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Abstract

Recent advances in the manufacture of micro- and nano-composites have made it possible to produce new
multifunctional materials. However, the development of theoretical models that assist their design still remains
an open research issue. This paper presents a two-step hierarchical micromechanics approach for the mechan-
ical homogenization of particle-reinforced porous composites, including particle/matrix interfacial bonding and
porosity saturation effects. Firstly, the particle-reinforced matrix is homogenized by means of a double-inclusion
approach. The interfacial bonding effect is accounted for by both compliant and hard interphases surrounding the
particles. Secondly, another homogenization step is conducted by considering the particle-reinforced composite
as a homogeneous matrix and voids as embedded inclusions. Pores saturation is also taken into account by means
of homogeneous equivalent pores. Comparative analyses against experimental data are presented to demonstrate
the effectiveness of the present approach, followed by detailed parametric analyses to illustrate the influence of
the major micromechanical variables, including interphase thickness and stiffness, filler aspect ratio, porosity and
saturation degree.
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1. Introduction

Recent advances in the manufacture of micro- and nano-composites have made great strides forward in the
development of new multifunctional materials with a broad spectrum of applications in many fields such as build-
ing engineering, aerospace, automotive, construction, or industry. There is no shortage of research works that
report on innovative composite materials with high-performance properties such as metals [1], ceramics [2], strain
sensing bricks [3], phase changing materials [4], polymers [5], or cementitious composites [6]. In particular,
the increasing demand for lightweight structures with superior mechanical properties has promoted an increasing
attention on porous composites. Examples such as composite ceramics, foam-like materials, or spray deposits,
not only exhibit excellent mechanical properties, but also multifunctional capabilities including low thermal con-
ductivity, piezoresistive properties, low apparent density, and low moisture absorption [7–9]. In this context, the
development of accurate homogenization schemes to assist the design is of pivotal importance. Despite great
efforts have been put into the modeling of micro- and nano-composites, features such as the interfacial bonding
condition between constituent phases, as well as complex microstructures with unsaturated porosity, still remain
open research issues.
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Extensive experimental and numerical results have revealed the importance of interfacial bonding between
phases in the mechanical and transport properties of composites [10–12]. In fact, there exist interphases with
finite volume between the inclusions and the matrix which govern the load transfer capabilities of composites
[13, 14]. Interphases are typically categorized into hard (non-overlapping) and soft (overlapping) interphases
[15–17]. Hard interphases are those that possess higher stiffness values than the matrix and can be deemed as
impenetrable coatings surrounding the particles. This is for instance the case of poly(butylene terephthalate)
doped with organically-modified montmorillonite, where the experimental results by Chang et al. [18] and the
recent numerical analyses of Zare and Rhee [19] revealed the existence of hard interphases with elastic modulus
around sixteen times that of the pristine polymer. On the other hand, soft interphases are those that exhibit less
stiffness than the matrix material and can be regarded as penetrable interphases. Such soft interfaces typically stem
from microstructural defects or relatively high porosity at particle/matrix interfaces. A good example of compliant
interphases can be the so-called Interfacial Transition Zones (ITZs) in cementitious materials [20, 21].

Considerable effort has been put into the study of the interface effects and diverse approaches have been
proposed in the literature. Among them, it is worth noting the so-called spring-type interface models [22, 23].
These approaches consider both compliant or stiff coatings with zero volume, in such a way that the contact
condition is satisfied by imposing the continuity of displacements and tractions across the particle/matrix interface.
A second group of models are the so-termed functionally graded interface models [24, 25], which assume that the
properties of the interface region smoothly vary along the radial direction of the particles. Finally, the last group of
approaches are the interphase or core-shell models [17, 26, 27], which define interface regions as coating phases
with finite volumes between the inclusions and the matrix. Along these lines, particle-reinforced composites can
be viewed as three-phase composites, and diverse approaches can be found in the literature on the estimation
of their overall elastic moduli. It is worth noting the Generalized Self-Consistent Method (GSCM) three-phase
sphere model [28–30], in which the reinforcing particles are encapsulated in the interphases, and then in the matrix
phase. Majewski et al. [31] investigated the effects of particle packing and size on the overall elastic properties
of particulate random composites with hard interphases. To that aim, those authors used numerical periodic unit
cells of crystal-type arrangements and random distribution of particles, as well as the GSCM method. Xu et
al. [17] proposed a Mori-Tanaka approach in combination with an interphase model to account for both hard
and soft interfaces. Those authors provided extensive sensitivity analyses to investigate the effect of interfacial
characteristics on the overall elastic moduli of different nano- and micro-sized particle-reinforced composites.
Other different approaches on the homogenization of three-phase composites can be also found in the literature,
including Hashin and Shtrikman bounds models [32, 33], Differential Effective Medium (DEM) approximations
[34], and other effective medium methods [35, 36].

Along with the interfacial properties in particle-reinforced composites, the presence of pores and voids within
porous matrix materials also holds a considerable influence on the macroscopic elastic moduli. In particular,
numerous works have reported about the porosity effects on the mechanical properties of cement-based materials
[37, 38]. Also, some authors have applied mean-field homogenization methods to simulate the effect of porosity
on the overall stiffness of porous composites. A noteworthy contribution was done by Guéguen et al. [39] who
utilized the DEM model to predict the elastic properties of porous media. Miled et al. [40] investigated the
elastic properties of porous expanded polystyrene concrete with mean-field homogenization methods, including
the Mori-Tanaka, GSCM and DEM models. Poh et al. [41] presented a multi-step micromechanics approach to
estimate the effective properties of porous ceramics doped with Carbon Nanotubes (CNTs). According to that
model, the porous ceramic matrix is first homogenized using a classical Mori-Tanaka model and considering the
ceramic material and voids as matrix and inclusion phases, respectively. In a second step, the overall constitutive
properties are computed by the Mori-Tanaka model, considering the porous ceramic as a homogeneous matrix
phase and CNTs as reinforcing fillers. Recently, Rahmouni et al. [42] proposed a homogenization technique
based on the Mori-Tanaka model to investigate the influence of the degree of water saturation on the elastic and
acoustic properties of calcarenite.

