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1. Introduction

A Banach space X satisfies the Daugavet property (DPr in short) if the norm equality

‖ IdX +T‖ = 1 + ‖T‖ (DE)

holds for all rank-one bounded linear operators T : X −→ X (equivalently, for all weakly 
compact linear operators on X, [37]). Basic examples of Banach spaces with the Dau-
gavet property include C(K) spaces when K is perfect, L1(μ) spaces when μ is atomless, 
uniform algebras whose Choquet boundary is perfect, and isometric preduals of L1(μ)
spaces for which the set of extreme points of the dual ball is weak-star perfect up to rota-
tions, among many others. We refer the interested reader to the seminal paper [37] and to 
the more recent contributions [32,44,48,59] and references therein for more information 
and background.

A very related property to the DPr is the following: A Banach space X satisfies the 
alternative Daugavet property (ADP in short) if the norm equality

max
|w|=1

‖ IdX +wT‖ = 1 + ‖T‖ (aDE)

holds for all rank-one bounded linear operators T : X −→ X (equivalently, for all weakly 
compact linear operators on X, [47, Theorem 2.2]). Here, the basic examples are C(K)
and L1(μ) for all compact spaces K and positive measures μ, all uniform algebras, 
and all isometric preduals of L1(μ), among many others. This property was formally 
introduced and deeply studied in [47] (some related ideas had appeared before). We also 
refer the reader to [4,36,45] for instance, for more information, background, and for the 
relationship between the ADP and the study of the numerical index of Banach spaces.

As this manuscript will deal with C∗-algebras and JB∗-triples, it makes sense to 
present the characterizations of the DPr and the ADP for these spaces given in [11,45,
47,49]. We refer to Section 3 for the definition of the involved concepts.

Theorem 1.1 ([11,45,47,49]). (a). Let X be a C∗-algebra. Then the following statements 
hold:

(a1) X has the DPr if and only if X is diffuse (i.e., it contains no atomic projections).
(a2) X has the ADP if and only if every atomic projection is central.

(b). Let X be a JB∗-triple. Then the following assertions hold:

(b1) X has the DPr if and only if X contains no minimal tripotent.
(b2) X has the ADP if and only if every minimal tripotent is diagonalizing.
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This manuscript is devoted to study the natural extensions of the DPr and the ADP 
for polynomials. Let us introduce some notation. Even though both the DPr and the 
ADP have sense for both real and complex spaces, we will only deal with complex 
Banach spaces in this paper, as our main interest will be (complex) C∗-algebras and 
JB∗-triples. The closed unit ball of a Banach space X will be denoted by BX . Let X
and Y be Banach spaces. A 0-homogeneous polynomial from X to Y is just a constant 
mapping. For N ≥ 1, a (continuous) N -homogeneous polynomial P from X to Y is 

a mapping P : X −→ Y for which we can find an operator T :
N︷ ︸︸ ︷

X × . . .×X −→ Y

(continuous) multilinear and symmetric (i.e., T (x1, . . . , xN ) = T (xσ(1), . . . , xσ(N)) for 
every permutation σ of the set {1, . . . , N}) satisfying P (x) = T (x, . . . , x) for every 
x ∈ X. According to the usual notation, the symbol P(NX, Y ) will stand for the space 
of continuous N -homogeneous polynomials from X to Y . Given P ∈ P(NX, Y ), we shall 
write P̂ for the unique continuous symmetric N -linear mapping associated with P . The 
scalar N -homogeneous polynomials on X (i.e., P(NX, C)) will be simply denoted by 
P(NX). A (general) polynomial from X to Y is a mapping P : X −→ Y which can be 
written as a finite sum of homogeneous polynomials. We shall write P(X, Y ) for the space 
of all polynomials from X to Y , and P(X) for P(X, C). We say that P ∈ P(X, Y ) is 
weakly compact when the closure of P (BX) is weakly compact. We will consider P(X, Y )
endowed with the usual supremum norm

‖P‖ = sup{‖P (x)‖ : ‖x‖ ≤ 1}.

Using this norm, it makes sense to consider the equations (DE) and (aDE) in the space 
P(X, X) and hence to consider, as it is done in [16,17,62], the following two properties: 
We say that X has the polynomial Daugavet property [16,17] if every weakly compact 
P ∈ P(X, X) satisfies (DE). X has the alternative polynomial Daugavet property if 
every weakly compact P ∈ P(X, X) satisfies (aDE). It is immediate that the polynomial 
versions of the Daugavet and the alternative Daugavet properties imply the usual ones, 
respectively.

It is an open problem whether the Daugavet property implies the polynomial Daugavet 
property, but it is known that this is the case in some families of Banach spaces as C(K)
spaces and some generalizations [16,17], for L1(μ) spaces and for vector-valued L1 spaces 
[46], and also for isometric preduals of L1(μ), for uniform algebras and for spaces of 
Lipschitz functions [48], among others. For the case of the ADP, the situation is different 
as, for instance, the complex space �1 fails the alternative polynomial Daugavet property 
[16] (despite of the fact that �1 has the ADP). It is however known that every complex 
C(K) space has the alternative polynomial Daugavet property [16]. The real case is even 
worse: real c0 and real �1 fail the alternative polynomial Daugavet property [16]. E. Santos 
established in [61] that every continuous polynomial of finite type or approximable on a 
JB∗-triple having the DPr (respectively, the ADP) satisfies the Daugavet equation (DE)
(respectively, the alternative Daugavet equation (aDE)).
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The main aim of this paper is to show that for C∗-algebras and JB∗-triples, the 
DPr implies the polynomial Daugavet property and the ADP implies the alternative 
polynomial Daugavet property.

Theorem 1.2 (Main result). Let X be a JB∗-triple (in particular, a C∗-algebra). Then 
the following statements hold:

(a) If X has the DPr, then it has the polynomial Daugavet property.
(b) If X has the ADP, then it has the alternative polynomial Daugavet property.

It should be noticed that this result provides a complete positive solution to the 
problems posed by E. Santos in [61, §4].

The proofs of these two statements will appear in Theorem 4.1 and Theorem 4.2, 
respectively, where we actually rediscover a new proof of Theorem 1.1.

Let us comment that the main idea to get the polynomial Daugavet property in 
C(K) spaces and in some related classes of Banach spaces is to produce a number of 
“good” c0-sequences in the space (or in the bidual), and then use that continuous scalar 
polynomials in c0 are weakly continuous on bounded sets. This idea does not seem to 
work for noncommutative C∗-algebras nor for general JB∗-triples. Therefore, we need to 
find a suitable substitute of it, and the alternative tool is the sequential continuity of 
scalar polynomials on JB∗-triples (and so on C∗-algebras) for the strong∗-topology (see 
Corollary 3.7), a result which is of interest by itself. The remaining strategy to show 
that JB∗-triples having the DPr and the ADP actually satisfy their polynomial versions 
consists in extending and improving ideas from the original proofs given in [47,49] for 
the linear properties. There is however a substantial turn here, we do not rely on the 
arguments devoted to control the norm of a determined finite set of linear functionals 
when restricted to the Peirce-2 and Peirce-1 subspaces of an appropriate tripotent in the 
bidual, instead of that we shall show that the joint strong∗-continuity of the triple product 
in the bidual spaces simplifies the computation of the norms for scalar polynomials via 
pointwise convergence.

The outline of the paper is as follows: Section 2 is devoted to revisit some known tools 
and results to study the Daugavet equation for polynomials on a Banach space X which 
are weakly continuous on bounded sets. We prove that, assuming that X satisfies the 
DPr, every weakly compact polynomial on X which is weakly continuous on bounded 
sets satisfies the Daugavet equation (see Theorem 2.3). Section 3 contains a very brief 
introduction to JB∗-triples together with some basic tools and results required in our 
arguments (like the strong∗-topology and its main properties). We shall also revisit the 
results guaranteeing that every scalar polynomial on a general JB∗-triple is sequentially 
strong∗-continuous. Finally, section 4 is devoted to present the proofs of the main re-
sults.
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2. Revisiting the Daugavet equation for polynomials

Our goal here is to recall some basic facts on the polynomial Daugavet property and 
the alternative polynomial Daugavet property which will be useful in the sequel. We 
start with characterizations of both properties in terms of rank-one polynomials.

We begin with a result for the polynomial Daugavet property.

Proposition 2.1 ([17, Theorem 1.1 or Corollary 2.2]). Let X be a Banach space. Then, 
the following are equivalent:

(a) X has the polynomial Daugavet property (i.e., every weakly compact polynomial on 
X satisfies (DE)).

(b) Every P ∈ P(X, X) of the form x �−→ p(x)a for suitable p ∈ P(X) and a ∈ X, 
satisfies (DE).

(c) Given p ∈ P(X) with ‖p‖ = 1, a ∈ X with ‖a‖ = 1, and ε > 0, there are x ∈ BX

and w ∈ C with |w| = 1 such that

Rewp(y) > 1 − ε and ‖a + wx‖ > 2 − ε.

The analogous result for the alternative polynomial Daugavet property also holds.

Proposition 2.2 ([17, Corollary 1.2]). Let X be a Banach space. Then, the following are 
equivalent:

(a) X has the alternative polynomial Daugavet property (i.e., every weakly compact poly-
nomial on X satisfies (aDE)).

(b) Every P ∈ P(X, X) of the form x �−→ p(x)a for suitable p ∈ P(X) and a ∈ X, 
satisfies (aDE).

(c) Given p ∈ P(X) with ‖p‖ = 1, a ∈ X with ‖a‖ = 1, and ε > 0, there are x ∈ BX

and w ∈ C with |w| = 1 such that

|p(x)| > 1 − ε and ‖a + wx‖ > 2 − ε.

