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ABSTRACT
This paper considers the problem of estimating a poverty measure, the Head Count
Index, using the auxiliary information available, which is incorporated into the esti-
mation procedure by calibration techniques. The proposed method does not directly
use the auxiliary information provided by auxiliary variables related to the variable
of interest in the calibration process, but the auxiliary information, after a transfor-
mation, is incorporated by calibration techniques applied to the distribution function
of the study variable. Monte Carlo experiments were carried out for simulated data
and for real data taken from the Spanish living conditions survey to explore the
performance of the new estimation methods of the Head Count Index.
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1. Introduction

The estimation of a proportion in finite populations is a interesting topic in many
areas such as medical and pharmaceutical statistics, marketing research, sociological
studies and has important applications in the field of economics. Indeed, the analysis
of poverty and social exclusion measures is a topic of increased interest to society. For
governments is of high interest the estimation of poverty, inequality and life condi-
tion indicators and many social indicators related to the measurement of poverty are
based upon binary variables or require the use of proportions to obtain such indicators.
Among these poverty measures, we can find the Head Count Index that is widely used
by institutions to elaborate their reports on poverty. The Head Count Index (HCI)
can be calculated as the proportion of persons (or households) with an equivalised
disposable income below the 60% of the national median equivalised income. In the
literature, numerous references discuss about the HCI and related poverty indicators.
For instance, some references are [2, 12–15]. The real HCI is unknown in practice, but
it is estimated by using survey data, therefore estimation methods for proportions are
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required, since the HCI can be expressed as a proportion. Usually the method for esti-
mating the HCI is by using direct estimators without using auxiliary information, but
official surveys on income and living conditions generally contain additional variables
related to the variable of interest and the efficient insertion of the auxiliary informa-
tion available would improve the precision of the estimations for the proportion of
a categorical variable of interest. These additional variables includes numeric and bi-
nary attributes and the HCI can have stronger relationship with auxiliary quantitative
variables. In the presence of auxiliary information, there exist several procedures to
obtain more efficient estimators for the proportion of a categorical variable of interest,
maybe some of them ([9, 18]) assume that the auxiliary information is given by binary
variables and consequently the auxiliary quantitative variables can not include at the
estimation stage. In the case that the auxiliary information available includes both
categorical and numerical attributes, we can use the logistic generalised regression es-
timator, proposed by [6] but has the problem of estimating the parameter associated
to the logistic model.
In this paper, we consider the problem of estimating the population proportion of a
categorical variable using the calibration framework. Calibration techniques were first
employed by [3] to estimate the total population, but this approach is also applicable
to the estimation of parameters more complex than the total population. [5, 16, 17] use
different ways to implement the calibration approach in the estimation of the distri-
bution function and the quantiles. The use of calibration techniques in the estimation
of population proportion of a categorical variable is not new. In [9] the authors pro-
posed estimation procedures for a proportion and based on calibration framework but
as we discussed previously, the estimator obtained cannot be applied for the estima-
tion of the HCI, since they assume that the auxiliary information is exclusively given
by binary variables. Another calibration alternative when the auxiliary information
includes both categorical and numerical attributes is given in [8] where it was pro-
posed a calibration estimator based on probit regression. In this paper, we consider
the incorporation of the auxiliary information with calibration techniques applied to
the distribution function of the study variable under simple random sampling. The
article is arranged as follows. In Section 2, the HCI and indirect estimation methods
are introduced. Section 3 gives a alternative calibration estimator for HCI based on
the estimation of the distribution function. In Section 4, we derive optimum estimators
in the sense of minimum variance when the sample is selected under simple random
sampling without replacement (SRSWR). Finally, in Section 5, simulation studies are
carried out to analyze the performance of estimator proposed in this paper. Simula-
tion studies are based upon real survey data and simulated finite populations. The
real data is obtained from the Spanish living conditions survey. Section 6 gives some
concluding remarks.

2. The Head Count Index and indirect estimation of population
proportion

Let U = {1, 2, . . . , N} be a finite population consisting of N different elements. Let
s = {1, 2, . . . , n} be the set of the units included in a sample, selected according to a
specified sampling design with inclusion probabilities πk and πkl assumed to be strictly
positive. We assume that y is the quantitative variable used to obtain the HCI and
L is the poverty line used to classify the population into poor and nonpoor, that is,
an individual (or households) is considered as poor if its income or expenditure y is
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less than the poverty line L. Thus, the real HCI can be defined as the population
proportion of the attribute A in the population U:

PA =
1

N

∑
k∈U

Ak. (1)

where Ak = 1 if the unit k is classified as poor (yk ≤ L) and Ak = 0 otherwise. The
value Ak is only available for the sample units. We assume that the poverty line L is
established by the corresponding authority, i.e., L is fixed at some official quantity.
For instance, Eurostat fixes the relative poverty line in the 60% of the median of the
equivalised net income.

