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We compute the classical and revival times of electron currents in several bulk nanostructured, 
semiconductor materials. We have used a nonparabolic Schrödinger equation to model the conduction 
band of semiconductors. We have calculated the classical and revival periods for quantum dots of Si, Ge 
and InAs quantum dots. The obtained results are of the order of tenths of nanoseconds to picoseconds, 
which are within reach of current technologies.
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The possibility of creating and manipulating nanobjects has in-
creased dramatically over the last decades. At the same time, quan-
tum physical effects are progressively incorporated into current 
technologies which, in turn, open up unprecedented possibilities 
to realize, observe, and control quantum effects. To name but a 
few examples, current quantum technologies cover quantum com-
munication and cryptography, atomic sensors, matter wave optics, 
or quantum computers. Many of the aforementioned technologies 
largely rely on the possibility of creating wave packets and of con-
trolling their subsequent time development. The time evolution of 
wave packets can be monitored on the attosecond time scale, and 
even their dynamics can be controlled by changing the phases be-
tween their components [1]. Moreover, the technical capacity to 
excite wave packets to high-energy levels, for instance Rydberg 
states of atoms or molecules, enables researches to approach the 
classical limit [2].

A most impressive feature of the time evolution of wave pack-
ets is the possibility of occurrence of quantum revivals [3]. Under 
given conditions to be discussed below, wave packets propagate as 
classical entities over short periods of time TCl before they de-
cay into the collapsed phase, only to regain their original form 
after the so-called revival time, TR, after which the cycle com-
mences again. This phenomenon has a purely quantum origin with 
no classical analogue. Initially limited to numerical investigations, 
quantum revivals were soon after observed in many experimen-
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tal situations, including quantum many-body systems [4], systems 
exhibiting quantum phase transitions [5], quantum chaos [6], and 
many-body localization [7]. On the applied side, they have become 
a feasible, useful tool at the basis of various applications as well. 
There have been reported quantum-recurrence-dependent meth-
ods for wave packet, laser isotope separation [8], factorization into 
prime numbers [9], and wave packet evolution control through rel-
atively weak laser pulses at fractional revivals which modify the 
phase between their components [1]. Revivals are observable even 
in the presence of environmental decoherence, using carbon nan-
otubes or silicon nanorods with a length of 50 nm [10]. They have 
also been investigated in other materials of technological interest 
such as grephene [11] and silicene [12], and used to characterize 
topological-band insulator transitions [13].

In this paper, we compute the revival times of electron cur-
rents in quantum dots of several semiconductor materials, namely, 
Silicon, Germanium and Indium arsenide. We take advantage of a 
proposed, modified Schrödinger equation to model the conduction 
band of semiconductors.

The wave function of electrons in a solid is usually described 
by the single-band, effective mass equation [14]

[ε(−i∇) + V (r)]ψ(r) = Eψ(r), (1)

where ε(−i∇) is the operator that results from replacing k by −i∇
in the dispersion relation En(k) of the perfect crystal and V (r)
is an external field. Although Eq. (1) is customarily simplified by 
expanding ε up to second order in k, simple quadratic approxima-
tions such as this are not valid for wave vectors far from the band 
minimum, whereas further expanding ε(k) to higher orders leads 
le under the CC BY-NC-ND license (http://
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to very complicated expressions. To circumvent this problem, the 
wave vector can be alternatively expressed in terms of the energy,

h̄2k2

2m∗ = ε + αε2 + βε3 · · · . (2)

Truncating the series to two terms provides the approximation

ε(k)[1 + αε(k)] = h̄2k2

2m∗ ≡ γ (k), (3)

where α is known as the non parabolicity coefficient and the co-
ordinate system has been chosen so that the effective mass tensor 
is diagonal. Pursing this approach, which is widely used in many 
materials, López-Villanueva et al. [15,16] have obtained analytical 
expressions for the energy spectrum of the conducting band of dif-
ferent semiconductors with simple geometries. The gist of their 
approach is to split the kinetic energy operator along the direc-
tions of confinement and propagation, γ = γc + γp . Corresponding 
to this separation, the energy operator is separated as ε = εc + εp

with [16]

εc = 1 + 2αεp

2α

{√
1 + 4αγc

(1 + 2αεp)2
− 1

}

εp(1 + αεp) = γp(kp). (4)

The energy spectrum is all what is needed to compute the re-
vival times. Consider the time evolution of a wave packet for a 
time-independent Hamiltonian

|ψ(t)〉 =
∑

n

cn|un〉e−iEnt/h̄. (5)

