
A procedure for bridge visual inspections prioritisation in the
context of preliminary risk assessment with limited information

Andrea Meonia, Enrique García-Macíasb, Ilaria Venanzia and Filippo Ubertinia

aDepartment of Civil and Environmental Engineering, University of Perugia, Italy
bDepartment of Structural Mechanics and Hydraulic Engineering, University of Granada,
Spain

ARTICLE HISTORY
Compiled February 5, 2024

Abstract
Visual inspections represent the most resource-expensive operation in bridge man-
agement systems (BMSs). Consequently, their planning cannot be limited to the
results of risk assessments, which are often performed under incomplete or uncer-
tain information, but operating costs should also be accounted for. In this light, this
paper presents a new methodology to prioritise visual inspections in BMSs based
on risk condition and operating cost assessment. Framed in a context of limited
information, the methodology exploits an information gain criterion to tackle po-
tential uncertainties in the risk classification, so enabling to optimize the potential
outcomes of the inspection plan. The proposed approach is conceived to be imple-
mented in Geographical Information Systems (GISs) to facilitate the construction
of intuitive risk maps and inspection plans. The effectiveness of the framework is
demonstrated through its application to a simulated bridge stock whose risk con-
dition was evaluated through the new guidelines for bridge risk classification and
management recently adopted in Italy. The presented results highlight the benefits
of simultaneously considering bridge risk conditions and inspection costs in defin-
ing the inspection plan, hence the usefulness of information theory to prioritise vi-
sual inspections. Limitations and future improvements of the proposed prioritisation
method have also been highlighted and discussed.
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1. Introduction

Recent tragic collapses like the I-35 W Mississippi river in 2007 or the Genoa bridge
in 2018 have revealed the fundamental challenge posed by ageing civil infrastructure
and the need to prioritise its management in the political agenda. A remarkable evi-
dence of this is the last Infrastructure Report Card recently released in 2021 by the
American Society of Civil Engineers (ASCE), which detected that 7.5% of the more
than 600,000 American highway bridges are in poor conditions and estimated the na-
tion’s backlog of bridge repair at $123 billion (CivilEngineersASCE2021). The EU-
funded BRIME project in 2001 revealed a similar picture across the European highway
bridges, with deficiency rates among the surveyed countries ranging between 26 and
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39% (woodward2001bridge). This has promoted the publication of a multitude of
technical standards worldwide in the last two decades (Moreu2018). These comprise
from the first Structural Health Monitoring (SHM) guide in 2001 by the ISIS Canada
Research Network (ISIS2001), until the last guidelines on the assessment and man-
agement of risk conditions of bridges and viaducts published by the Italian Ministry
of Infrastructure and Transport in 2020 (LLGGPonti).

Risk is commonly formulated as the probabilistic product of three main com-
ponents, namely hazard, vulnerability, and exposure (ferrier2003hazards;
grunthal2006comparative; omenzetter2014prioritisation; see also
UNDRO1977). A comprehensive evaluation of the risk condition requires the
systematic combination of parameters involved in these three contributions ac-
cording to the prescriptions of a certain standard. Bridges and viaducts are
often subjected to numerous risk sources during their service life, e.g. struc-
tural (frangopol2014structural; sacconi2021life), seismic (messore2020life;
torti2022life), landslides (farzam2018susceptibility; pang2022probabilistic),
and hydraulic risks (pregnolato2022comparison; see also tung1982optimal).
Especially in the context of structural and seismic risks, the structural performance is
highly dependent on the presence of defects and pathologies, which may occur both
during construction and service stages. As a result, the available information related to
structural defectiveness often highly influences the evaluation processes prescribed by
risk assessment standards for bridges and viaducts. In this context, visual inspections
represent the most widely adopted Non-Destructive Evaluation (NDE) technique in
routine inspections of bridges and viaducts (lee2015bridge; zanini2017bridge;
see also campbell2020benchmark) to assess surface defects and disruptions in
structural elements. Depending on the typology of the bridge/viaduct to be inspected
and the surrounding environment, different inspection strategies can be adopted. For
instance, visual inspections can be carried out from the ground level, by using an
under-bridge platform, or by means of Unmanned Aerial Vehicles (UAVs), that is
drones equipped with high-resolution cameras (hallermann2014visual). In common
practice, the planning of visual inspections is usually borne by management authorities
according to the inspection frequency prescribed by standards and the outcomes of
past risk assessments. As it is well known, visual inspections are the most resource-
intensive operations for management authorities due to their high recurrence over time
and the large number of structures to be assessed in BMSs (phares2001reliability).
It follows that their planning should not only be designed according to the risk
condition of the bridge stock, but also the operating costs for their execution should
be accounted for to enable a proper allocation of financial resources. Moreover, given
the large amount of data involved in risk assessment procedures, a common situation
in practice regards the lack of information as well as the need to dynamically update
in time some parameters in the evaluations (nettis2020rpas). This circumstance
may lead to delays in the establishment of risk conditions of bridges and viaducts
to the detriment of the subsequent decision-making process by the management
authority (abdallah2021comprehensive). In light of these considerations, the
prioritisation of visual inspections can be a challenging task affected by myriad
factors. Given its key role in BMS, the development of easily implementable inspection
planning approaches accounting for the uncertain nature of information included in
risk assessment procedures appears crucial. This is particularly critical for management
authorities responsible for large bridge inventories. This is the case of ANAS (National
Autonomous Roads Corporation) in Italy, which manages about 18,000 bridges located
throughout the more than 32,000 km long Italian road network (ANASwebsite).
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Several methodologies have been proposed in the literature to define inspection
priorities within a stock of bridges and viaducts based on the evaluation of risk con-
ditions. These approaches aim to define effective inspection plans based on the eval-
uation of the failure probability determined for a structural component or the en-
tire bridge/viaduct (reising2014risk). Damage modes and deterioration models are
typically considered to determine the failure probability within a reference time pe-
riod (torti2022monitoring), while concepts from information theory are frequently
employed to quantify the information gained from the execution of different inspec-
tion activities. washer2014proposed proposed a methodology to tune the inspection
interval for a given bridge based on risk evaluations by an expert panel and meaning-
ful structural and non-structural features, such as the year of construction, structural
typology, loading conditions, defectiveness, the importance of the road network, and
surrounding environment. nasrollahi2015estimating presented an inspection priori-
tisation method based on the statistical analysis of historical condition data over 20
years of routine inspections conducted on concrete, steel, and prestressed concrete
bridges. The outcomes from that analysis made it possible to define the probability
of a bridge or a bridge typology deteriorating from good to poor condition over a ref-
erence period, so allowing tailoring the inspection intervals. yang2018probabilistic
presented an approach to design optimal inspection/repair plans with the lowest ex-
pected life-cycle cost suitable for structures subjected to fatigue cracking, such as,
among others, bridges, and viaducts. Their approach exploits the Bayesian decision
theory to minimise the posterior expected life-cycle cost and the value of informa-
tion criterion to assess the contributions from different inspection strategies. Similarly,
liu2019utility developed a risk-based inspection prioritisation algorithm emphasizing
the importance of inspections based on information obtained from fatigue crack prog-
nosis. In that work, the inspection results were characterized in probabilistic terms and
used to update the prior distribution of fatigue damage. This allowed extracting the
information gained from the inspection as the variation of the posterior with respect
to the prior distribution. Those authors also investigated the variation in time of the
information gain to analyze the decision maker’s attitude and preference towards cer-
tain inspection outcomes using the utility theory. santos2022improvement proposed
a prioritisation approach leveraging on the use of a deterioration model and a neural
network for the simulation of different damage scenarios involving a bridge or a bridge
typology. The outcomes from their analysis permitted the definition of the periodicity
of the inspection activities within a bridge inventory and their prioritisation.

The present work proposes a new methodology to prioritise visual inspections of
bridges and viaducts based on the evaluation of risk conditions and inspection costs in
the context of limited information. In contrast to the approaches mentioned above, this
methodology is primarily conceived to resolve the issues related to the planning of visual
inspections of bridges/viaducts within a framework apt to operate in synergy with the
existing standards for bridge risk assessment. Furthermore, the proposed methodology
exploits concepts from the information theory to tackle potential uncertainties in risk
assessment and subsequent inspection prioritisation. Overall, the proposed inspection
prioritisation approach is ready to be applied by bridge owners and managers, even
though it has to be acknowledged that the chronic lack of extensive bridge inspection
databases at global level significantly complicates scientific progress in the optimal
management of bridge inventories. The organization of the paper is as follows. Section 2
overviews the proposed methodology and its theoretical foundations. Section 3 presents
the case study used to exemplify the practical application of the developed prioritisation
algorithm. Section 4 presents the obtained results and, finally, Section 5 closes the paper
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with the main conclusions drawn from this work.

2. Methodology

Visual inspections are periodically carried out on bridges and viaducts during their
lifetime to detect and assess defects and disruptions affecting their structural compo-
nents and, therefore, their structural integrity depending on the defect typology and
entity (zanini2017bridge). The outcomes from visual inspections are commonly pro-
cessed through expert judgments or the prescriptions provided by a certain selected
standard, to assign a defect level to every asset under examination that concisely ex-
presses its condition state (santarsiero2021italian). This information is then used to
carry out preliminary risk evaluations of the assets, the results of which can be used to
critically prioritise the next activities predicted in the decision-making process defined
by a management authority, such as the execution of in-depth inspections and mainte-
nance/retrofit interventions. In the context of bridge rating through visual inspections,
the risk of the i-th bridge/viaduct in the stock is often formally defined through a
discrete random variable, Ri, as follows:

Ri = f(H i, V i, Ei) = f(Y i), (1)

where H i = {hi1, ..., hin} collects a finite number of n hazard discrete variables at-
tributed to the considered bridge/viaduct. Similarly, V i = {vi1, ..., vim} and Ei =
{ei1, ..., eik} encapsulate m-vulnerability and k-exposure discrete variables, respectively,
such that Y i ∈ Rn+m+k. The nature of these variables depends on the type of risk
being assessed. However, in the context of structural and seismic risk, the defect level
resulting from a visual inspection is commonly included among the variables in V i

most influencing the vulnerability of the asset.

