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Abstract

The main contribution of this work lies in a critical comparison of different mean-field homogenization ap-
proaches for the study of carbon nanotube-reinforced polymers with waviness and agglomeration effects. In partic-
ular, this paper focuses on the consistency of predictions in terms of diagonal symmetry of the constitutive tensors
and comparison against theoretical bounds. The analysis comprises general axisymmetric orientation distributions
of fillers, both planar sinusoidal and helical wavy fillers, as well as different agglomeration schemes by means of
a two-parameter agglomeration model. The results demonstrate that waviness and agglomeration simultaneously
weaken the macroscopic stiffness of composites. The results also reveal that the widely used Mori-Tanaka method
fails to simulate the coupled effect of these two phenomena and, therefore, it is necessary to apply extended ap-
proaches with consideration of ad hoc Eshelby’s tensors that account for particular wavy microstructures. A case
study of carbon nanotube-reinforced skew plates is finally presented to illustrate the coupled effect of waviness
and agglomeration on the macroscopic vibrational behavior.

Keywords: Agglomeration, Carbon nanotubes, Diagonal symmetry, Mori-Tanaka method, Skew shells,
Waviness

1. Introduction

Over the last decade, numerous publications have reported about the outstanding enhancements of the me-
chanical properties of polymeric matrices doped with small concentrations of Carbon Nanotubes (CNTs) [1, 2].
Since the mechanical behavior of CNT-reinforced composites is crucially dominated by their microstructure, a re-
liable dimensioning has to take into consideration their properties as accurately as possible. Three major features
are typically distinguished, namely filler statistical orientation distribution, waviness, and agglomeration. Firstly,
fillers orientations are governed by complicated flow fields induced by the manufacturing process. Notwithstand-
ing there exists a number of techniques of aligning CNTs (see e.g. [3–5]), most procedures lose effectiveness
when embedding the nanotubes throughout the matrix material [6], and, thus, CNTs orientations are typically of
statistical nature. Secondly, it has been extensively reported in the literature that due to a high aspect ratio, up to
106 [1], as well as a very low bending stiffness, CNTs usually exhibit a certain degree of waviness [7, 8]. Finally,
given the electronic configuration of the tube walls and their high specific surface area, CNTs tend to agglomerate
and form bundles due to large van de Waals (vdW) attraction forces [9–11]. Although there exists a variety of
techniques to improve the dispersion of fillers, including the use of dispersants or sonication, the achievement of
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uniform CNT dispersions is still an intricate task. On the whole, accurate homogenization approaches must allow
for considering the coupled effect of waviness and agglomeration.

In order to calculate the effective material properties using microstructural data, several homogenization meth-
ods have been proposed in the literature. Since Molecular Dynamics (MD) and multi-scale finite element simula-
tions [12–15] are limited to systems with a small number of atoms due to computational limitations, approaches
based on the mean-field homogenization theory have drawn considerable attention. In particular, a large number
of recent works in the realm of CNT nanocomposites have been undertaken using the Extended Rule of Mixtures
(EROM) [16–18] and the Mori-Tanaka (MT) method [19–21]. The EROM is based upon a modification of the
classical Voigt (VT) and Reuss (RS) bounds by the so-called efficiency parameters in order to match the results
from a MD or multi-scale simulation [22]. Although many authors have been attracted by the simplicity of this ap-
proach, the EROM requires a more sophisticated simulation to tune the efficiency parameters and can only model
singular filler configurations. The MT model, on the contrary, allows for the simulation of more complex config-
urations such as misoriented distribution of fillers, as well as curviness and agglomeration effects [23]. However,
although the MT method apparently provides a favorable theoretical framework for the consideration of general
arrangements of CNTs, a few research works in the literature report that the MT method may provide diagonally
asymmetric stiffness tensors, as well as may violate the Hashin-Shtrikman-Walpole (HSW) bounds [24–27]. In
the light of these deficiencies, some authors have sought alternative approaches. Amongst those, it is worth noting
the contribution by Ferrari [28], and later extended by Dunn et al. [29] (DUN), who proposed to use the strain-
concentration tensor given by that of the MT method for perfectly aligned fibers. Another relevant work was the
one by Schjødt-Thomsen and Pyrz (STP) [30] who proposed a novel micromechanics approach based upon the di-
rect integration of the MT stiffness tensor for perfectly aligned inclusions. More recently, Zhupanska [31] studied
the applicability of the MT method to estimate the elastic moduli of buckypaper doped with Single-Walled CNTs
(SWCNTs). In the case of randomly oriented SWCNTs, his results showed that the MT method only provides
results comprised between the HSW bounds for moderate filler contents, yielding inadmissible results for high
filler concentrations.

All studies agree on the detrimental impact of curviness on the mechanical properties of CNT/polymer nanocom-
posites. Finite element simulations were proposed by Fisher et al. [32] and Bradshaw et al. [33] to analyze the
planar sinusoidal parametrization of CNTs proposed by Hsiao and Daniel [34]. Another noteworthy contribution
was done by Shi et al. [23] who extended the MT method for three-dimensional helical CNTs. In that work, their
results showed that composites doped with aligned wavy CNTs experience critical reductions in the longitudi-
nal modulus, whilst the lateral moduli slightly increase. Yanase et al. [35] proposed an ad hoc Eshelby’s tensor
(YNS) to account for planar sinusoidal CNTs. In their model, the integration of localized changes in orientation
was combined with the MT model to derive closed-form solutions of the effective stiffness. Matveeva et al. [36]
studied both sinusoidal and helical models by finite element-based homogenization methods, analytical models
and MD simulations. It was shown that both geometries significantly reduce the longitudinal elastic stiffness of
the composite for fully aligned wavy fillers.

A second important feature of the microstructure is related to the tendency of CNTs to agglomerate in bundles.
A noticeable contribution in this respect is the work by Shi et al. [23] who introduced a two-parameter agglomer-
ation model. That approach consists of considering agglomerates as ellipsoidal inclusions so that one can conduct
the homogenization process in two separate steps. Their results demonstrated substantial decreases in the elastic
moduli of composites, what supports the widespread idea of agglomeration as microstructural defects. Although
only a few works report about this issue, the two-parameter agglomeration method has been widely accepted. For
instance, numerous efforts have been made to study the influence of agglomeration on the mechanical response of
CNT-reinforced structural elements (see e.g. [37–40]).

In this study, a critical comparison of different mean-field homogenization approaches for the estimation of the
elastic moduli of SWCNT-reinforced polymer composites is presented. For different filler axisymmetric orienta-
tion distributions, the suitability of the MT, SC, DUN and STP approaches is assessed in terms of diagonal symme-
try and comparison against the HSW and VT/RS bounds. Microstructural features such as CNT volume fraction,
aspect ratio, and chirality are also investigated. Afterward, approaches concerning waviness effects, namely the
MT, STP and YNS models, are analyzed for both sinusoidal and helical geometries. The influence of CNT ag-
glomeration is studied through the two-parameter agglomeration framework. Most studies limit themselves to
the consideration of waviness and agglomeration effects acting independently. However, both phenomena are si-
multaneously found in practice. The results of this work show that the MT method fails to simulate the coupled
effect of these two phenomena, given that its estimates for random filler arrangements are insensitive to wavi-
ness. In addition, it is evidenced that the MT predictions for composites doped with fully aligned wavy CNTs are
highly asymmetric. By considering the combination of the YNS approach and the two-parameter agglomeration
model, it is noted that the weakening effects of waviness and agglomeration add up when acting simultaneously.
In addition, comparison analyses with experimental data are presented to illustrate the importance of the coupled
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Table 1: Abbreviations used throughout the present paper for proper handling.