As we already mentioned in the introduction, a strategy to prove the polynomial Dau-
gavet property in some Banach spaces like C(K) spaces, uniform algebras, or isometric 
preduals of L1-spaces is to show that these spaces (or their biduals) are full of “good 
copies” of c0, and then use the fact that scalar polynomials on c0 are weakly continuous 
on bounded sets (see [17, Proposition 6.3] and [48, Proposition 4.3]). Of course this strat-
egy cannot be used in all Banach spaces with the DPr (for instance, L1[0, 1] contains no 
copies of c0). Here we can get a partial result showing that in a Banach space with the 
DPr, weakly compact polynomials which are weakly continuous on bounded sets satisfy 
(DE). As far as we know, this result is new.
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Theorem 2.3. Let X be a Banach space with the DPr. Then, given p ∈ P(X) which is 
weakly continuous on bounded sets and satisfies ‖p‖ = 1, a ∈ X with ‖a‖ = 1, and ε > 0, 
there are x ∈ BX and w ∈ C with |w| = 1 such that

Rewp(x) > 1 − ε and ‖a + wx‖ > 2 − ε.

As a consequence, every weakly compact P ∈ P(X, X) which is weakly continuous on 
bounded sets satisfies (DE).

We will make use of [63, Lemma 3] for which only the following weaker version will 
be needed.

Lemma 2.4 ([63, Lemma 3]). Let X be a Banach space with the DPr. Then, for every 
y ∈ BX with ‖y‖ = 1 and every ε > 0, the set

{x ∈ BX : ‖y + x‖ > 2 − ε}

is weakly dense in BX .

Let us observe that the lemma actually provides a characterization of Banach spaces 
with the Daugavet property, since the reciprocal implication is immediate by the well 
known characterization of the DPr using slices (see [37, Lemma 2.1]).

Proof of Theorem 2.3. Take w ∈ C with |w| = 1 such that sup
x∈BX

Rewp(x) > 1 − ε, and 

observe that p being weakly continuous on BX implies that the set

U := {x ∈ BX : Rewp(x) > 1 − ε}

is non-empty and weakly open relative to BX . Now, Lemma 2.4, applied to w̄a, assures 
that there is x0 ∈ U such that 

∥∥w̄a + x0
∥∥ > 2 − ε. It clearly follows that

Rewp(x0) > 1 − ε and ‖a + wx0‖ > 2 − ε.

To prove the last statement in the theorem, we just have to follow the lines of the proof 
of (c) ⇒ (a) in Proposition 2.1 given in [17, Theorem 1.1], and observe that in order to 
prove that every weakly compact and weakly continuous on bounded sets P ∈ P(X, X)
satisfies (DE), we only need to check that (c) holds for scalar polynomials which are 
weakly continuous on bounded sets, that is, we only need what we already proved in the 
first part of this proposition. �

Some remarks are worth mentioning.
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Remarks 2.5.

• Theorem 2.3 cannot be applied to show that C∗-algebras or JB∗-triples with the 
DPr have the polynomial Daugavet property. Actually, it cannot be used to get the 
polynomial Daugavet property from the DPr in any Banach space. Indeed, every 
Banach space with the DPr contains an isomorphic copy of �1 [37, Theorem 2.9]
and it is known that every Banach space containing �1 admits a continuous scalar 
polynomial which is not weakly continuous on bounded sets (cf. [23, Proposition 2.36 
and its proof]).

• In case that every continuous scalar polynomial on X is weakly sequentially con-
tinuous (as happens in Banach spaces with the Dunford-Pettis property, see [23, 
Proposition 2.34]), then a “sequential” version of Lemma 2.4 for such an X (i.e., 
weak sequential denseness instead of weak denseness) would be enough to get the 
polynomial Daugavet property from the DPr on X. We do not know if such a se-
quential version of Shvidkoy lemma is true for C∗-algebras or JB∗-triples, but it 
is certainly not true for all Banach spaces with the DPr: there is a Banach space 
satisfying both the DPr and the Schur property [38].

• It was proved in [61, Theorem 3.5] that when X is a C∗-algebra or a JB∗-triple and 
X has the DPr, then the polynomials of finite-type on X satisfy (DE). Recall that 
a polynomial P ∈ P(NX, Y ) is said to be of finite type if there exists a finite subset 

{ϕi}mi=1 ⊂ X∗ and elements yi’s in Y such that P (x) =
m∑
i=1

yiϕi(x)N (x ∈ X). It 

is clear that polynomials of finite type are weakly continuous (in particular, weakly 
continuous on bounded sets), so the cited result [61, Theorem 3.5] actually follows 
from our Theorem 2.3 and it is indeed true for all Banach spaces with the DPr, not 
only for C∗-algebras and JB∗-triples.

• The analogous result to Theorem 2.3 for the ADP and the polynomial alternative 
Daugavet property is not true. Indeed, the (real or complex) two-dimensional space 
�21 has the ADP [47], but fails the polynomial alternative Daugavet property (see Ex-
ample 3.12 and the paragraph below Remark 3.13 in [16]). Being finite-dimensional, 
it is immediate that all polynomials on �21 are weakly continuous (on bounded sets). 
By the way, this shows that a result analogous to Shvidkoy’s Lemma 2.4 for the ADP 
cannot be true.

3. A closer look at the theory of C∗-algebras and JB∗-triples

This section is not only devoted to summarize the basic definitions of JB∗-triples, but 
to revisit and adapt the geometric and topological tools required in our arguments. We 
shall also rediscover and extend some geometric tools employed in previous references 
from a quite different point of view.

There are several worthy arguments to consider and study the complex Banach spaces 
in the category of JB∗-triples. First, the class of JB∗-triples is strictly wider than the class 
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of C∗-algebras, and in many cases the geometric properties are easier affordable from this 
more general point of view. Perhaps the most important motivation to introduce JB∗-
triples arises in holomorphic theory and the classification of bounded symmetric domains 
in arbitrary complex Banach spaces, domains that play the role of simply connected 
domains in the celebrated Riemann mapping theorem (cf. [41]). Let us briefly recall the 
definition. A complex Banach space E is called a JB∗-triple if it admits a continuous 
triple product {·, ·, ·} : E×E×E −→ E, which is symmetric and bilinear in the first and 
third variables, conjugate-linear in the middle one, and satisfies the following axioms:

(a) (Jordan identity)

L(a, b)L(x, y) = L(x, y)L(a, b) + L(L(a, b)x, y) − L(x, L(b, a)y)

for a, b, x, y in E, where L(a, b) is the operator on E given by x �−→ {a, b, x};
(b) L(a, a) is a hermitian operator with non-negative spectrum for all a ∈ E;
(c) ‖{a, a, a}‖ = ‖a‖3 for each a ∈ E.

The triple product

{a, b, c} = 1
2(ab∗c + cb∗a) (1)

provides a structure of JB∗-triple for every C∗-algebra and every closed subspace of B(H)
which is closed for the triple product just commented – in particular the space B(H, K)
of all bounded linear operators between two complex Hilbert spaces and all complex 
Hilbert spaces are JB∗-triples. There exist JB∗-triples which cannot be embedded as 
JB∗-subtriples of B(H), they are related to the so-called exceptional Cartan factors (cf. 
[28]). A JBW∗-triple is a JB∗-triple which is also a dual Banach space. In analogy with 
Sakai’s theorem, every JBW∗-triple admits a unique (isometric) predual and its triple 
product is separately weak∗ continuous (cf. [7]).

Let A be a C∗-algebra. It is known that the fixed points of the triple product (1) are 
precisely the partial isometries in A (i.e., those e ∈ A such ee∗e = e, equivalently, ee∗ or 
e∗e is a projection). If we fix a partial isometry e ∈ A, we can easily decompose A in the 
form

A = ee∗Ae∗e + ((1 − ee∗)Ae∗e + ee∗A(1 − e∗e)) + (1 − ee∗)A(1 − e∗e),

decomposition which is known under the name of Peirce decomposition of A associated 
to e. Clearly, projections in A are nothing but those positive partial isometries in A.

More generally, if we have a JB∗-triple E, the elements e ∈ E satisfying {e, e, e} = e

are called tripotents. Each tripotent e in E produces a Peirce decomposition of the space 
E in terms of the eigenspaces of the operator L(e, e):

E = E2(e) ⊕E1(e) ⊕E0(e), (2)
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where Ek(e) := {x ∈ E : L(e, e)x = k
2x} is a subtriple of E called the Peirce-k subspace

(k = 0, 1, 2). The natural projection of E onto Ek(e) is known as the Peirce-k projection, 
and it is usually denoted by Pk(e). We shall later employ that Peirce projections are all 
contractive (cf. [27, Corollary 1.2]).

The concrete algebraic expressions of Peirce projections in terms of triple products 
read as follows: for each a, b ∈ E we write Q(a, b) for the conjugate linear operator 
on E given by Q(a, b)(x) := {a, x, b} (x ∈ E). The operator Q(a, a) is simply denoted 
by Q(a). According to this notation, P2(e) = Q(e)2, P1(e) = 2L(e, e) − 2Q(e)2, and 
P0(e) = IdE −2L(e, e) + Q(e)2.