2.1. Inspection priority score

A general flowchart of the proposed methodology is illustrated in Figure 1. The method
has been conceived to be implemented in a Geographical Information System (GIS),
which allows the processing and mapping of a broad variety of georeferenced data.
The main motivation of such a framework is to provide infrastructure managers with
an intuitive tool to prioritise inspections at a regional scale, find risk patterns within
dense stocks of bridges and viaducts, and optimize logistic operations.

The proposed methodology comprises three main stages, namely data collection (i),
processing (ii), and analysis (iii). The data collection stage (i) involves the system-
atic collection and storage of the main structural and non-structural features of each
bridge/viaduct in the considered stock in the GIS database. These may include, among
others, the construction date, materials, structural typology, the number of spans, and
inspection strategy. Additional data strictly depends on the standard adopted in the
BMS to carry out the risk evaluation. Secondly, the data processing stage (ii) involves
the implementation of algorithms to assess the risk condition and the inspection cost
from the previously acquired structural and non-structural features in the GIS frame-
work. At this stage, the methodology operates with basic knowledge of the bridges
in the network, thereby it is common that the assessment suffers from considerable
uncertainty. The minimization of this uncertainty typically requires the acquisition of
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numerous pieces of information about the particular assets in the network, which may
be difficult to determine without thorough on-site inspections and the analysis of phys-
ical and digital archives. In this context of limited information, the analysis stage of
the proposed methodology (iii) is designed as a two-step procedure. In the first place,
a preliminary risk assessment of the bridges/viaducts in the network is conducted on
a probabilistic basis. To do so, the risk assessment is conducted by processing sets
of simulated data representing all possible scenarios covering the missing information
according to the provisions of the selected standard. The outcome of this first step
is the definition of probabilistic distributions of the risk classes of the bridges in the
network. Afterwards, the second step involves a refinement of the risk evaluation of
the bridges according to the potential information gain that on-site inspections and
archival investigations may provide to the classification. To this aim, the information
gain criterion, later outlined in Section 2.4, is adopted. The simultaneous consideration
of the risk conditions and operating costs for the execution of visual inspections ensures
the achievement of a comprehensive and informed planning of the inspection activities.
Compared to prioritisation approaches based solely on the outcomes from risk assess-
ments, the proposed approach has the main advantage of allowing inspection priorities
to be set between bridges and viaducts under similar risk conditions by considering
operating costs as an additional discriminating factor for planning inspection activi-
ties. Furthermore, especially in the case of limited economic resources for carrying out
visual inspections, this combined approach allows to study the economic consequences
related to the choice of different inspection strategies and to define the inspection plan
accordingly. Given the different nature of risk and operating cost assessments, a di-
mensionless index, named Inspection Prioritisation Score (IPS), is introduced to rank
structures within a bridge inventory. Let us consider a bridge stock of N structures,
which are scored according to their inspection priority as:

IPSi = F i
R +

(
1− F i

I
)
, (2)

where terms F i
R and F i

I are called the Risk Factor and the Inspection Factor of the
i-th bridge in the stock, respectively. Term F i

R accounts for the risk condition of the
asset in such a way that the higher the risk, the higher the value of F i

R and thus the
inspection priority. Similarly, F i

I encapsulates the influence of the expenses related to
the visual inspection of the asset on the prioritisation process, yet its implementation
in Equation (2) reduces the inspection priority as the operating costs increase. Overall,
the higher the IPS value of a bridge/viaduct, the higher its inspection priority over the
other structures included in the inventory. On this basis, the proposed methodology
gives priority to visual inspections of the bridges/viaducts most at risk, whose inspec-
tion requires limited operating costs. In addition, the approach primarily prioritises
the visual inspection of the assets that have never been inspected over those whose
defectiveness is known, e.g. from past inspection activities, but has to be periodically
updated within a reference period that is commonly defined by the adopted stan-
dard/guidelines for bridge risk assessment (e.g. one year). The priority order of visual
inspections resulting from the application of the proposed methodology is therefore
intended to be valid within that reference period. When a new reference period begins,
the defectiveness of every asset is considered obsolete, hence a new cycle of visual in-
spections must be carried out. In this circumstance, the proposed methodology can be
adopted to define a second inspection plan refined through the information gathered in
the previous inspection cycle. The IPS offers a compact scalar easily implementable
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in GIS environments, allowing rendering risk maps and inspection plans at a regional
level by implementing the Kriging method later described in Section 2.5. The outcome
of this process is a set of informative maps that intuitively highlight risk conditions
and inspection priorities within the stock of bridges and viaducts under assessment.
A detailed description of the procedures adopted to evaluate F i

R and F i
I under the as-

sumption of limited information is provided hereafter. Assuming that both F i
R and F i

I
are defined within a range of variability comprised between 0 and 1, and that F i

R = 1
indicates an asset that is anticipated to be under critical risk conditions, while F i

I = 1
points out an asset whose visual inspection requires high effort to be conducted, the
IPS can range between 0 and 2 according to Equation (2). In particular, an IPS equal
to 2 indicates an asset under expected critical risk conditions that can be inspected
with low or negligible efforts, while an IPS equal to 0 is attributed to an asset under
low or negligible risk conditions but requiring high efforts to be inspected.
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Figure 1. General flowchart of the proposed methodology to prioritise inspection activities in BMSs based
on risk conditions and inspection costs in the context of limited information.

2.2. Preliminary risk assessment

In the context of limited information to fully conduct the assessment of a certain
risk condition of a bridge/viaduct (e.g. structural, seismic, landslides, and hydraulic
risk) according to the provisions of a selected standard, the proposed methodology
preliminarily estimates the risk through a Monte Carlo Simulation (MCS) approach.
To do so, let us consider that only n parameters are available for the bridge under
assessment, Ki = {ki}, i ∈ {1, . . . , n} |Ki ⊆ Y (Equation (1)). These will typically
include a set of general descriptors of the structure that are known before conducting
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any specific inspection, such as the construction material, structural typology, number
of spans, and more. These known parameters are systematically combined with m
unknown terms, Uj = {uj}, j ∈ {1, . . . ,m} |Uj ⊆ Y (Equation (1)), by MCS to
obtain a probabilistic definition of the risk condition. In the MCS, the unknown factors
are assumed discretely distributed and equiprobable (uniform distributions), that is
P
[
uj = x(i)

]
= p

(
xij

)
= px, i = 1, . . . , nuj

, with xij being an arbitrary value among
nuj

possible options for uj . In this light, the MCS simplifies the analysis of all possible
combinations between the known factors and the unknowns as:

K1 × ...×Kn × U1 × ...× Um = {(k1, ..., kn, xi1, ..., xim) | ∀i ∈ nuj
}, (3)

which amounts to a total of
∏m

j=1 nuj
combinations. Considering the lack of specific

studies to determine the probability distributions of the parameters involved in bridge
risk assessment procedures, assuming unknown terms as discretely distributed and
equiprobable in MCS represents an effective simplification to obtain preliminary es-
timates of the risk conditions of the assets for the timely prioritisation of inspection
activities within bridge inventories. Certainly, realistic distributions for the unknown
terms, e.g. derived from literature works or real data-sets, can be considered in MCS
to obtain more accurate estimates of the risk conditions of the assets. It is also worth
stressing that the adopted MCS approach assumes that all random variables in the
model are independent. Consequently, potential correlations between the variables in
the selected risk assessment process have to be modelled appropriately to avoid under-
or over-estimates of the risk.

Assuming that the adopted standard classifies the considered risk condition accord-
ing to t discrete risk levels, R = {r1, ..., rt}, the iterative processing of the simulated
data-sets results in a discrete probability distribution of the risk classification by com-
puting the frequency of each risk level, that is P [R = rj ] = p(rj) with

∑t
j=1 p(rj) = 1.

The algorithm attributes the risk level, r = rp, corresponding to the maximum
probability value in the obtained distribution, p(rp) = max {p(r1), . . . , p(rt)}, to the
bridge/viaduct under evaluation. Accordingly, the higher the occurrence probability
p(rp), which represents the confidence level of the estimation, the higher the reliability
of the assessment. It follows that the so-determined risk level will not be affected by
any uncertainty if all the information required in the assessment process is available
(i.e. p(rp) = 1, and p(rk) = 0, ∀k ̸= p). In the context of uncertain risk assessment, F i

R
for the i-th bridge/viaduct in the stock can be calculated as the weighted average of
the risk levels attributed to the structure for all the l risk conditions for which it has
been assessed, that is:

F i
R =

l∑
j=1

wR(rp,j) · pi(rp,j)

l∑
j=1

pi(rp,j)

, (4)

where term wR(rp,j) indicates the weighting factor associated with the risk level at-
tributed to the bridge/viaduct for the l-th risk condition, when the risk classification
provided by the adopted standard/guidelines is expressed through qualitative descrip-
tors (e.g. high, medium, low risk). Such factors encapsulate the economical/societal
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costs related to every risk condition, in such a way that the largest values will be
assigned to those conditions representing severe risks to the integrity of the stock
(e.g. risk of collapse, complete disruption of the network). It follows that, in case of
semi-qualitative risk classifications (e.g. 1=high risk, 0.5=medium risk, 0=low risk),
term wR(rp,j) may represent the numerical value associated to the risk level rp deter-
mined for the l-th risk condition. In Equation (2), F i

R is a scalar varying from 0 to 1,
with values close to one denoting a higher inspection priority due to more critical risk
conditions. Such a range of variability of F i

R can be achieved through an appropriate
definition of the weighting factors included in its formulation, as exemplified later in
Section 3.

2.3. Inspection costs and Inspection Factor

The operating costs of visual inspections can vary according to the structural features
of the bridge/viaduct under examination. Important features include for instance the
construction material, structural typology, number of spans, height of the piers, and
more. These factors determine the required inspection strategy (techniques, number
of operators, auxiliary platforms, etc.) and the related costs. The proposed inspection
prioritisation algorithm accounts for these aspects by means of three cost factors asso-
ciated with every asset in the bridge inventory. These include cost factors wCM, wST,
and wIS encapsulating the costs related to the construction material, structural typol-
ogy, and inspection strategy, respectively. Typically, specific mathematical rules for the
computation of cost factors {wCM, wST, wIS} can be easily established by the inspec-
tion manager according to previous experience. Depending on the case, cost factors
can be either expressed in currency or by means of numerical coefficients whose values
increase with the economic resources/efforts required to conduct the inspection of the
asset. Sample suggestions for their formulation will be later reported in Section 3.