DE Dilute Eshelby
MT Mori-Tanaka
SC Self-consistent
STP Schjødt-Thomsen and Pyrz
DUN Dunn
YNS Yanase
L-HSW Hashin-Shtrikman-Walpole lower bound
U-HSW Hashin-Shtrikman-Walpole upper bound
RS Reuss bound
VT Voigt bound

effect of waviness and agglomeration for moderate filler contents. Finally, a case study is also presented to illus-
trate the coupled weakening effect of filler waviness and agglomeration on the macroscopic dynamic behavior of
CNT-reinforced skew plates.

The remainder of this paper is organized as follows: Section 2 concisely presents the micromechanics ap-
proaches used in this research work. Section 3 presents the used approaches for analyzing the waviness effects,
both for planar sinusoidal and helical geometries. Section 4 describes the basis of the two-parameter agglomera-
tion model. Finally, Section 5 includes the numerical results and discussion, and Section 6 concludes the paper.

Throughout the paper, a boldface letter stands for a fourth-order tensor, A ≡ Ai jkl, and a colon between two
tensors denotes inner product, A : B ≡ Ai jklBklmn

Abbreviations. To distinguish the regarded methods, several abbreviations have been introduced as a reference
for readership in Table 1.

2. Mean-field micromechanics modeling

2.1. Fundamentals of effective medium theory

Let V denote the Representative Volume Element (RVE) of a polymer matrix doped with a sufficient num-
ber of CNTs in such a way that the overall properties of the composite are statistically represented [41]. It is
assumed that CNTs are transversely isotropic inclusions dispersed according to an arbitrary Orientation Distri-
bution Function (ODF). The matrix is defined as isotropic and perfect bonding between phases is assumed. In
accordance with the notation of Hill [42] and Walpole [43], the tensor of elastic moduli of CNTs, C f , can be
noted as C f = (2kr, lr, nr, 2mr, 2pr), where kr, lr, mr, nr and pr are fiber Hill’s elastic moduli; kr is the plane-
strain bulk modulus normal to the fiber direction, nr is the uniaxial tension modulus in the fiber direction, lr is
the associated cross modulus, mr and pr are the shear moduli in planes normal and parallel to the fiber direction,
respectively. Similarly, the matrix phase can be noted as Cm = (3κm, 2µm), with κm and µm being the matrix’s bulk
and shear moduli, respectively. In conjunction with the used notations, the constitutive matrix for inclusions with
transversely isotropic properties (with x′′1 -x′′3 as the isotropy plane) takes the form:

C f =



kr + mr lr kr − mr 0 0 0
lr nr lr 0 0 0

kr − mr lr kr + mr 0 0 0
0 0 0 pr 0 0
0 0 0 0 mr 0
0 0 0 0 0 pr


(1)

In order to describe the filler orientations, a reference local coordinate system K′′ ≡
{
0; x′′1 x′′2 x′′3

}
is fixed in

each fiber. In this paper, it is assumed that all the inclusions are equal and defined as ellipsoids with aspect ratios
a1 = a3 < a2, being the semi-major axis aligned in the local x′′2 -axis. In general, three Euler angles, θ, γ and
ψ, are required to describe the orientation of any orthogonal coordinate system with respect to the global one,
K≡ {0; x1x2x3}. However, since x′′2 -axis is parallel to the axis of rotational symmetry of the ellipsoids, a rotation
around this axis produces no change and ψ can be thus chosen arbitrarily, e.g. ψ=0. The resultant configuration is
shown in Fig. 1, where the polar and azimuthal angles, θ and γ, are defined by:

θ ≡ x̂1x′1, γ ≡ x̂′3x′′3 (2)

The base vectors ei and e′′i of the global and local coordinate systems are related via the transformation matrix
g as e′′i = gi je j. The transformation matrix g is defined by the successive rotations around x2 and x1 axes, R1(γ)
and R2(θ), as:
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g = R1(γ)R2(θ) =

 cos(γ) 0 sin(γ)
− sin θ sin(γ) cos(θ) cos(γ) sin θ
− cos(θ) sin(γ) − sin θ cos(θ) cos(γ)

 (3)

θ

γ

x
1

x
2

x
3

x
3

,,

x
2

,,

x
1

,,

x
3

,

x
3

,

x
1

,

ψ

a
3

a
2

≡

≡

a
1

Figure 1: Euler angles defining the relation between the orientation of an ellipsoidal inclusion with an aspect ratio a1 = a3 < a2

in the local coordinate system,
{
0; x′′1 x′′2 x′′3

}
and the global coordinate system, {0; x1 x2 x3}.

The coordinate transformation of a tensor P into the local coordinate system K′′ is explicitly represented in
terms of the transformation matrix as P′′i jlk = gipg jqgkrglsPpqrs. Due to the high number of inclusions contained
in the RVE, the description of their orientation field is of statistical nature. The probability of a filler lying in an
infinitesimal range of angles [θ, θ + dθ]×[γ, γ + dγ

]
is given by Ω(θ, γ) sin θdθdγ, with Ω(θ, γ) being the ODF. The

integration of any ODF weighted function F(θ, γ) over all possible orientations in the Euler space, also referred to
as the orientational average of F, 〈F〉, is defined through:

〈F〉 =

∫ 2π

0

∫ π/2

0
F(θ, γ)Ω(θ, γ) sin θdθdγ (4)

Throughout this work, indexes “ f ” and “m” refer the corresponding quantity to the portions of V occupied
by the inclusions and the matrix, respectively. Moreover, the volume fractions occupied by the inclusions and the
matrix are denoted as fr and fm = 1 − fr, respectively. In addition, the relationship between the average strain in
the inclusions and in the matrix phase is governed by the strain concentration tensor A as [41]:

ε f
= A : εm (5)

Let us note that the tensor A is not necessarily diagonally symmetric, Ai jkl , Akli j, although minor symmetry
is always guaranteed, that is Ai jkl = A jikl = Ai jlk. The rule of mixtures between the strain and stress tensors of
the constituent phases, and (5), along with the elastic constitutive laws for both phases, that is σ f

= C f : ε f and
σm

= Cm : εm, suffice to identify the effective stiffness tensor C as [30]:

C = Cm + fr
〈(

C f − Cm

)
: A

〉
(6)

Different assumptions on the tensor A correspond to different effective medium theories.

2.2. Mori-Tanaka approach

The Mori-Tanaka (MT) method [44] extends the theory of Eshelby [45, 46], restricted to one single inclusion
embedded in an isotropic semi-infinite medium, to the case of a finite domain doped with multiple inhomo-
geneities. The Eshelby’s equivalent inclusion method (DE) demonstrated that the strain concentration tensor for
the limit case of a single anisotropic ellipsoidal inhomogeneity in an infinite matrix, Adil, reads:

Adil =
[
I + S : C−1

m :
(
C f − Cm

)]−1
(7)

where I is the identity tensor, and S is the Eshelby’s tensor, well documented in [45, 47]. Then, at non-dilute filler
concentrations, Mori and Tanaka proposed the combination of the equivalent elastic inclusion idea of Eshelby,
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and an interaction between particles to be given by the concept of average stress in the matrix. According to
Benveniste’s revision [48], the strain concentration tensor AMT provided by the MT method writes:

AMT = Adil :
[
(1 − fr)I + fr

〈
Adil

〉]−1
(8)

2.3. Self-consistent effective-medium approach

At high concentrations of inhomogeneities, the far-field interaction hypothesis of the MT method becomes
uncertain. Typically, an alternative strategy for obtaining mean-field estimates of the properties of non-dilute
inhomogeneous materials is the Self-Consistent (SC) method. In this case, the interaction between phases is
approximated by assuming that inclusions are embedded in an effective medium with yet unknown elastic tensor
C∗. Hence, the SC estimates of the effective stiffness tensor write [42]:

CSC = C∗ + fr
〈(

C f − C∗
)

: ASC
〉

(9)

where ASC reads:

ASC =
[
I + S∗

(
C∗

)−1 :
(
Cr − C∗

)]−1
(10)

Since C∗ is not known a priori, the SC scheme is an implicit method and must be solved in an iterative way.
An additional change is that the Eshelby’s tensor S ∗ is not a function of the matrix stiffness, Cm, but of the
effective stiffness tensor, C∗, which is transversely isotropic. Expressions of the Eshelby’s tensor for an ellipsoid
of revolution in a transversely isotropic medium were given by Chou et al. [49] and by Lin and Mura [50].