To estimate PA, the usual design-weighted Horvitz-Thompson estimator is:

P̂AHT =
1

N

∑
k∈s

dkAk (2)

where dk = 1/πk. Most official surveys on income and living condi-
tions contain auxiliary variables related to the variable of interest, these
auxiliary variables can be quantitative variables or qualitative attributes.
Thus, we assume the existence of a vector x = (x1, x2, . . . , xP )

′
of

auxiliary information, such that for every population unit k the value
xk = (x1k, x2k, . . . , xPk) is known. We also assume that the variables included in the
vector x can be numeric variables, ordinal variables, multinomial variables or binary
attributes of the same type as the study attribute A. In the case of ordinal variables or
multinomial variables, these variables are not directly included in the definition of the
auxiliary vector x, but the different categories (except one of them) are incorporated
as dummy variables in the definition of the auxiliary vector x.
The Horvitz-Thompson estimator P̂AHT is an unbiased estimator for PA but does not
use the auxiliary information provided by the vector x. The incorporation of auxi-
liary information in estimating the population proportion PA is not new and has been
treated in many works. If the auxiliary vector x only includes binary attributes, we
can use the estimation methods proposed by [18]. In the case that the vector x in-
cludes both categorical and numerical attributes, we can use the logistic generalised
regression estimator, proposed by [6]. This estimator is given by:

P̂LGREG =
1

N

(∑
k∈U

plk +
∑
k∈s

Ak − plk
πk

)
(3)

where plk = exp(xkβ̂)/(1+exp(xkβ̂)) and β̂ is the BLUP estimator of the β parameter
of the logistic regression. [4] provided some codes to compute the LGREG estimator
and a Monte Carlo study to empirically investigate the accuracy of the confidence
intervals when HT and LGREG estimators are used.

One way of incorporating auxiliary information provided by x in the estimation of
PA is via replacing the weights dk of the estimators P̂AHT by new weights ωk, using
calibration techniques. Following [3], to obtain a calibration estimator for the attribute
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A, we calculate the weights ωk minimizing the chi-square distance

Φs =
∑
k∈s

(ωk − dk)
2

dkqk
(4)

subject to a set of calibration constraints, where qk are known positive constants
unrelated to dk. Thus, if x only includes binary attributes, we can estimate PA through
calibration techniques proposed by [9]. Calibration techniques have also recently been
used in the estimation of PA when the vector of auxiliary variables x contains both
binary and numerical attributes. Thus, in [8], it was proposed a calibration estimator

P̂CP based on probit regression, where the calibrated weights ωk are obtained by
minimizing (4) subject to the following conditions:

1

N

∑
k∈s

ωkpk = P̄ =
1

N

∑
k∈U

pk, (5a)

1

N

∑
k∈s

ωk = 1, (5b)

with pk = P̂ [Ak = 1] = F (β̂′ · xk), where F is the normal-standard distribution

function and β̂ is the π-weighted likelihood estimator of the β parameter of the probit
regression ([9]).

In the next section we consider the estimation of the population proportion by
estimating the distribution function FA(t) of the attribute of study A.

3. Calibration estimation of population proportion by estimating
distribution function

In this section, we describe alternative calibration estimation methods for the pro-
blem of estimating PA, based on auxiliary vector x that includes numeric and binary
attributes. This calibration methods uses the value of the vector x in the definition
of a new indirect estimator for PA through the estimation of the distribution function
FA(t) of the attribute of study A. For it, we consider Ak = 1 if the kth unit possesses
the attribute A and Ak = 0 otherwise. The distribution function FA(t) of the variable
Ak is given by:

FA(t) =
1

N

∑
k∈U

∆(t−Ak)

where

∆(t−Ak) =

{
0 if t < Ak

1 if t ≥ Ak
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Now, the variable Ak only takes two values in the population U , consequently the
distribution function FA(t) is given by:

FA(t) =

 0 if t < 0
1− PA if 0 ≤ t < 1
1 if 1 ≤ t

Since the aim is to estimate the population proportion PA by estimating the distribu-
tion function, we will consider the complementary attribute Ā of the attribute A, this
is Āk = 1 − Ak. Thus, the distribution function associated with the complementary
attribute is given by:

FĀ(t) =

 0 if t < 0
PA if 0 ≤ t < 1
1 if 1 ≤ t

since PA = FĀ(0), the estimate of the population proportion PA can be obtained by the
methods of estimating the distribution function. The usual estimator of distribution
function is the Horvitz-Thompson estimator given by

F̂ĀHT (t) =
1

N

∑
k∈s

dk∆(t− Āk) (6)

From (2) and (6) it is easy to see that P̂AHT = F̂ĀHT (0). Thus, we will obtain new
indirect estimators of PA through calibration techniques applied to FĀ(t) at the point
t = 0.
Recently, the calibration approach have been employed for the estimation of the dis-
tribution function and quantiles in different ways ([1, 5, 16, 17]). Following [16], we

consider the definition of a pseudo-variable gk = β̂′xk for k = 1, 2, . . . , N with

β̂′ =

(∑
k∈s

dkqkxkx
′
k

)−1∑
k∈s

dkqkxkĀk

where qk are known positive constants unrelated to dk. With the pseudo-variable g, we
consider the estimation of PA = FĀ(0) with the calibration estimator obtained with
the minimization of (4) subject to the following conditions:

1

N
=
∑
k∈s

ωk∆(tg − gk) = Fg(tg) (7)

with tg = (t1, . . . , tP )
′
is a vector chosen arbitrarily, where t1 < t2 < . . . < tP .

Assuming that the inverse of symmetric matrix

T =
∑
k∈s

dkqk∆(tg − gk)∆(tg − gk)
′
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exists, the resulting estimator ([16]) is given by

P̂AC = F̂ĀC(0) = P̂AHT +
(
Fg(tg)− F̂GHT (tg)

)′
· D̂ (8)

where

D̂ = T−1 ·
∑
k∈s

dkqk∆(tg − gk)∆(0− Āk)

and F̂GHT (tg) is the Horvitz-Thompson estimator of Fg(tg).

The asymptotic variance of F̂ĀC(0) ([16]) is given by:

AV (F̂ĀC(0)) =
1

N2

∑
k∈U

∑
l∈U

∆kl(dkEk)(dlEl) (9)

where Ek = ∆(0− Āk)−∆(tg − gk) ·D, with

D =

(∑
k∈U

qk∆(tg − gk)∆(tg − gk)
′

)−1

·

(∑
k∈U

∆(tg − gk)∆(0− Āk)

)

4. Determining optimal calibration estimators

The precision of F̂ĀC(0) changes with the selection of tg. In [7, 10], the authors studied,
for a fixed P , the problem of selection the optimal vector tg under simple random
sampling and qk = 1 for all k ∈ U , that gives the best estimation of Fy(t) with the

calibration estimator F̂yc(t) developed in [16], that is, the problem of determining
an auxiliary vector tg = (t1, . . . , tP )

′
, with t1 < t2 < . . . < tP that minimizes the

variance of the estimator F̂yc(t) given a point t for which we want to estimate Fy(t).
Moreover, in [11], the problem of the optimal dimension P of the auxiliary vector tP
and the optimal vector of this dimension is studied for the calibrated estimator of [16].
Following [10], the minimization of the asymptotic variance (9) under simple random
sampling, is equivalent to minimizing the following function:

G(t1, t2, . . . , tP ) = 2NPA · kP −
P∑

j=1

(kj − kj−1)
2

(Fg(tj)− Fg(tj−1))
− k2P (10)

where

ki =
∑
k∈U

∆(0− Āk)∆(ti − gk) i = 1, 2 . . . , P and k0 = 0

and t0 is a value such that Fg(t0) = 0.
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If we consider the auxiliary vector tP = t1 (dimension P = 1), the value of t1 at

which the calibration estimator P̂AC is optimum ([7]) is given by

topt = arg min
ak∈A0

G(ak)

where

A0 = {gk : k ∈ U, Āk = 0} = {gk : k ∈ U, Ak = 1} = {a1, a2, . . . , aM} (11)

with a1 < a2 < . . . < aM .

The optimal value of t1, (topt) depends on some unknown values, so we go to replace
the optimal vector topt by sample-based estimates. For it, we consider the following
set based on the sample s

A0s
= {gk : k ∈ s, Āk = 0} = {gk : k ∈ s, Ak = 1} = {a1s

, a2s
, . . . , ams

} (12)

and the global minimum of the function Ĝ(t1) (the usual estimation of G(t1)), is at

one point of A0s
([7]). Thus, we can define a new calibration estimator P̂AC1 based on

the auxiliary point t̂opt that minimizes the function Ĝ(t1). The asymptotic behaviour

of the estimator P̂AC1 is the same as the estimator based on optimum point topt ([7]).

