74.87
vote 96.04 95.79 95.56 96.04 95.88
vowel 93.35 91.78 95.41 96.15 96.25
waveform 83.18 83.14 85.03 84.94 84.74
wine 95.89 95.27 97.85 97.24 96.95
wisconsin-breast-cancer 95.94 96.04 95.81 96.52 96.74
zoo 93.01 92.5 95.67 96.18 95.78
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Table 8. Accuracy results of the ensemble methods when they are used on data sets with a

percentage of added label noise equal to 10%.

Data set B
A
-C

4
.5

B
A
-C

D
T

R
F

C
R
F

R
C
R
F

acute-inflamm-nephritis 99.33 99.42 92.25 98.33 98.83
acute-inflamm-urinary 99.17 98.58 91.42 96.83 97.25
anneal 98.05 98.5 96.44 98.34 98.91
appendicitis 85.52 84.96 82.45 82.74 84.73
arrhythmia 74.29 73.88 67.76 68.83 70.51
audiology 80.84 79.28 75.72 78.83 78.96
autos 80.44 75.79 77.16 79.06 80.04
balance-scale 81.09 81.97 78.03 81.26 82.57
bank-marketing 89.13 89.33 88.62 89.40 89.50
banknote-auth 98.26 98.56 97.19 98.34 98.70
blogger 75.60 73.40 79.60 79.90 80.40
breast-cancer 67.17 69.87 66.77 70.89 72.88
bridges-version1 57.16 50.93 51.68 59.63 66.98
bridges-version2 55.62 51.72 50.35 59.29 64.56
bupa 68.25 69.45 69.38 69.87 70.22
car 90.92 92.34 93.3 93.44 92.72
cleveland-heart-dis 80.3 79.73 80.73 80.6 81.4
cmc 50.12 51.82 48.51 50.17 51.88
credit-rating 83.3 84.77 84.01 85.26 86.07
crx 85.59 85.58 84.01 85.28 86.07
cylinder-bands 57.96 66.28 71.91 75.61 79.39
dermatology 95.46 93.82 96.25 96.88 97.26
dresses-sales 55.00 58.18 54.20 56.58 57.60
ecoli 84.82 84.7 83.87 84.76 84.55
fertility-diagnosis 84.10 88.20 82.40 83.40 85.20
flags 47.14 58.12 58.73 62.01 61.80
german-credit 72.67 73.43 74.79 75.05 75.26
glass 73.33 74.37 76.82 76.27 76.17
glioma16 77.60 79.40 81.60 82.40 82.60
haberman 69.05 70.44 62.66 69.72 73.15
hayes-roth 80.31 80.25 78.19 79.44 79.81
heart-statlog 79.7 79.26 79.37 79.78 80
hepatitis 80.63 81.53 82.78 82.14 83.35
horse-colic 84.55 83.71 83.58 83.31 84.29
hungarian-heart-dis 78.96 79.46 79.56 79.77 81.12
hypothyroid 99.3 99.48 99.22 99.48 99.57
ionosphere 91.8 90.58 92.31 92.42 92.51
iris 93.8 94.2 90.07 92.33 93.47
kr-vs-kp 98.02 98.72 96.57 98.09 98.54
labor 81.57 81.87 86.90 86.07 86.20
leaf 67.97 69.09 75.38 74.65 74.85
letter 93.56 92.56 94.04 95.87 95.8
leukemia-haslinger 78.30 77.60 85.30 85.30 85.80
liver-disorders 70.47 69.43 69.38 69.87 70.22
lsvt-voice-rehab 76.54 80.21 81.03 80.33 80.88
lymphography 79.58 77.02 83.09 82.62 81.87
mfeat-morphological 70.15 72.83 68.83 70.38 71.95
mfeat-pixel 83.09 86.71 95.82 96.33 96.37
mol-biology-promoters 80.39 80.43 85.95 85.75 88.56
mol-promotor-gene 80.39 80.73 86.19 87.28 87.51