2.4. Extended Mori-Tanaka approaches

As previously discussed, a few research works in the literature report that the MT method may provide di-
agonally asymmetric stiffness tensors, as well as may violate the HSW bounds [24–27]. Note that the effective
stiffness tensor CMT is diagonally symmetric if and only if so is the second term on the right side of Eq. (6) for
non-vanishing values of fr. Nonetheless, this condition is not usually fulfilled for general two-phase composites,
what results in physically unacceptable stiffness tensors. Therefore, the use of the MT model is only justified in
cases where symmetry is guaranteed such as [26]: (i) random orientation distribution of inclusions, (ii) perfect
alignment of inclusions, (iii) isotropic inclusions, or (iv) spherical inclusions. A second flaw of the MT method
concerns its questionable predictions at high filler concentrations. In particular, the resulting CMT from Eqs. (6)
and (8) depends on the matrix moduli for fr approaching 1. In view of these limitations, some authors have
proposed alternative approaches. In this paper, the extended MT approaches proposed by Dunn et al. [29] and
Schjødt-Thomsen and Pyrz [30] are compared.

2.4.1. Dunn approach
Following the studies of Ferrari [28], Dunn et al. [29] proposed to use the strain-concentration tensor given by

the MT concentration tensor for perfectly aligned fillers as follows:

ADUN = Adil :
[
(1 − fr)I + frAdil

]−1
(11)

thus, the stiffness tensor for two-phase composites with inclusions of identical shape reads:

CDUN = Cm + fr
[〈

C f ADUN
〉
− (1 − fr)

〈
ADUN

〉]
(12)

2.4.2. Schjødt-Thomsen and Pyrz approach
Another prominent alternative is the one proposed by Schjødt-Thomsen and Pyrz (STP) [30]. This approach

utilizes a direct integration of the MT stiffness tensor for the case of perfectly aligned fillers with respect to the
ODF as:

CSTP =

∫ 2π

0

∫ π/2

0
C(θ, γ)Ω(θ, γ) sin θdθdγ (13)

with C(θ, γ)i jkl = gipg jqgkrglsC(0, 0)MT
pqrs.
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Figure 2: Planar sinusoidal (a) and helical model (b) of a curved CNT.

3. Modeling of CNT waviness

In order to characterize the wavy state of CNTs, different curved geometries have been proposed in the lit-
erature such as planar sinusoidal curves [32, 34], helixes [23, 51], and polylines with straight segments [52]. In
this work, planar sinusoidal and helical geometries, as sketched in Figs. 2 (a) and (b), respectively, are studied. In
order to compute the overall properties of CNT/polymer composites with waviness effects, three different homog-
enization approaches are compared, namely the MT method, the extension of the STP approach for wavy CNTs,
and the YNS approach.

3.1. Planar sinusoidal nanotubes
The planar sinusoidal approach in Fig. 2 (a) is defined in the x′1− x′2 plane by its amplitude, A, and wave length,

λ, as:

x′3 = 0, x′2 = x′2, x′1 = A cos
2πx′2
λ

x′2 ∈ [0, λ] (14)

3.1.1. Mori-Tanaka approach
The application of the MT framework to the study of wavy CNT-reinforced composites was first conducted

by Shi et al. [23] for the analysis of helical nanotubes. The main hypothesis of this approach is that, when the
filler wavelength becomes far larger than its amplitude, the average strain in the filler section approaches that of an
infinitely long straight fiber. Hence, the average strain at every differential slice, dx′2, can be estimated as that of
an infinitely long straight fiber oriented at an angle α(x′2). On this basis, the approach proposed by Shi et al. [23]
can be extended to planar sinusoidal CNTs as follows:

CMT =

[
fr

Vc

∫ λ

0

(
Cr(x′2) : A(α(x′2), 0) : C−1

m

)
dVc + fmI

]
:

:
[

fr
Vc

∫ λ

0

(
A(α(x′2), 0) : C−1

m

)
dVc + fmC−1

m

]−1 (15)

with Vc being the volume of a CNT given by:

Vc =
πd2

c

4

∫ λ

0

dx′2
cosα(x′2)

=
πd2

c

4
Iv (16)

where dc is the diameter of the CNTs. The angle α(x′2) in Eq. (15) can be obtained by differentiating Eq. (14),
what yields:

α(x′2) = tan−1
[
dx′1
dx′2

]
= tan−1

[
−2πA

λ
sin

(
2πx′2
λ

)]
(17)
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3.1.2. Schjødt-Thomsen and Pyrz approach
The direct integration of the STP approach can be also applied in this context integrating the stiffness tensor

along the curved trace as:

CSTP =
1
Iv

∫ λ

0

C(α(x′2), 0)
cosα(x′2)

dx′2 (18)

being C(α(x′2), 0) the MT estimate for straight fibers with polar angle α(x′2) given in Eq. (17).

3.1.3. Ad hoc Eshelby’s tensor approach
An ad hoc Eshelby’s tensor to account for waviness effects was proposed by Yanase (YNS) et al. [35]. Ac-

cording to this model, the effective stiffness of wavy CNT-reinforced composites is evaluated by the following
integral:

C =
1
Iv

∫ λ

0

C∗(α(x′2), 0)
cosα(x′2)

dx′2 (19)

with C∗ being the solution of the Eshelby’s equivalent problem as:

C∗ = Cm + fr
(
C f − Cm

)
: Adil (20)

In order to reproduce Eq. (19) with the Eshelby’s equivalent inclusion method, an ad hoc Eshelby’s tensor, S,
can be evaluated as follows:

S = lim
fr→0

[
fr

(
(Cm)−1 : C − I

)−1 −
(
C f − Cm

)−1
: Cm

]
(21)

where the limit is taken to exclude the far-field interaction. Moreover, if the wavy fibers are randomly oriented,
the ad hoc Eshelby’s tensor of Eq. (21) can be integrated around the alignment axis, x′2:

S∗ =
1

2π

∫ 2π

0
S(0, γ)dγ (22)

Now, the effective stiffness of wavy CNT-reinforced composites at non-dilute regimes can be computed on the
basis of the MT assumption considering the following dilute strain concentration tensor:

Adil,YNS =
[
I + S∗ : C−1

m :
(
C f − Cm

)]−1
(23)

3.2. Helical nanotubes
The helical curve is parametrized by its radius, A, spiral angle, θw, and polar angle, δ, as:

x′1 = A sin δ, x′2 = x′2, x′3 = A cos δ x′2 ∈ [0, λ] (24)

where the wave length can be expressed as λ = L sin θw, being L = δA/ cos θw the length of the curve. The spiral
angle θw ranges from 0 to π/2 and governs the curvature of the filler. For instance, θw = π/2 corresponds to a
straight CNT, while θw = 0 corresponds to a circular CNT.

