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A single-nucleotide polymorphism (SNP) at the IL12RB2 locus showed a suggestive association signal in a pre-
viously published genome-wide association study (GWAS) in systemic sclerosis (SSc). Aiming to reveal the
possible implication of the IL12RB2 gene in SSc, we conducted a follow-up study of this locus in different
Caucasian cohorts. We analyzed 10 GWAS-genotyped SNPs in the IL12RB2 region (2309 SSc patients and
5161 controls). We then selected three SNPs (rs3790567, rs3790566 and rs924080) based on their significance
level in the GWAS, for follow-up in an independent European cohort comprising 3344 SSc and 3848 controls.
The most-associated SNP (rs3790567) was further tested in an independent cohort comprising 597 SSc patients
and 1139 controls from the USA. After conditional logistic regression analysis of the GWAS data, we selected
rs3790567 [PMH5 1.92 3 1025 odds ratio (OR) 5 1.19] as the genetic variant with the firmest independent asso-
ciation observed in the analyzed GWAS peak of association. After the first follow-up phase, only the association
of rs3790567 was consistent (PMH5 4.84 3 1023 OR 5 1.12). The second follow-up phase confirmed this finding
(Px2 5 2.82 3 1024 OR 5 1.34). After performing overall pooled-analysis of all the cohorts included in the pre-
sent study, the association found for the rs3790567 SNP in the IL12RB2 gene region reached GWAS-level sig-
nificant association (PMH5 2.82 3 1029 OR 5 1.17). Our data clearly support the IL12RB2 genetic association
with SSc, and suggest a relevant role of the interleukin 12 signaling pathway in SSc pathogenesis.

INTRODUCTION

Systemic sclerosis or scleroderma (SSc) is a rare complex con-
nective tissue disorder characterized by extensive fibrosis of
multiple organs produced by vascular damage and autoimmune
dysfunction (1,2). Patients are commonly classified into two
major subgroups: the limited cutaneous SSc (lcSSc) and the
diffuse cutaneous (dcSSc) form of the disease (3). Positive auto-
antibody titers are a main feature of this disabling condition,
especially anticentromere autoantibodies (ACA) and antitopoi-
somerase autoantibodies (ATA) (1,2). To date, a number of
genes have been implicated in an increased susceptibility to
SSc, confirming the genetic component of this complex
disease (4,5). Some of these genes are shared with other
related autoimmune diseases, supporting the idea of common
pathogenic pathways underlying autoimmune imbalance (6,7).

Recently, our group published the first genome-wide associ-
ation study (GWAS) conducted in Caucasian SSc patients (5).
GWASs are often followed by follow-up studies focused on
the regions where association peaks are observed, not only
in the associations which reached the GWAS significance
level, but also those which are below the GWAS level but
might result in true association with the disease. In this line,
a single-nucleotide polymorphism (SNP) at the IL12RB2
locus showed a suggestive association signal in the previously
mentioned GWAS [PMH¼ 1.92 × 1025 odds ratio (OR) ¼
1.19 (1.10–1.29)] (5).

Noteworthy, interleukin 12 (IL-12) binding to its receptor
powerfully induces IFNg production and promotes T helper
differentiation in Th1 cells (8). In addition, several experimen-
tal and clinical studies have implicated IL-12 and IFNg in the
development of autoimmune inflammation (8,9). The IL-12
receptor (IL-12R) comprises two subunits, IL-12R b1
subunit (IL-12Rb1) and IL-12R b2 subunit (IL-12Rb2),
which are both homologous to gp130 (a shared component
of the receptors for several type I cytokines) (10).

IL12RB2 encodes IL-12Rb2, which constitutes the transdu-
cing component of the receptor heterodimer and recruits dif-
ferent tyrosine kinases, signal transducers and activators of
transcription (11–13). Interestingly, animal models lacking

IL12Rb2 signaling develop autoimmune events (14).
Moreover, polymorphisms in the IL12RB2 gene region and
upstream this locus have been related to several human auto-
immune disorders, such as psoriasis (PS) (15), primary biliary
cirrhosis (PBC) (16), Behçet disease (17,18) and giant cell
arteritis (GCA) (19).

Hence, with the aim of investigating the possible role of the
IL12RB2 gene in SSc, we conducted a GWAS follow-up study
in different European and US Caucasian cohorts.