A tripotent e in a JB∗-triple E is called minimal if e is non-zero and E2(e) = Ce.
Triple products among elements in different Peirce subspaces obey certain laws known 

as Peirce arithmetic. Concretely, the inclusion {Ek(e), El(e), Em(e)} ⊆ Ek−l+m(e), and 
the identity {E0(e), E2(e), E} = {E2(e), E0(e), E} = {0}, hold for all k, l, m ∈ {0, 1, 2}, 
where Ek−l+m(e) = {0} whenever k − l + m is not in {0, 1, 2}. The Peirce-2 subspace 
E2(e) is a unital JB∗-algebra with respect to the product and involution given by x ◦ey =
{x, e, y} and x∗e = {e, x, e}, respectively (cf. [15, Corollary 4.2.30]).

A tripotent e in a JB∗-triple E is said to be diagonalizing if E1(e) = {0}. Let us 
observe that a projection p in a C∗-algebra A is diagonalizing as tripotent if and only if 
it is a central projection.

Projections p, q in a C∗-algebra A are called orthogonal if pq = 0. If we consider 
general elements a, b ∈ A, according to the usual notation, we shall say that a and b
are orthogonal (a ⊥ b in short) if ab∗ = b∗a = 0. It is known that a ⊥ b if and only 
if L(a, b) = 0 (cf. [14, Lemma 1]). In a general JB∗-triple E, elements a, b are called 
orthogonal if L(a, b) = 0. In case that a and b are tripotents, it is easy to see that a ⊥ b if 
and only if a ∈ E0(b), if and only if b ∈ E0(a). The second identity in the so-called Peirce 
arithmetic precisely tells that a ⊥ b whenever a ∈ E0(e) and b ∈ E2(e) for a tripotent 
e ∈ E. Another geometric property of orthogonal elements in JB∗-triples assures that 
every two of orthogonal elements a, b in a JB∗-triple are M -orthogonal, that is,

‖a± b‖ = max{‖a‖, ‖b‖} (cf. [27, Lemma 1.3(a)]). (3)

There is a natural partial ordering among tripotents in a JB∗-triple E given by e ≤ u

if u − e is a tripotent and (u − e) ⊥ e.
The Gelfand-Naimark-Segal construction is one of the best known results in repre-

sentation theory of C∗-algebras. One of the many ideas in this construction provides a 
tool to define Hilbertian structures associated with positive functionals in the dual of a 
C∗-algebra. Concretely, if φ is a positive functional in the dual of a C∗-algebra A, the 
mapping (a, b) �−→ φ(b∗a) defines a semi-positive sesquilinear form on A. The symmetric 
version of these sesquilinear form (i.e., (a, b) �−→ φ( b

∗a+a∗b
2 )) defines the pre-Hilbertian 

seminorm of the form ‖a‖2
φ = φ(a

∗a+aa∗

2 ) (a ∈ A) appearing in the non-commutative 
version of Grothendieck’s inequalities by G. Pisier and U. Haagerup (cf. [56,30,57]).
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Despite of the lacking of a positive cone in general JB∗-triples, J. T. Barton and 
Y. Friedman established in [5, Proposition 1.2] the following procedure to define a pre-
Hilbertian seminorm associated with a functional ϕ in the dual, E∗, of a JB∗-triple E: 
for each z ∈ E∗∗ with ‖z‖ = 1 and ϕ(z) = ‖ϕ‖, the mapping

E×E −−−→ C

(x, y) �−→ ϕ {x, y, z}

is a semi-positive sesquilinear form on E, which does not depend on the choice of the 
element z ∈ E∗∗. The corresponding prehilbertian seminorm on E is denoted by ‖x‖2

ϕ :=
ϕ{x, x, z} (x ∈ E). All pre-Hilbertian seminorms associated with positive functionals in 
the dual space of a C∗-algebra A arise in this way, since for each positive functional 
φ we have φ(1) = ‖φ‖ for the unit element 1 ∈ A∗∗, and hence ‖x‖2

φ = φ{x, x, 1} =
φ(x

∗x+xx∗

2 ). These pre-Hilbertian seminorms play a fundamental role in the results known 
as Grothedieck’s inequalities for JB∗-triples and in the definition of the strong∗-topology 
which will be recalled later (cf. [6,31]).

It is known that

|ϕ(x)| ≤ ‖ϕ‖ ‖x‖ϕ

for all ϕ ∈ E∗, x ∈ E (see [6, comments before Definition 3.1]).
Among the results we shall revisit here, we shall present a quantitative version of 

results stated by M. Martín and T. Oikhberg [47, Lemma 4.16] and E. Santos [61, 
Lemma 3.3]. We begin by recalling a result borrowed from [26], which offers a technical 
control of a functional on Peirce-1 and -2 subspaces associated with a tripotent at which 
the pre-Hilbertian seminorms of the functionals are “small”.

Lemma 3.1. [26, Lemma 3.2] Let e be a tripotent in a JB∗-triple E, and let ϕ be a 
norm-one element in E∗ such that ‖e‖2

ϕ < δ. Then, the inequalities

|ϕP2(e)(x)| < 3
√
δ ‖P2(e)(x)‖, and |ϕP1(e)(x)| < 6

√
δ ‖P1(e)(x)‖,

hold for all x ∈ E.

It is known, and easily deducible from the definition of orthogonality, that the square 
of each pre-Hilbertian seminorm behaves additively on orthogonal elements, that is, if 
a1, . . . , an are mutually orthogonal elements in a JB∗-triple E and ϕ ∈ E∗, we have ∥∥∥

n∑
j=1

aj

∥∥∥2

ϕ
=

n∑
j=1

‖aj‖2
ϕ. Our next goal is a simplified proof of [47, Lemma 4.16] and 

[61, Lemma 3.3], which additionally provides a quantitative conclusion. The desired 
statement is analyzed in the following remark.
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Remark 3.2. For each ε > 0 and k ∈ N take a natural number n0 satisfying n0 > 122k
ε2 . 

Then, for every finite family {ϕ1, . . . , ϕk} of non-zero functionals in the closed unit ball 
of the dual space of a JB∗-triple E, and each finite family {e1, . . . , em0} of non-zero 
mutually orthogonal tripotents in E with m0 ≥ n0, there is m ∈ {1, . . . , m0} satisfying 
‖ϕi|E2(em)⊕E1(em)‖ = ‖ϕi(P2(em) + P1(em))‖ < ε, for all 1 ≤ i ≤ k.

Namely, let us fix ε > 0, k ∈ N. The chosen n0 ∈ N satisfies k
n0

< ε2

122 . Consider 
functionals and mutually orthogonal tripotents as in the statement with m0 ≥ n0, and 
define the following pre-Hilbertian seminorm:

‖x‖2
ϕ1,...,ϕk

:=
k∑

j=1
‖x‖2

ϕj
, (x ∈ E).

Since the square of every ‖ · ‖ϕj
is additive on orthogonal elements, the square of the 

seminorm ‖ · ‖ϕ1,...,ϕk
is also additive on orthogonal elements. Having in mind that the 

element 
m0∑
i=1

ei is a tripotent and the fact that e1, . . . , em0 are mutually orthogonal, we 

deduce that

m0∑
i=1

‖ei‖2
ϕ1,...,ϕk

=
∥∥∥

m0∑
i=1

ei

∥∥∥2

ϕ1,...,ϕk

=
k∑

j=1

∥∥∥
m0∑
i=1

ei

∥∥∥2

ϕj

≤
k∑

j=1
‖ϕj‖

∥∥∥
m0∑
i=1

ei

∥∥∥2
≤ k.

Therefore, there exists m ∈ {1, . . . , m0} such that ‖em‖2
ϕ1,...,ϕk

≤ k
m0

≤ k
n0

< ε2

122 . Since 

for each i ∈ {1, . . . , k} we have ‖em‖2
ϕi

≤ ‖em‖2
ϕ1,...,ϕk

< ε2

122 , Lemma 3.1 assures that

|ϕi (P2(em) + P1(em)) (x)| < 3 ε

12 ‖P2(em)(x)‖ + 6 ε

12 ‖P1(em)(x)‖

≤ 9 ε

12 ‖P2(em)(x) + P1(em)(x)‖

for all 1 ≤ i ≤ k and all x ∈ E, where in the last inequality we applied that Peirce 
projections are contractive and P2(em)P1(em) = P1(em)P2(em) = 0.

The arguments in previous studies, like [47,61], rely on controlling the norms of the 
restriction to the Peirce-2 and Peirce-1 subspaces associated with a tripotent in the 
bidual space of all elements of a finite family of functionals in the dual space of a JB∗-
triple E, as in the previous remark. The same conclusion does not seem easily achievable 
for an arbitrary scalar polynomial. For the proof in this paper we shall rely on a weaker 
pointwise convergence.

One of the novelties in this note, compared with previous forerunners, consists in 
replacing finite families of mutually orthogonal elements by sequences of mutually or-
thogonal elements. In order to sum countable families of mutually orthogonal tripotents, 
we need to employ an appropriate topology to assure the convergence. Actually, the fol-
lowing stronger property holds: every arbitrary family {ei}i∈Λ of mutually orthogonal 
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tripotents in a JBW∗-triple M is summable with respect to the weak∗ topology of M , 
and its limit, denoted by 

∑
i∈Λ

ei = w∗-
∑
i∈Λ

ei, is another tripotent in M (cf. [34, Corollary 

3.13] or [8, Proposition 3.8]).
We shall also make use of the strong∗-topology of JB∗-triples. For this reason, it is 

worth to recall some basic facts on this topology. According to [6, §3], the strong∗-topology
of a JB∗-triple E is the topology determined by all the seminorms of the form ‖ · ‖ϕ, 
with ϕ running in the dual space of E (or equivalently, in the unit sphere of E∗). If 
M is a JBW∗-triple, the strong∗-topology of M is the topology determined by all the 
seminorms of the form ‖ · ‖ϕ with ϕ running in the predual space of M . Let us observe 
that the strong∗-topology of E is precisely the restriction to E of the strong∗-topology 
of E∗∗. This topology enjoys some useful properties, it is compatible with the duality 
(E, E∗) and stronger than the weak topology of E.