Once the previously introduced cost factors are assigned to all the assets in the
considered bridge stock, these can be rated according to three non-dimensional scoring
factors CCM, CST, and CIS. An additional factor, CNS, is also introduced to consider
the number of spans in the prioritisation process. Let us denote wi

CM, wi
ST, and wi

IS
the cost factors assigned to the i-th bridge/viaduct in the stock under assessment. On
this basis, scoring factors Ci

CM, Ci
ST, Ci

NS, and Ci
IS can be readily computed as:



Ci
CM = wi

CM
max

i
{wi

CM} ,

Ci
ST = wi

ST
max

i
{wi

ST}
,

Ci
NS = si

max
i

{si} ,

CISi = wi
IS

max
i

{wi
IS}

,

(5)

where si denotes the number of spans of the i-th bridge/viaduct. Scoring factors have
the main advantage of normalizing the operating costs related to each category. Such a
normalization can be performed by considering subsets of assets included in the bridge
inventory to improve the impact of cost evaluations in the prioritisation process. As an
example, scoring factors can be computed for the subset of bridges/viaducts that have
never been inspected by determining the maximum values of terms wCM, wST, wIS, and
s among those associated to the assets belonging to this subset, instead of considering
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those of all the assets in the bridge inventory. On this basis, the so-called Inspection
Factor, F i

I , is defined as:

F i
I = Ci

CM · Ci
ST · Ci

NS · Ci
IQ, (6)

in such a way that higher values will be obtained in cases where visual inspections
require a greater effort to be conducted by the management authority.

Term Ci
IQ in Equation (6) represents the contribution due to the quality of the

selected inspection strategy and can be related to Ci
IS, in the absence of specific studies

by the authors, through the following relationship (mori1994maintaining):

Ci
IQ = Ci

IS(1− βmin)
20, (7)

with βmin being a numerical coefficient accounting for the minimum damage in-
tensity on the considered structure detectable by visual inspection. It is assumed
that the damage intensity can vary from zero to one indicating no damage and
fully developed damage, respectively. Therefore, according to Equation (7), the cost
stemming from the visual inspection increases non-linearly as the requirements on
the minimum detectable damage intensity raise. As proposed by Frangopol and co-
authors (frangopol1997life), the quality of visual inspection techniques can be de-
fined in statistical terms through a certain detectability function, d(β). Assuming a
cumulative normal distribution for d(β) as a standard, β50% the median of the distri-
bution (damage intensity with 50% probability of being detected), and σ its standard
deviation, the limits in the distribution encapsulating 99.7% of the probability can be
defined as:

βmin = β50% − 3σ, (8)

βmax = β50% + 3σ. (9)

In this light, the detectability function can be simplified to a truncated cumulative
normal distribution as follows:

d(β) =


0, if 0 ≤ β ≤ βmin,

Φ

(
β − β50%

σ

)
, if βmin < β ≤ βmax,

1, β > βmax,

(10)

where Φ(·) is the standard normal cumulative distribution function. In this work, the
quality of a visual inspection is associated with the number of operators involved in
the inspection activity and their experience. These factors can be embodied in terms
β50% and σ by assuming that their value decreases when the inspection is conducted
by a more experienced operator or by several operators at the same time. It is worth
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noting that the quality of visual inspections can be influenced by several human fac-
tors (see2012visual). These include, among others, the search pattern and inspector-
paced approach (drury2002good), the age of the operators and their training ex-
perience (megaw1979eye; see2015visual), the possibility of consultation between
operators (hillman1976value), and the environmental conditions under which visual
inspections are carried out (moore2001reliability), such as the ambient lighting and
air temperature. Determining the contribution of human factors to visual inspection
quality is often a challenging task. As an example, several literature works have demon-
strated that the inspection quality can increase, decrease, or remain constant with
varying operators’ experience (campbell2021human; see also megaw1979factors).
Nonetheless, it is assumed in this work that the quality of visual inspections increases
with the number of employed operators and their experience. This certainly represents
a simplification which is however deemed as acceptable based on the experience of the
authors to keep the computation of the term Ci

IQ simple but effective for prioritisation
purposes. In Equation (2), term F i

I can vary from 0 to 1 depending on the contribu-
tions of Ci

CM, Ci
ST, Ci

NS, C
i
IS, and βmin, yet in the majority of cases 0 ≤ F i

I < 1. This
is because F i

I = 1 when wi
CM = max

i

{
wi

CM
}
, wi

ST = max
i

{
wi

ST
}
, wi

IS = max
i

{
wi

IS
}
,

si = max
i

{
si
}
, and βmin = 0, where this last condition, indicating that defects of

any entity can be detected on the i-th asset by performing visual inspections, appears
rather difficult to achieve in real applications.

2.4. Information gain as a metric for prioritisation of inspection tasks

The risk level attributed to a bridge/viaduct according to the approach described in
Section 2.2 can be refined until certain reliability of the assessment is reached through
the estimation of the unknown terms involved in the evaluation process. This typically
involves surveying physical and digital archives, e.g. for the purpose of retrieving certain
design data, as well as performing visual inspections to determine the defectiveness of
the structures. The conscious planning of these activities according to the potential
knowledge of the actual condition of the assets that may be gained from their execution
is a task of crucial importance for management authorities. This becomes even more
important in the case of visual inspections, which are costly activities both in terms
of time and financial resources. In this regard, the proposed methodology exploits
the information gain criterion, later introduced in this section, to aid management
authorities in establishing priority rules for retrieving missing information and minimise
delays in the whole decision-making process. The information gain criterion is used in
the proposed methodology to identify, among the unknown parameters in the selected
risk assessment process, those whose determination would add the highest informative
contribution to the risk classification of the considered asset. It follows that, in the
context of visual inspections, the information gain criterion is adopted to quantify the
potential informative contribution that conducting the inspection of a bridge, and thus
determining its level of defectiveness, would add to its risk classification. In this sense,
when applied to multiple assets, the information gain criterion can be used to identify
bridges whose visual inspection is characterized by a higher informative contribution,
i.e. those bridges for which the determination of the defect level leads to significant
improvements in their risk classification. Hence, the inspection plan can be refined by
prioritising the inspection of the assets with maximum potential information gain, as
exemplified in Figure 2.

11



Bridge 1

Bridge 2

Bridge 3

Potential information
gain assessment

Refinement of the
inspection priority

1) Bridge 2

2) Bridge 1

3) Bridge 3

Prior probability distribution 
of the risk classification

Posterior probability 
distributions of the risk 

classification
Potential defectiveness
from visual inspection

High
Medium

Low

Figure 2. Exemplification of the use of the information gain to refine the priority of visual inspections in
a bridge inventory based on the potential information content that their execution would add to the risk
classification of the assets.

Information gain expresses the amount of information acquired about the prop-
erties of a certain class or stochastic process after collecting a new realization. In
information theory, the Kullback-Lieber divergence (kullback1959information; see
also kullback1951information), also called relative entropy, represents a common
approach to computing the information gain. It is a divergence score implemented in
the proposed methodology to measure the information gained in moving from the prior
probability distribution, p (r | I), of the random variable r, which represents the risk
of a considered asset, obtained from the systematic combination of a certain set of
available information, I, to a posterior probability distribution of the risk, p (r | y, I),
when a new piece of information y is introduced in the risk assessment process (e.g. the
defect level of the asset). The prior probability distribution of the risk r can be ob-
tained by processing the information available for the considered asset according to
the MCS approach described in Section 2.2. Similarly, the posterior probability dis-
tribution can be obtained by adding the new piece of information y to the data-set
of the considered asset, hence by carrying out simulations of risk classifications with
the same MCS approach. The risk assessment classes to be evaluated according to
the provisions of a certain selected standard can be usually described through discrete
probability distributions. In this light, the Kullback-Lieber divergence in its discrete
form can be expressed as follows (mackay2003information):

DKL [ p (r | y, I) ∥ p (r | I) ] =
∑
r

p (r | y, I) log
(
p (r | y, I)
p (r | I)

)
. (11)

A relative entropy equal to zero indicates that the compared distributions are iden-
tical in terms of information content, hence the added piece of information y does not
affect the risk classification of the considered asset. Conversely, values of the relative
entropy greater than zero denote a certain gain in the information content due to the
introduction of the observation y. When a second observation z is introduced in the risk
assessment process (e.g. the year of construction of the asset), the posterior probability
distribution becomes p (r | y, z, I). The latter can be compared with the prior probabil-
ity distribution, p (r | I), or with p (r | y, I), which can act as a reference distribution, to
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compute the information gain corresponding to the new piece of information z. In the
context of risk evaluation, therefore, such a criterion can be used as a variable selection
method to optimize the retrieval of missing information in the assessment process, by
prioritising the retrieval of those parameters that can add a higher information content
to the risk classification.

Considering that the defectiveness of a structure, D, can be usually described
through n discrete defect levels prescribed by a certain selected standard, D =
{d1, ..., dn}, and assuming these as equiprobable outcomes from the inspection of a
given bridge, the potential information gain associated with the execution of the in-
spection activity is as follows:

E(DKL [ p (r |D, I) ∥ p (r | I) ]) =
DKL [ p (r | d1, I) ∥ p (r | I) ] a1 + ...+DKL [ p (r | dn, I) ∥ p (r | I) ] an,

(12)

where a1 =, ...,= an and
∑n

i=1 ai = 1. Note that this definition evaluates the expected
information gain from all the possible outcomes that a visual inspection may provide
to the risk classification. Therefore, in the context of visual inspections, the potential
information gain can be used as a metric to prioritise the inspections whose execution
would add a higher informative contribution to the risk classification of the correspond-
ing bridges, hence to revise the inspection plan accordingly. A practical application of
the information gain analysis has been later exemplified with numerical examples in
Section 4.2.

