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Resumen

El objetivo de esta Tesis Doctoral es el estudio de aproximantes para fun-
ciones definidas en la bola unidad. FEstos aproximantes se consideran uti-
lizando dos enfoques diferentes: aproximacién por minimos cuadrados y
aproximacion uniforme. Como es bien conocido, la aproximaciéon por minimos
cuadrados se basa en considerar productos escalares definidos sobre la bola
unidad, y la aproximacién uniforme se basa en considerar la norma uniforme,
en este caso en el disco unidad. Damos especial énfasis a la aproximacion
por minimos cuadrados basada en los polinomios ortogonales de Zernike, es
decir, polinomios bivariados que son ortogonales con respecto a la medida
de Lebesgue en el disco unidad, debido a las aplicaciones en Optica y Op-

tometria.

El primer enfoque se basa en aproximar funciones definidas en la bola
d-dimensional mediante el estudio de modificaciones del producto escalar
clasico (que incluye los polinomios de Zernike como caso particular cuando
la funcién peso es una constante) mediante operadores diferenciales multi-
variados como gradientes o Laplacianos, los llamados productos escalares de
Sobolev, de dos maneras diferentes. Primero, tratamos la bola unidad d-
dimensional dotada con un producto escalar construido agregando un punto
de masa en el origen al producto escalar clasico de la bola aplicado a los
gradientes de las funciones. Determinamos una base explicita de polinomios

ortogonales, y estudiamos las propiedades de aproximacion de los desarrollos



de Fourier en términos de esta base. Deducimos relaciones entre las sumas
parciales de Fourier en términos de los nuevos polinomios ortogonales y las
sumas parciales de Fourier en términos de los polinomios clasicos sobre la
bola. También damos una estimacién del error de aproximacion por poli-
nomios de grado no mayor a n en el espacio de Sobolev correspondiente,

demostrando que podemos aproximar una funciéon usando su gradiente.

El siguiente capitulo se dedica al estudio de la estructura ortogonal inducida
por un producto escalar que involucra los Laplacianos de las funciones, una
extension del producto estudiado estudiado por Xu en 2008 intentando re-
solver el problema planteado por Atkinson y Hansen de encontrar la solucion
numérica de la ecuacion de Poisson no lineal con condiciones de contorno nu-
las en la bola unitaria de d dimensiones. Analizamos los polinomios ortogo-
nales asociados a este nuevo producto escalar, demostrando que satisfacen
una ecuacion diferencial parcial de cuarto orden. También estudiamos las
propiedades de aproximacion de las sumas de Fourier con respecto a estos
polinomios ortogonales y estimamos el error de aproximacion simultanea de
una funcion, sus derivadas parciales y su Laplaciano. En ambos casos, se
presentan ejemplos numéricos para ilustrar el comportamiento de la aproxi-

macién en la base de Sobolev.

El segundo enfoque consiste en la construccion y estudio de sucesiones
de operadores tipo Bernstein que actian sobre funciones bivariadas definidas
en el disco unitario. Para ello, se estudian los operadores tipo Bernstein
bajo una transformaciéon de dominio, se analizan los operadores bivariados
de Bernstein-Stancu y se introducen los operadores tipo Bernstein en los
cuadrantes del disco mediante transformaciones continuamente diferencia-
bles de la funciéon. Se establecen resultados de convergencia para funciones
continuas y se estima la velocidad de convergencia. Se presentan varios ejem-
plos numéricos interesantes que comparan las aproximaciones utilizando los
operadores de Bernstein-Stancu desplazados y los operadores tipo Bernstein

sobre los cuadrantes del disco.



Abstract

The objective of this Doctoral Thesis is the study of approximants for func-
tions defined in the unit ball. These approximants are considered using two
different approaches: least-squares approximation and uniform approxima-
tion. As is well known, least-squares approximation is based on considering
inner products defined on the unit ball, and uniform approximation is based
on considering the uniform norm, in this case on the unit disk . We give
special emphasis to the least-squares approximation based on Zernike or-
thogonal polynomials, that is, bivariate polynomials which are orthogonal
with respect to the Lebesgue measure on the unit disk, due to applications

in Optics and Optometry.