When a C∗-algebra A is regarded as a JB∗-triple, the strong∗-topology on A in the 
triple sense coincides with the strong∗ topology in the usual C∗- sense (cf. [60, 1.8.7]
and [6, p. 258-259]). In what concerns this paper, we remark that the triple product is 
jointly strong∗-continuous on bounded sets (cf. [58], [53, §4]). It is well known that every 
sequence of mutually orthogonal projections in a C∗-algebra is strong∗-null, and the same 
property holds for every sequence of mutually orthogonal tripotents in a JB∗-triple (cf. 
[52, Comments in page 86]).

A (closed) subtriple I of a JB∗-triple E is said to be an ideal (respectively, an inner 
ideal) of E if {E,E, I} + {E, I,E} ⊆ I (respectively, {I, E, I} ⊆ I). For example, if 
p, q are two projections in a C∗-algebra A, the subtriple pAq is an inner ideal of A, in 
particular, the Peirce-2 subspace associated with a partial isometry is an inner ideal.

It is shown in [61, Lemma 3.2] that given two tripotents e, e1 in a JB∗-triple E the 
conditions e ≥ e1 (i.e., e = (e − e1) + e1 with e − e1 a tripotent orthogonal to e1) and e1

minimal in the Peirce-2 subspace E2(e), imply that e1 is minimal in E. This is actually 
a consequence of the following more general property, where we are not assuming any 
order relationship among the tripotents.

Lemma 3.3. Let I be an inner ideal of a JB∗-triple E. Suppose that e1 is a minimal 
tripotent in I. Then e1 is minimal in E. In particular, if e1 is a minimal tripotent in 
E2(e) or in E0(e) for a fixed tripotent e ∈ E, then e1 is a minimal tripotent in E.

Proof. By assumptions I2(e1) = Ce1. Each element x in the unital JB∗-algebra E2(e1)
decomposes in the form x = h +ik with h, k self-adjoint elements in E2(e1). In particular, 
k = k∗e1 = {e1, k, e1} and h = h∗e1 = {e1, h, e1}. Having in mind that I is an inner ideal 
with e1 ∈ I, we get k = {e1, k, e1}, h = {e1, h, e1} ∈ I. Thus h and k are self-adjoint 
elements in the JB∗-algebra I2(e1) = Ce1, and consequently x = h + ik ∈ Ce1, which 
gives the desired statement. The rest is clear because, for each tripotent e ∈ E, the 
Peirce subspaces E2(e) and E0(e) are inner ideals. �
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The C∗-subalgebra of a C∗-algebra generated by a single non-normal element is not 
always representable as a C∗-algebra of continuous functions vanishing at infinity on a 
locally compact Hausdorff space. However, the JB∗-subtriple, Ea, generated by a sin-
gle element a in a JB∗-triple E is JB∗-triple isomorphic to C0(Sp(a)) for some unique 
compact set Sp(a) ⊆ [0, ‖a‖] with ‖a‖ ∈ Sp(a), where C0(Sp(a)) denotes the com-
mutative C∗-algebra of all continuous complex-valued functions on Sp(a) vanishing at 
zero if 0 ∈ Sp(a). It is further known that we can actually find a triple isomorphism 
Ψa : Ea −→ C0(Sp(a)) mapping a to the natural inclusion of Sp(a) into C (cf. [41, 
Corollary 1.15] and [42, Proposition 3.5(iii)]). The set Sp(a) is called the triple spectrum 
of a. It is worth to note that for a �= 0, the triple spectrum Sp(a) is precisely the set 
of all positive square roots of the elements in the spectrum of the operator L(a, a)|Ea

in 
the unital complex Banach algebra B(Ea), that is,

Sp(a) = {t ∈ R+
0 : t2 ∈ σB(Ea)(L(a, a)|Ea

)}
= {t ∈ R+

0 : L(a, a)|Ea
− t2IdEa

not invertible in B(Ea)}
= {t ∈ R+

0 : a /∈ (L(a, a) − t2Id)(E)}

(cf. [42, Corollary 3.4]). For a = 0 we set Sp(a) = {0} –in such a case B(Ea) is not a 
unital Banach algebra.

Orthogonality is the key notion to define the rank of a JB∗-triple E. A subset S ⊂ E is 
orthogonal if 0 /∈ S and a ⊥ b for all a, b ∈ S. The minimal cardinal number r satisfying 
card(S) ≤ r for every orthogonal subset S ⊆ E is called the rank of E (r(E) in short). 
The rank of a tripotent e in E, r(e), is defined as the rank of the Peirce-2 space E2(e). 
A JB∗-triple has finite rank if and only if it is reflexive (cf. [13, Proposition 4.5] and [18, 
Theorem 6] or [10,9,25]).

We would like to remark some known facts on tripotents of finite rank.

Remark 3.4. We observe that every minimal tripotent in a JBW∗-triple M lies in the 
atomic part of M , actually the atomic part of M is the weak∗-closed ideal of M generated 
by all minimal tripotents in M (cf. [27]). The atomic part of M coincides with an �∞-sum 
of Cartan factors (see [28, Proposition 2] and [35, Corollary 1.8]). By working on each of 
the summands appearing in the atomic part of M , we deduce that if a tripotent e writes 
as the orthogonal sum of a finite family of n minimal tripotents, then it has finite rank 
n, and reciprocally, if a tripotent has finite rank n, it can be written as an orthogonal 
sum of n minimal tripotents (cf. [43, Comments after Lemma 3.3 in page 200] and the 
previous Lemma 3.3 to deal with minimality). Let E be a JB∗-triple of finite rank n ∈ N. 
Then each tripotent in E can be written as a finite sum of at most n mutually orthogonal 
minimal tripotents in E (see [13, Proposition 4.5] and [18, Theorem 6] or [9]).

It is well known that a C∗-algebra A is reflexive as a Banach space if and only if it is 
finite dimensional. Actually, dimension and rank are intrinsically related in the setting of 
C∗-algebras. More concretely, every finite dimensional C∗-algebra must have finite rank 
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by basic structure theory (cf. [64, Theorem I.11.2]). On the other hand, every infinite-
dimensional C∗-algebra must have infinite rank (see, for example, [39, Exercise 4.6.13]). 
If A is an infinite-dimensional von Neumann algebra, we can clearly find an infinite 
sequence of mutually orthogonal non-zero projections. Contrary to what is known in 
the case of C∗-algebras and projections, the rank and not the dimension of the Peirce-
2 subspace associated with a tripotent e in a JB∗-triple E determines the number of 
mutually orthogonal elements in E2(e). We can find tripotents e whose Peirce-2 subspace 
is infinite dimensional with finite rank. For example, every spin factor C has rank 2 
(cf. [43], or e.g. the comments after Lemma 3.1 of [40]). If C is infinite-dimensional, it 
contains many unitary tripotents, and for each one of them the Peirce-2 subspace is the 
whole C, and thus it is infinite-dimensional, reflexive, and does not contain more than 2 
mutually orthogonal tripotents. This particularity of JB∗-triples produces a subtle gap 
in the proofs of [61, Theorems 3.5 and 3.6] and [47, Theorem 4.5], where it is assumed 
that for a tripotent e in a JB∗-triple E, the hypothesis dim(E2(e)) = ∞ implies that its 
bidual contains as many mutually orthogonal tripotents as desired whose sum is e. We 
shall see in the proof of Theorem 4.2 an argument to fix this small inconvenient.

The next technical lemma is thought to clarify the application of the notion of rank 
in JB∗-triples.

Lemma 3.5. Let e be a tripotent in a JBW∗-triple M . Suppose that M2(e) is a JBW∗-
triple having infinite rank. Then, there exists an infinite sequence (en) of mutually 
orthogonal non-zero tripotents in E2(e) with e = w∗-

∑∞
n=1 en.

Proof. We shall first prove the following property: for each tripotent v in M such that 
M2(v) has infinite rank, there exists a tripotent v1 such that v1 ≤ v, v1 �= v and M2(v1)
has infinite rank.

We begin by observing that v cannot be minimal in M , otherwise, M2(v) = Ce which 
is impossible because Ce has rank one.

Since minimality in the set of tripotents of a JBW∗-triple is precisely minimality with 
respect to the natural partial order (cf. [24, Corollary 4.8] and [8, Lemma 4.7]), we can 
write v as the orthogonal sum of two non-zero tripotents w1 and w2. We claim that 
M2(w1) or M2(w2) has infinite rank. Otherwise, both of them are finite rank JBW∗-
triples, and hence each wj can be expressed as an orthogonal finite sum of minimal 
tripotents in M2(wj) (j = 1, 2). Lemma 3.3 assures that minimal tripotents in M2(wj)
are minimal in M . Therefore, v = w1 + w2 writes as an orthogonal finite sum of min-
imal tripotents in M , and hence M2(v) has finite rank (see Remark 3.4), which is a 
contradiction.