In light of the foregoing literature review, there is no comprehensive micromechanics framework for the anal-
ysis of partially saturated porous media loaded with nano- and micro-fillers with interface effects. The present
work is thus aimed at devising a theoretical approach in order to address this lacuna. In particular, a two-step
hierarchical micromechanics approach is proposed. In a first step, the matrix material doped with anisotropic
monodisperse particles is homogenized by means of a double-inclusion approach. An interphase model is adopted
to incorporate both compliant and hard particle/matrix interface characteristics. Following the works of Xu and
co-authors [17, 43], the volume fractions of the interphases are explicitly defined by a constant thickness surround-
ing the particles. Furthermore, unsaturated voids are converted into equivalent homogeneous pores by means of
a Reuss approximation. Afterward, the second step consists of the application of the Mori-Tanaka model to com-
pute the macroscopic properties, considering the particle/matrix composites as homogeneous matrix phases and
pores as embedded ellipsoidal inclusions. Comparison analyses against experimental data, along with detailed
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parametric studies, are presented in order to demonstrate the validity and effectiveness of the present approach
to accurately predict the overall properties of micro- and nano-sized particle-reinforced porous composites with
interface effects.

This paper is structured as follows. Section 2 outlines the theoretical background of the proposed approach,
including the analysis of particle-reinforced composites with interface effects in Section 2.1, and the homoge-
nization of partially saturated voids into equivalent homogeneous pores in Section 2.2. Section 3 presents the
numerical results and discussion and, eventually, Section 4 concludes this work.

2. Theoretical formulation

The proposed two-step hierarchical homogenization model is schematically presented in Fig. 1. Firstly, Step
I.A consists of a double-inclusion approach comprising the matrix material, particles, and interphases. Further-
more, the effect of partially saturated voids is accounted for by means of equivalent homogeneous pores (Step
I.B in Fig. 1). Afterward, the overall elastic moduli of the composite are computed in Step II. In this case, the
previously homogenized properties are drawn into a two-phase Mori-Tanaka homogenization approach, where
matrix and inclusion phases are assumed to be the homogenized particle-reinforced matrix and equivalent pores,
respectively. Throughout the text, a boldface letter stands for a fourth-order tensor, A ≡ Ai jkl, while I denotes the
fourth-order identity tensor, and a colon between two tensors represents the inner product, A : B ≡ Ai jklBklmn.

Step II

Step I

Partially
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void

Equivalent

homogeneous

matrix

Equivalent
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matrix
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Figure 1: Schematic representation of the proposed two-step micromechanics model.

2.1. Step I.A: Particle-reinforced composites with interface properties
Let us define a three-phase particle-reinforced composite consisting of a hosting matrix Ωm, an ellipsoidal

inclusion Ωp, and a surrounding interphase Ωi as shown in Fig. 2 (a). In accordance with the notation of Hori and
Nemat-Nasser [44], regions Ωp and Ωi define a double inclusion denoted by R = Ωp ∪ Ωi. It is assumed that Ωp,
Ωi and Ωm are uniform media with elastic tensors Cp, Ci and Cm. Hence, the stress tensor σ(x) at a material point
x can be related to the corresponding strain tensor ε(x) as:

σ(x) =


Cp : ε(x), ∀x ∈ Ωp

Ci : ε(x), ∀x ∈ Ωi

Cm : ε(x), ∀x ∈ Ωm

(1)

Let V denote the Representative Volume Element (RVE) of a linear elastic matrix doped with dispersed inclu-
sions of Fig. 2 (b). It is assumed that the RVE contains a sufficient number of fillers in such a way that the overall
properties of the composite are statistically represented [45]. The RVE is subjected to a far-field strain tensor εo

as shown in Fig. 2. The overall effective elasticity stiffness C of the composite is defined by:

σ = C : ε (2)

Throughout this work, the superscripts “p”, “i” and “m” refer the corresponding quantity to the particle,
interphase and matrix occupied portions of V. With this convention, the relationships between the total average
strain and stress tensors in the RVE, ε and σ, respectively, are defined by the rule of mixtures as follows:

ε = fp

〈
εp

〉
+ fi

〈
εi
〉

+ fmεm = εo (3)
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σ = fp

〈
σp

〉
+ fi

〈
σi

〉
+ fmσm = σo (4)

where fp, fi and fm stand for the volume fraction occupied by the particles, interphases and hosting matrix, and
angle brackets 〈·〉 represent volume average.
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Figure 2: Schematic view for the predictions of the three-phase model using the coupling of Eshelby’s equivalent inclusion
theory (a) and Mori-Tanaka scheme (b).