Data set B
A
-C

4
.5

B
A
-C

D
T

R
F

C
R
F

R
C
R
F

mol-splice-junction 93.68 93.05 94.06 94.72 95.49
monks1 98.58 95.29 92.70 95.34 96.28
monks2 62.08 62.61 65.12 67.48 68.60
monks3 98.29 98.60 93.24 97.93 98.58
mushroom 99.98 99.97 99.68 99.97 99.99
nursery 96.27 97.11 97.55 97.55 96.2
optdigits 95.7 95.81 98.26 98.34 98.33
page-blocks 97.11 97.2 96.49 97.15 97.35
parkinsons 87.33 87.27 89.76 90.02 89.67
pendigits 98.43 98.43 99.08 99.08 99.04
phoneme 86.93 87.22 88.39 88.83 89.08
pima-diabetes 75.59 74.48 74.24 74.16 74.86
postoperative-patient 64.22 70.22 57.67 66.67 69.44
primary-tumor 41.62 43.06 42.15 43.36 44.22
qsar-biodegradation 84.21 84.48 84.54 84.81 85.28
qualitative-bankruptcy 98.60 98.36 94.16 98.48 99.08
robot-failure-lp1 74.19 75.81 86.83 86.49 85.79
robot-failure-lp2 58.75 52.90 62.75 63.35 64.25
robot-failure-lp3 57.85 55.35 70.40 69.55 70.20
robot-failure-lp4 84.56 83.35 90.08 90.65 90.39
robot-failure-lp5 66.13 65.35 73.09 73.40 72.92
saheart 67.48 67.98 66.29 66.36 66.68
seeds 91.05 90.86 91.00 91.29 91.62
segment 96.75 97.08 95.92 96.34 97.24
seismic-bumps 92.14 93.25 91.97 92.39 92.92
sick 98.08 98.47 98.18 98.28 98.32
solar-flare2 98.58 99.47 97.56 99.46 99.52
sonar 77.45 79.47 81.61 82.08 81.35
soybean 91.22 90.25 90.41 94.03 94.42
spambase 93.23 93.32 93.13 93.33 93.73
spect 81.44 83.06 80.16 81.66 82.60
spectf 84.13 82.55 87.36 86.73 87.30
spectrometer 55.42 51.85 56.39 56.41 55.71
splice 93.11 93.54 93.98 94.73 95.52
sponge 91.39 92.68 92.98 93.52 93.93
synthetic-control 95.52 80.73 98.05 98.72 98.88
tae 56.17 57.15 61.69 60.28 59.82
teaching-assistant-eval 55.68 50.82 61.69 60.28 59.82
thoracic-surgery 82.70 84.77 81.13 82.19 83.57
tic-tac-toe 88.25 87.52 92.45 93.34 92.07
trains 72.00 85.00 76.00 79.00 79.00
turkiye-student 36.02 38.41 35.55 36.71 37.98
user-knowledge 89.28 89.48 89.75 89.70 89.73
vehicle 73.88 73.54 74.48 74.49 74.48
vote 95.22 95.35 94.11 95.28 95.54
vowel 92.73 90.74 92.18 93.28 94.67
waveform 83.16 83.16 84.94 84.9 84.8
wine 94.44 94.5 96.86 96.19 96.13
wisconsin-breast-cancer 95.49 95.75 94.64 96.01 96.32
zoo 93.66 93.37 92.97 95.86 95.47
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Table 9. Accuracy results of the ensemble methods when they are used on data sets with a

percentage of added label noise equal to 20%.