Assuming that the initial wave packet is a superposition of eigen-
states |un〉 sharply peaked around some n0, several times scales 
of evolution can be obtained from the Taylor series of the energy 
spectrum En around En0 ,

En ≈ En0 + E ′
n0

(n − n0) + E ′′
n0

2
(n − n0)

2 + · · · . (6)

Consequently,

e−iEnt/h̄ = exp

[
− iEn0

t

h̄
− 2π i(n − n0)

t

TCl
− (7)

2π i(n − n0)
2 t

TR
+ · · ·

]
,

where TCl ≡ 2π h̄/|E ′
n0

| and TR ≡ 4π h̄/|E ′′
n0

|. Some comments are 
in order. Revivals are generally only approximate; wave packets do 
not exactly revive after a time TR. But the more tightly peaked is 
the wave packet around a given quantum number, the more faith-
ful the reproduction of the original wave packet is at TR. Notice 
that these are sufficient conditions for revivals to exist, but not 
necessary: In an infinite square well, the separation between en-
ergy eigenvalues En = E1n2 increases with n, and the wave packets 
do regain exactly their original shape after a time TR = 2π h̄/E1. 
[The infinite square well is also special in that TR does not depend 
on the initial value n0.] Moreover, in the context of quantum phase 
transitions revivals have been reported for wave packets centered 
around energy levels as low as the fundamental state [5]. Finally, 
we would like to mention that in relativistic quantum mechanics 
a new periodicity arises, namely the Zitterbewegung or trembling 
motion. Although nowadays this is considered an artifact of the 
Dirac equation overcome by quantum field theory, it can show up 
in electrons in semiconductors whose band structure has a form 
2

Fig. 1. Time evolution of |A(t)|2 for a particle in a quantum well. The classical time 
value is TCl = 1.50 × 10−14 s.

reminiscent of the Dirac equation [17]. The π h̄/En0 term then pro-
vides the frequency of aforementioned Zitterbewegung oscillations 
[11].

Next, we apply the nonparabolic approach to various semicon-
ductors and geometries, but first we address the more academic 
case of a quantum well.

Quantum well. Taking the confinement direction along the z axis 
and the propagation in the x − y plane, the energy spectrum as 
derived in [16] is

En = 1 + 2αE p

2α

⎧⎨
⎩

√
1 + 4α

(1 + 2αE p)2

h̄2

2m∗
z

(πn

L

)2 − 1

⎫⎬
⎭ , (8)

which, upon considering the subband minimum E p = 0, implies

TCl = 2m∗
z L2

π h̄n

√
1 + 2α

π2h̄2

m∗
z L2

n2, (9)

TR = 4m∗
z L2

π h̄

(
1 + 2α

π2h̄2

m∗
z L2

n2

)3/2

. (10)

Setting α = 0 in Eq. (10) recovers the well known parabolic results 
TCl = 2m∗

z L2/π h̄n and TR = 4m∗
z L2/π h̄. Note that the nonparabolic 

correction does depend on the selected central state n, and hence 
TR is no longer independent from n. Moreover, the nonparabolic 
correction might not be a small one. In particular, for GaAs m∗

z =
0.0665 and α = 0.697 [19], which, taking L = 10 nm and n = 10, 
leads to TCl = 1.50 × 10−14 s and TR = 5.03 × 10−12 s, to be com-
pared with the parabolic approximation TCl = 3.6 × 10−15 s and 
TR = 7.3 × 10−14 s. As we will see, this trait carries over to more 
realistic cases.

For the sake of illustration, Fig. 1 shows the short time devel-
opment of the squared modulus of the autocorrelation function, 
A(t) = 〈ψ(t), ψ(0)〉 = ∑

n |cn|2eiEnt/h̄ .
As can be seen, the wave function initially evolves periodically 

as denoted by the coming backs of |A(t)|2 to its initial value of 
unity. This behavior fades away as longer times are considered (not 
shown) until eventually the almost periodic behavior is resumed 
at the revival time. This is illustrated in Fig. 2, which shows the 
time evolution up to 3TR. The vertical lines are now located at 
multiples of TR = 5.03 × 10−12 s. Finally, note that in this case the 
first revival occurs at TR/2 [18].

Rectangular quantum wires. Next, we address the case of rect-
angular cross-section wires. For wires of square-section of size L
where the confinement is in the x − y plane and the propagation 
is along the z-direction, the energy spectrum as derived in [16] is

Enx,ny = 1 + 2αE p (11)

2α
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Fig. 2. Time evolution of |A(t)|2 for a particle in a quantum well. The revival time 
value is TR = 5.03 × 10−12 s.