Thus the asymptotic variance of P̂AC1 is given by (9) with tg = topt.

On the other hand, if the dimension of the auxiliary vector is P > 1, the
global minimum of the function G(tg) ([10]) is a vector tGP = (t1, t2, . . . , tP ),
with t1 < t2 < . . . < tP and ti ∈ A0 or ti ∈ B0 for i = 1, 2, . . . , P , where

B0 = {b1, b2, . . . , bM} (13)

with

b1 = max
l∈U1

{gl} where U1 = {l ∈ U : gl < a1}

bh = max
l∈Uh

{gl} where Uh = {l ∈ U : ah−1 ≤ gl < ah}, h = 2, 3, . . . ,M

It is clear that b1 < b2 < . . . < bM . Since the setsA0 andB0 are finite, finding the global
minimum is computationally simple. For some h in 1, 2, . . . ,M the corresponding point
bh may not exist, but in this case, the minimization problem is simpler than the current
case ([10]). Again, the optimal auxiliary vector tGP depends on some unknown values,
therefore we will replace the optimal vector with sample-based estimates. For it, we
consider the usual estimation of the function G denoted by Ĝ(tg), the sample-based
set A0s

and the following set:

B0s
= {b1s

, b2s
, . . . , bms

} (14)
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with

b1s
= max

l∈U1s

{gl} where U1s
= {l ∈ s : gl < a1s

}

bhs
= max

l∈Uhs

{gl} where Uhs
= {l ∈ s : a(h−1)s ≤ gl < ahs

}, h = 2, 3, . . . ,m

The potential points for the global minimum of Ĝ(tg) are t̂GP = (t̂1, t̂2, . . . , t̂P ) with

t̂i ∈ A0s
or t̂i ∈ B0s

([10]). The calibration estimator P̂ACP based on t̂GP has the
same asymptotic behaviour that the estimator based on tGP and the asymptotic
variance is given by (9) with tg = tGP.

Following [11], the optimal dimension P of the auxiliary vector tg is 2M if b1 exists
and for all i = 1, . . . ,M − 1, bi+1 ̸= ai. The optimal vector in this case is

tOPT = (b1, a1, b2, a2, . . . , bM , aM ) (15)

If for some i1, i2, . . . iR ∈ {0, 1, . . . ,M − 1}; ai1 = bi1+1 with R ≤ M and ih ̸= ij
if h ̸= j the optimal dimension is P = 2M − R and the optimal auxiliary vector
tOP = (tO1, . . . , tO(2M−R)) is given by:

tOP = (b1, a1, . . . , bi1 , ai1 , ai1+1, bi1+2, . . . , bih , aih , aih+1, bih+2, . . . bM , aM ) (16)

The optimal auxiliary vector tOP depends on some unknown values, thus a calibration
estimator based on this vector cannot be calculated. Furthermore, although the vector
tOP be known, we could have incompatible restrictions in (7) when a sample s is
selected. Thus, we replace tOP by a estimated vector t̂OP based on the set A0s

and
B0s

. If b1s
exists and for all i = 1, . . . ,ms − 1, b(i+1)s ̸= ais the estimated vector t̂OP

is given by

t̂OP = (b1s
, a1s

, . . . , bms
, ams

) (17)

If we defined a0s
= min

k∈U
gk and for some i1, i2, . . . ir ∈ {0s, 1s, . . . , (m−1)s}; ai1 = bi1+1

with r ≤ ms and ih ̸= ij if h ̸= j the estimated vector t̂OP is given by

t̂OP = (b1s
, a1s

, . . . , bi1 , ai1 , ai1+1, bi1+2, . . . , bih , aih , aih+1, bih+2, . . . bms
, ams

) (18)

Now, we can define a new calibration estimator P̂ACOPT based on the auxiliary vector
t̂OP.

The Horvitz-Thompson estimator P̂AHT , under SRSWOR, has the following shift
invariance property P̂AHT = 1 − Q̂AHT , where Q̂AHT is the Horvitz-Thompson esti-
mator for QA = 1 − PA. Thus, P̂AHT has the same performance in the estimation of
PA as the performance of Q̂AHT in the estimation of QA. In general, this property is
not satisfied by the calibration estimators considered P̂AC1, P̂ACP and P̂ACOPT . It is
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easy to see that this property is fulfilled by a calibration estimator if

1 =
1

N

∑
k∈U

ωk (19)

A way to obtain the condition (19) consists in the incorporation of the value gmax =
maxk∈U gk in the auxiliary optimum vectors. Thus, we can define a calibration esti-
mator P̂AQ1 based on the auxiliary vector (t̂opt, gmax), a calibration estimator P̂AQP

based on (t̂GP , gmax) and a calibration estimator P̂AQOPT based on (t̂OP , gmax). No-
thing guarantees that we can use this vector in the calibration constraints given by (7),
when selecting a sample s, since we could have incompatible restrictions. For example,
suppose that, for the selected sample s, we have

1

N

∑
k∈s

ωk∆(t̂P − gk) =
1

N

∑
k∈s

ωk

we have two incompatible restrictions. In this case, we consider the calibration
constraints given by (7) without gmax = maxk∈U gk.