The first approach is based on approximating functions defined on the
d-dimensional ball by studying modifications of the classical inner product
(that includes the Zernike polynomials as particular case when the weight
function is a constant function) by means of multivariate differential opera-
tors such as gradients or Laplacians, the so-called Sobolev inner products in
two different ways. First, we deal with the d-dimensional unit ball equipped
with an inner product constructed by adding a mass point at the origin to
the classical ball inner product applied to the gradients of the functions. We
determine an explicit orthogonal polynomial basis, and we study approxi-
mation properties of Fourier expansions in terms of this basis. We deduce

relations between the partial Fourier sums in terms of the new orthogonal



polynomials and the partial Fourier sums in terms of the classical ball poly-
nomials. We also give an estimate of the approximation error by polynomials
of degree at most n in the corresponding Sobolev space, proving that we can

approximate a function by using its gradient.

The next chapter is devoted to study the orthogonal structure induced by
an inner product involving the Laplacians of the functions, an extension of
the inner product studied by Xu in 2008 trying to solve the problem posed
by Atkinson and Hansen of finding the numerical solution of the nonlinear
Poisson equation with zero boundary conditions on the d-dimensional unit
ball. We analyze the orthogonal polynomials associated with this new inner
product, proving that they satisfy a fourth-order partial differential equation.
We also study the approximation properties of the Fourier sums with respect
to these orthogonal polynomials and we estimate the error of simultaneous
approximation of a function, its partial derivatives, and its Laplacian. In
both cases, numerical examples are given to illustrate the approximation be-

havior of the Sobolev basis.

For the second approach, we construct and study sequences of operators
of Bernstein type acting on bivariate functions defined on the unit disk. To
this end, we study Bernstein-type operators under a domain transforma-
tion, we analyze the bivariate Bernstein-Stancu operators, and we introduce
Bernstein-type operators on disk quadrants by means of continuously differ-
entiable transformations of the function. We state convergence results for
continuous functions and we estimate the rate of convergence. Several in-
teresting numerical examples are given, comparing approximations using the

shifted Bernstein-Stancu and the Bernstein-type operator on disk quadrants.
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Introduction

Any sufficiently regular phase function defined on the unit disk can be repre-
sented by its Fourier expansion in terms of the Zernike polynomials with
certain coefficients. The alteration of these coefficients allows detection of
the possible aberrations of the studied optical system. Zernike polynomials
show many applications in the manufacture of precision optical devices, be-
cause they allow the characterization of higher order errors observed in the
interferometric analysis to achieve the desired performance of the system.
They are also used to describe the aberrations of the cornea or lens from an
ideal spherical shape in optometry and ophthalmology. Finally, they can be
effectively used in adaptive optics to cancel atmospheric distortion, allow-
ing images to be improved in infrared (IR) or visual astronomy and satellite
images. However, in practice, Zernike polynomials present convergence prob-
lems when working on the edges of the disk, producing distortions that could
be eliminated by dealing with a modification of the associated inner prod-
uct ([24], [43], among others). This modification could be, for instance, of

Sobolev type.

Sobolev orthogonal polynomials, that is, families of polynomials that are
orthogonal with respect to inner product involving both values of functions
as well as derivative operators such as partial derivatives, gradients, normal
derivatives, Laplacians, and others, have been recently studied. A recent
survey on this topic can be found in [30]. A clear range of application of
orthogonal polynomials is the field of approximation of functions, with mul-

tiple technological applications within the multivariate case. Recently, there
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has been a renovated interest for approximants based on multivariate Sobolev
orthogonal polynomials, showing that it is not necessary to use the deriva-
tives of the function. Examples of this kind of studies can be found in [53],
[38], [31], among others.