To illustrate the application of the double inclusion model, the following eigenstrain is prescribed in R:

ε∗ =

ε∗(x), ∀x ∈ R
0, ∀x < R

(5)

Eigenstrains ε∗(x) produce perturbation strains εd(x) which are given by:

εd
i j(x) = −

1
2

∫
R

Cklmn

[
Gik,l j(x − y) + G jk,li(x − y)

]
ε∗mn(x)dVy =

∫
R

Γi jmnε
∗
mn(x)dVy (6)

where G(x − y) denotes the Green’s function for an elastic solid, and a comma in the subscript denotes partial
differentiation. In order to obtain explicit solutions, irrespective of the relative position and orientation of Ωp in
R, Nemat-Nasser and Hori [44] proposed the use of average field quantities. Hence, the volume averages of the
perturbation strains taken over Ωp and R can be expressed in terms of the average eigenstrains as follows [44]:

〈εd〉p =
1

Ωp

∫
Ωp

∫
Ωp

Γ(x − y) : ε∗(y)dVydVx = Sp : 〈ε∗〉p +
(
SR − Sp

)
: 〈ε∗〉i (7)

where SR and Sp are the Eshelby’s tensors of the double inclusions and particles (see references [46–48] for further
information on their definition). Using the rule of mixtures, one may write:

〈εd〉R =
fp

fp + fi
〈εd〉p +

fi
fp + fi

〈εd〉i (8)

〈ε∗〉R =
fp

fp + fi
〈ε∗〉p +

fi
fp + fi

〈ε∗〉i (9)

and considering 〈εd〉R = SR : 〈ε∗〉R, one can write:

〈εd〉R = SR :
(

fp

fp + fi
〈ε∗〉p +

fi
fp + fi

〈ε∗〉i

)
(10)

Now, substituting Eqs. (9) and (10) into Eq. (8), one arrives at:
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〈εd〉i = SR : 〈ε∗〉R +
fp

fi

(
SR − Sp

) (
〈ε∗〉p − 〈ε

∗〉i

)
(11)

Hence, if the eigenstrain field ε∗(x) produces perturbation strain fields, the following average consistency
conditions can be stated:

Cm :
(
εo + 〈εd(x)〉 − 〈ε∗(x)〉

)
=

Cp :
(
εo + 〈εd〉p

)
, ∀x ∈ Ωp

Ci :
(
εo + 〈εd〉i

)
, ∀x ∈ Ωi

(12)

By substituting Eqs. (7) and (11) into Eq. (12), one can get:

εo +
(
Sp + Ap

)
: 〈ε∗〉p + ∆S : 〈ε∗〉i = 0 (13)

εo + (SR + Ai) : 〈ε∗〉p +
fp

fi
∆S :

(
〈ε∗〉p − 〈ε

∗〉i

)
= 0 (14)

with:
∆S = SR − Sp (15)

Ap =
(
Cp − Cm

)−1
: Cm (16)

Ai = (Ci − Cm)−1 : Cm (17)

By solving together Eqs. (13) and (14), one may obtain 〈ε∗〉p = Φp : ε and 〈ε∗〉i = Φi : ε with:

Φp = −

Sp + Ap + ∆S :
(
Sp + Ap −

fp

fi
∆S

)
:
(
Sp + Ai −

fp

fi
∆S

)−1−1

(18)

Φi = −

∆S +
(
Sp + Ap

)
:
(
Sp + Ap −

fp

fi
∆S

)−1

:
(
Sp + Ai −

fp

fi
∆S

)−1

(19)

Now, the strain in the particle and interphase phases can be written as:

εp = εo + 〈εd〉p = Adil
p : εo (20)

εi = εo + 〈εd〉i = Adil
i : εo (21)

with:

Adil
p = I + Sp : Φp + ∆S : Φi (22)

Adil
i = I + SR : Φi +

fp

fi
∆S :

(
Φp −Φi

)
(23)

where Adil
i and Adil

p denote the concentration factors for interphases and particles in the dilute regime, respectively.
Hence, the strain tensors in the particle and interphase phases of Eqs. (20) and (21) can be rewritten as:

εp = Adil
p :

(
fmI + fiAdil

i + fpAdil
p

)−1
: εo = Ap : εo (24)

εi = Adil
i :

(
fmI + fiAdil

i + fpAdil
p

)−1
: εo = Ai : εo (25)

Here, Ai are the strain concentration tensors. Finally, the effective moduli of the three-phase composite can be
obtained from Eqs. (3) and (4) as follows:

C =
(

fmCm + fiCi : Ai + fpCp : Ap

)
:
(

fmI + fiAi + fpAp

)−1
(26)

Let us note that Eq. (26) is in general orientation dependent. In order to describe the orientation of fillers, a
reference local coordinate system K′ ≡

{
0; x′1x′2x′3

}
is fixed in each particle. In this paper, it is assumed that all the

inclusions are monodispersed and defined as ellipsoids with an aspect ratio (1, 1, κ), being the major axis aligned
in the local x′3 direction as indicated in Fig. 2. Due to the rotational symmetry of the defined ellipsoidal inclusions,
only two Euler angles, θ and γ, are required to describe the relative orientation of any orthogonal coordinate system
with respect to the global one, K≡ {0; x1x2x3}. Hence, the coordinate transformation of a fourth-rank tensor P into
the local coordinate system K′ is explicitly represented in terms of the transformation matrix g as:
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P′i jlk = gipg jqgkrglsPpqrs (27)

Due to the high number of fillers contained in the RVE, the description of their orientation field is of statistical
nature. The probability of a particle lying in an infinitesimal range of angles [θ, θ + dθ], and

[
γ, γ + dγ

]
is given

by Ω(θ, γ) sin(θ)dθdγ, with Ω(θ, γ) being the so-called Orientation Distribution Function (ODF). Any ODF must
satisfy the following normalization condition:∫ 2π