RESULTS

IL12RB2 region analysis in the GWAS set

Ten SNPs in the IL12RB2 region were included in the initial
GWAS analysis set, six of them were found to be significantly
associated with SSc, but only four remained significant after
GC correction (Table 1). However, conditioned logistic
regression revealed that among the initially observed associa-
tions, only the rs3790567 association was independent from
the others (Table 1). HapMap linkage disequilibrium patterns
defined rs3790566 (not included in the GWAS phase) as
the unique tag-SNP for rs3790567. Hence, both the
most-associated SNP (rs3790567) and this tag-SNP
(rs3790566) were selected for replication.

Despite the loss of the observed association after correction
for multiple testing (Table 1), we also included rs924080 in
the first follow-up phase. This genetic variant was located in
the intergenic region between IL12RB2 and IL23R, and it
was the last GWAS SNP contained in the IL23R haplotype
block (Fig. 1). In addition, this polymorphism mapped in a
recombination hotspot identified in the HapMap Project
(Phase II, Caucasian and Asian populations; http://www.
hapmap.org) and previous reports (17).

European follow-up phase

Table 2 shows the pooled analysis of seven independent white
European cohorts of the three SNPs analyzed in the first
follow-up phase. No evidence of association was observed
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for rs924080. Despite an initial association of rs3790566 and
rs3790567, after performing Bonferroni multiple test correc-
tion only the association of rs3790567 remained significant
(Table 2). The pooled analysis of this genetic variant in the
GWAS cohort and the independent follow-up set reached a
notable statistically significant association [PMH¼ 5.19 × 1027

OR ¼ 1.16 (1.09–1.22), Table 3].
The subgroup and autoantibody titer stratified pooled ana-

lyses comprising the GWAS and the European follow-up
cohorts showed firm statistically significant risk association
signals in all the subgroups of the disease considered (Supple-
mentary Material, Tables S1–S2).

US follow-up phase

In order to confirm the rs3790567 signal, an independent US
cohort was included (597 SSc and 1139 controls). Case–
control frequency analysis revealed a strong association
[Px2¼ 2.82 × 1024 OR ¼ 1.34 (1.14–1.57), Table 3]. After
stratification, only lcSSc subgroup reached statistical signifi-
cance, probably due to a lack of power since the other
subgroups are relatively smaller (Supplementary Material,
Tables S1–S2).

The overall pooled analysis of rs3790567 comprising the
GWAS set and both the European and the US follow-up sets
reached GWAS-level statistically significant association in the
whole set of SSc patients [PMH¼ 2.82 × 1029 OR ¼ 1.17
(1.11–1.24)] and remained significant after stratification in all
the subgroups (Table 3 and Supplementary Material, Tables
S1–S2). Hence, we suggest that the association found in
rs3790567 most likely belonged to the whole SSc set of patients
rather than any of its subgroups. The rs3790567 individual
population allele distributions and association tests are shown
in Supplementary Material, Tables S3–S5.

IL23R locus dependence analysis

Aiming to further confirm the independence of the reported
IL12RB2 signal from the IL23R locus, we analyzed the associ-
ation of the SNPs in the IL23R region which were included in
the GWAS initial phase and their effect on the IL12RB2

rs3790567 association. The IL23R region comprised 27
SNPs and only 4 of them showed some marginal association
with SSc, considering uncorrected P-values (Supplementary
Material, Table S7). Nevertheless, the association observed
in rs3790567 was found independent of these weak signals
(Supplementary Material, Table S7).

DISCUSSION

Our data clearly support an association of IL12RB2 rs3790567
with SSc. The risk effect of the IL12RB2 rs3790567 minor
allele is consistent in all the analyzed cohorts with the excep-
tion of the Italian population. In contrast to other cohorts, the
minor allele rs3790567∗A is over-represented in controls com-
pared with SSc patients in the Italian sample set. The Italian
control group showed the highest minor allele frequency
among all the included populations, and the linkage disequilib-
rium between rs3790567 and rs3790566 in the Italian cohort
was considerably lower (r2¼ 0.70) than in the other European
populations (r2. 0.90). In addition, this over-representation of
the rs3790567∗A minor allele is also observed in the TSI
(Tuscan in Italy) population in the HapMap Project (Phase
III) (MAFTSI¼ 0.30) when compared with the CEU population
(MAFCEU¼ 0.26). However, the linkage disequilibrium
observed between rs3790567 and rs3790566 in the Hapmap
TSI population compared with the CEU population decreased
very slightly (r2