Sobolev orthogonal polynomials in several variables have already been
applied in the analysis of polishing tools in the manufacture of optical sur-
faces [52]. In the case of applications of orthogonal polynomials to the clinical
problems related to human vision, we consider interesting, for example, the
study of the efficiency of bivariate Zernike-Sobolev orthogonal polynomials
within this context. The approximation of functions in the unit disk is a
research topic with multiple applications in the reconstruction of functions
defined within that domain. This topic has found a wide range of scien-
tific and technological applications, particularly in fields such as Optics and
Ophthalmology, where the reconstruction of surfaces defined in circular do-
mains is essential. The reconstruction of three-dimensional surfaces is a
current and complex topic that can be approached from various perspec-
tives. There are several approaches that have been proposed to solve this
problem, and in this doctoral dissertation, we will address two of them:

least-squares approximation and uniform approximation.

Our main contributions are based on the objectives detailed below.

o First, we are interested in finding approximating functions defined on
the d-dimesional ball by studying modifications of the classical inner
product (that includes the Zernike polynomials as particular case when
the weight function is a constant function) by means of multivariate
differential operators such as gradients or Laplacians, in two different

ways.

e Second, we are interested in constructing an extension of the
Bernstein operator to approximate functions defined in the unit disk.
Thus, we will mainly study two types of modifications: by transform-
ing the argument of the function to be approximated, and by defining
a suitable basis of functions. We will study two types of Bernstein

approximants and compare them through several examples.
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This work is organized as follows:

o In Chapter 1, we establish the fundamental background and notation
necessary for this doctoral dissertation. It covers the general proper-
ties of orthogonal polynomials in several variables, including basic defi-
nitions of polynomials and orthogonal polynomials over the unit ball.
The current state of research on Sobolev orthogonal polynomials on the
unit ball is also presented. Furthermore, the properties of univariate
bivariate Bernstein operators are discussed. Overall, this Chapter pro-
vides a comprehensive overview of the background information needed

to understand the rest of the dissertation.

e In Chapter 2, we focus on the Sobolev inner product with a mass
point at the origin in a d-dimensional unit ball, which is constructed by
adding a mass point at zero to the classical ball inner product applied to

the gradients of the functions. This inner product is defined as follows:

{(f:9)9,, = F(0)g(0) + A/Bd V() Vg(x) (1 - ||=]*)" d,

where A > 0 and p > 0. Our objective is to study the analytic prop-
erties of approximation by means of the corresponding Fourier sums,
which can be computed without using derivatives. In contrast to the
classical orthogonal expansions, we show that if we only know the gradi-
ents of the functions, we can compute approximants using the Sobolev
Fourier orthogonal expansions, and the approximation is similar or even
better.

Our focus is on extending and completing the results obtained by Xu
in [52] to the more general case 1 > 0. Finally, we illustrate our results

with numerical examples.

These results are published in

— [31] M. E. Marriaga, T. E. Pérez, M. A. Pinar, and M. J. Re-
carte. Approximation via gradients on the ball. the Zernike case.
Journal of Computational and Applied Mathematics, 430:115258,
2023.
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o In Chapter 3, we analyze the impact of an additional term in the

Sobolev inner product introduced by Y. Xu in [51] used to find the
numerical solution of the Poisson equation —Awu = f(-,u) on the unit
disk with zero boundary conditions (Atkinson and Hansen [2]). We
modify the inner product by introducing a term on the spherical bor-
der of the ball taking into account the possible information that may

be observed from some modification of the nonlinear Poisson equation:

(fogha == [ F(©9(&)do(€)

[ AL = o) £@)] AL~ fe]2)g(a) o

Od—1

+
804-1

This term is introduced by means of a real positive constant A > 0 to
modulate the influence of that term in the problem, and the norma-

lization constants are chosen to simplify expressions in the sequel.

Appart from the exhaustive description of the orthogonal structure,
giving explicit expressions for the basis, we provide the Fourier co-
efficients of the approximations and related them with the Fourtier
coefficients for the original case. We must remark that the spherical
term in the Sobolev inner product has influence over the angular part
of the orthogonal expansion. Moreover, the error of approximation for
the orthogonal expansions with respect to the Sobolev inner products
appearing in this work (in particular, the one introduced in [51]) have

not been previously studied in the literature.

The contents of this chapter appear in

— [32] M. E. Marriaga, T. E. Pérez, and M.J. Recarte. Simultaneous

approximation via Laplacians on the unit ball. Submitted.