0

∫ π/2

0
Ω(θ, γ) sin(θ)dθdγ = 1 (28)

in which for the particular case of randomly oriented inclusions, it can be seen that Ω(θ, γ) = 1/2π. The integration
of any ODF weighted function F(θ, γ) over all possible orientations in the Euler space, also referred to as the
orientational average of F, {F}, is defined through:

{F} =

∫ 2π

0

∫ π/2

0
F(θ, γ)Ω(θ, γ) sin(θ)dθdγ (29)

On this basis, Eq. (26) can be rewritten for random filler configurations as:

C =
(

fmCm + fi {Ci : Ai} + fp

{
Cp : Ap

})
:
(

fmI + fi {Ai} + fp

{
Ap

})−1
(30)

Finally, the volume fraction of the interphases remains to be defined according to their behavior, including
hard or soft interphases as shown in Fig. 3. In general, a hard interface zone is one that possesses a high stiffness
and can be considered as impenetrable layers surrounding the particles. Conversely, compliant interface zones
typically possess low stiffness and can be considered as penetrable layers surrounding the particles. For hard
interphases, Fig. 3 (a), their volume fraction is directly related to the number density of ellipsoidal particles and
the interphase volume. Assuming that the interphases are defined by a constant thickness t around the particles,
Xu et al. [17] derived the expression of the volume fraction of hard interfaces around monodisperse ellipsoidal
particles as:

fi = 6 fp

[
λ

n(κ)
+ Ω(κ)λ2 +

4
3
λ3

]
(31)

where λ is the ratio of the interfacial thickness t and the particle size Deq (i.e. λ = t/Deq). The equivalent
diameter Deq is defined as the diameter of a sphere having the same volume as that of an ellipsoidal particle [49].
Considering that particles have a minor axis D, the equivalent diameter is defined as Deq = Dκ−2/3 for κ ≤ 1 or
Deq = Dκ1/3 for κ ≥ 1. The term n(κ) is the sphericity of an ellipsoidal particle with aspect ratio κ, and is defined
as the ratio between the surface area of a sphere and the ellipsoid with the same volume, that is:

n(κ) =


2κ2/3 sinϕ

sinϕ+κ2arctanh(sinϕ) , κ < 1 (Oblate particles)

1, κ = 1 (Spherical particles)
2κ2/3 tanϕ
tanϕ+κ2ϕ

, κ > 1 (Prolate particles)

(32)

where ϕ is defined as ϕ = arcos(β), with β = 1/κ for κ ≥ 1 or β = κ for κ ≤ 1. The term Ω(κ) is a specific function
on κ defined as:

Ω(κ) =


κ2/3 +

ln
(
κ+
√
κ2−1

)
κ1/3
√
κ2−1

, κ < 1

2, κ = 1

κ2/3 + sin−1
√

1−κ2

κ1/3
√

1−κ2
, κ > 1

(33)

Finally, Xu et al. [43] derived the volume fraction of soft interphases around monodisperse ellipsoidal particles
as:

fi = (1 − fp)
(
1 − exp

{
−

6 fp

1 − fp

[
λ

n(κ)
+

(
2 +

3 fp

n2(κ)(1 − fp)

)
λ2+

+
4
3

1 +
3 fp

n(κ)(1 − fp)
+

m f 2
p

n3(κ)(1 − fp)2

 λ3



 (34)
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where parameter m controls the theoretical approximation of the radial distribution function of spherical particle
systems. Xu et al. [43] demonstrated that vales of m=0, 2 and 3 yield identical results and, therefore, m = 0 is
used in this work.

(a)

(b)

Figure 3: Schematics for three-phase composite structures with reinforcing particles, matrix and (a) hard impenetrable inter-
phases or (b) soft penetrable interphases.

Let us finally note that the previously overviewed formulation is general for any monodisperse particle-
reinforced composites. Different geometries of interphases can be implemented through Eq. (15) and an adequate
definition of the particle interphase volume fraction, as well as diverse matrix materials through an appropriate
implementation of the Eshelby’s tensors and the constitutive tensors.

2.2. Step I.B: Partially saturated voids

In order to take into account the effects of the saturation degree, non-connected partially saturated pores can be
replaced by equivalent homogeneous inclusions as sketched in Fig. 4. To this end, the equivalent modulus can be
estimated through the Voigt approximation (iso-deformation hypothesis) or the Reuss approximation (iso-stress
hypothesis) [42, 50]. On the basis of the hypothesis of uniform fluid pressure, the Reuss approximation has been
reported to be more appropriate [50], whereby the bulk modulus of the equivalent homogeneous pores accordingly
writes:

1
Kep

=
S

Kw
+

1 − S
Kv

(35)

where S stands for the degree of water saturation, K denotes bulk modulus, and subscripts v, w and ep refer to
void, water and equivalent pore phases, respectively. Fig. 5 plots the bulk modulus of partially saturated pores Kep

as a function of the saturation degree S . Let us indicate that the bulk modulus of the liquid phase is selected as
Kw=2.3 GPa, while the gas phase is defined with a very small bulk modulus of Kv=0.013 GPa. It can be seen in
this figure that the bulk modulus of the equivalent pores increases slowly with the degree of water saturation until
around S = 0.8, followed by a sharp increase until the situation of fully saturated pores.
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(a) (b)
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Figure 4: Water and gas in pores: (a) dry pore, (b) unsaturated pore and (c) saturated pore.
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Figure 5: Effective bulk modulus Kep as a function of saturation S for partially saturated porous media (Kv=0.013 GPa, Kw=2.3
GPa).