3.2.1. Mori-Tanaka approach
In this case, the helical approach was developed by Shi et al. [23] as:

CMT =

[
fr
δ

∫ δ

0

(
Cr(θw, s) : A(θw, s) : C−1

m

)
ds + fmI

]
:

:
[

fr
δ

∫ δ

0

(
A(θw, s) : C−1

m

)
ds + fmC−1

m

]−1 (25)

3.2.2. Schjødt-Thomsen and Pyrz approach
In a similar way to planar sinusoidal configurations, the STP approach can be also applied to helical nanotubes

as follows:

CSTP =
1
δ

∫ δ

0
C(θw, γ)dγ (26)

being in this case C(θw, s) the MT estimate for straight fillers with constant polar angle θw and azimuthal angle γ
varying from 0 to δ.
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3.2.3. Ad hoc Eshelby’s tensor approach
Finally, the YNS approach can be extended to helical geometries as:

C =
1
δ

∫ δ

0
C∗(θw, γ)dγ (27)

with C∗ being the Eshelby’s equivalent inclusion solution given in Eq. (20). In this case, helical wavy nanotubes
affect both transverse directions and, thus, the integral in Eq. (22) is not required to model random orientations of
CNTs. Hence, Eq. (23) can be directly used considering S∗ = S.

4. Modeling of CNT agglomeration

In this paper, the two-parameter agglomeration model introduced by Shi et al. [23] is adopted to estimate the
effective mechanical properties of heterogeneous dispersions of CNTs. This approach differentiates two regions,
one with high filler concentration, corresponding to clusters, and another with low filler concentration, i.e. the
surrounding composite. Hence, the total volume of CNTs, Vr, dispersed in V , can be divided into the following
two parts:

Vr = Vbundles
r + Vm

r (28)

where Vbundles
r and Vm

r denote the volumes of CNTs dispersed in the bundles and in the surrounding matrix, re-
spectively. In order to characterize the agglomeration of CNTs in bundles, two parameters, ξ and ζ, are introduced
as follows:

ξ =
Vbundles

V
, ζ =

Vbundles
r

Vr
(29)

where Vbundles is the volume occupied by the bundles in the RVE. The agglomeration parameter ξ represents the
volume ratio of bundles with respect to the total volume of the RVE. On the other hand, ζ stands for the volume
ratio of CNTs within the bundles with respect to the total volume of fillers. This pair of parameters unequivocally
defines the agglomeration scheme as outlined in Fig. 3. After some manipulations, the CNT volume fractions in
the bundles and the surrounding composite, c1 and c2, respectively, can be expressed as:

c1 = fr
ζ

ξ
, c2 = fr

1 − ζ
1 − ξ (30)

It is extracted from Eq. (30) that ζ ≥ ξ must be fulfilled in order to impose a higher filler concentration in the
clusters. The limit case ζ = ξ represents an uniform distribution of fillers, whilst the heterogeneity degree grows
for larger values of ζ up to ζ = min (1, ξ/ fr). Hence, the homogenization process takes place in two separate steps.
Firstly, the overall constitutive tensors of the bundles, Cin, and the surrounding composite, Cout, are obtained with
polymer as matrix and CNTs as inclusions with volume fractions c1 and c2, respectively. Secondly, the overall
constitutive tensor of the composite, C∗, is computed considering the surrounding composite as matrix and bundles
as inclusions. On this basis, whichever of the previously presented micromechanics models can be extended to
account for agglomeration effects.
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Figure 3: Schematic representation of the two parameter agglomeration model.

5. Results and discussion

In this section, numerical simulations are conducted in order to compare the previously introduced approaches
for different CNTs configurations. The discussion particularly focuses on the diagonal symmetry consistency and
the comparison with reference bounds, including the Voigt/Reuss (VR) and Hashin-Shtrikman-Walpole (HSW)
bounds. Case studies evaluate uniform filler dispersions, effects of non-straightness and agglomeration. For
illustrative purposes, the polymer matrix is selected as a thermosetting polymer Epon 862/EPI cure W with elastic
properties Em=2.55 GPa and νm=0.2 [31]. As reinforcing phase, different SWCNTs are studied with Hill’s elastic
moduli included in Table 2. Details on the definition of the Hill’s elastic moduli in terms of engineering constants
can be found in reference [53]. The discussion is organized into five cases: Subsection 5.1 presents a discussion on
polymers doped with well dispersed straight CNTs, Subsection 5.2 studies the different approaches for accounting
for wavy CNTs, Subsection 5.3 discusses the effects of agglomeration of CNTs in bundles, Subsection 5.4 analyzes
the coupled effect of waviness and agglomeration and, finally, Subsection 5.5 furnishes comparison analyses
against experimental data. It must be indicated that, in practice, CNT volume fractions are typically below 10%.
Higher volume fractions result in excessive filler agglomerations and the theoretical approaches provide unrealistic
estimates as it is shown below in Subsection 5.5. However, in the subsequent analyses, filler volume fractions up
to 100% are presented for illustrative purposes. A case study of free vibration of CNT-reinforced skew plates in
Subsection 5.6 closes this section as a full-scale application example.

Table 2: Hill’s elastic moduli for several armchair Single-Walled Carbon Nanotubes (SWCNTs) [19, 54].

CNT kr [GPa] lr [GPa] mr [GPa] nr [GPa] pr [GPa]

SWCNT (5,5) 536 184 132 2143 791
SWCNT (10,10) 271 88 17 1089 442
SWCNT (15,15) 181 58 5 726 301
SWCNT (20,20) 136 43 2 545 227
SWCNT (50,50) 55 17 0.1 218 92

5.1. Polymer doped with well dispersed straight CNTs

First, uniform dispersions of straight CNTs are studied, including fully aligned and misoriented fillers arrange-
ments are analyzed, as well as microstructural features such as CNT volume fraction, aspect ratio, and chirality.

5.1.1. Uniaxially aligned CNTs
In this first set of analyses, uniform dispersions of uniaxially aligned straight CNTs are studied. Traditionally,

bounds on elastic properties of composites are utilized for assessing the validity of homogenization approaches.
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In this paper, the Voigt (VT) [55] and Reuss (RS) bounds [56], as well as the Hashin-Shtrikman-Walpole (HSW)
bounds [57–59] have been considered. Figure 4 shows the effective elastic moduli of polymer composites rein-
forced by aligned straight SWCNTs (10,10). The longitudinal, E‖, and transverse elastic moduli, E⊥, are depicted
against the filler volume fraction fr, whose expressions can be related to the Hill’s elastic moduli as:

E‖ = n − l2

k
, E⊥ =

4m
(
kn − l2

)
kn − l2 + mn

(31)

The previously outlined homogenization approaches are compared, namely the MT, DE, and SC approaches,
as well as the RS/VT and HSM bounds. Let us recall that, in the case of fully aligned inclusions, all the analyzed
approaches are well-known to provide diagonally symmetric estimates. For this reason, diagonal symmetry veri-
fications are obviated in this test. It is noted that CNTs are highly anisotropic, with longitudinal Young’s moduli
two orders of magnitude higher than the transverse ones. Accordingly, it is observed in Fig. 4 that E‖ increases
much more rapidly with the volume fraction fr than E⊥. Very little differences are found in E‖ among the different
approaches in Fig. 4 (a). Conversely, larger differences arise for E⊥ in Fig. 4 (b), especially for filler contents
above 0.4. The DE approach ignores any interaction between particles so it is only valid for low filler volume
fractions (asymptotically correct to O( fr)). With regard to the SC scheme, it exhibits a typical behavior approx-
imating the HSW bounds at low and high volume fractions, and displays a transition sigmoid curve in-between.
For instance, at filler content fr=0.8, the MT model predicts a transverse Young’s modulus of 15 GPa, while the
SC approach yields a value of 52.11 GPa, almost four times the former.
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Figure 4: Effective Young’s modulus in the longitudinal direction E‖ (a) and in the transverse direction E⊥ (b) versus filler
volume fraction fr of Epon 862/EPI cure W reinforced by aligned, infinitely long straight SWCNTs (10,10).