In Chapter 4, we find the extension of the Bernstein operator for appro-
ximating functions defined on the unit disk. Specifically, we present
and analyze two types of Bernstein type approximants and compare
them using various examples. To achieve this, we explore two mod-
ifications: transforming the argument of the function to be approxi-

mated and defining an appropriate basis of functions. We also review



Stancu’s method for obtaining Bernstein-type operators in two vari-
ables [44] and describe an extension of linear combinations of univariate
Bernstein operators that provide better order of approximation. Fi-
nally, we present several numerical examples to compare the approx-
imation results obtained using both Bernstein-type operators on the

disk and the linear combinations introduced in our analysis.

Overall, our findings provide valuable insights into the extension of

the Bernstein operator for approximating functions defined on the unit

disk.

The contents of this chapter are collected in

— [40] M. E. Marriaga, T. E. Pérez, and M.J. Recarte. A class of

Bernstein-type operators on the unit disk. Submitted.

Finally, in the Appendix, we present all the Mathematica® used to gen-
erate the graphics and perform error calculations presented in this work.
These codes can be a useful resource for further research and experimenta-
tion. For writing the codes, an important source of reference was [50]. In
the Future Work section, open problems that could be subject to future re-
search are discussed, highlighting the importance of continuing this work in
future investigation. Additionally, the bibliography contains the references

used throughout this work
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Chapter

Preliminaries

In this Chapter, we establish the notation and basic background that we will

need in this doctoral dissertation.

From the first to the fourth section, the general properties of orthogo-
nal polynomials are summarized in several variables; the basic definitions of
polynomials in several variables and orthogonal polynomials over the unit
ball are presented mainly following [18]. In the fifth section, the state of the
art concerning Sobolev orthogonal polynomials on the unit ball is presented.
Finally, the last section in this Chapter is devoted to collect the proper-
ties of univariate Bernstein operators that will be necessary throughout this
doctoral dissertation. Moreover we recall the method introduced by Stancu
[44] for obtaining Bernstein-type operators in two variables by the successive

application of Bernstein operators in one variable.

Throughout this Chapter, several results will be stated without proofs; they

can be found in the references to be indicated.

1.1 Multivariate orthogonal polynomials

We denote by Ny the set of nonnegative integers. A multi-index is usually

denoted by «,



2 Preliminaries

a=(ag,qg,...,a) € NI

Let us define a! = ajlay! -+ ay! and |a] = a; +ag + - + ag. For a € Nd

and z = (z1,Z9,...,74) € R? a monomial in the variables z1, o, ..., 24 is a
product:
% = mclnxgcz .. _xgd’

where || is the total degree of 2®. A real polynomial P in d variables is a

finite linear combination of monomials,
o
P(z) =) cqa®,

(0%

where the coefficients ¢, are real numbers. The total degree of the polynomial
is defined as the highest total degree of its monomials. We denote by I1¢ the
linear space of all polynomials in x with coefficients in R. In addition, for

n > 0, we denote by I1¢ the polynomials with total degree less than or equal

to n. Note that IT9 = | J IT{. It is also known that ([18])
n=0
dimIr¢ = (" d
n n N

A polynomial is said to be homogeneous if all its monomials have the same
total degree n. We denote the linear space of homogeneous polynomials in d

variables of degree n by P¢: that is,

P = {P ell: P(z) = ) caaro‘}.

|a|=n

Denote by r¢ the dimension of P?, which is equal to ([18])

d—1
Tz:<n+ )
n

For every homogeneous polynomial P of total degree n, we have that

i 9P
— =nP 1.1
;xlaxz n ) ( )
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this is known as Euler’s equation for homegeneous polynomials.

Let (-,-) be an inner product defined on I1¢, that is () : II? x 11 — R.

Definition 1.1.1. Two polynomials P,Q € 1% are said to be orthogonal with
respect to the inner product if:

(P,Q)=0.

Definition 1.1.2. A polynomial P is called an orthogonal polynomial if P
is orthogonal to all polynomial of lower degree; that is

(P,Q)=0, VQ eI, with deg(Q) < deg(P).