2.3. Step II: Particle-reinforced porous composites

In order to incorporate porosity into the modeling of particle-reinforced composites with interface effects,
a two-step hierarchical homogenization approach is developed as illustrated in Fig. 6. In the first step, Step
I.A, the homogenization procedure presented in Section 2.1, Eq. (30), is used to evaluate the effective elastic
moduli of the three-phase composite, Cm, which consists of the matrix material, particles and interphases with
constitutive tensors Cm, Cp, and Ci, respectively. Moreover, the homogenization approach presented in Section 2.2
is employed to obtain the equivalent homogeneous properties of partially saturated pores, Cv. Finally, Step II
comprises the homogenization of a two-phase composite, including matrix and ellipsoidal inclusion phases with
elastic moduli given by the previously computed constitutive tensors Cm and Cv, respectively. In this step, the
inclusion volume fraction is defined by the porosity, φ. Therefore, the overall constitutive tensor of the composite,
C, can be directly obtained by the Mori-Tanaka model as follows:
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Figure 6: Schematic diagram of the proposed two-step hierarchical micromechanics model for particle-reinforced porous
composites with interface effects.

C =
(
(1 − φ)Cm + φ

{
CvAdil

v

})
:
(
(1 − φ)I + φ

{
Adil

v

})−1
(36)

where Adil
v is the dilute strain concentration tensor for pore inclusions and is given by:

Adil
v =

[
I + Sv :

(
Cm

)−1
:
(
Cv − Cm

)]−1
(37)

with Sv being the Eshelby’s tensor of pores, which controls their geometry given by the pore aspect ratio κφ. For
illustrative purposes, Fig. 7 furnishes the effective shear µ and bulk K moduli of dry porous isotropic media as a
function of the porosity φ. In this case, pores are full of air and simply act as voids with bulk modulus Kv=0.013
GPa and negligible shear modulus µv=0.0 GPa. As an example, the matrix bulk and shear moduli are assumed as
Km=63.30 GPa and µm=17.10 GPa, and the pores are defined as spherical inclusions (κφ = 1). It is observed in
this figure that the effective elastic moduli substantially decrease with the increase in porosity and, therefore, these
results highlight the weakening effect of porosity on the overall stiffness of porous composites.
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20

30

40

50

60

70

Porosity, φ

[G
Pa

]

K
µ

Figure 7: Effective shear µ and bulk K moduli as functions of porosity for porous media containing voids (Km=63.30 GPa,
µm=17.10 GPa, Kv=0.013 GPa, µv=0.0 GPa, κφ=1).

Fig. 8 depicts the effective bulk modulus of unsaturated porous media versus the saturation degree. The elastic
bulk modulus of the water phase is assumed to be Kw=2.3 GPa, and its shear modulus is neglected µw=0.0 GPa.
Three different porosity levels are selected, namely φ=0.50, 0.55 and 0.60. As expected from previous analyses,
lower porosity contents yield higher stiffness values. With regard to the saturation degree, it is also noted that only
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slight variations are found for saturation degrees below approximately 0.8, whilst the overall stiffness experiences
rapid increases for higher saturation degrees up to the limit condition of saturated porosity, S = 1.
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Figure 8: Effective bulk modulus K versus saturation degree for partially saturated porous media (Km=63.30 GPa, µm=17.10
GPa, Kv=0.013 GPa, µv=0.0 GPa, Kw=2.3 GPa, µw=0.0 GPa, κφ=1).

3. Numerical results and discussion

This section presents a set of numerical results to evaluate the validity and effectiveness of the proposed
two-step hierarchical micromechanics approach for the modeling of unsaturated porous composites doped with
monodisperse particles with interface properties. The numerical tests are categorized into three subsections: Sub-
sections 3.1 and 3.2 investigate the elastic moduli of particle-reinforced composites with hard and soft interphases,
respectively, and Subsection 3.3 presents parametric analyses for particle-reinforced porous composites.

3.1. Particulate composites with hard interfaces

This first set of tests is intended to demonstrate the capabilities of the presented micromechanics approach
for predicting the mechanical properties of nano-modified composites with hard interphases. In particular, the
experimental results provided by Carballeira and Haupert [51] on the mechanical properties of epoxy resin doped
with titanium dioxide (TiO2) have been used as validation basis. Both the matrix and reinforcing phases are
assumed isotropic with elastic moduli Em=2436 MPa and Ep=283 GPa, and Poisson’s ratios νm=0.35 and νp=0.28
[27, 51]. Fig. 9 shows the comparison of the experimental data against the theoretical estimates. The results are
furnished in non-dimensional form through the stiffening efficiency of the particles, that is, the ratio between
the Young’s moduli of the resulting composite E and the matrix Em. For illustrative purposes, the predictions
disregarding the interphase regions, that is to say, the estimates provided by the conventional two-phase Mori-
Tanaka model, are depicted with dashed lines. It is noted that the latter approach substantially underestimates the
experimental results and, therefore, this fact evidences the existence of interphase regions with stiffer properties
than the hosting matrix material. In this case, the interfacial characteristics are defined at the nano-scale by
means of certain interatomic potentials between the inclusions and the surrounding matrix. The characterization
of such interactions would require the use of sophisticated experimental techniques such as nano-indentation or
Scanning Electron Microscopy (SEM), or computationally demanding atomistic-based simulations. For the sake
of simplicity, the thickness t and elastic modulus Ei of the interphase regions have been estimated through a Least
Squares Nonlinear Regression (LSNR) of the proposed approach with respect to the experimental data. As a
result, values of t=24 nm Ei=44.38 GPa have been obtained. It can be observed in Fig. 9 that the estimates of
the present approach with fitted interphase parameters are in very close agreements with the experimental data.
As a conclusion, these results demonstrate the key role of the interfacial effects on the overall elastic moduli of
nano-sized particle-reinforced composites.
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Figure 9: Prediction of the stiffening efficiency E/Em of epoxy resin doped with TiO2 nanoparticles versus the filler volume
fraction fp (Deq=200 nm, κ=1.0, Em=2436 MPa, νm=0.35, Ep=283 GPa, νp=0.28, LSNR stands for the least squares nonlinear
regression of the present approach with respect to the experimental data).