It is easy to see that the incorporation of the value gmax in the calibration conditions
(7) does not produces a negative effect in the asymptotic variance. For it, from equation
(10) we have

G(t̂GP)−G((t̂GP , gmax) = (NPA − kP )
2 − (NPA − kP )

2

(1− Fg(tP ))
≤ 0

Another way to incorporate shift invariance property, consists in the minimization of
the function (10) when the auxiliary vector considered is (t1, gmax). Following [7] the
optimal auxiliary vector is tGMAX = (t1, gmax) where t1 ∈ A0 or t1 ∈ B0. Similarly

to the previous cases, we can define a new calibration estimator P̂ACMAX based on
t̂GMAX, a sample-based estimation.

5. Numerical comparison

In this sections, we present the results of a Monte Carlo simulation study where we
compare the precision of the proposed calibration estimators: P̂AC1, P̂ACP , P̂ACOPT ,
P̂AQ1, P̂AQP , P̂AQOPT and P̂ACMAX with the Horvitz-Thompson estimator P̂AHT ; the

multivariated ratio estimator P̂AMratio (see [18]); calibration estimators P̂AR and the

multivariate calibration estimator P̂AWM (see [9]); the logistic generalised regression

estimator P̂LGREG ([6] and calibration estimator P̂CP based on probit regression (see

[8]). The estimators P̂ACP and P̂AQP are based on auxiliary vector with dimension
P = 2. Our simulations are programmed in R, with some new code developed to
compute the estimators to be compared. The performance of each proportion estimator
was measured and compared in terms of relative bias (rb) and relative efficiency (re).

The simulated values of rb and re for a particular proportion estimator T̂ were
computed as
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rb = B−1
B∑
b=1

(T̂ b − P )/P, re = MSE(P̂AHT )/MSE(T̂ )

where MSE(T̂ ) = B−1
∑B

b=1(T̂
b − P )2, MSE(P̂AHT ) = B−1

∑B
b=1(P̂

b
AHT − P )2, and

T̂ b and P̂ b
AHT are the values of T̂ and P̂AHT from the bth simulation, respectively.

To investigate the efficiency of the proposed estimators under a variety of situations,
we conside different stages. First, we will consider the estimation of a population
proportion in simulated populations and secondly we will use the proposed estimators
in the estimation of the Head Cont Index. For the estimation of population propor-
tion, we consider 5 populations generated as a random sample of 10000 units from
a Bernoulli distribution with parameter P = 0.9, and the attributes of interest were
thus achieved with the aforementioned population proportion. Auxiliary attributes
were also generated using the same distribution, but a given proportion of values was
randomly changed so that Cramer’s V coefficient between the attribute of interest
and the auxiliary attribute would range from 0.5 to 0.9. For each of the 5 populations,
B = 10000 samples of sizes n =150, 250, 350 and 450 were selected, under simple
random sampling, to compare the considered estimators in terms of relative bias (RB)
and relative efficiency (RE). Table 1 give the values of RB and RE in percentages
for the binomial populations with Cramer’s V coefficient range from 0.5 to 0.7. and
Table 2 give the values of RB and RE for the binomial populations with Crame’s V
coefficient range from 0.8 to 0.9

[Table 1 about here.]

[Table 2 about here.]

The results derived from this simulation study gave values for RB within a
reasonable range. All the estimators considered produced absolute relative bias values
of less than 0.5%. The estimators P̂AHT , P̂AMratio, P̂AC1 and P̂AQ1 has the same
variance and have a larger variance than the other estimators considered. With large
Cramer’s V coefficient (ρ) values, the proposed estimators P̂ACP , P̂AQP , P̂ACMAX ,

P̂ACOPT and P̂AQOPT produce good results. It can also be seen that as ρ increases, all
the estimators achieve greater precision, which is particularly marked for very high
correlations.
Of all the estimates that use auxiliary information, the calibration estimators P̂ACOPT

and P̂AQOPT has the highest degree of efficiency for small values of ρ while for the

large values, the estimators P̂ACP , P̂AQP and P̂ACMAX present a greater efficiency.