Data set B
A
-C

4
.5

B
A
-C

D
T

R
F

C
R
F

R
C
R
F

acute-inflamm-nephritis 95.75 95.92 80.33 91.92 94.67
acute-inflamm-urinary 95.42 94.17 82.00 90.83 94.00
anneal 95.34 97.42 91.16 95.51 97.55
appendicitis 81.90 83.05 76.84 77.00 80.25
arrhythmia 73.87 72.84 66.75 66.73 68.74
audiology 76.25 75.57 71.28 75.23 76.62
autos 73.34 69.8 70.63 73.4 73.7
balance-scale 79.26 80.97 75.28 80.38 81.93
bank-marketing 86.06 88.65 85.60 88.00 88.77
banknote-auth 96.38 97.51 91.04 93.51 96.34
blogger 71.40 70.30 73.70 74.80 74.70
breast-cancer 63.4 66.2 62.02 66.79 70.78
bridges-version1 52.11 35.82 44.79 51.73 62.30
bridges-version2 49.85 36.13 44.85 51.43 61.50
bupa 64.72 66.53 65.84 65.70 66.50
car 85.43 89.72 90.48 91.53 91.41
cleveland-heart-dis 79.02 79.15 79.48 79.91 80.17
cmc 48.38 50.14 46.58 48.7 50.6
credit-rating 79.41 82.67 80 82.77 84.03
crx 81.87 84.58 80.00 82.77 84.03
cylinder-bands 58.13 60.46 67.20 69.37 73.76
dermatology 92.73 93.52 94.86 95.76 96.57
dresses-sales 53.32 56.78 53.56 54.18 55.34
ecoli 82.56 82.91 80.74 81.48 82.82
fertility-diagnosis 77.80 86.60 78.60 79.70 80.60
flags 36.77 55.99 56.61 59.05 59.69
german-credit 69.91 71.38 71.8 72.71 73.11
glass 70.61 72.67 72.72 71.94 72.12
glioma16 76.60 76.20 80.60 80.80 81.40
haberman 66.55 66.33 59.43 64.05 70.53
hayes-roth 78.00 76.63 72.38 75.75 76.94
heart-statlog 76.93 76.81 76.93 77 77.52
hepatitis 79.35 79.95 79.69 79.56 80.5
horse-colic 81.46 80.73 80.7 81.3 81.71
hungarian-heart-dis 78.14 78.36 77.81 78.75 80.97
hypothyroid 98.34 99.37 98.65 99.14 99.3
ionosphere 87.84 86.7 88.39 88.15 89.01
iris 90.07 90.93 82.8 88.87 90.67
kr-vs-kp 92.68 95.63 90.37 93.27 95.71
labor 77.13 80.60 80.53 82.57 82.37
leaf 65.97 66.00 72.15 72.71 74.15
letter 92.57 92.32 90.57 94.6 95.16
leukemia-haslinger 73.80 76.40 81.70 82.50 82.50
liver-disorders 67.08 66.45 65.84 65.7 66.5
lsvt-voice-rehab 74.15 78.07 77.38 77.69 77.62
lymphography 75.99 76 78.08 80.58 80.12
mfeat-morphological 67.98 72.24 66.05 67.68 70.37
mfeat-pixel 82.19 86.6 95.32 95.85 95.96
mol-biology-promoters 72.65 72.19 76.93 77.52 79.34
mol-promotor-gene 72.65 73.03 77.15 78.24 77.06