The longitudinal Young’s modulus of nanocomposites with different CNT aspect ratios (a1, a2, a3) is shown in
Fig. 5. In particular, fillers range from spherical particles, (1,1,1), to infinitely long fibers, (1,∞,1). The effective
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properties have been estimated by the MT method and the SC approach, corresponding to solid and dotted lines,
respectively. It can be seen that E‖ increases with increasing CNT lengths. Also, it is observed that the estimates
by both the MT and SC approaches get proximate as the CNT aspect ratio increases.
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Figure 5: Effective Young’s modulus in the longitudinal direction E‖ versus filler volume fraction fr of Epon 862/EPI cure
W reinforced by aligned, straight SWCNTs (10,10) with different aspect ratios, estimated by the MT and SC approaches,
corresponding to solid and dotted lines, respectively.

Finally, Fig. 6 shows the elastic moduli of CNT/polymer composites considering the different chiralities from
Table 2. It is noted that SWCNTs (5,5) and (50,50) yield the maximum and minimum moduli, respectively. To
further this analysis, Fig. 7 investigates the elastic moduli as functions of the CNT radius. For armchair SWCNTs
with chiral vector integers (n,n), the radius of the CNTs can be computed as rcnt = 3nLcc/2π, being Lcc=0.142
nm the length of C-C bonds. It is observed in Fig. 7 that both E‖ and E⊥ substantially decrease with the CNT
radius, as well as the degree of anisotropy. These results also explain the decreasing Young’s moduli in Fig. 6 for
increasing chiral vector integers (n,n). In particular, SWCNTs (50,50) even reduce the transverse Young’s modulus
E⊥. This chiral configuration corresponds to a tube radius of 0.339 Å and has a transverse modulus of 0.4 GPa,
below the Young’s modulus of the polymer matrix. The surface contour of the Young’s modulus of SWCNTs
(50,50)/polymer is shown in Fig. 8 (a), and the planar projections on x1-x2 plane are shown for different chiralities
in Fig. 8 (b). It is stressed in this figure that lesser chiral integers, that is smaller filler diameters, dramatically
increase the anisotropy of the composites.
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Figure 6: Effective Young’s modulus in the longitudinal direction E‖ (a) and in the transverse direction E⊥ (b) versus filler
volume fraction fr of Epon 862/EPI reinforced by different aligned, straight SWCNTs (10,10), estimated by the MT and SC
approaches, corresponding to solid and dotted lines, respectively.
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Figure 7: Longitudinal E‖ and transverse E⊥ Young’s moduli of Epon 862/EPI reinforced by armchair SWCNTs versus CNT
radius ( fr=0.01).

5.1.2. Misoriented CNTs
Let us move to the analysis of misoriented filler arrangements. In this work, the ODFs have been defined

as truncated Gaussian distributions with azimuthal symmetry so that Ω is independent of γ. Hence, the ODF is
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Figure 8: Surface contour of directional dependent Young’s modulus ( fr=0.01, SWCNT (50,50)/Epon 862/EPI) (a) and planar
projections on x1-x2 plane of Epon 862/EPI reinforced by armchair SWCNTs ( fr=0.01).

fully defined by a mean value µ = 0◦ and a standard deviation σ. Fig. 9 furnishes the ODF for different standard
deviations, namely σ = 10◦, 30◦, 60◦ and Ω(θ) = 1/2π, corresponding to a random filler arrangement.
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Figure 9: Polar plot of the symmetric truncated normal Orientation Distribution Function (ODF) Ω(θ) for various standard
deviations σ.

First, the estimates by the MT, SC, STP and DUN approaches are compared against theoretical bounds on
elastic moduli for random filler arrangements (Ω(θ) = 1/2π). Fig. 10 shows the Young’s modulus as a function
of the filler volume fraction fr. A first important conclusion is that the MT solution violates the HSW bound at
a filler concentration around 67% and even exceeds the VT bound. This fact limits the applicability of the MT
solution at high CNT volume fractions. With regard to the extended MT approaches, note that all the solutions
converge to the VT bound at fr=1. For validation purposes, the elastic modulus extracted by the orientational
average 〈Cr〉, corresponding to the VT bound at fr=1, has been computed using the closed-form solutions given
by Zheng et al. [60]. The convergence of the numerical solutions demonstrates the correctness of the implemented
approaches. The SC scheme also violates the upper HSW bound although it does lay within the VT/RS bounds. It
is also observed that the DUN and STP approaches yield very close results and are comprised between the HSW
bounds. With respect to the diagonal symmetry of the tensors, the estimates of the different approaches have been
reported to be symmetric for random filler arrangements and, therefore, discussion in this regard is omitted. In
quantitative terms, it is interesting to compare the different approaches when the MT approach coincides with the
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U-HSW bound ( fr = 0.67). The MT and DE approaches yield elastic moduli of 268 GPa and 124 GPa. The SC
predicts an elastic moduli between the two latter of value 213 GPa. Interestingly, the STP and DUN approaches
provide very similar results with values around 129 GPa, half the one predicted by the MT approach.
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Figure 10: Young’s modulus of Epon 862/EPI cure W reinforced by randomly oriented straight SWCNTs (10,10).

Finally, let us focus on misoriented CNT distributions. In this case, the diagonal symmetry of the estimates
has to be verified. To this end, an asymmetry factor, AFi j, can be defined as follows [25]:

AFi j = 2
C(i, j) −C( j, i)
C(i, j) + C( j, i)

, i , j (32)

being C(i, j) the components of the stiffness tensor in Voigt notation. Fig. 11 shows the asymmetry factor of the
MT estimates versus the orientation standard deviation σ for various filler contents. It can be observed that all the
curves start at zero, as expected for fully aligned CNTs (σ = 0◦). In addition, the asymmetry factors also tend
to zero for high standard deviation values until the limit case of random filler arrangements (Ω(θ) = 1/2π). It
is noted that the asymmetry factors increase with the filler content, reaching maximum values around σ = 10◦.
Despite the fact that the asymmetry factors are not excessively large, these estimates cannot be used in engineering
applications since the resulting constitutive tensors are not positive definite. Given that the predictions of the DUN
and STP approaches always yield diagonally symmetric stiffness tensors, that is zero asymmetry factors for every
σ, they have been excluded in this analysis.
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Figure 11: Asymmetry factor AF as a function of the orientation standard deviation σ for a symmetric truncated normal
distribution obtained using the MT approach with different SWCNT (5,5) concentrations. Solid and dashed lines stand for
AF12 and AF23, respectively.

Finally, the effect of filler misalignment on the overall stiffness of CNT-reinforced composites is investigated.
As previously discussed, the DUN and STP approaches yield similar results and, therefore, only the estimates
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given by the STP approach are shown for clarity in the results. Given the azimuthal symmetry of the ODFs, the
composites are transversely isotropic with x1-x3 as the plane of isotropy. Fig. 12 depicts E‖ as a function of the
CNT volume fraction with different degrees of filler misalignment. For illustrative purposes, SWCNTs (5,5) are
selected as reinforcing phase. In this figure, it is clearly observed that variations of the misalignment degree induce
considerable effects on the macroscopic Young’s moduli. Also, it is noted that E‖ is bounded by that obtained for
fully aligned (σ = 0◦) and randomly oriented CNTs (Ω(θ) = 1/2π). Further, Fig. 13 investigates the variation
of E‖ and E⊥ as functions of σ. It is extracted from this analysis that the anisotropy of the composites decreases
with increasing degrees of filler alignment. In the limit σ → ∞, i.e. randomly oriented fillers, CNT/polymer
composites are isotropic, E‖ = E⊥.
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Figure 12: Elastic moduli as a function of volume fraction with different degrees of nanotube misalignment, for Epon 862/EPI
reinforced by SWCNTs (5,5). Solid and dashed lines stand for longitudinal E‖ and transverse E⊥ Young’s moduli.
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Figure 13: Longitudinal E‖ and transverse E⊥ Young’s moduli as a function of orientation standard deviation σ of SWCNTs
(5,5) with azimuthal symmetry ( fr=0.1).