TSI¼ 0.97, r2
CEU¼ 1). Hence, it is likely that the

observed discrepancies in the Italian set were due to ethnic
differences in linkage disequilibrium patterns. Supporting
this notion, BD test revealed significant heterogeneity in the
lcSSc overall pooled analysis caused by the Italian patients
(PBD with the Italian population ¼ 0.04; PBD without the
Italian population ¼ 0.45). Although cases and controls were
geographically matched, the potential effect of population sub-
structure in the replication cohorts could not be controlled by
deriving principal components on a population-specific basis,
as it was performed for the GWAS cohorts, due to the lack
of high-throughput genotype information for these individuals.
Considering the reported heterogeneous genetic background
for Italian populations (20), the influence of this factor on
the deviation observed in our Italian subset cannot be ignored.

Table 1. Pooled logistic regression of IL12RB2 genetic variants in the GWAS cohort (2309 SSc patients and 5161 controls)

SNP Chr: 1
position (bp)

Minor
allele

Plog OR PGC P-value: add to
rs3790567

OR and
rs3790567

P-value rs3790567
add to SNP

OR rs3790567
and to SNP

r2 with
rs3790567

rs924080 67,532,728 G 2.93 × 1022 1.08 3.91 × 1022 0.12 1.06 2.16 × 1025 1.19 0.02
rs12131065 67,541,594 A 0.16 0.94 0.18 0.20 0.95 7.72 × 1026 1.19 0.001
rs3790558 67,549,609 C 0.31 1.04 0.34 0.19 0.95 4.74 × 1026 1.23 0.23
rs10489627 67,552,264 G 4.88 × 1022 1.08 0.06 0.83 0.99 4.98 × 1025 1.20 0.23
rs2066445 67,554,563 A 0.09 0.93 0.11 0.11 0.93 7.62 × 1026 1.20 0.0005
rs3790567 67,594,965 A 6.36 × 1026 1.20 1.92 × 1025 NA NA NA NA NA
rs3828069 67,612,161 G 4.24 × 1022 0.91 0.05 0.44 0.96 4.28 × 1025 1.19 0.08
rs4297265 67,624,923 G 1.71 × 1022 1.09 2.41 × 1022 0.39 0.96 9.86 × 1025 1.23 0.44
rs2270614 67,628,609 A 1.66 × 1022 1.09 2.34 × 1022 0.41 0.96 1.04 × 1024 1.23 0.44
rs7555183 67,633,215 A 0.24 1.05 0.27 0.92 1.00 1.31 × 1025 1.20 0.08

Chr, chromosome; Plog, logistic regression P-value; OR, odds ratio; PGC, GC corrected P-value. Last columns, single locus test P-value when SNP added to
rs3790567, single locus test OR when SNP added to rs3790567, single locus test P-value when rs3790567 added to SNP in logistic regression analyses, single locus
test OR when rs3790567 added to SNP in logistic regression analyses and pairwise r2 of SNP with rs3790567. NA, not applicable.
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As stated above, different IL12RB2 genetics variants
have been associated with multiple autoimmune disorders
(15–19). However, the fact that the same IL12RB2 variant,
rs3790567, has been associated with increased susceptibility
to both PBC and GCA (16,19), together with the lack of asso-
ciation in our data of a nearby highly linked variant
(rs3790566), suggest that rs3790567 intronic SNP may be
tagging a functional variant or even has a yet unknown func-
tional implication itself.

The IL12RB2 gene maps close to the IL-23R coding gene
(IL23R), which are located ,50 kb from each other. IL-23R
binds IL-12Rb1 chain constituting the heterodimeric receptor
for IL-23 (21). Although IL23R polymorphisms have been
associated with different autoimmune diseases (22–28), its

implication in SSc is not clear (29–31). In this report, condi-
tional regression analyses showed that the association of
IL12RB2 rs3790567 with SSc is independent from all the
studied IL23R genetic polymorphisms, even from IL23R
rs11209026 (Arg281Gln) missense variant. Hence, we
suggest that the reported association of the IL12RB2 gene
with SSc susceptibility does not rely on the IL23R locus.
Nevertheless, further studies will be necessary to investigate
the possible effect of IL12RB2 genetic variants on IL23R
gene expression.