Denote by V? the linear space of orthogonal polynomials of degree exactly

n; that is
Vi={Pelll:(P,Q)=0, deg(P)=n, YQeTil }.

The dimension of V¥ is 74, the same dimension as P? ([18]).

For n > 0, let {P*(x) : 1 < v < rl} be a basis of V.. Notice that every
element of V¢ is orthogonal to polynomials of lower degree. If the elements
of the basis are also orthogonal to each other, that is, (P}, P}') = 0 whenever
v # n, we call the basis mututally orthogonal. If, in addition, (P}, P') =1,

we say that the basis is orthonormal.

If the inner product is given in terms of a weight function W in the form
(P.Q)y = | P@)Q@)W (2)da,

where ) is a domain in R?, we say that orthogonal polynomials are orthogonal
with respect to the weight function W. Denote by V(W) the linear space

of orthogonal polinomials with respect to (-, ).

1.2 Spherical harmonics

For z € R? | we denote by ||-|| the usual Euclidean norm, ||z|| = /2% + - -+ + 22
The unit ball and the unit sphere in R? are denoted by B¢ = {ac eRY: x| < 1}



4 Preliminaries

and S%! = {5 eRY: ||| = 1}, respectively.

The integral over the unit ball represents the volume of the unit d—ball
and is expressed in terms of the Gamma function I'(-),

d

vd:/deg;: dej_(m) (1.2)

Bdljl D)

Let do be the measure on the sphere and let o,_1 be the area of the surface
of 81, then

d.Tn 2 d-1 B 271'%
Ud_lzéd_1d0(§>:2[3d \ll+z< > Hdl’]—r(g) (13)

Notice than V; = dl/zadfl = %ad,l.

The spherical-polar coordinates or generalized spherical coordinates are
defined by ([14])

ry = rcos(f4-1),
xe = rsin(fy_1)cos(04_2),

Tg—1 = rsin(fy_q)...sin(s) cos(6y),
xqg = rsin(04_1)...sin(fy)sin(0,),

where r > 0,0<60; <27, 0<6; <m,for2<i<d-1.

It can be easily verified that

1
Vv, = / / 4 drdo (€),
0 Sdfl

H (sing_;)* 7" d0,dBy - - - dy ;.

and

Let H¢ denote the linear space of harmonic polynomials in d variables of
total degree exactly n, that is, homogeneous polynomials of degree n satis-

fying the Laplace equation AP = 0, that is,
Hy={PePl:AP =0},
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0? 0?
where A = — + .-+ —— is the usual Laplace operator. It is well known
Oy Oxs
that ([14])
a? .= dim H! = <n+d— 1) - <n+d—3>.
n n

Spherical harmonics are the restriction of harmonic polynomials to the unit
sphere. If Y € H¢, then in spherical-polar coordinates z = r¢ where 7 > 0
and £ € S9! we get

Y(z) =r"Y(§),
so that Y is uniquely determined by its restriction to the sphere. We will

also use H? to denote the linear space of spherical harmonics of degree n.

It is a consequence of Green’s theorem that the homogeneous harmonic
polynomials of different degrees are orthogonal with respect to the surface

measure do. Suppose that f, g are polynomials on R%; then ([18])

af
/SH <3£9 - aTi ) do(§) = /Bd (9Af — fAg) da,

0
where — denotes the normal derivative. If f, g are homogeneous then

on
(deg f —degg) [ fodo(€) = [ (gAf — fAg)da =0,

Using the previous fact, spherical harmonics are orthogonal on S ! with

respect to the inner product

1

Od—1

(foghsis = — [ F©) g(€)dos).