2.5. Ordinary Kriging to render informative maps at a regional level

Managing risk conditions and inspection priorities on a regional scale is a task of the
utmost importance, especially for management authorities responsible for large bridge
inventories. In this context, the proposed methodology exploits Kriging procedures to
spatially interpolate the discrete outcomes obtained for every bridge/viaduct within
the stock under examination, such as the risk level and inspection order. This results
in macro-level illustrative maps that intuitively provide preliminary estimates of risk
conditions and inspection priorities for bridges and viaducts geographically located in
the vicinity of the examined assets, as exemplified in Figure 3. The so-determined esti-
mates certainly do not represent the actual risk or inspection priorities of all the assets
in the macro-area under consideration. However, the Kriging interpolator can provide
estimates of the interpolated parameter with an acceptable degree of reliability, also
considering that bridges and viaducts on the same road network or on neighbouring
networks usually share similar characteristics, such as the year of construction, struc-
tural typology, average daily traffic, and others, and therefore similar risk conditions
and inspection priorities. Bridge owners and managers can exploit the obtained macro-
level illustrative maps, to be included in a GIS supporting the BMS, to identify areas
with similar bridge risk conditions and inspection demands, which may be indicative
of common geographical/regional/administrative drivers, and thus to properly allocate
financial resources at a regional scale accordingly.
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Figure 3. Exemplification of the use of Kriging interpolations to preliminary estimate the risk conditions of
bridges and viaducts within a certain geographical area (note that at the level of a single bridge, risk conditions
may differ from those shown on the macro-level illustrative map obtained from the Kriging interpolator).

Kriging procedures are spatial interpolation methods commonly used in Geostatis-
tics (kleijnen2017kriging; see also oliver1990kriging). In general, a Kriging model
allows the interpolation of an unknown multi-dimensional random function z (x) within
a certain design space D (i.e. x ∈ D) when only a set of n function evaluations z (xi),
i = 1, . . . , n, are available. A semivariogram is used to model the spatial correla-
tion between the interpolation points and the known function evaluations. This ap-
proach allows the interpolation of the function by means of certain weighting factors
affecting the known function evaluations. In this work, the Ordinary Kriging (OK)
method (cressie1988spatial) is adopted to perform spatial interpolation of the risk
classes and inspection priorities at a regional scale. The method assumes that the
mean of the interpolating function, yet unknown, is constant throughout the interpo-
lation domain D. This results in better estimations at the interpolating points when
only a limited number of known values are available to train the Kriging model, as
it will be the case when applied for the interpolation of the outcomes from the pro-
posed methodology. In this light, the OK approach estimates the value of z(x0) at an
arbitrary interpolation point x0 as follows (cressie2015statistics):

z(x0) =

n∑
i=1

λiz(xi), with
n∑

i=1

λi = 1, (13)

where {λi}ni=1 are weighting factors derived from a semivariogram model selected to
obtain an unbiased estimate with minimal error variance. The expression in Equa-
tion (13) is considered the best linear unbiased estimate (BLUE) of z(x0). A generic
formulation of a semivariogram model can be expressed as a spatial correlation function
between two points z(x) and z(x+ h) as:

γ (h) =
1

2
Var [z(x)− z(x+ h)] =

1

2
E
[
(z(x)− z(x+ h))2

]
, (14)

with h denoting the spatial distance (often referred to as lag distance) between the con-
sidered points. In this light, after defining a certain spatial correlation model to repre-
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sent the semivariogram, it is possible to fit the weighting factors {λi}ni=1 by minimizing
the variance errors of the Kriging prediction through a certain prediction method (refer
to montero2015spatial for further details).

3. Application case study

This section presents an application case study conceived to demonstrate the effec-
tiveness of the proposed methodology in prioritising visual inspections within a stock
of bridges based on risk and operating costs evaluations in a context of limited infor-
mation. Firstly, the standard adopted to evaluate the risk conditions of the stock is
presented in Section 3.1. Then, Section 3.2 describes in detail the simulated stock of
structures and the available information for the definition of the inspection plan.

3.1. The Italian Guidelines for bridge risk classification and management

The Italian Guidelines for risk classification and management, safety assessment, and
monitoring of existing bridges (LLGGPonti) recently released by the Italian Ministry
of Infrastructures and Transport in 2020 have been chosen in this application case
study as the reference standard to assess the risk condition. The Standard proposes
a multilevel approach for bridge risk classification and management consisting of six
levels of analysis as shown in Figure 4 (LLGGPonti). The assessment of the risk con-
dition falls within the first three analysis levels prescribed by the Italian Guidelines.
Firstly, Level 0 is devoted to the construction of the database collecting information
about the bridges and viaducts under evaluation. Then, Level 1 is aimed at estimat-
ing the defect level of the structures through the execution of visual inspections, and,
finally, Level 2 combines the information gathered in the previous levels to determine
the attention class or preliminary risk level of each bridge/viaduct in the network. The
attention class can be high (critical risk level), medium-high, medium, medium-low,
and low, as the risk level of the structure decreases. These classes are assigned accord-
ing to the potential existence of risks related to structural-foundational factors, as well
as to seismic, hydraulic, and landslide risks. Each of these risk conditions is evaluated
through the systematic combination of parameters characterising the hazard, vulnera-
bility, and exposure of the structure under analysis. An overall attention class is then
attributed to every bridge/viaduct according to predefined logic rules that combine the
attention classes obtained for the analysed risk conditions. Based on this initial assess-
ment of the attention class, the Italian Guidelines prescribe different actions (Levels
3, 4, and 5) for further deepening into the knowledge of bridges/viaducts and man-
aging their risk condition (interested readers may refer to reference (LLGGPonti)
for further details). For instance, the Guidelines determine the frequency with which
visual inspections must be carried out on a structure during its lifetime to monitor
modifications in its defect level. The defectiveness of bridges/viaducts represents a
key parameter for the evaluation of the structural-foundational and seismic attention
classes. Therefore, a particular focus is put on the consideration of these risk conditions
for setting inspection priorities in the proposed methodology. The defect level, which
can be high, medium-high, medium, medium-low, and low (a high defect level indi-
cates the potential incipient failure of the bridge/viaduct), is dependent on whether
the structural-foundational or seismic risk is assessed. This is because the Standard
assumes that some structural elements may exhibit defects that are particularly crit-
ical for the assessment of structural-foundational attention class, yet less influential
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in seismic risk, and vice versa. In the absence of specific pathologies, the defect level
attributed to a bridge/viaduct will be the same for both risk conditions. It is important
to remark that, while the Italian Guidelines impart specific indications to process the
outcomes from visual inspections to assign a defect level to a structure, no specific
guidance on the prioritisation of visual inspections between bridges subjected to the
same risk level is provided.

Level 0 - Data collection
Special inspection:

post-tensioned concrete bridges and 
assets prone to high hydrogeological and 

landslide hazards

Level 1 - Visual inspection

Level 4 - In-depth safety 
assessment

Level 3 - Preliminary
safety assessment

For all the attention classes: maintenance intervention
programme through the BMS system

Update of the attention class

Level 2 - Attention class

Medium-high Medium Medium-low LowHigh

Routine
inspection

Bridges with critical
structural typology

Highly important bridges

Level 5 - Network
resilience

Bridges whose safety 
assessment is

required by the Italian
Tecnical Standard

Routine
inspection

Routine
inspection

S
urveillance and

m
onitoring

In-depth
inspection

Traffic load
monitoring

Continuous
monitoring

Model
updating

Safety assessment by the 
Italian Tecnical Standard

BIM modeling

Retrofit interventions

Serviceability (tref=30 years)
Transitability (roadway 
restrictions, tref=5years)
Transitability (traffic load 
limitations, tref=5 years)

Figure 4. Flowchart of the multilevel approach for bridge risk classification and management proposed by
the Italian Guidelines (translated from LLGGPonti).

3.2. Simulated bridge stock

A sample stock of bridges located in Umbria, a region of central Italy, has been con-
sidered in the practical application of the proposed methodology. It is worth pointing
out that the sample stock consists of bridges simulated on the basis of the authors’ ex-
perience, whose structural and non-structural features are, however, representative of
real scenarios but not related to specific real bridges. Figure 5 shows the geographical
position of the twenty-five structures composing the inventory and labelled from A to
Y. The analysed bridges are evenly distributed throughout Umbria and serve both the
main and secondary road networks. The QGIS software (QGIS_software) has been
adopted to manage and process the geostatistical data of the considered stock. The
prioritisation algorithm previously introduced in Section 2.1 has been implemented in
this GIS environment by means of a plug-in written in Python language. Moreover,
the Smart-Map plug-in (pereira2022smart) has been used to perform Kriging spatial
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interpolations (a linear semivariogram model and the k-nearest neighbors method have
been considered to perform interpolations).

N

Figure 5. Map from QGIS showing the geographical position of the bridges composing the sample stock
considered in the practical application of the proposed inspection prioritisation methodology.

Tables A1 and A2 gather the available information on the stock under assessment.
Specifically, for every bridge included in the stock, Table A1 collects the data required
by the Italian Guidelines for the evaluation of the structural-foundational attention
class, while Table A2 reports additional information required by the Standard for
the assessment of the seismic attention class. This latter table also illustrates the
strategy chosen to conduct the visual inspection of each asset in the network. Basic
structural features such as the construction material, structural typology, static scheme,
and the number of spans have been assumed to be known in the simulated data-set.
Similarly, a value of the peak ground acceleration (with 10% probability of exceedance
in 50 years for hard ground sites) has been attributed to every bridge in the asset
according to the national seismic hazard map (ntc2018). Common issues encountered
in the practical application of the Italian Guidelines are the lack of documentation on
the design of structures and specific on-site traffic flow surveys. That is in particular
the case of many bridges constructed in the 20th century, located in road networks
of minor importance, as well as bridges whose management responsibility has been
transferred from one authority to another over time. In order to define a representative
data-set, pieces of information including, among others, date of construction, adopted
design code, geometrical features, traffic statistics, and soil category, have been assumed
to be missing for some structures within the inventory. Along with this information,
the defect level has also been hypothesised to be unknown for some bridges. This
circumstance may be representative of those assets for which the inspection and the
subsequent assignment of the defect level have not yet been carried out given the recent
adoption of the Italian Guidelines.