×
⎧⎨
⎩

√√√√1 + 2αh̄2

(1 + 2αE p)2

(π

L

)2
(

n2
x

m∗
x

+ n2
y

m∗
y

)
− 1

⎫⎬
⎭ .

Thus, this case constitutes a simple generalization to a system of 
two quantum numbers. From the expansion of Enx,ny , two different 
classical periods and three revival times can be defined. Particular-
izing to nx and E p = 0 leads to

TCl = 2π h̄

|E ′
nx |

= 2m∗
x L2

π h̄nx

√√√√1 + 2απ2h̄2

L2

(
n2

x

m∗
x

+ n2
y

m∗
y

)
, (12)

TR = 4π h̄

|E ′′
nx |

= 4m∗
x L2

π h̄

[
1 + 2απ2h̄2

L2

(
n2

x
m∗

x
+ n2

y
m∗

y

)]3/2

1 + 2απ2h̄2

L2
n2

y

m∗
y

,

and the mixed term

TR = 4π h̄

|E ′′
nx,ny |

= 2m∗
xm∗

y L4

απ3h̄3nxny

[
1 + 2απ2h̄2

L2

(
n2

x

m∗
x

+ n2
y

m∗
y

)]3/2

.

(13)

These expressions provide results of the same order of magnitude 
as the quantum well ones.

Quantum dots. For a spherical quantum dot of radius R , after 
substituting k by −i∇ in Eq. (3), López-Villanueva et al. found 
solutions of the resulting equation that are the product of radial 
functions and spherical harmonics (see [16] for details), the ensu-
ing energy spectrum being

En =

√
1 + 2α

h̄2

m∗R2
z2

nl − 1

2α
, (14)

where znl is the nth zero of the spherical Bessel function J l+1/2. 
Next, we compute the classical and revival times for quantum dots 
of Si, Ge and InAs. Making use of znl ≈ [n + (l + 1/2)/2 − 1/4]π +
O(1/n) for n 	 l [20], it is straightforward to obtain

TCl = 2m∗R2

h̄znl

√
1 + 2α

h̄2

m∗R2
z2

nl, (15)

TR = 4m∗R2

π h̄

(
1 + 2α

h̄2

m∗R2
z2

nl

)3/2

. (16)

Without loss of generality, we restrict ourselves to zero angu-
lar momentum states, l = 0, and illustrate in Fig. 3 our results 
3

Fig. 3. Classical and revival times for electron wave packets in a quantum dot of 
radius R = 10 nm made of different materials. n0 = 10 and the effective masses 
and the non-parabolicity coefficient are taken from [16].

for quantum dots of radius R = 10 nm and electron wave pack-
ets centered around n0 = 10. The effective masses and the non-
parabolicity coefficients are taken from Ref. [16], which contains 
details on how these parameters were calculated and their values 
for other materials. The obtained results, of the order of tenths of 
nanoseconds to picoseconds, are within reach of current technolo-
gies.

Notice that the introduction of nonparabolic corrections greatly 
modifies the energy spectrum and, consequently, the revival times. 
Setting α = 0 in Eq. (16) recovers the parabolic approximation 
that results in TR(Si) = 3.4 × 10−13 s, TR(Ge) = 1.5 × 10−13 s, 
and TR(InAs) = 3 × 10−15 s, which are between one and five or-
ders of magnitude smaller than in the nonparabolic case. It ensues 
from Eq. (10) that the greater the confinement, the stronger the 
nonparabolic effects. To make this statement more quantitative, 
we plot in Fig. 4 a comparison between the classical and revival 
times as computed without (black lines) and with the nonparabolic 
correction (red lines). The increase of the recurrence times, both 
classical and quantum, with confinement (smaller radius) is evi-
dent and can reach up to 5 or more orders of magnitude for the 
smallest structures. Interestingly enough, the corrected TR are no 
longer a monotonic function of the radius. The double-logarithmic 
scale is just for a better visualization of the data.

In summary, we have calculated the quantum revival times for 
different nanostructures, namely, quantum wells, rectangular quan-
tum wires, and quantum dots. We have obtained analytically and 
numerically the revival times for quantum dots of Silicon, Germa-
nium, and Indium Arsenide, showing that the wave-packet, revival 
times can be largely affected by nonparabolic corrections. Previous 
theoretical work has focused mainly on the calculation of revival 
times of single particles in different potentials, ignoring more re-
alistic systems such as semiconductors because of their complex 
band structure. On the other hand, revival times are difficult to 
observe directly due to their extremely fast oscillations. We hope 
this paper helps to overcome both difficulties by showing through 
explicit calculation that certain nanostructures exhibit considerably 
higher revival times.
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