Data set B
A
-C

4
.5

B
A
-C

D
T

R
F

C
R
F

R
C
R
F

mol-splice-junction 91.53 92.08 91.54 92.25 93.47
monks1 90.37 89.69 83.27 86.58 89.12
monks2 61.71 61.41 62.24 64.21 64.79
monks3 95.20 97.30 85.15 91.14 95.62
mushroom 99.75 99.83 96.76 99.08 99.85
nursery 90.42 96.5 93.74 97.2 96.4
optdigits 95.73 96.07 98.01 98.08 98.19
page-blocks 96.33 96.79 94.68 95.97 96.94
parkinsons 80.63 84.02 84.13 84.94 84.59
pendigits 98.08 98.19 98.75 98.83 98.91
phoneme 84.50 85.41 83.48 84.08 85.95
pima-diabetes 74.62 72.6 71.85 72.68 72.72
postoperative-patient 62.56 68.67 55.56 59.44 66.22
primary-tumor 40.2 41.03 40.53 41.8 42.83
qsar-biodegradation 79.59 82.39 80.72 80.83 81.76
qualitative-bankruptcy 97.84 98.08 87.08 93.92 97.32
robot-failure-lp1 74.42 73.89 83.57 83.28 83.33
robot-failure-lp2 54.55 51.35 60.80 61.40 62.05
robot-failure-lp3 51.55 51.10 65.50 65.75 65.75
robot-failure-lp4 80.52 79.34 88.10 88.42 88.70
robot-failure-lp5 63.36 63.05 70.03 71.03 70.49
saheart 65.99 66.21 64.84 64.77 65.62
seeds 86.95 89.52 86.38 87.67 88.14
segment 94.29 95.83 93.48 93.92 95.64
seismic-bumps 89.37 92.48 88.18 89.31 91.57
sick 96.14 97.87 96.82 97.3 97.82
solar-flare2 96.45 99.23 94.76 98.99 99.48
sonar 74.77 76.27 78.54 79 79.33
soybean 88.07 87.7 84.83 92.33 93.6
spambase 90.39 89.95 89.33 89.63 90.3
spect 78.44 81.57 77.56 79.55 81.69
spectf 80.23 79.84 82.09 81.72 82.20
spectrometer 54.15 49.97 55.86 55.03 54.98
splice 90.87 91.5 91.52 92.22 93.43
sponge 87.89 90.57 89.45 90.82 91.66
synthetic-control 93.25 16.67 97.57 98.12 98.30
tae 53.13 54.8 54.87 54.82 55.27
teaching-assistant-eval 50.94 48.95 54.87 54.82 55.27
thoracic-surgery 79.02 83.49 76.62 78.55 80.81
tic-tac-toe 82.18 81.94 85.33 86.69 87.52
trains 50.00 45.00 48.00 49.00 50.00
turkiye-student 34.99 37.77 34.58 35.65 36.84
user-knowledge 86.76 88.86 86.76 86.98 88.39
vehicle 72.59 72.41 72.52 72.87 72.98
vote 92.59 93.93 90.55 93.26 94.34
vowel 88.88 84.42 84.23 85.79 88.84
waveform 82.7 82.8 84.46 84.41 84.3
wine 91.35 90.68 93.61 92.6 92.22
wisconsin-breast-cancer 93.41 94 90.83 93.48 95.12
zoo 93.5 93.27 87.83 93.1 94.3
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Table 10. Accuracy results of the ensemble methods when they are used on data sets with a

percentage of added label noise equal to 30%.