Tables 1 and 2 provide the weighting and cost factors adopted for the computation
of the Inspection Prioritisation Score (IPS) in Equation (2). Specifically, Table 1 il-
lustrates the weighting factors involved in the computation of FR and related to the
assessment of the structural-foundational and seismic risks. A greater impact on the
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prioritisation of inspection activities has been given to the outcomes obtained from the
assessment of the structural-foundational attention class compared to those obtained
from the seismic class. This is because the former evaluation accounts for the common
operating conditions of the structures. To compute FI, Table 2 collects the cost factors
assigned to the bridges of the sample stock based on their construction material, struc-
tural typology, and the selected inspection strategy. The values of the factors have been
defined according to the Authors’ experience in recent years in performing visual in-
spections of bridges and viaducts, as well as considering the bridge typologies included
in the sample stock under examination. In particular, the assignment of the cost factors
related to the construction materials and structural typologies took into account the
most commonly observed defects and the number of structural components per span
to be inspected. As an example, the highest value of the cost factor related to the con-
struction materials has been assigned to steel bridges, since the inspection of this bridge
typology usually involves checking a large number of structural elements and connec-
tion systems (welds and bolts) that may experience damage (Figure 6(a)). Conversely,
the lowest value of the cost factor has been attributed to masonry bridges, since the in-
spection of this typology usually requires less effort. In these cases, defects/pathologies
often develop in a limited number of structural components involving large portions
of the structure, which usually facilitates the inspection activities (Figure 6(b)). The
cost factors related to the structural typology have been assigned in a similar fashion,
namely associating a greater value of the cost factor to those structural typologies for
which a higher inspection effort is expected. For instance, a lower cost factor has been
assigned to continuous box girder bridges (Figure 7(a)) compared to multi-span simply
supported configurations (Figure 7(b)) since the number of structural components to
be checked is usually considerably lower. Finally, the cost factors stemming from the
inspection strategy have been attributed according to whether an external platform is
required or the visual inspection can be performed from the ground level (Figure 8).
Assuming the inspections are conducted by a qualified operator, a value equal to 0.015
has been considered for β50%, while the standard deviation has been set to σ = 0.1β50%
(i.e. a coefficient of variation of 10%). It follows that a value of βmin equal to 0.01 has
been assumed for every bridge in the stock.

Table 1. Weighting factor assigned to every class of attention obtainable from the assessment of the structural-
foundational and seismic risks.

Class of attention
(risk level)

Structural-foundational
attention class – wR

Seismic
attention class – wR

High 1.2 0.8
Medium-high 1.0 0.6

Medium 0.8 0.4
Medium-low 0.6 0.2

Low 0.4 0.1

Table 2. Cost factors assigned to the bridges of the sample stock according to their construction material,
structural typology, and inspection strategy.

Construction material wCM Structural typology wST Inspection strategy wIS
Steel (Figure 6(a)) 1.0 Simply supported truss beam (Figure 6(a)) 1.0 Platform (Figure 8(b)) 1.0
Reinforced concrete 0.6 Simply supported beam (Figure 7(a)) 0.6 Ground level (Figure 8(a)) 0.2

Post-tensioned/Prestressed concrete (Figure 7(b)) 0.5 Continuous box beam (Figure 7(b)) 0.4
Masonry (Figure 6(b)) 0.2 Arch (Figure 6(b)) 0.2
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(a)

(b)

Figure 6. Examples of bridges built with different construction materials: (a) pictures from the visual in-
spection of a simply supported truss beam bridge; (b) photos taken during the visual inspection of masonry
arch bridges.
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(a)

(b)

Figure 7. Examples of bridges built with different structural typologies: (a) pictures from the visual inspection
of a continuous box beam bridge; (b) photos taken during the visual inspection of a simply supported beam
bridge.

(a) (b)

Figure 8. Examples of different strategies for performing visual inspections on bridges: (a) inspection carried
out from the ground level; (b) inspection performed by means of the use of an external platform.

4. Results

This section illustrates the outcomes obtained by applying the proposed methodol-
ogy to the considered case study. In light of the previously reported information, the
analyses consisted of three consecutive steps. Namely, (i) preliminary definition of an
inspection plan for the bridge stock in a context of limited information; (ii) sample
analysis of the use of the information gain criterion; (iii) update and refinement of
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the obtained inspection plan on the basis of the outcomes from the information gain
analysis.

4.1. Visual inspection priorities

Following the methodology previously outlined in Section 2, the inspection plan has
been defined on the basis of the information available for the considered stock of
bridges. Table B1 collects the class of attention determined for every bridge in the
examined inventory for both the structural-foundational and seismic risk conditions
together with the corresponding confidence levels expressed as the associated proba-
bility (in percentage). In general, the more information is available, the more reliable
is the obtained risk evaluation. This is for instance the case of Bridges D, F, and G,
which exhibit confidence levels in the assessments of 100% (number of performed MCSs
for every asset: 1), as also shown in Figures 9(a)-(f). Note that 100% confidence level
is possible when some discrete variables critically determining the attention class are
known (random errors affecting such variables are not considered). A clear example
of this aspect is the case of Bridge C, for which accurate risk evaluations, presented
in Figures 9(g) and (h), are obtained even in the absence of knowledge about certain
parameters whose informative contribution can be inferred to be low compared to that
of the known features (number of performed MCSs: 270). On the other hand, despite
the data-set available for Bridge R is rather complete, the risk evaluations obtained
for that bridge appear quite uncertain (number of performed MCSs: 2700), as pointed
out by Figures 9(i) and (j). Note for instance that the probability associated with the
structural-foundational class of that bridge is only 27.41%, thus requiring additional
insights to achieve a more reliable assessment of its attention class. This circumstance
leads to the conclusion that the informative contribution of the set of data available for
Bridge R is rather limited. It is worth stressing, however, the fact that the proposed
methodology made it possible to carry out a preliminary evaluation of the attention
classes even in the case of bridges characterised by limited information, as it is the
particular case, among others, of Bridges B, M, and N (number of performed MCSs for
every asset: 648000). Figure 10(a) depicts the maps rendered in QGIS to illustrate the
risk conditions of every bridge in the sample stock after the preliminary assessment. In
this figure, the larger the size of the marker, the higher the confidence level attributed
to the risk evaluations.
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Figure 9. Examples of histograms obtained from the preliminary assessment of the structural-foundational
and seismic risks of some of the bridges included in the sample stock: (a) structural-foundational attention
class of Bridge D; (b) seismic attention class of Bridge D; (c) structural-foundational attention class of Bridge
F; (d) seismic attention class of Bridge F; (e) structural-foundational attention class of Bridge G; (f) seismic
attention class of Bridge G; (g) structural-foundational attention class of Bridge C; (h) seismic attention class
of Bridge C; (i) structural-foundational attention class of Bridge R; (j) seismic attention class of Bridge R.
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Figure 10. Maps from QGIS illustrating the risk conditions of the bridge inventory after the preliminary
assessment (the larger the marker in the maps, the higher the corresponding confidence level): (a) structural-
foundational attention class; (b) seismic attention class.

Table 3 presents the FR, FI, IPS, and inspection priority order obtained for the
bridges in the sample stock. A graphical illustration of the resulting inspection plan
can be also visualized in QGIS, as shown in Figure 11. It is worth stressing that the
simultaneous consideration of risk conditions and operating costs makes it possible to
prioritise visual inspections among bridges classified under the same risk level or shar-
ing similar structural features. To mention some examples, note that the inspection
priorities of Bridges B and N exceed those for Bridges M and L, despite being char-
acterised by similar risk conditions. Similarly, despite demanding similar inspection
efforts, Bridges C, H, Q, and U have gained different inspection priorities according to
their risk conditions.
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Table 3. FR, FI, IPS, and inspection order obtained for the bridges comprised in the sample stock.

Label FR FI IPS Inspection order
Bridge B 0.961 0.082 1.879 1
Bridge N 0.961 0.082 1.879 2
Bridge K 0.966 0.136 1.830 3
Bridge S 0.629 0.009 1.620 4
Bridge M 0.961 0.409 1.552 5
Bridge R 0.541 0.003 1.538 6
Bridge L 0.961 0.818 1.143 7
Bridge C 1.000 0.012 1.988 8
Bridge J 0.973 0.008 1.965 9
Bridge Y 0.992 0.029 1.963 10
Bridge A 0.978 0.024 1.954 11
Bridge I 0.971 0.020 1.951 12
Bridge F 0.900 0.082 1.818 13
Bridge G 0.800 0.008 1.792 14
Bridge H 0.800 0.012 1.788 15
Bridge X 0.782 0.001 1.781 16
Bridge W 0.782 0.001 1.781 17
Bridge E 0.906 0.196 1.710 18
Bridge Q 0.719 0.012 1.707 19
Bridge T 0.709 0.008 1.701 20
Bridge U 0.679 0.012 1.667 21
Bridge D 0.700 0.039 1.661 22
Bridge O 0.629 0.006 1.623 23
Bridge V 0.622 0.001 1.621 24
Bridge P 0.500 0.006 1.494 25

N

Figure 11. Map from QGIS illustrating the inspection plan determined for the bridge inventory.

Finally, Figure 12 shows the illustrative maps rendered in QGIS and obtained by
spatially interpolating the attention class and inspection order attributed to every
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bridge included in the inventory. These maps offer a macro-level information tool useful
for infrastructure managers to obtain preliminary estimates of the risk conditions and
inspection priorities within the macro-area under their responsibility. As an example,
Figures 12(a) and (b) intuitively show that in the northern, eastern, and south-eastern
areas of the Umbria region, bridges are mostly characterised by a high structural-
foundational and seismic attention class, although it is worth remembering that at
the local level the risk of a certain bridge could be different. Likewise, Figure 12(c)
highlights the existence of clusters of bridges with a similar inspection priority. This
sort of analysis can be particularly useful for infrastructure managers and political
agencies to strategically allocate human and economic resources to perform visual
inspections. Note that a continuous map is purposely considered in this paper for its
immediate visual interpretability, although it is obvious that bridge risks are spatial
discrete variables.
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Figure 12. Illustrative maps showing the outcomes from Kriging interpolations: (a) structural-foundational
attention class; (b) seismic attention class; (c) inspection plan.

4.2. Information gain analysis

4.2.1. Application to a single asset

To exemplify the use of the information gain analysis when applied to a single asset,
Bridge B with limited available information has been further analysed. Tables 4 and 5
collect the results obtained by carrying out the analysis of the preliminary assessment
of the structural-foundational and seismic attention classes of this bridge, respectively.
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Both tables report in the first row the prior probability distribution of the respec-
tive risk classification obtained from the preliminary classification carried out in the
previous section. Each subsequent row shows the posterior probability distributions
obtained for the respective risk classification by introducing, one at a time, the un-
known pieces of information (e.g. year of construction ≤ 1945, span length > 25 m,
medium defect level, and the others) in the risk assessment process. The value of the
information gain computed for each investigated parameter is also reported in these
tables, thus providing an intuitive quantification of the informative contribution that
the knowledge on each parameter would add to the preliminary risk classification of
Bridge B. A practical exemplification illustrating the computation of the information
gain assuming the addition of details regarding the year of construction of Bridge B
(y = year of construction ≤ 1945) to its risk classification is reported below:

DKL [ p (r | y, I) ∥ p (r | I) ] = 42.89 log

(
42.89

45.26

)
+ 12.30 log

(
12.30

21.12

)
+

+32.96 log

(
32.96

27.42

)
+ 9.18 log

(
9.18

4.94

)
+ 2.67 log

(
2.67

1.26

)
= 4.80.