IL-12 levels are increased in the serum of SSc patients as
well as in the alveolar lavage fluid (BAL-f) from patients
with SSc-associated interstitial lung disease (ILD) (32,33).
Although IL-12 classical implication in immune imbalance

Figure 1. GWAS phase of the IL12RB2 region. Regional association plot, recombination rate, linkage disequilibrium pattern and pairwise r2 of the SNPs
with rs3790567.

Table 2. Genotype and allele distribution of IL12RB2 genetic variants in the European SSc patients and controls follow-up study (3344 SSc/3848 controls)

SNP 1/2 CTRL SSc
1/1 (n) 1/2 (n) 2/2 (n) MAF 1/1 (n) 1/2 (n) 2/2 (n) MAF PMH OR 95% CI PBonf PBD

rs924080 C/T 0.22 (827) 0.48 (1807) 0.29 (1094) 0.46 0.22 (687) 0.49 (1545) 0.30 (934) 0.46 0.96 1.00 0.93–1.07 1 NS
rs3790566 T/C 0.08 (280) 0.37 (1334) 0.55 (1978) 0.26 0.09 (273) 0.39 (1196) 0.52 (1617) 0.28 3.35 × 1022 1.09 1.01–1.18 0.10 NS
rs3790567 A/G 0.08 (241) 0.37 (1169) 0.56 (1773) 0.26 0.09 (282) 0.38 (1187) 0.52 (1616) 0.28 4.84 × 1023 1.12 1.04–1.22 0.01 NS

SSc, systemic sclerosis patients; CTRL, healthy controls; 1/2, minor allele/major allele; MAF, minor allele frequency; PMH, allelic Mantel–Haenszel fixed effects
model P-value; OR, odds ratio; 95% CI, 95% confidence interval; PBD, Breslow–Day test P-value; NS, not statistically significant.
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has been mainly related to a pro-inflammatory cell-mediated
immunity and Th1 response (9) and increased levels of
IL-12 correlate with renal vascular damage (32), the role of
IL-12 in SSc pathogenesis should be considered cautiously.
Indeed, SSc patients and especially those with ILD have a
Th2-polarized response (34). Additionally, it has been sug-
gested that IL-12 drives a drift from a Th2 to Th1 response
which improves skin score in SSc patients (35). Moreover,
IL-12 is known to have anti-fibrotic effects in fibroblasts
(36), and the administration of IL-12 coding plasmid to the
tight skin SSc mouse model prevents collagen accumulation
in the skin (37). On the other hand, the implication
IL-12Rb2 in autoimmune events seems to be complex as
well. For instance, IL12rb2 knock-out mice do not display
IL-12-mediated NK cytotoxicity (38) and the IL-12/
IL-12Rb2 axis is known to be critical for the generation of
Th1 autoreactive cells (39), but, despite this, these mice
develop spontaneous autoimmune pathology (immune-
complex glomerulonephritis) and B-cell tumors by a strong
IL-6 up-regulation (14,40). In addition, IL-12R signals pre-
dominantly through the STAT pathway, especially STAT4
(37,40). In this regard, it should be noted that polymorphisms
in the STAT4 gene are well-established risk factors for SSc (4).
Hence, it is likely that genetically predisposed individuals may
present subtle differences in IL-12 signaling pathway regula-
tion that could influence the prognosis of SSc.

To date, only a few SSc-related loci have reached a
GWAS-level significance (i.e. P-value , 5.00 × 1028), both
in the previously mentioned GWAS and recent studies: the
HLA region, STAT4, TNPO3-IRF5, CD247, PSORS1C1,
TNIP1 and IRF8 (5,41,42). Hence, we consider that the
reported GWAS-level significant association may firmly con-
tribute to the genetic knowledge of the disease.

In conclusion, we report for the first time the association of
an IL12RB2 genetic variant with SSc. Our data together with
previous reports identify IL12RB2 as a common genetic risk
factor for autoimmunity.