Let us now prove the desired conclusion. By applying what we proved in the first 
part to e, there exists a tripotent v2 such that v2 � e and M2(v2) has infinite rank. 
Set e2 := e − v2 �= 0. Now, by repeating the same argument to v2, we find another 
tripotent v3 such that v3 � v2 and M2(v3) has infinite rank. We set e3 := v2 − v3. 
Clearly, 0 �= e3 ⊥ e2. We inductively define a sequence of tripotents (vn)n satisfying 
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vn+1 � vn and M2(vn) has infinite rank for all natural n ≥ 2. Setting en+1 := vn − vn+1

(n ≥ 2) and e1 = e − w∗-
∑∞

n≥2 en we obtain the desired sequence. �
Pełczyński’s Property (V ) is a powerful tool to study weak compactness. Let us recall 

that a series 
∑

n≥1 xn in a Banach space X is called weakly unconditionally Cauchy 
(wuC) if 

∑
n≥1 |ϕ(xn)| < ∞ for each ϕ ∈ X∗. As shown by Bessaga and Pełczyński, 

wuC series are essentially linked to the canonical basis of c0 [22, §VI]. According to 
[50], a Banach space X satisfies property (V ) if for any (bounded) non relatively weakly 
compact set K ⊂ X∗ there exists a wuC series 

∑
n≥1

xn in X such that supϕ∈K |ϕ(xn)|

does not converge to 0. If X is a Banach space satisfying property (V ), then a bounded 
linear operator T from X into any other Banach space Y is either weakly compact or fixes 
an isomorphic copy of c0 (cf. [50] or [33, §III.3.3]). Consequently, each bounded linear 
operator from X into a Banach space not containing c0 is weakly compact. It is further 
known that the dual space of a Banach space having property (V ) is weakly sequentially 
complete (see [50]). It follows that the dual space of a Banach space satisfying property 
(V ) cannot contain a copy of c0, and if X and Y satisfy property (V ), every bounded 
linear operator T : X −→ Y ∗ is weakly compact.

The list of Banach spaces satisfying Pełczyński’s Property (V ) includes all C∗-algebras 
[55, Corollary 6], and the strictly wider class of JB∗-triples [20]. Consequently, every 
bounded linear operator from a JB∗-triple E into the dual space, F ∗, of any other JB∗-
triple, F , is weakly compact. The latter conclusion can be strengthened to the fact that 
every bounded linear operator T : E −→ F ∗ actually factors through a Hilbert space (cf. 
[19, Lemma 5]).

The procedure initiated by R. Arens in [2] for bilinear operators was later extended by 
R. M. Aron and P. D. Berner in [3], materializing in the most employed tool to produce 
norm-preserving extensions of multilinear operators to the bidual spaces. Let T : X1 ×
X2×· · ·×XN −→ Y be a bounded multilinear map (where X1, X2, . . . , XN , Y are Banach 
spaces). The Aron-Berner procedure guarantees the existence of N ! norm-preserving 
“natural” extensions of T to multilinear maps from X∗∗

1 × X∗∗
2 × . . . × X∗∗

N to Y ∗∗, 
each one enjoying certain weak∗ continuity properties. These Aron-Berner extensions 
are separately weak∗-to-weak∗ continuous if and only if they all coincide. A result by 
F. Bombal and I. Villanueva proves that, assuming that for each i �= j, every bounded 
linear operator from Xi into X∗

j is weakly compact, every bounded multilinear operator 
T : X1×X2×· · ·×XN −→ Y admits a unique norm-preserving separately weak∗-to-weak∗

continuous Aron-Berner extension T̃ : X∗∗
1 ×X∗∗

2 × . . .×X∗∗
N −→ Y ∗∗ [12, Theorem 1].

Another basic principle of functional analysis asserts that a bounded linear opera-
tor T : X −→ Y (where X and Y are Banach spaces) is weakly compact if and only if 
T ∗∗(X∗∗) ⊆ Y (cf. [21, Theorem 5.5]). The setting of multilinear operators differs from 
the linear case. One implication remains true. Namely, in order to guarantee the unique-
ness of the Aron-Berner extension, let us assume that for each i �= j every bounded 
linear operator from Xi into X∗

j is weakly compact. Then it is known that each weakly 
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compact multilinear mapping T : X1×X2×· · ·×XN −→ Y satisfies that its Aron-Berner 
extension is Y -valued (cf. [12, Corollary 2]). However, for N > 1 there exist non-weakly 
compact N -linear operators whose Aron-Berner extension remains valued in the same 
codomain space (see, for example, [51, page 385] or [29, Lemma 7] and [65, Theorem 5]).

In the case of multilinear maps from the Cartesian product of a collection of JB∗-
triples E1, . . . , EN into a complex Banach space X, the precise characterization of those 
satisfying that their Aron-Berner extension remains valued in the same codomain space 
was established by A. M. Peralta, I. Villanueva, J. D. M. Wright, and K. Ylinen in 
[54]. We recall that a multilinear operator T : E1 × · · · × EN −→ X is quasi completely 
continuous if whenever we choose strong∗ Cauchy sequences (xi

n)n ⊂ Ei (1 ≤ i ≤ N), 
it follows that the sequence (T (x1

n, . . . , x
N
n ))n is norm convergent, equivalently, given 

sequences (xi
n) ⊂ Ei which are strong∗ convergent to xi ∈ Ei (1 ≤ i ≤ k), we have

lim
n

‖T (x1
n, . . . , x

N
n ) − T (x1, . . . , xk)‖ = 0.

Theorem 3.6 ([54, Theorem 3.9]). Let E1, . . . , EN be JB∗-triples, X a complex Banach 
space, and T : E1 × · · · ×EN −→ X a bounded multilinear operator. Then, the following 
assertions are equivalent:

(1) T is quasi completely continuous.
(2) The unique Aron-Berner extension of T is X-valued.

A former version of the above theorem for C∗-algebras was obtained by J. D. M. 
Wright and K. Ylinen (see [66, Corollary 3.6]), while the case of abelian C∗-algebras was 
treated by I. Villanueva in [65] (see also [66, Corollary 3.7]).

Let E be a JB∗-triple. Each scalar polynomial p : E −→ C writes as a finite sum 
p = p0 + p1 + · · · + pN , where each pk is a scalar k-homogeneous polynomial. Clearly, 
Theorem 3.6 above implies that the symmetric multilinear form p̂k is quasi completely 
continuous, and hence pk : E −→ C is sequentially strong∗(-to-norm) continuous for all 
0 ≤ k ≤ N . The conclusion in the next corollary just follows by gluing the different 
k-homogeneous summands expressing p.

Corollary 3.7. Every scalar polynomial on a JB∗-triple is sequentially strong∗ continuous.

4. Main results

We can now state and prove that every JB∗-triple satisfying the Daugavet property 
also satisfies the stronger polynomial Daugavet property.

Theorem 4.1. Let E be a JB∗-triple satisfying the Daugavet property. Then E satisfies 
the polynomial Daugavet property, that is, every weakly compact polynomial P : E −→ E

satisfies the Daugavet equation (DE).
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Proof. Let P : E −→ E be a weakly compact polynomial. We can assume, via [16, 
Theorem 1.1] (see also Proposition 2.1), that P is of the form P (x) = p(x)a, where 
a ∈ E, p : E −→ C is a scalar polynomial with ‖a‖ = 1 = ‖p‖. For each ε > 0, we can 
find x0 in the closed unit ball of E and ω ∈ C with |ω| = 1 such that Reωp(x0) > 1 − ε. 
Let p̂ : E∗∗ −→ C denote the Aron-Berner extension of the polynomial p, obtained by 
extending each homogeneous summand of p.

As in the argument in the proof of [61, Theorem 3.5] (or [11,47]), the key information 
is in the triple spectrum of a. Let Sp(a) ⊆ [0, 1] denote the triple spectrum of a in E, 
where 1 ∈ Sp(a).

Our next goal will consist in proving that for each ε > 0 there exists a sequence (en)n
of mutually orthogonal tripotents in E∗∗ such that

P2(en)(a) = λnen with λn > 1 − ε, for all n ∈ N. (4)

If 1 is isolated in Sp(a), the element e = χ{1} –i.e., the characteristic function cor-
responding to the set {1}– is a continuous function in C0(Sp(a)) ≡ Ea and lies in the 
JB∗-subtriple Ea generated by a. Furthermore, a = e + a0 with a0 ⊥ e. We shall next 
show that E2(e) has infinite rank. Otherwise it must be reflexive (cf. [13, Proposition 4.5]
and [18, Theorem 6] or [10,9]). It is known that every reflexive JB∗-triple is generated by 
its minimal tripotents (cf. [13, Proposition 4.5 and Remark 4.6]). However, every minimal 
tripotent in E2(e) is a minimal tripotent in E (cf. Lemma 3.3) but the latter contains no 
minimal tripotents by hypothesis (cf. Theorem 1.1). This concludes the proof of the fact 
that E2(e) has infinite rank. By observing that E2(e) is a weak∗-dense JB∗-subtriple of 
E∗∗

2 (e), we conclude that the latter has finite rank (equivalently, is reflexive) if and only 
if E2(e) has finite rank. Therefore E∗∗

2 (e) must have infinite rank.
Now, by applying Lemma 3.5 to the JBW∗-triple E∗∗ and the tripotent e, we deduce 

the existence of an infinite sequence (en)n of mutually orthogonal non-zero tripotents 

in E∗∗
2 (e) with e = w∗-

∞∑
n=1

en. Let us recall that a = e + a0 with a0 ⊥ e, therefore, by 

orthogonality, we get

P2(en)(a) = P2(en)(e) = en = λnen, with λn = 1 > 1 − ε.

This proves the statement in (4) in the case in which 1 is isolated in Sp(a).
If 1 is non-isolated in Sp(a), by [1, Proposition 3.6] we can find an infinite collection 

of mutually orthogonal non-zero tripotents (en)n in E∗∗ satisfying (4).
We have already proved (4). Now, having in mind that en ⊥ P0(en)(x0) and (3), we 

define the following sequence in the unit sphere of E∗∗ by the rule

xn := ωen + P0(en)(x0).