(15)

The assessment of the information gain results in Tables 4 and 5 highlights that the
defect level is the most influential parameter among the investigated factors. The in-
formation gain is particularly significant when the defect level assumes its limit values,
namely when a high/low defect level is hypothesised in the risk evaluation process. In
particular, risk assessments with no uncertainty (confidence level of 100%) are obtained
when the defect level of Bridge B is assumed high – this circumstance corresponds to
an information gain of approximately 79 in the case of the structural-foundational at-
tention class and of about 39 in the context of the seismic risk assessment. On the other
hand, the hypothesis of low defectiveness leads to a medium structural-foundational
attention class associated with a confidence level of about 59% and an information
gain of approximately 59. The same hypothesis results in a medium-high seismic at-
tention class with a probability of about 54% and an information gain of around 42.
Hence, these results evidence that an inspection confirming the defect level of Bridge
B to be low would lead to a decrease of two levels with respect to the preliminary
structural-foundational risk evaluation (from high to medium attention class), and of
one level compared to the initial assessment of the seismic risk of Bridge B (from
high to medium-high attention class). Furthermore, the obtained outcomes also indi-
cate that the information contribution associated with the defectiveness of Bridge B
slightly affects more the assessment of its structural-foundational attention class than
that of its seismic attention class. In fact, given a certain defect level, a higher value of
the information gain is generally obtained in the context of the structural-foundational
attention class than in the seismic risk assessment, with the exception of the medium-
high defect level for which the opposite applies. Other parameters that, albeit to a
minimal extent compared to the defect level, influence the structural-foundational at-
tention class of Bridge B are the year of construction (maximum information gain of
about 6 if Bridge B would be built after 1985 without seismic criteria), the traffic load
category (maximum information gain of approximately 12 if Bridge B was classified in
traffic load category E), the average daily vehicle traffic (maximum information gain
of about 4 if Bridge B was affected by high average vehicle traffic), and the importance
of the crossed entity (maximum information gain of about 4 if Bridge B crossed a main
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road, an urban context or a river of significant importance). Similarly, the average
daily vehicle traffic (maximum information gain of about 7 if Bridge B was affected
by high average vehicle traffic) and the importance of the crossed entity (maximum
information gain of about 7 if Bridge B crossed a main road, an urban context or a
river of significant importance) are factors whose assumption also influences the de-
termination of the seismic attention class of the considered asset to a modest extent.
Overall, the results obtained from the information gain analysis point out that the
preliminary risk assessment of Bridge B can be markedly refined through the deter-
mination of its structural defectiveness. Parameters with low informative contribution
can be also adopted for this purpose, yet it might be necessary to combine several of
them to achieve a satisfactory refinement of the preliminary risk classification. It is
also worth emphasising how the information gain analysis can aid bridge managers in
intuitively excluding a priori the retrieval of certain unknown parameters whose po-
tential informative contribution to the risk evaluation process is negligible; these are
those characterized by an information gain equal to zero.

Table 4. Information gain in the structural-foundational attention class of Bridge B.

Probability distribution
High [%] Medium-high [%] Medium [%] Medium-low [%] Low [%] Information Gain

Bridge B (prior probability distribution) 45.26 21.12 27.42 4.94 1.26 -
Year of construction ≤ 1945 42.89 12.30 32.96 9.18 2.67 4.80

1945 < Year of construction < 1980 36.22 24.78 31.74 5.78 1.48 1.68
Year of construction ≥ 1985 (lack of seismic criteria) 56.22 23.89 18.41 1.33 0.15 5.74

Year of construction ≥ 1985 (seismic criteria) 43.78 17.11 31.26 6.22 1.63 0.89
15 m ≤ span length < 25 m 45.26 21.12 27.42 4.94 1.26 0.00

Span length > 25 m 45.26 21.12 27.42 4.94 1.26 0.00
High defect level 100.00 0.00 0.00 0.00 0.00 79.27

Medium-high defect level 85.74 8.76 5.25 0.25 0.00 37.65
Medium defect level 28.71 43.83 26.23 1.23 0.00 16.06

Medium-low defect level 8.70 36.54 46.24 6.91 1.61 32.56
Low defect level 3.15 16.48 59.38 16.30 4.69 59.02

Traffic load category A 55.06 26.98 16.73 1.23 0.00 7.42
Traffic load category B 48.77 27.72 21.04 2.47 0.00 3.90
Traffic load category C 42.47 25.37 26.17 5.68 0.31 1.09
Traffic load category D 40.00 18.15 32.96 7.16 1.73 1.58
Traffic load category E 40.00 7.41 40.18 8.15 4.26 11.92

High average daily vehicle traffic 49.89 25.26 23.74 1.11 0.00 4.30
Medium average daily vehicle traffic 44.78 21.59 28.52 4.37 0.74 0.19

Low average daily vehicle traffic 41.11 16.52 30.00 9.33 3.04 3.30
High average daily commercial vehicle traffic 49.04 23.30 23.7 3.11 0.85 0.99

Medium average daily commercial vehicle traffic 45.26 21.89 26.78 5.04 1.03 0.04
Low average daily commercial vehicle traffic 41.48 18.18 31.78 6.67 1.89 1.12

High importance of the crossed entity 49.89 25.26 23.74 1.11 0.00 4.30
Medium importance of the crossed entity 44.78 21.59 28.52 4.37 0.74 0.19

Low importance of the crossed entity 41.11 16.52 30.00 9.33 3.04 3.30
Road alternatives 43.19 19.06 28.77 6.96 2.02 0.74

Lack of road alternatives 47.34 23.19 26.07 2.91 0.49 0.98
Seismic criteria 43.78 17.11 31.26 6.22 1.63 0.89

Lack of seismic criteria 45.56 21.93 26.65 4.68 1.18 0.04
Strategic road 45.26 21.12 27.42 4.94 1.26 0.00

Non-strategic road 45.26 21.12 27.42 4.94 1.26 0.00
Soil category A/B 45.26 21.12 27.42 4.94 1.26 0.00

Soil category C/D/E 45.26 21.12 27.42 4.94 1.26 0.00
Topographic category T1/T2/T3 45.26 21.12 27.42 4.94 1.26 0.00

Topographic category T4 45.26 21.12 27.42 4.94 1.26 0.00
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Table 5. Information gain in the seismic attention class of Bridge B.

Probability distribution
High [%] Medium-high [%] Medium [%] Medium-low [%] Low [%] Information Gain

Bridge B (prior probability distribution) 67.28 28.27 4.45 0.00 0.00 0.00
Year of construction ≤ 1945 67.28 28.28 4.44 0.00 0.00 0.00

1945 < Year of construction < 1980 67.28 28.28 4.44 0.00 0.00 0.00
Year of construction ≥ 1985 (lack of seismic criteria) 67.28 28.28 4.44 0.00 0.00 0.00

Year of construction ≥ 1985 (seismic criteria) 67.28 28.28 4.44 0.00 0.00 0.00
15 m ≤ span length < 25 m 67.28 28.28 4.44 0.00 0.00 0.00

Span length > 25 m 67.28 28.28 4.44 0.00 0.00 0.00
High defect level 100.00 0.00 0.00 0.00 0.00 39.63

Medium-high defect level 100.00 0.00 0.00 0.00 0.00 39.63
Medium defect level 55.56 43.61 0.83 0.00 0.00 6.88

Medium-low defect level 55.56 43.61 0.83 0.00 0.00 6.88
Low defect level 25.28 54.17 20.55 0.00 0.00 41.92

Traffic load category A 67.28 28.28 4.44 0.00 0.00 0.00
Traffic load category B 67.28 28.28 4.44 0.00 0.00 0.00
Traffic load category C 67.28 28.28 4.44 0.00 0.00 0.00
Traffic load category D 67.28 28.28 4.44 0.00 0.00 0.00
Traffic load category E 53.35 32.36 14.29 0.00 0.00 8.67

High average daily vehicle traffic 83.00 16.50 0.50 0.00 0.00 7.45
Medium average daily vehicle traffic 67.33 29.50 3.17 0.00 0.00 0.23

Low average daily vehicle traffic 51.50 38.83 9.67 0.00 0.00 6.06
High average daily commercial vehicle traffic 67.28 28.28 4.44 0.00 0.00 0.00

Medium average daily commercial vehicle traffic 67.28 28.28 4.44 0.00 0.00 0.00
Low average daily commercial vehicle traffic 67.28 28.28 4.44 0.00 0.00 0.00

High importance of the crossed entity 83.00 16.50 0.50 0.00 0.00 7.45
Medium importance of the crossed entity 67.33 29.50 3.17 0.00 0.00 0.23

Low importance of the crossed entity 51.50 38.83 9.67 0.00 0.00 6.06
Road alternatives 59.78 33.44 6.78 0.00 0.00 1.41

Lack of road alternatives 74.78 23.11 2.11 0.00 0.00 1.67
Seismic criteria 67.28 28.28 4.44 0.00 0.00 0.00

Lack of seismic criteria 67.28 28.28 4.44 0.00 0.00 0.00
Strategic road 74.78 23.11 2.11 0.00 0.00 1.67

Non-strategic road 59.78 33.44 6.78 0.00 0.00 1.41
Soil category A/B 59.03 34.03 6.94 0.00 0.00 1.67

Soil category C/D/E 72.78 24.44 2.78 0.00 0.00 0.85
Topographic category T1/T2/T3 65.44 29.56 5.00 0.00 0.00 0.09