Data set B
A
-C

4
.5

B
A
-C

D
T

R
F

C
R
F

R
C
R
F

acute-inflamm-nephritis 82.17 86.83 69.75 79.00 84.50
acute-inflamm-urinary 85.17 84.00 72.50 79.67 85.67
anneal 89.44 93.97 83.29 88.62 93.75
appendicitis 75.23 79.03 71.05 70.30 73.40
arrhythmia 72.86 71.64 65.58 66.48 67.57
audiology 73.37 71.51 66.02 70.54 72.71
autos 64.32 62.54 61.73 64.57 65.83
balance-scale 74.95 77.1 68.62 76.02 79.33
bank-marketing 76.46 85.00 78.23 82.37 85.34
banknote-auth 93.45 92.19 80.91 82.79 88.00
blogger 69.50 67.60 68.70 70.70 70.40
breast-cancer 59.83 61.24 59.1 61.34 65.02
bridges-version1 38.71 33.30 41.55 46.00 56.45
bridges-version2 37.85 33.09 41.29 45.31 54.35
bupa 60.50 61.60 60.26 60.60 60.34
car 78.65 84.87 85.41 87.54 88.92
cleveland-heart-dis 75.6 76.57 75.82 76.5 78.22
cmc 45.41 47.51 43.54 45.93 47.81
credit-rating 71.61 75.3 71.72 75.07 77.65
crx 72.16 79.49 71.72 75.07 77.65
cylinder-bands 58.33 54.24 61.35 63.24 65.94
dermatology 88.71 91.04 92.84 93.79 94.94
dresses-sales 51.48 53.64 52.02 53.16 53.36
ecoli 79.88 80.86 77.34 78.79 81.03
fertility-diagnosis 71.60 81.80 69.50 71.40 72.70
flags 35.22 47.49 54.00 55.18 56.84
german-credit 65.07 67.19 66.93 67.75 69.09
glass 66.9 68.39 67.69 68.48 68.02
glioma16 63.80 72.20 69.00 71.00 72.60
haberman 62.34 60.46 56.03 59.26 63.94
hayes-roth 73.56 72.44 66.81 71.75 73.25
heart-statlog 69.52 69.89 70.96 70.93 72.67
hepatitis 73.24 75.51 75.24 75.95 77.31
horse-colic 76.04 75.16 74.34 75.49 75.95
hungarian-heart-dis 75.96 76.09 74.1 75.76 78.55
hypothyroid 95.9 98.82 97.31 97.94 98.63
ionosphere 79.86 78.38 81.01 80.98 81.49
iris 81.73 84.13 73.47 80.73 85.13
kr-vs-kp 82.68 86.36 79.88 82.81 87.57
labor 75.77 77.53 74.37 76.77 78.97
leaf 61.56 63.09 66.74 68.09 70.53
letter 90.29 91.3 85.85 92.15 94.02
leukemia-haslinger 68.10 71.00 75.40 77.00 78.00
liver-disorders 61.66 61.44 60.26 60.6 60.34
lsvt-voice-rehab 66.95 70.91 70.97 72.89 73.13
lymphography 73.02 73.14 72.06 76.72 79.15
mfeat-morphological 64.51 71.00 62.14 64.68 67.91
mfeat-pixel 81.81 87.03 94.35 95.46 95.57
mol-biology-promoters 64.43 63.85 69.20 69.34 72.07
mol-promotor-gene 64.23 64.69 69.76 70.36 71.30

Data set B
A
-C

4
.5

B
A
-C

D
T

R
F

C
R
F

R
C
R
F

mol-splice-junction 85.51 89.76 87.49 88.31 89.86
monks1 77.81 80.09 73.40 75.20 78.62
monks2 58.85 58.69 57.17 58.57 60.77
monks3 85.45 90.14 75.16 78.58 85.57
mushroom 94.23 97.31 87.93 90.99 97.66
nursery 81.74 93.42 87.09 94.79 96.12
optdigits 95.08 95.9 97.73 97.69 97.67
page-blocks 94.22 95.73 91.53 93.28 95.73
parkinsons 75.07 78.36 75.58 75.23 75.42
pendigits 97.39 97.76 98.04 98.22 98.51
phoneme 81.12 80.50 75.28 75.69 78.64
pima-diabetes 70.8 67.5 67.04 66.92 68.2
postoperative-patient 57.44 66.78 54.00 55.56 59.67
primary-tumor 37.61 39.73 37.14 38.7 40.53
qsar-biodegradation 71.68 77.09 73.54 73.97 74.69
qualitative-bankruptcy 91.80 94.00 75.44 80.88 88.52
robot-failure-lp1 69.18 69.10 80.94 80.38 81.03
robot-failure-lp2 50.15 49.30 61.05 60.15 61.25
robot-failure-lp3 49.70 48.85 59.80 60.75 59.95
robot-failure-lp4 72.47 73.64 83.14 83.98 84.60
robot-failure-lp5 58.02 58.79 66.97 66.00 66.19
saheart 63.17 62.99 61.29 60.96 62.23
seeds 81.14 87.71 80.33 81.05 83.52
segment 90.5 93.15 90.13 90.49 92.33
seismic-bumps 83.82 88.67 80.70 81.97 85.44
sick 90.34 94.64 91.44 92.46 94.43
solar-flare2 92.24 97.11 90.19 95.52 99.15
sonar 69.52 71.75 72.75 72.42 72.48
soybean 83.45 81.65 79.31 89.47 92.09
spambase 86.06 83.51 83.02 83.21 83.87
spect 71.82 77.95 71.13 73.22 76.34
spectf 71.34 74.76 75.76 76.32 75.81
spectrometer 51.62 47.97 53.58 53.94 53.6
splice 87.83 88.76 87.55 88.33 89.93
sponge 77.45 84.05 81.07 84.34 86.38
synthetic-control 86.10 16.67 97.07 97.48 97.72
tae 49.83 49.2 51.38 51.4 50.35
teaching-assistant-eval 48.42 46.90 51.38 51.40 50.35
thoracic-surgery 71.34 78.66 69.38 72.02 74.09
tic-tac-toe 72.91 73.99 75.37 76.20 78.16
trains 73.00 76.00 74.00 77.00 76.00
turkiye-student 33.80 37.23 32.97 34.31 35.59
user-knowledge 81.03 87.54 82.56 83.60 85.66
vehicle 70.13 70.36 69.86 69.83 70.58
vote 86.25 88.87 83.33 87 89.97
vowel 81.63 74.76 75.21 76.72 80.63
waveform 81.82 82.14 83.6 83.57 83.57
wine 85.63 85.69 88.9 89.02 88.73
wisconsin-breast-cancer 87.78 88.35 82.88 86.32 90.28
zoo 89.71 90.71 80.5 87.56 89.93