MATERIALS AND METHODS

Subjects

The GWAS cohort was comprised of 2309 SSc patients and
5161 controls of Caucasian ancestry from Spain, Germany,

The Netherlands and USA from a previously published
study (5). The first follow-up phase consisted of 3085 SSc
patients and 3183 controls from seven European Caucasian
cohorts (Spain, Germany, The Netherlands, Italy, Sweden,
UK and Norway). The second follow-up step comprised
1736 additional USA Caucasian individuals (597 SSc and
1139 controls). All the patients fulfilled the 1980 American
College of Rheumatology (ACR) classification criteria for
SSc (43) or the criteria proposed for early-SSc (44). In add-
ition, patients were classified as having lcSSc or dcSSc as
described in LeRoy et al. (3).

The following clinical data were collected for the ascertain-
ment of the clinical phenotype of SSc patients: age, gender and
presence of SSc-specific autoantibodies (Ab) ATA and ACA
(Supplementary Material, Table S6). The control population
consisted of unrelated healthy individuals recruited in the
same geographical regions as SSc patients and matched by
age, sex and ethnicity with the SSc patients groups.

The study was approved by local ethical committees from
all the participating centers. Both patients and controls were
included in the study after written informed consent. DNA
from patients and controls were obtained using standard
methods.

SNP selection

In the screening GWAS phase, we included a 116 kb region
spanning the IL12RB2 region and �13 kb upstream and down-
stream from this locus, from base pair 67 530 000 to
67 646 000 in chromosome 1, in the GWAS cohorts. After
QC filtering as described in Radstake et al. (5), genotyping
data for 10 SNPs over this region on chromosome 1 were
available. The same procedure was applied for the analysis
of the IL23R region, which comprised 163 kb and 27 SNPs.

TaqMan SNP genotyping of the follow-up cohorts was per-
formed in a 7900HT Real-Time Polymerase Chain Reaction
(PCR) System from Applied Biosystems following the manu-
facturer’s suggestions (Foster City, CA, USA).

Statistical analysis

Significance was calculated using 2 × 2 contingency tables
and Fisher’s exact test or x2 when necessary, to obtain
P-values, OR and 95% confidence intervals using PLINK

Table 3. Genotype and allele distribution of IL12RB2 rs3790567 genetic variant in SSc patients and controls in a three-step association study

CTRL SSc
Population (CTRL/SSc) AA (n) AG (n) GG (n) MAF AA (n) AG (n) GG (n) MAF PMH OR 95% CI PBD

GWAS cohort (5161/2309) 0.06 (332) 0.37 (1911) 0.57 (2918) 0.25 0.08 (196) 0.40 (919) 0.52 (1194) 0.28 1.92 × 1025 1.19 1.10–1.29 NS
European follow-up (3183/

3085)
0.08 (241) 0.37 (1169) 0.56 (1773) 0.26 0.09 (282) 0.38 (1187) 0.52 (1161) 0.28 4.84 × 1023 1.12 1.04–1.22 NS

GWAS + European
follow-up (8344/5394)

0.07 (573) 0.37 (3080) 0.56 (4691) 0.25 0.09 (478) 0.39 (2106) 0.52 (2810) 0.28 5.19 × 1027 1.16 1.09–1.22 NS

US follow-up (1139/597) 0.05 (60) 0.37 (417) 0.58 (662) 0.24 0.10 (59) 0.39 (231) 0.51 (307) 0.29 a2.82 × 1024 1.34 1.14–1.57 NA
GWAS + European + US

follow-up (9483/5991)
0.07 (633) 0.37 (3497) 0.56 (5353) 0.25 0.09 (537) 0.39 (2337) 0.52 (3117) 0.28 2.82 × 1029 1.17 1.11–1.24 NS