Topographic category T4 72.78 24.44 2.78 0.00 0.00 0.85

4.2.2. Application to multiple assets

In light of the results obtained for Bridge B, the information gain analysis has been
then applied to the remaining bridges of the stock whose defectiveness has not yet
been assessed according to the Italian Guidelines (Bridges K, L, M, N, R, and S), by
focusing the attention on the informative contribution of the defect level. Tables 6 and 7
collect the obtained results for structural-foundational and seismic attention classes,
respectively. The assessment of the obtained values of the information gain remarks
the high informative contribution possessed by the defect level in both the evaluated
risk conditions. As in the case of Bridge B, risk assessments with a confidence level of
100% are obtained under the assumption that the defect level of the considered assets
is high. In this circumstance, however, it is important to note that the informative
contribution associated with the high defect level tends to be quite different among
the cases under analysis. For instance, considering the structural-foundational attention
class, the assumption of a high defect level for Bridge K results in an information
gain of about 79, while the same hypothesis leads to an information gain of around
161 in the case of Bridge S. A similar consideration also applies to the other defect
levels. More in detail, looking anew at the structural-foundational attention class, equal
values of the information gain have been determined for Bridges K, L, M, and N; this
is because these assets share similar structural and non-structural features influencing
the risk condition under examination (these assets belong to the simply supported
RC bridge typology). The information gain analysis has provided equal outcomes for
Bridges L, M, and N even in the case of the seismic attention class, yet slightly different
results have been obtained for Bridge K. This is because the former assets are multi-
span bridges, whereas Bridge K has a single span. Similar observations can also be
made while evaluating the information gain determined for Bridges R and S; these
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two bridges, in particular, differ from the others in terms of the structural typology
and the construction material (bridges R and S are masonry arch bridges), while they
differ from each other in terms of pieces of information like the period of construction
(Bridge R is older than Bridge S) and the number of spans (Bridge R is a single span
bridge while Bridge S is a multi-span bridge). Overall, the obtained results suggest that
performing a visual inspection on a certain bridge, and thus determining its level of
defectiveness, can provide a different informative contribution to its risk classifications
depending on the typology and the known structural and non-structural features of
the asset under investigation.

Table 6. Information gain of the defect levels in the structural-foundational attention class of Bridges K, L,
M, N, R, and S.

Probability distribution
High [%] Medium-high [%] Medium [%] Medium-low [%] Low [%] Information Gain

Bridge K/L/M/N (prior probability distribution) 45.26 21.12 27.42 4.94 1.26 -
High defect level 100.00 0.00 0.00 0.00 0.00 79.27

Medium-high defect level 85.74 8.76 5.25 0.25 0.00 37.65
Medium defect level 28.71 43.83 26.23 1.23 0.00 16.06

Medium-low defect level 8.70 36.54 46.24 6.91 1.61 32.56
Low defect level 3.15 16.48 59.38 16.30 4.69 59.02

Bridge R (prior probability distribution) 21.48 21.48 27.41 25.19 4.44 -
High defect level 100.00 0.00 0.00 0.00 0.00 153.80

Medium-high defect level 7.41 81.48 11.11 0.00 0.00 90.71
Medium defect level 0.00 25.93 74.07 0.00 0.00 78.52

Medium-low defect level 0.00 0.00 25.93 62.96 11.11 66.43
Low defect level 0.00 0.00 25.93 62.96 11.11 66.43

Bridge S (prior probability distribution) 20.00 10.37 50.37 17.04 2.22 -
High defect level 100.00 0.00 0.00 0.00 0.00 160.94

Medium-high defect level 0.00 25.93 74.07 0.00 0.00 52.33
Medium defect level 0.00 25.93 74.07 0.00 0.00 52.33

Medium-low defect level 0.00 0.00 77.78 22.22 0.00 39.69
Low defect level 0.00 0.00 25.93 62.96 11.11 82.96

Table 7. Information gain of the defect levels in the seismic attention class of Bridges K, L, M, N, R, and S.

Probability distribution
High [%] Medium-high [%] Medium [%] Medium-low [%] Low [%] Information Gain

Bridge K (prior probability distribution) 63.94 29.12 6.80 0.14 0.00 -
High defect level 100.00 0.00 0.00 0.00 0.00 44.72

Medium-high defect level 92.59 7.27 0.14 0.00 0.00 23.65
Medium defect level 55.56 43.61 0.83 0.00 0.00 8.06

Medium-low defect level 50.51 45.37 4.12 0.00 0.00 6.14
Low defect level 21.07 49.35 28.89 0.69 0.00 45.54

Bridge L/M/N (prior probability distribution) 67.28 28.27 4.45 0.00 0.00 -
High defect level 100.00 0.00 0.00 0.00 0.00 39.63

Medium-high defect level 100.00 0.00 0.00 0.00 0.00 39.63
Medium defect level 55.56 43.61 0.83 0.00 0.00 6.88

Medium-low defect level 55.56 43.61 0.83 0.00 0.00 6.88
Low defect level 25.28 54.17 20.55 0.00 0.00 41.92

Bridge R (prior probability distribution) 23.11 22.67 50.22 4.00 0.00 -
High defect level 100.00 0.00 0.00 0.00 0.00 146.49

Medium-high defect level 7.78 48.89 43.33 0.00 0.00 22.71
Medium defect level 7.78 48.89 43.33 0.00 0.00 22.71

Medium-low defect level 0.00 7.78 82.22 10.00 0.00 41.38
Low defect level 0.00 7.78 82.22 10.00 0.00 41.38

Bridge S (prior probability distribution) 24.44 32.78 37.78 5.00 0.00 -
High defect level 100.00 0.00 0.00 0.00 0.00 140.89

Medium-high defect level 16.67 83.33 0.00 0.00 0.00 71.37
Medium defect level 2.78 38.89 58.33 0.00 0.00 25.94

Medium-low defect level 2.78 38.89 58.33 0.00 0.00 25.94
Low defect level 0.00 2.78 72.22 25.00 0.00 80.17

4.3. Updating of the inspection priorities

Results obtained from the information gain analysis carried out in Section 4.2 are ex-
ploited to update and refine the preliminary inspection plan determined in Section 4.1.
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The updating of the inspection plan consists of revising the inspection priorities fol-
lowing the addition of new pieces of information in the risk assessment process. For
instance, let us assume that Bridge B has recently undergone maintenance works to re-
pair defects detected in past inspection activities. In this circumstance, a hypothetical
management authority could make assumptions about the defectiveness of Bridge B,
based on the support of this evidence, to substantially revise the preliminary risk clas-
sifications of the asset, and thus its inspection priority over the remaining structures of
the stock. Reasonably assuming a low defect level for Bridge B, hence considering this
new piece of information in its data-set, a medium structural-foundational attention
class (initially this attention class was high), with a confidence level of about 59%, and
a medium-high seismic attention class (even this attention class was initially evaluated
as high), associated with a confidence level of about 54%, are attributed to the asset. In
light of that, the FR determined for Bridge B decreases from a value of 0.961 to 0.705
as reported in Table 8, which also shows the updated inspection plan. The knowledge
of the defect level of Bridge B also leads to a modification of the value of the FI from
0.082 to 0.018. This is because Bridge B is now included in the subset of structures for
which the defect level has been already evaluated according to the Italian Guidelines
(from Bridge C to Bridge P in Table 8), hence the operating costs for its visual inspec-
tion has been revised with respect to the features of this group of bridges according to
Equation (6). Overall, the inspection order of Bridge B decreases by nineteen positions
compared to the preliminary inspection plan. Modifications made in the inspection plan
also reflect in the preliminary assessment of the bridge inventory at a regional scale.
Figure 13 reports the illustrative maps obtained by spatially interpolating the attention
classes and inspection order determined for the bridges in the stock under the assump-
tion of knowing the defect level of Bridge B. Maps of the structural-foundational and
seismic attention class, reported in Figures 13(a) and (b) respectively, show marked
modifications in the risk conditions of the stock compared to Figures 12(a) and (b).
Particularly, the updated versions of these illustrative maps point out that the eastern
area of the Umbria region, where Bridge B is located, is reclassified to low/moderate
risk conditions. Similarly, the map interpolating the inspection priority order, shown in
Figure 13(c), intuitively highlights the changes introduced in the updated inspection
plan compared to Figure 12(c). It is worth remembering that, at the level of a single
bridge, risk conditions and inspection priorities may differ from those shown on the
macro-level illustrative maps.
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Table 8. FR, FI, IPS, and inspection order determined for the bridges in the sample stock once gained
information on the defect level of Bridge B.

Label FR FI IPS Inspection order
Bridge N 0.961 0.082 1.879 1
Bridge K 0.966 0.136 1.830 2
Bridge S 0.629 0.009 1.620 3
Bridge M 0.961 0.409 1.552 4
Bridge R 0.541 0.003 1.538 5
Bridge L 0.961 0.818 1.143 6
Bridge C 1.000 0.012 1.988 7
Bridge J 0.973 0.008 1.965 8
Bridge Y 0.992 0.029 1.963 9
Bridge A 0.978 0.024 1.954 10
Bridge I 0.971 0.020 1.951 11
Bridge F 0.900 0.082 1.818 12
Bridge G 0.800 0.008 1.792 13
Bridge H 0.800 0.012 1.788 14
Bridge X 0.782 0.001 1.781 15
Bridge W 0.782 0.001 1.781 16
Bridge E 0.906 0.196 1.710 17
Bridge Q 0.719 0.012 1.707 18
Bridge T 0.709 0.008 1.701 19
Bridge B 0.705 0.018 1.687 20
Bridge U 0.679 0.012 1.667 21
Bridge D 0.700 0.039 1.661 22
Bridge O 0.629 0.006 1.623 23
Bridge V 0.622 0.001 1.621 24
Bridge P 0.500 0.006 1.494 25
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Figure 13. Illustrative maps showing the outcomes from Kriging interpolations under the assumption of
knowing the defect level of Bridge B: (a) structural-foundational attention class; (b) seismic attention class;
(c) inspection plan.