0x, Oxy’  Oxy

AT denotes the transpose of A. If we define the operator

af o af \ '
Let V denote the gradient operator, Vf = ( fof e / ) , where
d
0
-V = i
x ;x oz,
then, by Euler’s equation for homogeneous polynomials, we deduce

(z-V)Y(2) =nY(z), VY €HL
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The differential operators V, A and z -V can be expressed in spherical-
polar coordinates z = r¢, r > 0, £ € S41 as ([14])

1 0
= - — 1.4
V= Votén, (1.4
? d-10 1
“or T o Tt ()
0
oV =r— 1.
z-V et (1.6)

where Vg and Ay = Vg - Vj are the spherical part of the gradient and the
Laplacian respectively; A, is called the Laplace—Beltrami operator. The
operator Ay has spherical harmonics as eigenfunctions. More precisely, it
holds that ([14])

AgY(E)=—-n(n+d—2)Y(), VY eH! cesit (1.7)

We will also need the following family of differential operators, D; ;, de-
fined by
Dij=x;0; —w;0;, 1<i<j<d.

These are angular derivatives since D;; = 0, ; in the polar coordinates of
the (x;,x;)-plane, where (x;,x;) = r;;(cosb;;,sinb; ;). Furthermore, the

angular derivatives D; ; and the Laplace-Beltrami operator A are related by

No= > D},

1<i<j<d

1.3 Classical orthogonal polynomials on B¢

The classical orthogonal polynomials on the unit ball B¢ are defined with

respect to the inner product

(£.9), = b [, F@)g(x)W, (@)de, (18)
with the weight function

W) = (1= [lz]*)", p>~1, v € B
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In the above expression, b, is a normalization constant such that (1, 1) L= 1
From this:

1=0b, | W,(r)dx.

Bd

The normalization constant is given by

b, = (-/Bd WH(@dx)l.

The value of the above integral can be obtained by making a change of
variable using the spherical-polar coordinates z = 7§, r > 0, & € S
Then:

/Bd W, (x)dx = /01 r N1 — r?)dr /SUH do(&) = 041 /1 r N1 — r?)Hdr.

0

If we use the value of 041 and some properties of the beta function (B(,-)),

(see for example [1]) we obtain:

/Bqu(x)d$:§ —pu+1 F(d/Q) F(g)I‘(#ﬁ—%)'

L (d ) ond2 T (3)T(p+ 1)m??
2

Therefore, b, is given by

rfer)

et (1.9)

Let s = {sa}aeNg a multi-sequence of real numbers and let u be the linear
functional defined by

(w,2%) = 84, a € N‘é,

and extended on I1? by linearity. We call u the moment functional defined by

the sequence s. The moment functional associated with the weight function
on the ball is defined by:

(uy,,z%) =0, /Bd z* W,(x)dz, o€ N§.

Let us denote by V¥(W,) the linear space of orthogonal polynomials of
total degree exactly n with respect to (-,-) ., and by PlA)(t) the classical
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univariate Jacobi polynomial of degree n on [—1,1]. For a,f > —1, the
Jacobi polynomial P9 (t) of degree n is given by (see for example page 41
of [46])
PA (1) = i‘ Zn: <n> (k+a+1), w(k+a+B+1); (H>k :
n! i \k 2
where (a), = a(a+1)---(a+n—1), (a)g = 1, denotes the Pochhammer
symbol. They are orthogonal with respect to the Jacobi weight function

wo5(t) = (1 —)*(1+1t)” on [-1,1].

A family of mutually orthogonal polynomials with respect to (1.8) can

be expressed in terms of the Jacobi polynomials and spherical harmonics.

Theorem 1.3.1 ([18]). For n > 0 and 0 < j < %, let {V"%(z) : 1 <
v<al o7} denote an orthonormal basis of Hn o;- For p > —1, define the

polynomials

" 2+ 452 n-2j
Pl (2) = P 2 )<2||x||2—1) Y2 (). (1.10)
Then the set {P} : 0 < j <5, 1<v<a

orthogonal basis of V4(W,,). Moreover,
(P Py = Hiy Onm 05k Oy

v

al_,;} constitutes a mutually

where
g _ D (d2), (= + i+ df2)
an ) (p+d/2+1) (n+p+d/2)

(1.11)

n—j
The square of the norm of the Jacobi polynomial Pj(a’ﬂ )(x), denoted by h§-a’6 ),
is related with [}, as follows:

woo_ Tp.d (pyn— 2]"'7)
Hj»” - 277, 2] h ?

(1.12)

bu Od—1
outg+1’

where v, 4 =

Other orthogonal basis of V¥(W,,) are known, for a more detailed description
of them see [18].