We note that
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x0 − xn = P1(en)(x0) + P2(en)(x0 − ωen) = P1(en)(x0) + P2(en)(x0) − ωen.

The sequence (en)n converges to zero in the strong∗-topology of E∗∗ (see comments in 
page 12), and the same occurs to (ωen)n. We deduce from the joint strong∗ continuity 
of the triple product on bounded sets of E∗∗ that the sequences (L(en, en)(x0))n =
(P2(en)(x0) + 1

2P1(en)(x0))n, (Q(en)(x0))n and (P2(en)(x0))n = (Q(en)2(x0))n converge 
to zero in the strong∗-topology of E∗∗. In particular, (P2(en)(x0))n, (P1(en)(x0))n −→ 0
in the strong∗-topology of E∗∗. This guarantees that (xn − x0) −→ 0 and (xn) −→ x0

in the strong∗-topology of E∗∗.
By Corollary 3.7 the polynomials p : E −→ C and p̂ : E∗∗ −→ C are sequentially 

strong∗ continuous. Therefore p̂(xn) −→ p̂(x0) = p(x0). It is now time to pick n0 in N
such that Reωp̂(xn0) > 1 −ε. Our choice of n0 implies the following facts: P2(en0)(xn0) =
ωen0 and

‖xn0 + p̂(xn0)a‖ ≥ ‖P2(en0) (xn0 + p̂(xn0)a)‖ = ‖ωen0 + p̂(xn0)λn0en0‖
= |ω + p̂(xn0)λn0 | = |1 + ωp̂(xn0)λn0 |
≥ Re (1 + ωp̂(xn0)λn0) > 2 − 2ε,

witnessing that ‖IdE +P‖ = ‖IdE +pa‖ = ‖IdE∗∗ +p̂a‖ > 2 − 2ε, and the arbitrariness 
of ε gives the desired conclusion. �

Let us now deal with the alternative Daugavet Property.

Theorem 4.2. Let E be a JB∗-triple satisfying the alternative Daugavet property. Then, 
E satisfies the alternative polynomial Daugavet property, that is, every weakly compact 
polynomial P : E −→ E satisfies the alternative Daugavet equation (aDE).

Proof. Since E satisfies the ADP every minimal tripotent in E is diagonalizing (see 
Theorem 1.1). Suppose P : E −→ E is a weakly compact polynomial. We can assume, 
via [16, Corollary 1.2] (see Proposition 2.2), that P (x) = p(x)a, where p : E −→ C is a 
polynomial and a ∈ X. There is no loss of generality in assuming that ‖p‖ = 1 = ‖a‖.

Let us refine a bit our previous arguments in the proof of Theorem 4.1. If 1 is isolated 
in the triple spectrum of a, the characteristic function χ{1} is a tripotent e in C0(Sp(a)) ≡
Ea, where the latter denotes the JB∗-subtriple of E generated by a.

The dichotomy is the following: E2(e) has finite or infinite rank. In the first case 
E2(e) must be reflexive (cf. [13, Proposition 4.5] or [18, Theorem 6] or [10,9]), and 
the whole E2(e) is generated by its minimal tripotents ([13, Proposition 4.5 and Re-
mark 4.6]). Therefore, E2(e) contains a minimal tripotent e1 which is also minimal in E
by Lemma 3.3, and diagonalizing by hypotheses. Therefore E decomposes in the form 
E = Ce1 ⊕∞ E0(e1) (E2(e1) = Ce1). We note that e = γe1 + P0(e1)(e) for a suitable 
unitary γ ∈ C.
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Since ‖p‖ = 1, for each ε > 0, there exists α ∈ C with |α| ≤ 1 and x0 in the closed 
unit ball of E0(e1) such that |p(αe1 + x0)| > 1 − ε. Having in mind that p is a scalar 
polynomial, the mapping ζ �−→ p(ζγe1 +x0) is a polynomial in ζ ∈ C, and thus an entire 
function. By the maximum modulus principle, there exists a unitary scalar λ1 such that

|p(λ1γe1 + x0)| = max
{
|p(βe1 + x0)| : β ∈ C, |β| ≤ 1

}
≥ |p(αe1 + x0)| > 1 − ε. (5)

Let us observe that a = e + P0(e)(a) = γe1 + P0(e1)(a) because γe1 ≤ e. Setting 
x1 := λ1γe1 + x0, we define a norm-one element in E satisfying the following:

‖(IdE +ωP )(x1)‖ = ‖x1 + ωp(x1)a‖ ≥ ‖P2(e1)(x1 + ωp(x1)a)‖
= ‖λ1γe1 + ωp(x1)γe1‖ = |λ1 + ωp(x1)| = |1 + ωλ1p(x1)|,

for every unitary ω ∈ C. It is straightforward to check, from the previous inequality, that 
max
|ω|=1

‖(IdE +ωP )(x1)‖ = 1 +|p(x1)| > 2 −ε (see (5)), witnessing that max
|ω|=1

‖ IdE +ωP‖ =

2 as desired.
The above argument shows that every polynomial of the form P (x) = p(x)a with 

p ∈ P(E), a ∈ E, and ‖p‖ = ‖a‖ = 1, satisfies the alternative Daugavet equation (aDE)
whenever 1 is isolated in the triple spectrum of a and there exists a minimal tripotent 
e1 in E with e1 ∈ E2(e) (in particular, when E2(e) has finite rank).

In the remaining cases one of the next statements holds:

(a) 1 is isolated in the triple spectrum of a and, for e = χ{1} ∈ E, the Peirce-2 subspace 
E2(e) has infinite rank.

(b) 1 is non-isolated in the triple spectrum of a.

In both cases, we can literally repeat the arguments in the proof of Theorem 4.1 to show 
that P satisfies the Daugavet equation and thus the alternative Daugavet equation. �

Obviously, the conclusions in Theorems 4.1 and 4.2 actually characterize those JB∗-
triples satisfying the Daugavet property and the alternative Daugavet property, respec-
tively. We have indeed rediscovered the conclusions in Theorem 1.1 because we have 
proved that E has the DPr (respectively, the ADP) provided that E contains no mini-
mal tripotents (respectively, every minimal tripotent in E is diagonalizing).

We conclude this paper with two open problems.

Problem 4.3. Let E be a JB∗-triple satisfying the Daugavet property (respectively, the 
alternative Daugavet property). In view of Theorem 3.6 ([54, Theorem 3.9]), it seems 
natural to ask whether every polynomial P : E −→ E whose Aron-Berner extension 
remains E-valued satisfies the (DE) (respectively, the (aDE)).

Problem 4.4. It is known from previous studies that a JBW∗-triple has the Daugavet 
Property or the alternative Daugavet Property if and only if its predual enjoys the same 
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property (cf. [47, Theorem 4.7] and [45, Theorem 2.3]). In the case of the polynomial 
versions, it is known that the alternative polynomial Daugavet property does not pass 
from a JBW∗-triple to its predual, nor the other way around (the complex �∞ gives a 
counterexample). For the polynomial Daugavet property, we do not know whether the 
equivalence holds (actually, no implication is known to be true in this case).

Acknowledgments

The authors would like to thank the anonymous referee for the careful reading of the 
manuscript and multiple suggestions which have certainly improved this final version.

D. Cabezas supported by Junta de Andalucía grant FQM375 and PID2021-122126NB-
C31 funded by MCIU/AEI/10.13039/501100011033/FEDER/UE. M. Martín supported 
by Project PID2021-122126NB-C31 funded by MCIU/AEI/10.13039/501100011033/
FEDER/UE, Junta de Andalucía I+D+i grant FQM-185, and by IMAG–“Maria de 
Maeztu” Excellence Unit grant CEX 2020-001105-M/AEI/10.13039/501100011033/
FEDER. A.M. Peralta supported by Junta de Andalucía grant FQM375,
IMAG–“Maria de Maeztu” Excellence Unit grant CEX 2020-001105-M/AEI/
10.13039501100011033/FEDER, Project PID2021-122126NB-C31 funded by MCIU/AEI/
10.13039/501100011033/FEDER/UE, and grant G2023125007L by (MOST) Ministry of 
Science and Technology of China.

Funding for open access charge: Universidad de Granada / CBUA.

References

[1] J. Arazy, W. Kaup, On continuous Peirce decompositions, Schur multipliers and the perturbation 
of triple functional calculus, Math. Ann. 320 (2001) 431–461.

[2] R. Arens, The adjoint of a bilinear operation, Proc. Am. Math. Soc. 2 (1951) 839–848.
[3] R.M. Aron, P.D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. 

Fr. 106 (1978) 3–24.
[4] A. Avilés, V. Kadets, M. Martín, J. Merí, V. Shepelska, Slicely countably determined Banach spaces, 

Trans. Am. Math. Soc. 362 (2010) 4871–4900.
[5] T. Barton, Y. Friedman, Grothendieck’s inequality for JB∗-triples and applications, J. Lond. Math. 

Soc. (2) 36 (3) (1987) 513–523.
[6] T. Barton, Y. Friedman, Bounded derivations of JB∗-triples, Q. J. Math. Oxf. II. Ser. 41 (163) 

(1990) 255–268.
[7] T. Barton, R.M. Timoney, Weak∗-continuity of Jordan triple products and its applications, Math. 

Scand. 59 (1986) 177–191.
[8] M. Battaglia, Order theoretic type decomposition of JBW∗-triples, Quart. J. Math. Oxf. Ser. (2) 

42 (166) (1991) 129–147.
[9] J. Becerra Guerrero, G. López Pérez, A.M. Peralta, A. Rodríguez-Palacios, Relatively weakly open 

sets in closed balls of Banach spaces, and real JB∗-triples of finite rank, Math. Ann. 330 (1) (2004) 
45–58.