The potential amount of information that can be gained by inspecting one asset
rather than another has been considered to refine the updated inspection plan. The
analysis has been carried out on the subset of bridges whose structural defectiveness
has not yet been assessed according to the Italian Guidelines, i.e. Bridges K, L, M,
N, R, and S. Table 9 reports the potential information gain of the visual inspection
in the structural-foundational and seismic attention classes of the considered subset
of bridges. The highest values of this metric have been obtained for Bridges R and
S; specifically, their inspection has a potential information gain of about 91 and 77,
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respectively, in the case of the structural-foundational attention class and of around
55 and 69, respectively, for the seismic attention class. The inspection of the other
assets has a potential information gain of around 45 in the case of the structural-
foundational attention class, hence of about 26/27 considering the seismic attention
class. The obtained results thus indicate that the visual inspection of Bridges R and
S will potentially make a more significant informative contribution to the refinement
of the preliminary risk classification of the stock than the inspection of Bridges K, L,
M, and N. Accordingly, the management authority can decide to prioritise the visual
inspection of Bridges R and S over the other assets. In this case, such a decision is also
supported by the fact that the inspection costs computed for Bridges R and S are lower
than those of Bridges K, L, M, and N, as indicated by the respective value of FI collected
in Table 8. The potential information gain computed for the structural-foundational
and seismic attention classes can be further averaged to obtain a synthetic metric to
rate bridges to be inspected and thus to facilitate the refinement of the inspection
plan. In this view, Figure 14(a) intuitively points out the inspection priorities within
the considered subset of bridges at a regional scale based on the outcomes from the
applied information theory (a high potential average information gain corresponds to
a high inspection priority), while Figure 14(b) shows the refined inspection plan.

Table 9. Potential information gain of the visual inspection in the structural-foundational and seismic atten-
tion classes of Bridges K, L, M, N, R, and S.

Label Potential Information Gain
(structural-foundational attention class)

Potential Information Gain
(seismic attention class)

Potential average
Information Gain

Bridge K 44.91 25.62 35.27
Bridge L 44.91 26.99 35.95
Bridge M 44.91 26.99 35.95
Bridge N 44.91 26.99 35.95
Bridge R 91.18 54.93 73.06
Bridge S 77.65 68.86 73.26
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Figure 14. Refinement of the inspection plan through the information gain analysis: (a) Illustrative map
obtained through the Kriging interpolation of the potential average information gain; (b) refined inspection
plan.

5. Conclusions

Visual inspections are widely used by bridge owners and managers to obtain a prelimi-
nary screening of superficial defects and disruptions affecting the structures under their
supervision. The outcomes of these inspection activities assume also a role of the ut-
most importance in the estimation of the vulnerability of the assets in risk assessment
procedures. Due to their recurrence over time and the large number of bridges that are
typically involved in BMSs, visual inspections are usually resource-intensive operations
for management authorities. Consequently, the planning of inspection activities cannot
be limited to inputs from risk assessments (bridges with a higher risk level have priority
for inspection), as it is often prescribed in standards for bridge risk assessment and
management, but should also take operating costs into account. In addition, in com-
mon practice, bridge owners often find it difficult to complete risk assessments due to
a lack of data, a circumstance that can lead to delays in the definition of the inspection
plans as well as to the incorrect prioritisation of the inspection activities.

To address these challenges, the paper has proposed a new methodology to priori-
tise visual inspections in bridge inventories based on the assessment of risk conditions
and operating costs in the context of limited information. The prioritisation algorithm
proposed in this work has been conceived to be implemented in GIS frameworks to
assist management authorities in the systematic collection of data and the intuitive
interpretation of the obtained results, providing risk maps and inspection plans. The
proposed methodology prioritises visual inspections within a bridge inventory through
the computation of the IPS, that is a scalar index determined for every bridge in the
examined stock, whose value depends on the contributions of the FR and FI. Term
FR accounts for risk conditions of bridges and viaducts and consists of calculating the
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weighted average of the preliminary risk levels attributed to a bridge for all the risk
conditions for which it has been assessed. The methodology evaluates risk conditions
according to the provisions of the adopted standard by the bridge management au-
thority. Specifically, to circumvent the potential lack of data, a MCS approach is used
to estimate the risk level and its corresponding confidence level to be attributed to
every bridge in the inventory. Similarly, FI encapsulates the operating costs of visual
inspections through different terms accounting for meaningful structural features of the
bridge to be inspected and the selected inspection strategy. Both FR and FI have been
conceived to include in their definition specific weighting coefficients for the fusion of
risk and operating cost factors. From the information theory, the information gain cri-
terion is implemented in the proposed methodology to mitigate uncertainties affecting
the preliminary risk evaluations, hence to critically update and revise priorities defined
in the inspection plan. Lastly, the OK interpolator is considered in the approach for
the definition of illustrative maps providing macro-level informative contributions for
the management of bridge inventories at a regional scale.

For demonstration purposes, the proposed methodology for bridge inspection priori-
tisation has been implemented in a GIS software and applied to a simulated data-set
from a bridge network composed of twenty-five bridges with different structural fea-
tures. Limited information has been assumed to be available for some of the structures
comprised in the examined stock, while the Italian Guidelines for risk classification and
management, safety assessment, and monitoring of existing bridges have been adopted
to evaluate the risk conditions of the inventory. Values of the weighting and cost fac-
tors contained in the IPS metric have been suggested on the basis of the Authors’
experience in bridge inspections. The proposed application case study has exemplified
the definition of the inspection priorities based on the information initially available
for the considered bridge inventory, as well as the update and revision of the prelimi-
nary inspection plan through the application of the information theory. The obtained
results have highlighted (i) the benefits of simultaneously considering bridge risk con-
ditions and inspection costs when defining the inspection plan, (ii) the effectiveness
of the proposed approach for carrying out risk evaluations in the context of limited
information, (iii) the use of the information gain as a metric to optimize the retrieval of
missing information in the risk assessments and, consequently, to critically revise the
inspection priorities, and, finally, (iv) the employment of the Kriging interpolator for
the definition of illustrative maps expressing clear informative contents at a regional
scale.

Overall, the proposed methodology for bridge inspection prioritisation results in a
simple yet effective tool for bridge owners and managers, with solid theoretical founda-
tions and characterised by high interoperability in GIS environments. The possibility of
determining inspection priorities under the simultaneous consideration of multiple risk
conditions, as well as by the possibility of setting weighting and cost factors included in
the IPS based on the needs and attitude of each management authority, also highlight
the broad scalability of the proposed procedure. Although the application case study
provided a first demonstration of the effectiveness of the proposed prioritisation ap-
proach, its application to real bridge inventories and diverse real-world scenarios could
provide significant insights to improve the methodology and reduce the uncertainty
related to assumptions. In this regard, future studies may concern the implementation
of realistic probability distributions for the unknown terms in risk assessments, a more
accurate evaluation of the cost factor expressing the inspection quality through the
consideration of further human factors, the introduction of additional prioritisation
parameters such as the detour length of each bridge, as well as further implementa-

36



tions of information theory and decision-making concepts. It is therefore highly desir-
able that more extensive bridge inspection databases will be available in the future to
the scientific community to further test and possibly improve the proposed inspection
prioritisation method.
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6. Appendices

Appendix A. Simulated bridge stock

Table A1. Known features of the sample stock for the assessment of the structural-foundational attention
class in accordance with the Italian Guidelines (please note that for some parameters the range of variability
is provided by the Italian Guidelines).
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Table A2. Additional known features of the sample stock for the assessment of the seismic attention class in
accordance with the Italian Guidelines and strategies selected to perform visual inspections (please note that
for some parameters the range of variability is provided by the Italian Guidelines).

Label Hazard Vulnerability Exposure Inspection
strategyPeak ground

acceleration
Topographic

category
Soil

category
Static
scheme

Seismic
Criteria

Number
of spans

Strategic
road

Bridge A 0.22 T1 Isostatic 6 Yes Ground
Bridge B 0.24 Isostatic 3 Ground
Bridge C 0.22 T1 Isostatic 2 Yes Ground
Bridge D 0.18 T1 B Isostatic No 10 Yes Ground
Bridge E 0.16 T1 Isostatic No 10 Yes Platform
Bridge F 0.25 T2 A Isostatic No 1 Yes Platform
Bridge G 0.20 T1 B Iperstatic No 3 Yes Ground
Bridge H 0.16 T1 C Isostatic No 3 Yes Ground
Bridge I 0.17 T1 Isostatic No 5 Yes Ground
Bridge J 0.20 T1 Isostatic No 2 Yes Ground
Bridge K 0.22 Isostatic 1 Platform
Bridge L 0.22 Isostatic 6 Platform
Bridge M 0.22 Isostatic 3 Platform
Bridge N 0.23 Isostatic 3 Ground
Bridge O 0.15 T1 A Isostatic No 1 Yes Ground
Bridge P 0.14 T1 A Isostatic Yes 1 Yes Ground
Bridge Q 0.15 T1 Isostatic No 2 Yes Ground
Bridge R 0.16 Iperstatic No 1 Yes Ground
Bridge S 0.16 B Iperstatic No 3 Yes Ground
Bridge T 0.16 T1 Iperstatic 3 Yes Ground
Bridge U 0.16 T1 Isostatic 3 Yes Ground
Bridge V 0.20 T1 Iperstatic No 1 Yes Ground
Bridge W 0.22 T1 Iperstatic No 2 Yes Ground
Bridge X 0.22 T1 Iperstatic No 1 Yes Ground
Bridge Y 0.25 T1 Isostatic 1 Yes Platform
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Appendix B. Visual inspection priorities

Table B1. Attention classes with the corresponding confidence levels obtained from the preliminary assess-
ment of the structural-foundational and seismic risks of the bridges included in the sample stock.

Label Structural-foundational
attention class (risk level)

Confidence
level [%]

Seismic attention
class (risk level)

Confidence
level [%]

Bridge A High 80.56 High 100.00
Bridge B High 45.26 High 67.28
Bridge C High 100.00 High 100.00
Bridge D Medium 100.00 Medium-High 100.00
Bridge E Medium-High 59.72 High 53.33
Bridge F High 100.00 Medium-High 100.00
Bridge G Medium-High 100.00 Medium-High 100.00
Bridge H Medium-High 100.00 Medium-High 100.00
Bridge I High 75.00 High 100.00
Bridge J High 76.00 High 100.00
Bridge K High 45.26 High 63.94
Bridge L High 45.26 High 67.28
Bridge M High 45.26 High 67.28
Bridge N High 45.26 High 67.28
Bridge O Medium 88.89 Medium 66.67
Bridge P Medium 66.67 Medium-Low 66.67
Bridge Q Medium 77.78 Medium-High 53.33
Bridge R Medium 27.41 Medium 50.22
Bridge S Medium 50.37 Medium 37.78
Bridge T Medium 64.44 Medium-High 53.33
Bridge U Medium 52.11 Medium-High 80.00
Bridge V Medium 100.00 Medium 80.00
Bridge W Medium-High 55.56 Medium-High 66.67
Bridge X Medium-High 55.56 Medium-High 66.67
Bridge Y High 92.59 High 100.00
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