5.2. Effect of CNT waviness

In this subsection, the effect of CNT waviness is investigated by the MT, YNS, and STP approaches. First,
the diagonal symmetry condition must be verified. The direct integrations of the stiffness tensors appearing in
both the YNS and STP approaches ensure that this condition is fulfilled. Nonetheless, this is not the case for
the MT estimates. Figs. 14 (a) and (b) depict the asymmetry factors (AF12 and AF23) as functions of the spiral
angle θw and various filler volume fractions with fully aligned and helical SWCNTs (6,6)/(50,50) as reinforcing
fillers, respectively. In both cases, the MT estimates are highly asymmetric, particularly for spiral angles θw = 0◦,
corresponding to circular fillers. As expected, the asymmetry condition is fulfilled (AFi j = 0) for straight fillers,
i.e. θw = 90◦. Interestingly, it is noted that SWCNTs (50,50) lead to larger asymmetry factors, whereby it is
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extracted that lesser anisotropic fillers yield more asymmetric estimates in Eq. (25). These results demonstrate
that the MT approach cannot be directly applied to model CNT-reinforced composites with waviness effects and
it is thereupon disregarded.
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Figure 14: Asymmetry factors AFi j as functions of the spiral angle θw for helical CNT-reinforced Epon 862/EPI obtained using
the MT approach with different SWCNT (6,6) (a) and SWCNT (50,50) (b) concentrations. Solid and dashed lines stand for
AF12 and AF23, respectively.

Fig. 15 shows the elastic moduli of composites doped with fully aligned wavy SWCNTs (5,5) computed by
the YNS and STP approaches. A volume fraction fr = 0.01 is selected, and helical and planar sinusoidal con-
figurations are depicted by solid and dashed lines, respectively. In order to compare both geometries, a waviness
parameter is designated as A/λ. E22 stands for the macroscopic longitudinal Young’s modulus, E11 and E33 are
the transverse Young’s moduli, and G12 denotes the longitudinal shear modulus of the composite. It is first ob-
served that composites are orthotropic for planar sinusoidal geometries and transversely isotropic for the helical
ones. Also, it is noted that the longitudinal Young’s modulus E22 rapidly decreases as the waviness increases.
With helical configurations, more pronounced reductions are found in E22, while the transverse moduli E11 = E33
slightly increase with the CNT waviness. For planar sinusoidal configurations, on the other hand, E33 substantially
increases being the fillers defined on the x2-x3 plane, whilst E11 remains approximately constant. With regard to
the different homogenization approaches, it can be seen that the YNS approach provides slightly stiffer estimates.
For instance, in the case of E11 and helical wavy fillers, maximum differences of 2% between the YNS and STP
approaches are found for helical angles around θw = 61◦. In the other two elastic moduli, even smaller differences
are observed. In the case of planar sinusoidal geometries, maximum differences up to 6% are found for E22 and E33
for waviness parameters above A/λ=0.15. Finally, the highest differences between the STP and YNS approaches
are noted for the shear modulus G12, with maximum differences of 8% in the case of helical geometries.

Finally, the estimates for randomly distributed wavy CNTs are furnished in Fig. 16. In this case, the compos-
ites are isotropic and all the approaches provide diagonally symmetric estimates. It is first noted that the MT and
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Figure 15: Elastic moduli predicted for Epon 862/EPI reinforced by fully aligned wavy SWCNTs (5,5) ( fr=0.1). Solid and
dashed lines denote helical and planar sinusoidal configurations, respectively.

STP approaches yield predictions that are insensitive to waviness, unlike the YNS approach. This behavior is ex-
plained by the hypothesis of wavy fillers as consecutive infinitely long fibers in both the MT and STP approaches.
Conversely, the YNS approach considers an ad hoc Eshelby’s tensor, what results in a modified definition of the
microstructure of the composite. In this case, decreasing Young’s moduli are found for larger waviness parameters
for both helical and planar sinusoidal configurations, with more acute reductions in the latter. Specifically, in the
case of A/λ = 0.4 and helical filler configuration, the YNS approach provides an estimate of 38.75 GPa, 3% and
5% higher and lower than those provided by the STP and MT approaches, respectively.
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Figure 16: Elastic moduli predicted for Epon 862/EPI reinforced by randomly oriented wavy SWCNTs (5,5) ( fr=0.1). Solid
and dashed lines denote helical and planar sinusoidal configurations, respectively.

5.3. Effect of CNT agglomeration
The effect of CNT agglomeration is studied on the basis of the two-parameter agglomeration framework. For

randomly oriented CNTs with spherical bundles, Fig. 17 shows the variations of the overall Young’s modulus with
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respect to the agglomeration parameter ζ, while parameter ξ is kept constant at a value of 0.2. The effective prop-
erties have been estimated by the MT and STP approaches, corresponding to dashed and solid lines, respectively.
It can be seen that, with the increase of ζ or, in other words, a larger number of CNTs agglomerated in bundles, the
macroscopic elastic modulus experiences substantial decreases, especially for higher filler concentrations. More-
over, it is noted that the MT approach provides stiffer results, what finds the same explanation as in the previous
analyses. In the particular case of fr=0.2 and the STP approach, a reduction of 95% in the macroscopic elastic
modulus is found when ζ=1.
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Figure 17: Macroscopic Young’s modulus of Epon 862/EPI reinforced by randomly oriented SWCNTs (5,5) with agglomera-
tion parameter ξ=0.2 and varying agglomeration parameter ζ. Dashed and solid lines denote estimations by the MT and SPT
approaches, respectively.

For uniaxially aligned filler arrangements and spherical bundles, composites are transversely isotropic. Fig. 18
depicts E‖ and E⊥ as functions of the agglomeration parameter ζ. In this case, ξ is also kept constant at a value of
0.2. It is noted that agglomeration induces more severe weakening effects in the case of E‖. Conversely, agglom-
eration of CNTs has little effect on E⊥, which can even experience slight increases at high filler concentrations.
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Figure 18: Macroscopic Young’s modulus of Epon 862/EPI reinforced by fully aligned SWCNTs (5,5) with agglomeration
parameter ξ=0.2 and varying agglomeration parameter ζ. Solid and dashed lines denote longitudinal E‖ and transverse elastic
moduli E⊥, respectively.

Finally, the effect of the aspect ratio of agglomerates is also studied by the STP approach in Fig. 19. In this
figure, the stiffening efficiency (E/Em and E‖/Em for randomly oriented and fully aligned CNTs, respectively) is
plotted against the bundle aspect ratio a2/a1. Let us recall that bundles are defined as ellipsoids of revolution with
semi-axes a1=a3< a2. It is noted that the bundle aspect ratio exhibits moderate effects on the stiffening efficiency
of polymers doped with randomly oriented CNTs. In addition, aspect ratios above 10 tend to an asymptotic value.
On the contrary, the bundle aspect ratio has a deeper effect on the macroscopic properties of polymers doped
with fully aligned CNTs. It is also observed in this case that the asymptotic value is reached at higher aspect
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ratios. Overall, it is concluded that spherical bundles (a2/a1=1) infer the strongest weakening effects in both
agglomeration schemes.
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Figure 19: Effect of filler bundle aspect ratio (a2/a1) on the effective elastic properties of CNT-reinforced Epon 862/EPI
Young’s modulus of composites doped with randomly oriented CNTs, and longitudinal Young’s modulus of composites doped
with uniaxially aligned CNTs (SWCNT (5,5), ξ=0.2, ζ=0.4, fr=0.1).