In all cases, the calibration estimators P̂ACP , P̂AQP , P̂ACMAX , P̂ACOPT and P̂AQOPT

perform better than the estimators P̂AR, P̂AWM , P̂LGREG and P̂CP .
The sample size produces a clear effect on the behaviour of the estimators: as the
sample size increases, so does the efficiency of the estimators.

For the estimation of Head Count Index, we consider real data taken from the
2008 Spanish living conditions survey carried out by the Instituto Nacional de
Estad́ıstica (INE) of Spain. For our simulation study, we considered the survey data
collected as a population with size N = 12990, from which samples are selected. The
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poverty threshold is calculated each year, using the distribution of the equivalised
net income for the previous year. Following the criteria recommended by Eurostat,
this threshold is set at 60% of the median of the equivalised net income. The value
of the population HCI is 0.1968. We considered the variable x1 =“Returns and
additional revenue from adjustments in taxes” and the attribute x2 =“Home with
own car” (1 for home with own car, 0 otherwise) as the auxiliary variables. The
correlation coefficient between the main variable with x1 is −0.12 and the correlation
coefficient between the main variable with x2 is −0.09. Again, B = 10000 samples
of sizes n =500, 600, 700 and 800 were selected, under simple random sampling,
to compare the relative bias (RB) and relative efficiency (RE) of the considered es-
timators. Table 3 give the values of RB and RE in percentages for the real population.

[Table 3 about here.]

In this population, the results are slightly different. The relative biases usually
remain negligible (less than 0.5 %) but the efficiency is different:

• The calibration estimator P̂AR, P̂AC1 and P̂AQ1 performs poorly and has worse

efficiency than the estimator P̂AHT .
• The remaining estimates are more efficient than the estimator P̂AHT but the
gain in efficiency is not as great as in the previous example.

• The proposed calibration estimator P̂ACP , P̂AQP , P̂ACMAX , P̂ACOPT and

P̂AQOPT often work better than the other estimators. The estimator P̂ACMAX is
the most efficient for all sample sizes, except for the sample size n = 600 where
the estimators P̂ACP and P̂AQP present the best results.

6. Concluding remarks

In recent years, the use of calibration technique has attracted significant attention in
survey methodology and applications. Calibration techniques are used for improving
more efficient estimators for a finite population by using the incorporation of available
auxiliary population information. This paper presents a new calibration technique for
estimating proportions in finite populations, based on a vector of auxiliary informa-
tion that includes both quantitative and qualitative variables. For it, the proposed
calibration technique considers the incorporation of the auxiliary information with
calibration techniques applied to the distribution function of the study variable
under simple random sampling. The estimation of a proportion in finite populations
is a interesting topic in many areas and has important applications in the field of
economics and in recent years there has been growing interest in the need to precise
indicators of poverty, inequality and living conditions. Many of these indicators, such
as the Head Count Index, are based on population proportions of binary variables.
The HCI is a poverty indicator commonly used in comparisons of poverty across
countries, but is unknown in practice and therefore it is necessary to estimate
its value. The calibration technique proposed in this paper allows obtaining HCI
estimates incorporating qualitative and quantitative auxiliary information.

Simulation studies are conducted to evaluate the performance of the proposed
calibration technique in terms of various empirical measures under different scenarios.
First, we evaluated the estimation of a population proportion in simulated populations
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where we compared the precision of the proposed calibration estimators to several
existing indirect estimators. We observed that the proposed estimators have a good
performance in terms of relative biases and we observed that the proposed estimators
P̂ACP , P̂AQP , P̂ACMAX , P̂ACOPT and P̂AQOPT perform better than the others indirect
estimators considered in the simulation study.
The simulation study also compares the calibration technique proposed in the
estimation of Head Count Index. For it, we consider real data taken from the 2008
Spanish living conditions survey. In the results of this study, we can also observe that
the proposed estimators present good results in terms of relative bias and calibration
estimator P̂ACP , P̂AQP , P̂ACMAX , P̂ACOPT and P̂AQOPT often work better than
the other estimators but the gain in efficiency is not as great as in the case of the
estimation of a population proportion in simulated populations.