In order to give some insight into the structure of the presented approach, Figs. 10 (a) and (b) investigate the
effect of the particle-to-matrix stiffness Ei/Em and thickness-to-particle size λ = t/Deq ratios, respectively. In the
first analysis in Fig. 10 (a), λ is fixed at 0.5, and values of 0.1, 0.5, 2.0 and 3.0 are chosen for Ei/Em. It is observed
that the particle stiffening efficiency dramatically increases when Ei/Em > 1, that is to say, when the interphases
are stiffer than the matrix. In the particular case of Ei/Em=1.0, the model degenerates into the standard two-phase
Mori-Tanaka model. Conversely, when Ei/Em < 1, the interphases are less stiff than the matrix material and,
therefore, the stiffening efficiency decreases. On the other hand, Fig. 10 (b) analyzes the effect of λ when Ei/Em

is fixed at 6.38. In particular, values of λ = t/Deq = 0.05, 0.10, 0.15, and 0.20 are chosen. According to Eq. (31),
the volume fraction of hard interphases depends upon the size and aspect ratio of the inclusions. Then, given
that in this case the interphases have been assumed to be stiffer than the matrix material, as λ increases, so does
the particle stiffening efficiency Ei/Em. It is also noted that, when the thickness of the interphases approaches
0, so does λ and the model degenerates into the classical two-phase Mori-Tanaka approach. The effect of the
particle volume fraction fp on the interphase volume fraction fi is further investigated in Fig. 11. In a similar way
to Fig. 10 (b), different λ ratios are selected. It is clearly observed that the volume fraction of non-overlapping
interphases is monotonically increasing with the particle volume fraction. Furthermore, higher λ ratios imply
thicker interphases and, therefore, higher interphase volume fractions. As a consequence, the macroscopic elastic
modulus increases more rapidly with the filler content for larger interphase thicknesses, what gives an explanation
to the previous results in Fig. 10 (a).
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Figure 10: Stiffening efficiency E/Em of epoxy resin doped with TiO2 nanoparticles with varying Ei/Em (a) and λ = t/Deq (b)
ratios (Deq=200 nm, κ=1.0, Em=2436 MPa, νm=0.35, νp=0.28).
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Figure 11: Volume fraction of hard interphases fi versus volume fraction of particles fp with different λ = t/Deq ratios (Deq=200
nm, κ=1).

Finally, the effect of the particle-to-matrix stiffness ratio Ep/Em on the particle stiffening efficiency E/Em of
epoxy/TiO2 is analyzed in Fig. 12. First, different particle volume fractions fp are considered in Fig. 12 (a). It is
noted that the differences between the present three-phase approach and the two-phase Mori-Tanaka model (plotted
with dashed lines) get consistently reduced with lower particle contents. In this figure, two major regions can be
distinguished as follows. The first region comprises low Ep/Em ratios, and E/Em is shown to be continuously
increasing until it reaches an asymptotic limit. In the second region, defined by high Ep/Em ratios, only slight
increases in E/Em are observed. The influence of the filler aspect ratio κ on the macroscopic elastic modulus is
also studied in Fig. 12 (b). In this case, the filler content is fixed at fp = 5%, and oblate (κ < 1) and prolate
(κ > 1) ellipsoidal particles are investigated. Both oblate and prolate particles tend to an asymptotic limit as the
ratio Ep/Em increases. Furthermore, it is noted that spherical particles lead to the lowest stiffening efficiencies.

12



0 1 2 3 4

1.00

1.05

1.10

1.15

κ=1, Ei=18.22Em

log(Ep/Em)

E
/E

m

(a)

fp=0.01 fp=0.02 fp=0.03
No-interface

0 1 2 3 4

1.00

1.10

1.20

1.30

1.40

fp=5 %, Ei=18.22Em

log(Ep/Em)

E
/E

m

(b)

κ=0.25 κ=0.50 κ=1.00
κ=3.00 No-interface

Figure 12: Stiffening efficiency E/Em versus particle to matrix stiffness ratio Ep/Em for varying filler volume fraction fp (a),
and filler aspect ratio κ (b) (t = 24 nm, Deq=200 nm, Em=2436 MPa, νm=0.35, νp=0.28).