[10] J. Becerra Guerrero, G. López Pérez, A. Rodríguez-Palacios, Relatively weakly open sets in closed 
balls of C∗-algebras, J. Lond. Math. Soc. 68 (2003) 753–761.

[11] J. Becerra Guerrero, M. Martín, The Daugavet property of C∗-algebras, JB∗-triples, and of their 
isometric preduals, J. Funct. Anal. 224 (2) (2005) 316–337.

[12] F. Bombal, I. Villanueva, Multilinear operators on spaces of continuous functions, Funct. Approx. 
Comment. Math. 26 (1998) 117–126.

http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF05AE3C8796606150172C3FEBD4721B8s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF05AE3C8796606150172C3FEBD4721B8s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib864D72283695E6EDD1FCDCEB473DE77Fs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibD1AB3BF4B3523AE294AFC5105DA36A78s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibD1AB3BF4B3523AE294AFC5105DA36A78s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib63B41422D73077EFE6E41FDD3DDB2F53s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib63B41422D73077EFE6E41FDD3DDB2F53s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib7E51941E030EE5CC46D0E6A68C1489CBs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib7E51941E030EE5CC46D0E6A68C1489CBs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib6AE0FCD5EB50234F4174B2237F70BEC1s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib6AE0FCD5EB50234F4174B2237F70BEC1s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF053981D53E5F58BEE7BF86C40F6B9C0s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF053981D53E5F58BEE7BF86C40F6B9C0s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibB3B54B8599A13B05C598E2BF0F09B2C1s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibB3B54B8599A13B05C598E2BF0F09B2C1s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibD45763541FDBD60E32476383A3ACFB3Es1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibD45763541FDBD60E32476383A3ACFB3Es1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibD45763541FDBD60E32476383A3ACFB3Es1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib5CA02CA9C07768FF33827DECEA6522D9s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib5CA02CA9C07768FF33827DECEA6522D9s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib51312445B97256371C0D9CFC955B8C8Cs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib51312445B97256371C0D9CFC955B8C8Cs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib0CCB2BA4514891B4A63003FB603BFCE5s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib0CCB2BA4514891B4A63003FB603BFCE5s1


D. Cabezas et al. / Advances in Mathematics 439 (2024) 109479 21
[13] L.J. Bunce, Ch-H. Chu, Compact operations, multipliers and Radon-Nikodym property in JB∗-
triples, Pac. J. Math. 153 (1992) 249–265.

[14] M. Burgos, F.J. Fernández-Polo, J. Garcés, J. Martínez, A.M. Peralta, Orthogonality preservers in 
C∗-algebras, JB∗-algebras and JB∗-triples, J. Math. Anal. Appl. 348 (2008) 220–233.

[15] M. Cabrera García, A. Rodríguez Palacios, Non-associative Normed Algebras, vol. 1. The Vidav-
Palmer and Gelfand-Naimark Theorems, Encyclopedia of Mathematics and Its Applications, 
vol. 154, Cambridge University Press, Cambridge, 2014.

[16] Y.S. Choi, D. García, M. Maestre, M. Martín, The Daugavet equation for polynomials, Stud. Math. 
178 (2007) 63–82.

[17] Y.S. Choi, D. García, M. Maestre, M. Martín, Polynomial numerical index for some complex vector-
valued function spaces, Quart. J. Math. 59 (2008) 455–474.

[18] C.-H. Chu, B. Iochum, Complementation of Jordan triples in von Neumann algebras, Proc. Am. 
Math. Soc. 108 (1) (1990) 19–24.

[19] C.-H. Chu, B. Iochum, G. Loupias, Grothendieck’s theorem and factorization of operators in Jordan 
triples, Math. Ann. 284 (1) (1989) 41–53.

[20] Ch-H. Chu, P. Mellon, JB∗-triples have Pełczyński’s Property V, Manuscr. Math. 93 (3) (1997) 
337–347.

[21] J.B. Conway, A Course in Functional Analysis, second edition, Graduate Texts in Mathematics, 
vol. 96, Springer-Verlag, New York, 1990.

[22] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, vol. 92, Springer-
Verlag, New York, 1984.

[23] S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer-Verlag London, Ltd., London, 
1999.

[24] C.M. Edwards, G.T. Rüttimann, On the facial structure of the unit balls in a JBW∗-triple and its 
predual, J. Lond. Math. Soc. 38 (1988) 317–332.

[25] F.J. Fernández-Polo, J. Martínez, A.M. Peralta, Surjective isometries between real JB∗-triples, 
Math. Proc. Camb. Philos. Soc. 137 (2004) 709–723.

[26] F.J. Fernández-Polo, A.M. Peralta, Closed tripotents and weak compactness in the dual space of a 
JB∗-triple, J. Lond. Math. Soc. (2) 74 (1) (2006) 75–92.

[27] Y. Friedman, B. Russo, Structure of the predual of a JBW∗-triple, J. Reine Angew. Math. 356 
(1985) 67–89.

[28] Y. Friedman, B. Russo, The Gelfand–Naimark theorem for JB∗-triples, Duke Math. J. 53 (1986) 
139–148.

[29] M. González, J.M. Gutiérrez, Unconditionally converging polynomials on Banach spaces, Math. 
Proc. Camb. Philos. Soc. 117 (2) (1995) 321–331.

[30] U. Haagerup, The Grothendieck inequality for bilinear forms on C∗-algebras, Adv. Math. 56 (2) 
(1985) 93–116.

[31] J. Hamhalter, O.F.K. Kalenda, A.M. Peralta, H. Pfitzner, Grothendieck’s inequalities for JB∗-
triples: proof of the Barton-Friedman conjecture, Trans. Am. Math. Soc. 374 (2) (2021) 1327–1350.

[32] R. Haller, J. Langemets, V. Lima, R. Nadel, A. Rueda Zoca, On Daugavet indices of thickness, J. 
Funct. Anal. 280 (2021) 108846, 21 pp.

[33] P. Harmand, D. Werner, D. Werner, M -Ideals in Banach Spaces and Banach Algebras, Lecture 
Notes in Math., vol. 1547, Springer-Verlag, Berlin, 1993.

[34] G. Horn, Characterization of the predual and ideal structure of a JBW∗-triple, Math. Scand. 61 (1) 
(1987) 117–133.

[35] G. Horn, Classification of JBW∗-triples of type I, Math. Z. 196 (1987) 271–291.
[36] V. Kadets, M. Martín, J. Merí, A. Pérez, Spear Operators between Banach Spaces, Lecture Notes 

in Mathematics, vol. 2205, Springer, Cham, 2018, xv+161 pp.
[37] V. Kadets, R.V. Shvidkoy, G.G. Sirotkin, D. Werner, Banach spaces with the Daugavet property, 

Trans. Am. Math. Soc. 352 (2000) 855–873.
[38] V. Kadets, D. Werner, A Banach space with the Schur and the Daugavet property, Proc. Am. Math. 

Soc. 132 (2004) 1765–1773.
[39] R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, vol. I. Elemen-

tary Theory, Reprint of the 1983 original, Graduate Studies in Mathematics, vol. 15, American 
Mathematical Society, Providence, RI, 1997.

[40] O.F.K. Kalenda, A.M. Peralta, Extension of isometries from the unit sphere of a rank-2 Cartan 
factor, Anal. Math. Phys. 11 (2021) 15.

[41] W. Kaup, A Riemann Mapping Theorem for bounded symmetric domains in complex Banach spaces, 
Math. Z. 183 (1983) 503–529.