Table 11. p-values of the Nemenyi test

about the accuracy on data sets without

added noise.

i algorithms p
10 BA-CDT vs. RCRF 0
9 BA-CDT vs. CRF 0
8 BA-C4.5 vs. RCRF 0
7 BA-C4.5 vs. CRF 0
6 BA-CDT vs. RF 0.000003
5 BA-C4.5 vs. RF 0.000574
4 RF vs. RCRF 0.001013
3 RF vs. CRF 0.01673
2 BA-C4.5 vs. BA-CDT 0.210498
1 CRF vs. RCRF 0.371093

Table 12. p-values of the Nemenyi test

about the accuracy on data sets with 5% of

added noise.

i algorithms p
10 BA-CDT vs. RCRF 0
9 BA-C4.5 vs. RCRF 0
8 BA-CDT vs. CRF 0
7 RF vs. RCRF 0
6 BA-C4.5 vs. CRF 0
5 RF vs. CRF 0
4 BA-CDT vs. RF 0.066717
3 CRF vs. RCRF 0.070108
2 BA-C4.5 vs. RF 0.158917
1 BA-C4.5 vs. BA-CDT 0.670944
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Table 13. p-values of the Nemenyi test

about the accuracy on data sets with 10%

of added noise.

i algorithms p
10 BA-C4.5 vs. RCRF 0
9 RF vs. RCRF 0
8 BA-CDT vs. RCRF 0
7 BA-C4.5 vs. CRF 0
6 RF vs. CRF 0.000004
5 BA-CDT vs. CRF 0.000083
4 CRF vs. RCRF 0.001745
3 BA-C4.5 vs. BA-CDT 0.107405
2 BA-C4.5 vs. RF 0.347654
1 BA-CDT vs. RF 0.502335

Table 14. p-values of the Nemenyi test

about the accuracy on data sets with 20%

of added noise.

i algorithms p
10 RF vs.RCRF 0
9 BA-C4.5 vs. RCRF 0
8 BA-CDT vs. RCRF 0
7 CRF vs. RCRF 0
6 RF vs. CRF 0.000001
5 BA-C4.5 vs.CRF 0.000035
4 BA-CDT vs. RF 0.000083
3 BA-C4.5 vs. BA-CDT 0.001883
2 BA-CDT vs. CRF 0.303672
1 BA-C4.5 vs. RF 0.408041

Table 15. p-values of the Nemenyi test

about the accuracy on data sets with 30%

of added noise.

i algorithms p
10 RF vs. RCRF 0
9 BA-C4.5 vs. RCRF 0
8 BA-CDT vs. RF 0
7 CRF vs. RCRF 0
6 RF vs. CRF 0.000001
5 BA-CDT vs.RCRF 0.000001
4 BA-C4.5 vs. BA-CDT 0.000014
3 BA-C4.5 vs. CRF 0.000268
2 BA-C4.5 vs. RF 0.194659
1 BA-CDT vs. CRF 0.488196