3.2. Particulate composites with soft interfaces

In this second set of tests, particle-reinforced composites with overlapping interphases are studied with the
proposed micromechanics approach. Firstly, the experimental results reported by Yang [26] on the elastic prop-
erties of normal concrete have been selected as validation benchmark. The Young’s modulus of cement paste is
Em=20.76 GPa and its Poisson’s ratio νm = 0.2 , whilst the Young’s modulus of the aggregates is Ep = 80 GPa and
its Poisson’s ratio νp = 0.21 [26]. In a similar way to the previous analysis, Fig. 13 depicts the comparison of the
experimental data against the theoretical estimates with and without interface effects. In this case, it is noted that
the two-phase Mori Tanaka model (estimates disregarding the interface effects) overestimates the experimental
data. This circumstance evidences the existence of Interfacial Transition Zones (ITZs) that weaken the overall
stiffness of the particulate system, that is, soft interphases. The origin of these regions lies in the packing of the
cement grains against aggregates, and such regions are characterized by a local increase in porosity and smaller
cement particles. Due to the difficulty in obtaining the elastic properties of ITZs, the proposed micromechanics
approach has been fitted by LSNR, leading to values of interphase thickness of t=69 µm, and interphase Young’s
modulus of Ei=14.42 GPa which, indeed, is around one fifth of the Young’s modulus of the aggregates. Using
these fitted interphase parameters, very close agreements can be observed between the theoretical and experimen-
tal data.
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Figure 13: Prediction on the stiffening efficiency E/Em of concrete with interface effects (Deq=450 µm, κ=1.0, Em=20.76 GPa,
νm=0.20, Ep=80 GPa, νp=0.21, LSNR stands for the least squares nonlinear regression of the present approach with respect to
the experimental data).

The influence of the filler aspect ratio κ on the particle stiffening efficiency E/Em of normal concrete with
interface effects is investigated in Fig. 14. In addition, different thickness-to-particle size ratios λ = t/Deq ranging
from 0.1 to 0.5 are included. It is noted that, contrary to the previously reported results in Fig. 12, spherical
particles lead to the largest macroscopic stiffness values for every λ ratio. In this case, this behavior finds an
explanation in the stiffer properties of the matrix in comparison to the interphase layers (Ei/Em = 0.69). Moreover,
it is also observed that higher λ ratios, that is to say, thicker interphases, lead to less stiff composites.
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Figure 14: Stiffening efficiency E/Em of concrete with interface effects versus filler aspect ratio κ and varying λ = t/Deq ratios
(Deq=450 µm, Em=20.76 GPa, νm=0.20, Ep=80 GPa, νp=0.21).

Finally, the dependence of the volume fraction of soft interphases fi on the filler aspect ratio κ and filler
content fp is studied in Figs. 15 (a) and (b), respectively. In the first case in Fig. 15 (a), the filler content is fixed at
fp = 10% and, in the second case in Fig. 15 (b), it is assumed that particles are spherical inclusions κ = 1. In both
cases, different values of λ are analyzed, namely 0.1, 0.2, 0.3, 0.4 and 0.5. It is noted that, consistently, higher
interphase volume fractions are obtained for higher λ ratios or, equivalently, thicker interphases. With regard
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to Fig. 15 (a), it is found that the volume fraction of soft interphases fi exhibits minimum values for spherical
particles κ = 1. In the case of oblate particles 0 < κ < 1, the interphase volume fraction drastically decreases from
maximum values corresponding to platelet particles κ → 0. Conversely, in the case of prolate particles κ > 1,
only slow increases are found for higher particle aspect ratios. With regard to Fig. 15 (b), it can be observed
that the interphase volume fraction increases until a certain particle content where maximum values are registered.
Afterward, as the filler content continues to grow, the volume fraction of the interphases decreases until zero where
all the volume is occupied by the particles. It is interesting to note that, once the maximum values are reached,
all the curves converge to the same straight line corresponding to fi + fp = 1. At this point, the interphases and
particles completely fill the composite, that is, fm = 0, and, as the particle content continues to increase, part of
the interphase region begins to be occupied by the particles. Following this reasoning, it can be seen that larger λ
ratios reach this saturation point at lower filler contents.

0.01 0.1 1 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp=10 %

Particle aspect ratio, κ

In
te

rp
ha

se
vo

lu
m

e
fr

ac
tio

n,
f i

(a)

λ=0.5
λ=0.4
λ=0.3
λ=0.2
λ=0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
fp +

fi = 1
κ=1

Particle volume fraction, fp

In
te

rp
ha

se
vo

lu
m

e
fr

ac
tio

n,
f i

(b)

Figure 15: Soft interphase volume fraction fi versus filler aspect ratio κ (a) and particle volume fraction fp (b) (Deq=450 µm).

3.3. Particle-reinforced unsaturated porous composites

In this last section, the effective properties of particle-reinforced unsaturated porous composites with interface
effects are computed by the proposed two-step hierarchical micromechanics approach as explained in Section 2.3.
Firstly, the theoretical estimates of the macroscopic stiffness of porous media are benchmarked against experi-
mental data in Fig. 16. The experimental results reported by Yaman et al. [52] on normal concrete has been taken
as validation basis. In this case, concrete is assumed to be homogeneous and isotropic with dry and saturated
Young’s moduli Edry

m =45.35 GPa and E saturated
m =46.62 GPa (Table 4 in [52]), respectively, and Poisson’s ratio

νm = 0.2. Three different pore aspect ratios are also selected, namely κφ = 0.3, 0.4, and 1.0. Experimental results
are plotted for both dry and saturated conditions with varying porosity degrees (Table 6 in [52]). It is noted that the
results for oblate pores with κφ = 0.4 fit considerably well the experimental data, although slight discrepancies can
be observed for saturated conditions. These differences are ascribed to the consideration in the proposed model
of porosity only as entrained pores (non-active pores), disregarding capillary pores (active pores) which would
require a more sophisticated poroelastic definition. Overall, it can be extracted from this figure, in accordance
with the previously discussed Figs. 7 and 8, that porosity has a substantial weakening effect on the macroscopic
stiffness and that saturated composites exhibit slightly stiffer behaviors.
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Figure 16: Young’s modulus of concrete versus porosity (Edry
m =45.35 GPa, E saturated

m =46.62 GPa, νm=0.2).