In summary, the simulation studies indicate that the proposed calibration estimators
can be an alternative estimation method for the problem of estimating population
proportion and therefore can be a calibration estimation method for the estimation of
HCI.
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Table 1. rb % and re % for several sample sizes of the estimators compared. srswor from the

binomial populations. Cramer’s V coefficient range from 0.5 to 0.7

RB% RE% RB% RE% RB% RE% RB% RE%

ρ = 0.5

Estimator n = 150 n = 250 n = 350 n = 450

P̂AHT 0.014 100.00 -0.017 100.00 -0.003 100.00 -0.043 100.00

P̂AMratio 0.014 100.00 -0.017 100.00 -0.003 100.00 -0.043 100.00

P̂AR 0.031 109.21 -0.017 108.44 0.004 108.16 -0.037 109.90

P̂AWM -0.002 112.48 -0.038 111.70 -0.008 112.08 -0.036 113.86

P̂LGREG 0.006 113.63 -0.034 112.99 -0.006 113.47 -0.035 115.42

P̂CP 0.002 113.29 -0.037 112.60 -0.007 113.13 -0.036 115.09

P̂AC1 0.014 100.00 -0.017 100.00 -0.003 100.00 -0.043 100.00

P̂AQ1 0.014 100.00 -0.017 100.00 -0.003 100.00 -0.043 100.00

P̂ACP 0.025 114.14 -0.029 114.51 0.001 115.12 -0.031 117.52

P̂AQP 0.025 114.14 -0.029 114.51 0.001 115.12 -0.031 117.52

P̂ACOPT 0.040 115.21 -0.027 115.07 0.003 115.79 -0.029 118.14

P̂AQOPT 0.040 115.21 -0.027 115.07 0.003 115.79 -0.029 118.14

P̂ACMAX 0.025 114.14 -0.029 114.51 0.001 115.12 -0.031 117.52

ρ = 0.6

Estimator n = 150 n = 250 n = 350 n = 450

P̂AHT 0.055 100.00 0.010 100.00 -0.016 100.00 -0.020 100.00

P̂AMratio 0.055 100.00 0.010 100.00 -0.016 100.00 -0.020 100.00

P̂AR 0.040 109.78 -0.007 116.88 -0.009 117.98 -0.009 116.28

P̂AWM 0.010 112.12 -0.035 127.92 -0.023 130.18 -0.020 126.98

P̂LGREG 0.018 113.39 -0.030 131.35 -0.021 134.15 -0.018 130.46

P̂CP 0.014 112.99 -0.037 130.66 -0.025 133.37 -0.021 129.62

P̂AC1 0.055 100.00 0.010 100.00 -0.016 100.00 -0.020 100.00

P̂AQ1 0.055 100.00 0.010 100.00 -0.016 100.00 -0.020 100.00

P̂ACP 0.038 115.27 -0.010 133.62 -0.010 136.87 -0.012 131.63

P̂AQP 0.038 115.27 -0.010 133.62 -0.010 136.87 -0.012 131.63

P̂ACOPT 0.046 115.85 -0.002 135.30 -0.007 138.81 -0.010 133.41

P̂AQOPT 0.046 115.85 -0.002 135.30 -0.007 138.81 -0.010 133.41

P̂ACMAX 0.038 115.27 -0.010 133.62 -0.010 136.87 -0.012 131.63

ρ = 0.7

Estimator n = 150 n = 250 n = 350 n = 450

P̂AHT 0.015 100.00 0.013 100.00 0.008 100.00 0.006 100.00

P̂AMratio 0.015 100.00 0.013 100.00 0.008 100.00 0.006 100.00

P̂AR 0.011 127.74 -0.003 130.28 0.012 133.02 0.002 131.23

P̂AWM -0.130 140.46 -0.077 144.91 -0.029 148.35 -0.028 146.13

P̂LGREG -0.120 150.79 -0.070 156.15 -0.025 160.36 -0.025 158.11

P̂CP -0.150 148.42 -0.092 153.53 -0.038 157.63 -0.034 155.26

P̂AC1 0.015 100.00 0.013 100.00 0.008 100.00 0.006 100.00

P̂AQ1 0.015 100.00 0.013 100.00 0.008 100.00 0.006 100.00

P̂ACP -0.002 176.23 -0.004 181.61 0.014 184.02 0.001 181.07

P̂AQP -0.002 176.23 -0.004 181.61 0.014 184.02 0.001 181.07

P̂ACOPT 0.004 173.86 -0.006 179.09 0.014 181.82 0.001 179.94

P̂AQOPT 0.004 173.86 -0.006 179.09 0.014 181.82 0.001 179.94

P̂ACMAX -0.002 176.23 -0.004 181.61 0.014 184.02 0.001 181.07
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Table 2. rb % and re % for several sample sizes of the estimators compared. srswor from the
binomial populations. Cramer’s V coefficient range from 0.8 to 0.9