5.4. Coupled effect of waviness and agglomeration

The coupled effect of waviness and agglomeration for randomly oriented CNT-reinforced polymers is inves-
tigated in Fig. 20. In this figure, the macroscopic Young’s modulus is depicted against the helical spiral angle
θw. The agglomeration parameter ξ is kept constant at a value of 0.2, and three different values of ζ are selected,
namely ζ = 0.2, 0.3 and 0.4. Also, the global filler volume fraction is chosen as fr = 0.1. Given that the MT
approach for randomly oriented filler arrangements is insensitive to waviness as previously shown in Fig. 16, the
YNS approach is combined with the two-parameter agglomeration model for this purpose. It is observed that the
elastic modulus E decreases with higher agglomeration levels, that is to say, with larger ζ parameters. In addi-
tion, when waviness is also incorporated (θw < 90◦), further reductions are found. For instance, in the case of
ξ = 0.2 and ζ = 0.4 and straight fillers, a reduction of 10.5% in the overall Young’s modulus is found. However,
when θw = 30◦, the Young’s modulus is further reduced up to 12.7%. Therefore, it is concluded that when both
phenomena act simultaneously, their weakening effects add up.
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Figure 20: Macroscopic Young’s modulus of Epon 862/EPI reinforced by randomly oriented wavy SWCNTs (5,5) with ag-
glomeration parameter ξ=0.2 and varying agglomeration parameter ζ as a function of the spiral angle θw (a1=a2=a3, fr=0.1).
Dashed lines denote the corresponding magnitudes for randomly oriented straight fillers.
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5.5. Comparison against experimental data

In order to benchmark the studied approaches, a comparison analysis against experimental data is presented.
In particular, the experimental results reported by Gao et al. [61] on the mechanical characterization of SWCNT-
nylon 6 composites. In the simulations, SWCNTs (10,10) are selected and the elastic properties of the matrix are
Em = 440 MPa and νm = 0.2 [61]. Since no especial aligning technique was reported in reference [61], SWCNTs
are assumed to be randomly oriented. In normal practice, filler concentrations are typically provided in terms of
mass fraction. The volume fraction of CNTs, fr, can be calculated from the mass fraction, wr, as:

fr =
wr

wr + (ρr/ρm) − (ρr/ρm)wr
(33)

with ρr and ρm being the mass densities of CNT and matrix materials, respectively. Values of ρr = 1.4 g/cm3 [62]
and ρm = 1.184 g/cm3 [61] are assumed in this work. Fig. 21 shows the comparison of the theoretical estimates
provided by the MT, STP and DUN approaches along with the experimental data. Firstly, it is noted that all the
approaches provide very similar estimates for such low filler contents. Despite the aforementioned deficiencies,
this type of results highlights that the MT model remains important in practical applications, where CNT volume
fractions are typically below 10%. Furthermore, it is observed that the theoretical simulations provide very close
results to the experimental data until wr=0.2%, followed by considerable overestimations of the macroscopic
elastic moduli. This is a fact that evidences the existence of agglomeration and/or waviness effects. Fig. 22
investigates the effects of filler agglomeration. Given that the used theoretical approaches provide very similar
results, only the estimates by the STP model are shown for clarity. The agglomeration parameter ξ is kept constant
at a value of 0.20, and five different values of ζ are selected, namely ζ=0.20, 0.50, 0.60, 0.75 and 0.90. It is noted
that, in accordance with previous results, the agglomeration of fillers induces a considerable weakening effect on
the macroscopic Young’s modulus. In fact, the weakening effect increases with increasing filler contents in such
a way that the good agreement between the theoretical and experimental data at low filler contents remains. It can
be observed that an agglomeration parameter of ζ=0.60 yields very close fittings with the experimental data up
to wr=1.0%. After that, the homogenization approach overestimates the elastic modulus. It is interesting to note
that the curve with agglomeration parameter ζ=0.9 provides an estimate very close to the experimental result at
wr=1.5%. This fact evidences the increasing tendency of CNTs with the filler content to form clusters. Hence,
the agglomeration parameters should be considered as filler content dependent, a definition that is still missing
in the literature. Finally, Fig. 23 furnishes the comparison of the theoretical estimates and the experimental data
considering the coupled effect of waviness and agglomeration. To this aim, the two-parameter agglomeration
model in combination with the YNS approach is utilized. On the basis of the previous results, the agglomeration
parameters are selected as ξ=0.2 and ζ=0.6, and five helical angles are considered, namely θw=10◦, 30◦, 50◦, 60◦

and 90◦. It is noted that the theoretical estimates get closer to the experimental data at filler contents of wr=1.0%
and 1.5%. However, there still exists a substantial overestimation of the macroscopic elastic modulus (≈ 0.4 GPa)
at the filler content wr=1.5%, what evidences the existence of a higher level of filler agglomeration at this CNT
concentration.
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Figure 21: Comparison analysis of the macroscopic Young’s modulus of SWCNT-nylon 6 composites considering randomly
oriented straight uniformly dispersed fillers (ρr=1.4 g/cm3, ρm=1.184 g/cm3, SWCNTs (10,10), Em=440 MPa, νm=0.2).
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Figure 22: Comparison analysis of the macroscopic Young’s modulus of SWCNT-nylon 6 composites considering randomly
oriented straight dispersed fillers with agglomeration effects (ρr=1.4 g/cm3, ρm=1.184 g/cm3, SWCNTs (10,10), Em=440 MPa,
νm=0.2, ξ=0.2, a1=a2=a3).

0.0 0.1 0.2 0.5 1.0 1.5
0.4

0.6

0.8

1.0

1.2

1.4

1.6

MWCNT weight fraction [wt.%]

Y
ou

ng
’s

m
od

ul
us

(G
Pa

)

Exper. data [61]
θw=10◦

θw=30◦

θw=50◦

θw=60◦

θw=90◦

Figure 23: Comparison analysis of the macroscopic Young’s modulus of SWCNT-nylon 6 composites considering randomly
oriented helical fillers with agglomeration and waviness effects (ρr=1.4 g/cm3, ρm=1.184 g/cm3, SWCNTs (10,10), Em=440
MPa, νm=0.2, ξ=0.2, ζ=0.6, a1=a2=a3).

5.6. Case study: vibrational analysis of CNT/polymer skew plates

Finally, the vibrational behavior of CNT/polymer skew plates is studied on the basis of the preceding discus-
sions. To this aim, a finite element formulation based on the Hu-Washizu principle for skew shells developed by
the authors in reference [63] is utilized. In that work, thin and moderately thick functionally graded skew plates
doped with uniaxially aligned fillers were studied using the EROM. In these tests, only uniform filler gradings are
studied for illustrative purposes, considering both waviness and agglomeration effects. Fig. 24 shows the geomet-
rical configuration of the skew plates, with length a, width b, thickness t, filler orientation angle ϕ, and skew angle
α. Simply supported boundary conditions are studied, and the mass densities of the matrix and reinforcing phases
are selected as ρm = 1.15 g/cm3 and ρm = 1.40 g/cm3, respectively. Also, a global filler volume fraction fr = 0.12
is selected, as well as SWCNTs (5,5) as reinforcing phase. The effective material properties of the composites are
computed by the YNS approach in combination with the two-parameter agglomeration model. The resonant fre-
quencies ω and the natural modes of vibration are computed by solving the eigenvalue problem associated to the
undamped free vibration system. In the subsequent results, the computed resonant frequencies are all presented in
non-dimensional form as follows:

λ = ω
b2

t

√
ρm

Em
(34)
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Figure 24: Geometry and configuration of CNT/polymer skew plates.