In the remainder of this section, normal concrete is selected for illustrative purposes. In particular, concrete is
assumed to be a composite material consisting of cement and aggregates as matrix and particle phase constituents,
respectively. The material properties of the different phases have been taken from the previous subsection. The
influence of the volume fraction of aggregates fp on the macroscopic Young’s modulus E of dry concrete is
investigated in Fig. 17. Furthermore, different porosity levels are studied, namely φ = 0 (non-porous), 0.1, 0.2,
and 0.3. The predictions computed by the conventional two-phase Mori-Tanaka model without interface effects
are also depicted with dashed lines. In accordance with the previous results, it is clearly observed that porosity
induces substantial softening effects on the macroscopic stiffness. For instance, a porosity value of 30% leads to
reductions of the effective Young’s modulus up to about 50% for an aggregate volume fraction of 0.8. Furthermore,
Figs. 18 (a) and (b) show the effective bulk and shear moduli of dry concrete as a function of porosity with different
contents of agglomerates, respectively. Interestingly, it is noted that the interface effects are especially noticeable
in the macroscopic shear modulus.
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Figure 17: Prediction on the effective Young’s modulus E of dry concrete with soft interface effects and different porosity
values (Deq=450 µm, κ=1.0, Em=20.76 GPa, νm=0.20, Ep=80 GPa, νp=0.21, Ei=14.42 GPa, t=69 µm, κφ = 1.0).
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Figure 18: Effective bulk K and shear moduli G of dry concrete with soft interface effects versus porosity (Deq=450 µm, κ=1.0,
Em=20.76 GPa, νm=0.20, Ep=80 GPa, νp=0.21, Ei=14.42 GPa, t=69 µm, κφ = 1.0).

Finally, the effect of water saturation of pores is investigated in Figs. 19 and 20. Firstly, Figs. 19 (a) and (b)
depict the macroscopic bulk and shear moduli of unsaturated concrete as a function of the pore aspect ratio κφ,
respectively. In these tests, an aggregate volume fraction of 10% and a porosity of 30% are selected, as well as
different saturation levels, namely S = 0.00, 0.80, 0.90 and 0.95. It is first noted that both the overall bulk and
shear moduli rapidly decrease for every saturation degree until a pore aspect ratio around 10. Then, the overall
stiffness reaches an asymptotic value for increasing pore aspect ratios. With regard to the water saturation degree
of pores, only noticeable effects can be found in the macroscopic bulk modulus due to the null shear stiffness of
pores. Also, in accordance with the previous results, higher levels of water saturation of the pores lead to a stiffer
behavior of the composites. Finally, Fig. 20 furnishes the effective Young’s modulus E of unsaturated concrete
with soft interface effects as a function of the water saturation degree S for different aggregate volume fractions,
namely fp = 0, 1, 3 and 5%. It is first noted that higher volume fractions of aggregates yield larger macroscopic
Young’s moduli. Moreover, in a similar way to the results previously shown in Fig. 5, the saturation of pores
only exhibits significant stiffening effects for saturation degrees above 0.8. For instance, in the case of concretes
loaded with 5% of aggregates, the Young’s modulus of the saturated system is about 5% higher than that of the
dry system.
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Figure 19: Effective bulk K and shear moduli G of unsaturated concrete with soft interface effects versus pore aspect ratio κp

(Deq=450 µm, κ=1.0, Em=20.76 GPa, νm=0.20, Ep=80 GPa, νp=0.21, Ei=14.42 GPa, t=69 µm, fp=10%, φ=30%, κφ = 1.0).

17



0.0 0.2 0.4 0.6 0.8 1.0

11.2

11.4

11.6

11.8

12.0

Water saturation degree, S

Y
ou

ng
’s

m
od

ul
us

,E
[G

Pa
] fp=0%

fp=1%
fp=3%
fp=5%

Figure 20: Effective Young’s modulus E of unsaturated concrete with soft interface effects versus saturation degree S (Deq=450
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4. Conclusions

In this work, a two-step hierarchical micromechanics approach has been presented for the modeling of particle-
reinforced unsaturated porous composites with interface effects that find applications in the field of smart multi-
functional structural materials. Firstly, particle-reinforced matrices are homogenized within a three-phase ho-
mogenization scheme (matrix/interphase/particle) by means of a double-inclusion method. Herein, both soft
(overlapping) and hard (non-overlapping) interfaces are accounted for by finite interphases of constant thick-
ness surrounding the particles. Furthermore, the presence of unsaturated pores is taken into account as equivalent
homogeneous inclusions with elastic properties computed by the Reuss iso-stress approximation. Finally, the sec-
ond step consists of the application of the Mori-Tanaka model to compute the macroscopic properties, considering
the matrix/interphase/particle composites as homogeneous matrix phases and equivalent homogeneous pores as
embedded ellipsoidal inclusions. Extensive numerical tests have been provided to demonstrate the effectiveness
of the proposed micromechanics approach. First, both comparison against experimental data and sensitivity anal-
yses have been presented for nano-sized particle-reinforced composites with hard interphases. Interestingly, a
nonlinear regression fitting has been shown effective to determine the uncertain interphase parameters, includ-
ing the interphase thickness and elastic modulus. Afterward, a similar scheme of results has been presented for
the modeling of micro-sized particle-reinforced composites with soft interphases. Finally, numerical results have
been also provided to give some insight into the constitutive relations of particle-reinforced unsaturated porous
composites. Overall, the present approach is envisaged to provide a valuable numerical tool to quantitatively
predict the macroscopic stiffness of particle-reinforced porous composites, including complex micromechanical
features such as interface effects and unsaturated porosity, within a tractable and computationally inexpensive
mathematical framework.
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