RB% RE% RB% RE% RB% RE% RB% RE%

ρ = 0.8

Estimator n = 150 n = 250 n = 350 n = 450

P̂AHT 0.004 100.00 -0.043 100.00 -0.007 100.00 -0.001 100.00

P̂AMratio 0.004 100.00 -0.043 100.00 -0.007 100.00 -0.001 100.00

P̂AR 0.016 165.15 -0.032 167.61 0.003 162.67 0.005 166.53

P̂AWM -0.145 187.40 -0.095 193.44 -0.048 189.55 -0.034 190.52

P̂LGREG -0.130 200.75 -0.081 209.88 -0.038 206.88 -0.028 208.68

P̂CP -0.160 197.77 -0.098 205.53 -0.050 202.48 -0.036 203.90

P̂AC1 0.004 100.00 -0.043 100.00 -0.007 100.00 -0.001 100.00

P̂AQ1 0.004 100.00 -0.043 100.00 -0.007 100.00 -0.001 100.00

P̂ACP -0.057 213.73 -0.020 225.64 0.005 223.49 -0.005 224.91

P̂AQP -0.057 213.73 -0.020 225.64 0.005 223.49 -0.005 224.91

P̂ACOPT 0.002 218.32 -0.011 225.62 0.005 221.95 -0.004 223.73

P̂AQOPT 0.002 218.32 -0.011 225.62 0.005 221.95 -0.004 223.73

P̂ACMAX -0.057 213.73 -0.020 225.64 0.005 223.49 -0.005 224.91

ρ = 0.9

Estimator n = 150 n = 250 n = 350 n = 450

P̂AHT -0.011 100.00 0.013 100.00 0.014 100.00 -0.002 100.00

P̂AMratio -0.011 100.00 0.013 100.00 0.014 100.00 -0.002 100.00

P̂AR -0.015 289.45 0.006 287.74 -0.001 286.77 -0.003 294.96

P̂AWM -0.181 331.63 -0.123 344.48 -0.080 345.35 -0.057 356.19

P̂LGREG -0.191 360.15 -0.127 377.50 -0.079 389.81 -0.053 400.60

P̂CP -0.209 349.52 -0.143 364.93 -0.091 372.18 -0.062 382.58

P̂AC1 -0.011 100.00 0.013 100.00 0.014 100.00 -0.002 100.00

P̂AQ1 -0.011 100.00 0.013 100.00 0.014 100.00 -0.002 100.00

P̂ACP -0.115 411.46 -0.050 437.04 -0.014 470.50 -0.006 469.58

P̂AQP -0.115 411.46 -0.050 437.04 -0.014 470.50 -0.006 469.58

P̂ACOPT -0.050 428.22 -0.020 445.22 -0.009 461.61 -0.006 463.43

P̂AQOPT -0.050 428.59 -0.020 445.22 -0.009 461.61 -0.006 463.43

P̂ACMAX -0.115 411.80 -0.050 437.04 -0.014 470.50 -0.006 469.58
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Table 3. rb % and re % for several sample sizes of the estimators compared under srswor from
the 2008 Spanish living conditions survey population.

RB% RE% RB% RE% RB% RE% RB% RE%

Estimator n = 500 n = 600 n = 700 n = 800

P̂AHT -0.066 100.00 -0.333 100.00 -0.256 100.00 0.044 100.00

P̂AMratio -0.066 100.00 -0.333 100.00 -0.258 100.00 0.044 100.00

P̂AR -0.064 94.80 -0.363 90.14 -0.286 96.98 0.027 96.65

P̂AWM -0.184 104.88 -0.227 102.49 -0.306 102.10 0.017 102.03

P̂LGREG -0.151 105.04 -0.190 102.50 -0.276 103.01 0.037 102.73

P̂CP -0.155 104.96 -0.221 102.47 -0.274 102.71 0.042 102.57

P̂AC1 -0.199 99.08 -0.288 100.23 -0.342 99.53 -0.041 99.66

P̂AQ1 -0.107 99.199 -0.287 100.85 -0.273 99.68 0.027 99.68

P̂ACP -0.648 104.31 -0.337 112.15 -0.532 103.16 -0.053 102.95

P̂AQP -0.638 104.39 -0.380 112.90 -0.522 103.22 -0.053 103.04

P̂ACOPT -0.167 105.05 0.388 102.45 -0.157 103.06 0.057 102.55

P̂AQOPT 0.169 105.04 0.788 102.23 0.156 103.23 0.058 102.77

P̂ACMAX -0.238 105.70 -0.443 103.63 -0.238 104.32 0.050 103.60
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