Controls are used as reference for all comparisons. CTRL, healthy controls; SSc, systemic sclerosis; MAF, minor allele (A) frequency; PMH, allelic Mantel–
Haenszel fixed effects model P-value; aallelic Chi-square uncorrected P-value; OR, odds ratio; 95% CI, 95% confidence interval; PBD, Breslow–Day test P-value;
NS, not statistically significant; NA, not applicable.
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(v1.07) software (http://pngu.mgh.harvard.edu/purcell/plink/).
P-values below 0.05 were considered statistically significant.
Bonferroni correction and GC as described in Radstake
et al. (5) were applied. The Hardy–Weinberg equilibrium
(HWE) was tested for all the SNPs comparing the observed
genotype distribution in controls with the expected genotype
distribution under HWE by means of Fisher’s exact test or
x2 when necessary as described in Radstake et al. (5). The
logistic regression and conditioned logistic regression analyses
(considering the different cohorts as covariables) were per-
formed using PLINK software. Linkage disequilibrium pat-
terns across the region in the HapMap Project Phase I and II
(CEU population) defined the haplotype-tagging SNPs using
Haploview (v.4.2) software (http://www.broadinstitute.org/
haploview/haploview). The SNPs included in the GWAS
phase were forced-included in the list of SNPs. Over this
region on chromosome 1, the recombination rate was esti-
mated from HapMap public database using LocusZoom
(v.1.1) software (http://csg.sph.umich.edu/locuszoom/) (45).
SNP & Variation Suite Version 7.5.1 (Golden Helix Inc.)
and LocusZoom software were used for the composition of
Figure 1. Cochran–Mantel–Haenszel meta-analysis was per-
formed to control for the differences among populations as
implemented in PLINK software. In addition, the Breslow–
Day test (BD test) was performed as implemented in PLINK
in each meta-analysis to assess the homogeneity of the associ-
ation among populations. The power of the whole set of SSc
patients and controls reached 100%. Power was calculated
using the software Power Calculator for Genetic Studies
2006 (46) and assuming an additive model (P-value ¼ 0.01
OR ¼ 1.20). The genotyping success call rate in the GWAS
cohort was of 99.8%, while in the replication set was
over 95%.
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Supplementary Material is available at HMG online.
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Granada; Nuria Navarrete, Servicio de Medicina Interna, Hospital

Virgen de las Nieves, Granada; Rosa Garcı́a Portales, Servicio de
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pital Carlos Haya, Málaga; Marı́a F. González-Escribano, Servicio

de Inmunologı́a, Hospital Virgen del Rocı́o, Sevilla; Julio Sánchez-

Román and Mª Jesús Castillo, Servicio de Medicina Interna, Hospital

Virgen del Rocı́o, Sevilla; Mª Ángeles Aguirre and Inmaculada

Gómez-Gracia, Servicio de Reumatologı́a, Hospital Reina Sofı́a,

Córdoba; Benjamı́n Fernández-Gutiérrez and Luis Rodrı́guez-

Rodrı́guez, Servicio de Reumatologı́a, Hospital Clı́nico San Carlos,

Madrid; Esther Vicente, Servicio de Reumatologı́a, Hospital La Prin-

cesa, Madrid; José Luis Andreu, Servicio de Reumatologı́a, Hospital

Puerta del Hierro, Madrid; Paloma Garcı́a de la Peña, Servicio de

Reumatologı́a, Hospital Madrid Norte Sanchinarro, Madrid; Fran-

cisco Javier López-Longo and Lina Martı́nez, Servicio de Reumato-

logı́a, Hospital General Universitario Gregorio Marañón, Madrid;

Vicente Fonollosa, Servicio de Medicina Interna, Hospital Valle de

Hebrón, Barcelona; Gerard Espinosa, Servicio de Medicina Interna,

Hospital Clinic, Barcelona; Carlos Tolosa, Servicio de Medicina

Interna, Hospital Parc Tauli, Sabadell; Anna Pros, Servicio de Reu-

matologı́a, Hospital Del Mar, Barcelona; Mónica Rodrı́guez Carbal-

leira, Servicio de Medicina Interna, Hospital Universitari Mútua

Terrasa, Barcelona; Francisco Javier Narváez, Servicio de Reumato-

logı́a, Hospital Universitari de Bellvitge, Barcelona; Miguel Ángel

González-Gay, Servicio de Reumatologı́a, Hospital Universitario

Marqués de Valdecilla, Santander; Bernardino Dı́az, Luis Trapiella

and Marı́a Gallego, Servicio de Medicina Interna, Hospital Central

de Asturias, Oviedo; Marı́a del Carmen Freire and Inés Vaqueiro,

Unidad de Trombosis y Vasculitis, Servicio de Medicina Interna,

Hospital Xeral-Complexo Hospitalario Universitario de Vigo, Vigo;

Marı́a Victoria Egurbide, Servicio de Medicina Interna, Hospital de

Cruces, Barakaldo; Luis Sáez-Comet, Unidad de Enfermedades Auto-

inmunes Sistémicas, Servicio de Medicina Interna, Hospital
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Universitario Miguel Servet, Zaragoza; Federico Dı́az and Vanesa

Hernández, Servicio de Reumatologı́a, Hospital Universitario de
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