Firstly, skew plates doped with fully aligned filler arrangements are studied. Fig. 25 shows the variation of
the fundamental frequency parameter, λ1, against the filler angle ϕ for several skew angles α. The skew plates
are defined with a length-to-width ratio of a/b = 1, and a width-to-thickness ratio of b/t = 50. In accordance
with previously published results in reference [63], it is noted that the CNT orientation critically determines the
dynamic behavior of CNT-reinforced skew plates and, hence, plays a key role in their design. However, it is
paramount to evaluate the effect of the filler waviness that may arise in the manufacturing process. To this end,
Fig. 26 furnishes the results obtained for skew plates with α = 60◦ and considering various degrees of helical
waviness. It is observed that the CNT waviness substantially alters the dynamic properties of the plates. Overall,
stiffer results are obtained for fillers aligned in the direction of the longest diagonal, while smaller values are found
for fillers aligned in its transverse direction. Thence, the vibrational behavior of the plates is mainly determined
by the material anisotropy, which is highly dependent on the degree of CNT curviness.
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Figure 25: Effect of fiber angle ϕ on the first frequency parameter λ1 of CNT/polymer skew plates ( fr = 0.12, a/b = 1,
b/t = 50, SWCNT (5,5)).
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Figure 26: Effect of fiber angle ϕ on the first frequency parameter λ1 of CNT/polymer skew plates with waviness effects
(α = 60◦, fr = 0.12, a/b = 1, b/t = 50, SWCNT (5,5)).

The effect of CNT agglomeration on the vibrational behavior of CNT-reinforced skew plates with randomly
filler arrangements is also evaluated. For this purpose, a harmonic analysis is performed to ascertain the corre-
sponding amplitude (in DB) of the Frequency Response Function (FRF). The FRF of a driving point located at
the center of the plates is shown in Fig. 27. For illustrative purposes, a constant modal damping ratio of 1% is
assumed. Also, the agglomeration parameter ξ is kept constant at a value of 0.2, and three different values of ζ
are selected, namely ζ = 0.2, 0.3, 0.4 and 0.5. It is noted that four mode shapes are comprised in the frequency
range λ ∈ [0, 110]. In particular, the first peak in the spectrum corresponds to the first bending mode, the second
and third peaks to second bending modes and, finally, the fourth peak to a third bending mode. As expected, filler
agglomeration reduces the overall stiffness of the composites and, as a consequence, the peaks in the spectrum
shift towards lesser frequencies, especially for high natural modes. Further, Fig. 28 examines the combined effect
of waviness and agglomeration, as it is commonly the case in practical applications. For the sake of clarity, the
FRF is limited to a frequency range surrounding the fundamental frequency. In this analysis, the agglomeration
parameters are selected as ξ=0.2 and ζ=0.4, and several spiral angles are selected, namely θw = 90◦, 80◦, 60◦

and 50◦. In accordance with the previous results, it is noted that CNT waviness renders further shifts of the peaks
in the spectrum towards lower frequencies, that is more flexible structures, what stresses the importance of the
combined weakening effects of filler waviness and agglomeration.

0 20 40 60 80 100

−80

−60

−40

λ

A
m

pl
itu

de
(d

B
)o

fF
R

F

ζ = 0.2 ζ = 0.3 ζ = 0.4 ζ = 0.5

Figure 27: Frequency response function (FRF) plot of CNT/polymer skew plates with agglomeration effects ( fr = 0.12, ξ=0.2,
a/b = 1, b/t = 50, SWCNT (5,5)).
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Figure 28: Frequency response function (FRF) plot of CNT/polymer skew plates with coupled waviness and agglomeration
effects ( fr = 0.12, ξ=0.2, ζ=0.4, a/b = 1, b/t = 50, SWCNT (5,5)).
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6. Conclusions

This article has presented a critical comparison of different mean-field homogenization approaches for CNT-
reinforced polymer composites with waviness and agglomeration effects. Firstly, the MT, SC, DUN and STP
approaches have been compared in terms of diagonal symmetry and against the HSW and RS/VT bounds for
misoriented CNT arrangements. Afterward, the MT, STP and YNS approaches have been analyzed for both
planar sinusoidal and three-dimensional helical CNTs, including fully aligned and randomly oriented wavy filler
arrangements. Through a two-parameter agglomeration framework, the influence of the filler agglomeration on
the macroscopic stiffness of CNT-reinforced composites has been also investigated. The results have evidenced
that the MT method fails to simulate the coupled effect of waviness and agglomeration, providing estimates that
are insensitive to waviness for random filler arrangements. Furthermore, it has been shown that the MT predictions
for composites doped with fully aligned wavy CNTs are highly asymmetric and, thus, physically inadmissible. By
considering the combination of the YNS approach and the two-parameter agglomeration model, it has been shown
that the weakening effects of waviness and agglomeration add up when acting simultaneously. Then, a comparison
analysis against experimental data has highlighted the importance of considering agglomeration and waviness for
moderate filler volume contents. Finally, a case study has been also presented, whereby it has been highlighted
that filler waviness and agglomeration exhibit a coupled weakening effect on the macroscopic dynamic behavior
of CNT-reinforced skew plates.

The key findings of this work can be summarized as follows:

• In the case of uniaxially aligned fillers, it has been shown that the SC and the MT approaches provide very
close estimates of the longitudinal Young’s modulus, while the SC model predicts transverse moduli that
are four times the one obtained by the MT model at a filler content fr=0.8. In the case of randomly oriented
CNTs, it has been shown that the MT solution violates the HSW bounds at filler volume fractions above
67%, unlike the DUN and STP approaches which always provide estimates that are comprised between
the HSW bounds. The results have also reported that the MT provides estimates 50% higher than those
predicted by the STP and DUN approaches for moderate filler contents. Nevertheless, these differences
get reduced for low filler volume fractions as typically found in normal practice, a fact that advocates the
practical importance of the MT approach.

• In the case of fully aligned wavy CNTs, the MT approach has been reported to provide highly asymmetric
stiffness tensors and, thus, physically inadmissible estimates. Also, the numerical results have shown very
close agreements between the STP and YNS approaches, with slightly stiffer predictions in the latter, and
maximum differences of 6% and 8% in the estimated Young’s and shear moduli, respectively.

• Filler agglomeration has been proven to induce detrimental effects on the mechanical properties for both
randomly oriented and fully aligned CNTs, with more severe effects in the latter.

• The results have evidenced that filler waviness and agglomeration have coupled weakening effects when
acting together. It has been shown that only the YNS approach in combination with the two-parameter
agglomeration model can properly account for both phenomena simultaneously. The reason for this behavior
is ascribed to the ad hoc definition of the Eshelby’s tensor that accounts for the particular wavy geometry of
the fillers.

• The comparison against experimental data has evidenced the importance of CNT agglomeration and wavi-
ness effects. The assumption of ideal conditions of uniformly distributed straight fillers has been shown
to lead to severe overestimations of the elastic modulus of CNT-reinforced composites for moderate filler
contents. The application of the two-parameter agglomeration model and the STP approach has yielded
close agreements with the experimental data. Also, the application of the YNS approach to account for the
coupled effect of waviness and agglomeration has been shown to provide closer fittings for moderate CNT
contents.

• A case study on the vibrational properties of CNT-reinforced skew plates has been presented. The results
have demonstrated that CNT waviness and agglomeration exhibit additive weakening effects on the macro-
scopic response of full-scale composite structures.
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