http://refhub.elsevier.com/S0001-8708(23)00622-9/bibAB3D478658790B101B98A89C3F6E00B0s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibAB3D478658790B101B98A89C3F6E00B0s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib80B0C616DEEA33FAA98E03A5E9094294s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib80B0C616DEEA33FAA98E03A5E9094294s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib9B57D475B0F7D822B8B044CB4BB39939s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib9B57D475B0F7D822B8B044CB4BB39939s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib9B57D475B0F7D822B8B044CB4BB39939s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib20A734E695610DFA9EEBD97C1BAF15D2s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib20A734E695610DFA9EEBD97C1BAF15D2s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF6B30B1D3F8557E55C127F89804AC696s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF6B30B1D3F8557E55C127F89804AC696s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib1A8914D72B2655A8A7AB2B66CB322A4Fs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib1A8914D72B2655A8A7AB2B66CB322A4Fs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF47D50C9F3CDA5C56762124FD7D1184Bs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF47D50C9F3CDA5C56762124FD7D1184Bs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibEDF378B8264D49DDDD3BAABA8ACBD386s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibEDF378B8264D49DDDD3BAABA8ACBD386s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibFCFD60446CCB30ADDBD1BB1202F596FCs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibFCFD60446CCB30ADDBD1BB1202F596FCs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib61482454FC0D82EF915706DDFB22C301s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib61482454FC0D82EF915706DDFB22C301s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibC77C409015BD2ABD2547AD634DBF81EBs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibC77C409015BD2ABD2547AD634DBF81EBs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib73E6BAB2E9C241B570A46AEAA08C088As1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib73E6BAB2E9C241B570A46AEAA08C088As1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibE4241C52C866D80C6BC5A91439EFDCD4s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibE4241C52C866D80C6BC5A91439EFDCD4s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib9AC4D64FCEA945BDA80844CD50832639s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib9AC4D64FCEA945BDA80844CD50832639s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib243C95879222CF3B43A6B35AFE20DAFBs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib243C95879222CF3B43A6B35AFE20DAFBs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib321C7AA4F07AD205F93472BEDDC89B79s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib321C7AA4F07AD205F93472BEDDC89B79s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib7798BB589E16B72A43732542029CBD6Es1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib7798BB589E16B72A43732542029CBD6Es1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibBEDE4E24551F65C04EE6375B48E15711s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibBEDE4E24551F65C04EE6375B48E15711s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib6D13A062AD8C7251EF3C6ACC39E06AEEs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib6D13A062AD8C7251EF3C6ACC39E06AEEs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibA323A6B3CE11256C249DEE90DB19EE12s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibA323A6B3CE11256C249DEE90DB19EE12s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibE78E7E705CCA1D8F7E69D613F048A397s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibE78E7E705CCA1D8F7E69D613F048A397s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib9EF91D0DEEEAB9B55F707859C12E17D3s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib9EF91D0DEEEAB9B55F707859C12E17D3s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibBE141686C7C04716BE2B3DAFF36CDB6Bs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib0B52EF23D60F0DD745DA6AF78A705B57s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib0B52EF23D60F0DD745DA6AF78A705B57s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibE531C633303958BF35141322CEA52494s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibE531C633303958BF35141322CEA52494s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF7B6A298D52BE3D7DC3FF66CF1BEE465s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF7B6A298D52BE3D7DC3FF66CF1BEE465s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib2405C5C9C720509886327833F45AE6DEs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib2405C5C9C720509886327833F45AE6DEs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib2405C5C9C720509886327833F45AE6DEs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib7E06F10A8185E1D4B2C11BEC8E016ADAs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib7E06F10A8185E1D4B2C11BEC8E016ADAs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF9AF787901801E176318862477924C34s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF9AF787901801E176318862477924C34s1


22 D. Cabezas et al. / Advances in Mathematics 439 (2024) 109479
[42] W. Kaup, On spectral and singular values in JB∗-triples, Proc. R. Ir. Acad. A 96 (1) (1996) 95–103.
[43] W. Kaup, On real Cartan factors, Manuscr. Math. 92 (1997) 191–222.
[44] G. López-Pérez, A. Rueda Zoca, L-orthogonality, octahedrality and Daugavet property in Banach 

spaces, Adv. Math. 383 (2021) 107719, 17 pp.
[45] M. Martín, The alternative Daugavet property of C∗-algebras and JB∗-triples, Math. Nachr. 281 (3) 

(2008) 376–385.
[46] M. Martín, J. Merí, M. Popov, The polynomial Daugavet property for atomless L1(μ)-spaces, Arch. 

Math. 94 (2010) 383–389.
[47] M. Martín, T. Oikhberg, An alternative Daugavet property, J. Math. Anal. Appl. 294 (2004) 

158–180.
[48] M. Martín, A. Rueda Zoca, Daugavet property in projective symmetric tensor products of Banach 

spaces, Banach J. Math. Anal. 16 (2022) 35, 32 pp.
[49] T. Oikhberg, The Daugavet property of C∗-algebras and non-commutative Lp-spaces, Positivity 6 

(2002) 59–73.
[50] A. Pełczyński A, Banach spaces on which every unconditionally converging operator is weakly 

compact, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 10 (1962) 641–648.
[51] A. Pełczyński, A theorem of Dunford-Pettis type for polynomial operators, Bull. Acad. Pol. Sci. 11 

(1963) 379–386.
[52] A.M. Peralta, H. Pfitzner, The Kadec-Pełczyński-Rosenthal subsequence splitting lemma for JBW∗-

triple preduals, Stud. Math. 227 (1) (2015) 77–95.
[53] A.M. Peralta, A. Rodríguez Palacios, Grothendieck’s inequalities for real and complex JBW∗-triples, 

Proc. Lond. Math. Soc. (3) 83 (3) (2001) 605–625.
[54] A.M. Peralta, I. Villanueva, J.D.M. Wright, K. Ylinen, Quasi-completely continuous multilinear 

operators, Proc. R. Soc. Edinb., Sect. A 140 (3) (2010) 635–649.
[55] H. Pfitzner, Weak compactness in the dual of a C∗-algebra is determined commutatively, Math. 

Ann. 298 (2) (1994) 349–371.
[56] G. Pisier, Grothendieck’s theorem for noncommutative C∗-algebras, with an appendix on 

Grothendieck’s constants, J. Funct. Anal. 29 (3) (1978) 397–415.
[57] G. Pisier, Grothendieck’s theorem, past and present, Bull. Am. Math. Soc. (N.S.) 49 (2) (2012) 

237–323.
[58] A. Rodríguez-Palacios, On the strong∗ topology of a JBW∗-triple, Quart. J. Math. Oxf. Ser. (2) 42 

(1989) 99–103.
[59] A. Rueda Zoca, P. Tradacete, I. Villanueva, Daugavet property in tensor product spaces, J. Inst. 

Math. Jussieu 20 (2021) 1409–1428.
[60] S. Sakai, C∗-algebras and W∗-algebras, Springer-Verlag, Berlin, 1971.
[61] E.R. Santos, The Daugavet equation for polynomials on C∗-algebras, J. Math. Anal. Appl. 409 (1) 

(2014) 598–606.
[62] E.R. Santos, An alternative polynomial Daugavet property, Stud. Math. 224 (2014) 265–276.
[63] R.V. Shvydkoy, Geometric aspects of the Daugavet property, J. Funct. Anal. 176 (2000) 198–212.
[64] M. Takesaki, Theory of operator algebras. I, Reprint of the first (1979) edition, in: Operator Algebras 

and Non-commutative Geometry, vol. 5, in: Encyclopaedia of Mathematical Sciences, vol. 124, 
Springer-Verlag, Berlin, 2002.

[65] I. Villanueva, Completely continuous multilinear operators on C(K) spaces, Proc. Am. Math. Soc. 
128 (3) (2000) 793–801.

[66] J.D.M. Wright, K. Ylinen, Multilinear maps on products of operator algebras, J. Math. Anal. Appl. 
292 (2) (2004) 558–570.

http://refhub.elsevier.com/S0001-8708(23)00622-9/bib633D3936546672B1FAE6CE6153C5F19As1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib3E18BE39DD27DD1F45F7C0CB99A01CB0s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib7D64ADEAB6EB4E4EB129A89BF286969Cs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib7D64ADEAB6EB4E4EB129A89BF286969Cs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibB54D39B6C28B9D6B54B8738052EF3C31s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibB54D39B6C28B9D6B54B8738052EF3C31s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib6D531219A85503136CED0612B6208835s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib6D531219A85503136CED0612B6208835s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib72C3FB8C8A6A59FF88F9DE3837238B89s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib72C3FB8C8A6A59FF88F9DE3837238B89s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibE007782C71A12A9C88978DC6EBC88359s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibE007782C71A12A9C88978DC6EBC88359s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibE2BBB046A9BB2B1F293E5850226FA518s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibE2BBB046A9BB2B1F293E5850226FA518s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF794D18C0031A2EDFAB7D94343486554s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibF794D18C0031A2EDFAB7D94343486554s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibFC24B49A68022C9F28DF8F69009EFC8Ds1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibFC24B49A68022C9F28DF8F69009EFC8Ds1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib25AEB4C230BF009A3EA07418AA3CF34Ds1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib25AEB4C230BF009A3EA07418AA3CF34Ds1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib7B9088714EC7A46EDEAC8E484E54730As1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib7B9088714EC7A46EDEAC8E484E54730As1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibB34FC6DE5AF94DF91DD3B5A54ED5B530s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibB34FC6DE5AF94DF91DD3B5A54ED5B530s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibDCDD6135D87381EEEE971ADD12703DFDs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibDCDD6135D87381EEEE971ADD12703DFDs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib82A3C40B957466796F8AC026C241CA1As1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib82A3C40B957466796F8AC026C241CA1As1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibE2673D4F0ADFA1D205357CE952288340s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibE2673D4F0ADFA1D205357CE952288340s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibADC95953D3D515639F5FAB0E50607508s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibADC95953D3D515639F5FAB0E50607508s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib8BCF0523FB5F709F6D2D5FA5A5315682s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib8BCF0523FB5F709F6D2D5FA5A5315682s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib763EABDDAB8C7ACEBB555F923BE7B000s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib451086D3A91C53915C80F40F2FC47937s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib451086D3A91C53915C80F40F2FC47937s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib472AEDE9AD2EC15A5201018B88F99CF8s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib6C5F45AB54C1C2E256FD8DB521FF10EEs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib47419CEC281E9138627DB0237C0B42FEs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib47419CEC281E9138627DB0237C0B42FEs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib47419CEC281E9138627DB0237C0B42FEs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibFCAB294A24285020CFFFF90065C95070s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bibFCAB294A24285020CFFFF90065C95070s1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib760AE67F1FEB29C4DF7D550A0DE221CCs1
http://refhub.elsevier.com/S0001-8708(23)00622-9/bib760AE67F1FEB29C4DF7D550A0DE221CCs1

	The Daugavet equation for polynomials on C∗-algebras and JB∗-triples
	1 Introduction
	2 Revisiting the Daugavet equation for polynomials
	3 A closer look at the theory of C∗-algebras and JB∗-triples
	4 Main results
	Acknowledgments
	References