With respect to the basis (1.10), the Fourier orthogonal expansion of
f € L*(W,; BY) is defined as

L Jan 27

Yy Y FurPh () with  fh = H,, (£Pr), - (113)

n=0j=0 v=1
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Since || f||,, is finite, the Parseval identity holds: for p > —1,

[e.9]

15 = Z

n=0j

(1.14)

ad
n—2

1 M““‘

14

Let projt : L*(W,; BY) — V¥(W,) and S* : L*(W,; BY) — II¢ denote the

projection operator and the partial sum operator, respectively. Then,

L5 a;in—2j n
projp,, f(z) = fiorpnt(x) and  Stf(z) =Y projl f(z).
=0 v=1 m=0

By definition, (f — S¢f, @), =0 for all Q € II¢, and SKf = fif f € TI¢ .

We consider the error, &,(f),, of best approximation by polynomials in

I1¢ in the space L*(W,;B?), defined by

En( =L |If = pallu,

prn €Y

and notice that the infimum is achieved by S¥ f.

1.4 Zernike Polynomials

The natural field of application of orthogonal polynomials is that of the
approximation of functions, which can be found in multiple technological ap-
plications. The reconstruction and representation of surfaces is a basic tool
of graphical computing, medical imaging, and other branches. For example,
in ophthalmological practice, the Hartmann-Shack sensor (or wavefront sen-
sor) is used to determine the refractive errors of the human optical system,
measuring slopes or normals of the wavefront at different points starting from

the displacement of some luminous points in a target.

A systematic method of classifying forms of aberrations is to express
the corresponding function in an appropriate basis. The so-called Zernike
polynomials, originally described by Frits Zernike in 1934 ([54]) to describe

the diffraction of the wavefront in the phase contrast image microscope, are
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recognized as the standard basis of wavefront developments by the Optical
Society of America, (OSA). In addition, they are implemented in the standard
measuring devices used in optics, see [5, 22, 28, 36, 47, 48].

From our point of view, Zernike polynomials are polynomials in two
variables which are orthogonal on the unit disk with respect to the Lebesgue
measure. They are represented in polar coordinates as a product of a radial
polynomial part times a trigonometric function. The even polynomials are
multiples of the cosine, and the odd polynomials are multiples of the sine.
Any sufficiently regular phase function defined on the unit disk can be re-
presented by its Fourier expansion in terms of the Zernike polynomials with
certain coefficients. The alteration of these coefficients allows the detection

of the possible aberrations of the studied optical system.

Zernike polynomials are defined in terms of a double index (n,m) as

follows.

Definition 1.4.1. Zernike polynomials are defined as

Z7(p.0) = Ny R (p) cos(mf), m >0, (1.15)
P N™RIm™(p)sin(|m|0), m <0,

where 0 < p < 1 and 0 < 0 < 27 are the polar coordinates, and the
double index (n,m) satisfy restrictions: n > 0, |m| < n, and n—m an even
integer.

The radial part R™(p) is a Jacobi polynomial, in the form

R™M(p) = (=1)" P P, (1= 20°).

(n—m)/2
Using that P{®%)(z) = (=1)"P¥Y) (—z) (see page 59 of [46]), the radial part
can be expressed as
m m 0,m
R‘n ‘(P) =p P((nfn%/z(?ﬁ —1).
The orthogonality of the radial polynomials is:

1

1
[m| |m| — ,
J) B oo = 5o
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The normalization term N, is sometimes taken to be 1 for simplicity, thus
giving only orthogonality but not orthonormality. The value of this norma-

lization constant can be defined as:

N = /(2 = o) (n + 1),

to grant orthonormality.

We will consider the last option, so the orthonormality of the Zernike poly-

nomials on the unit disk B2 can be expressed as:

// Z:Ln(l‘l, x2)Zf($1a l’g)dl’ldIQ = 5n,r6m,s-
B2

Writing it in polar coordinates we get:
1 27
| [ 20,0020, 0)pdpd0 = 6,6,
0o Jo

In practice, the use of a double index is sometimes troublesome, and
there are at least two different ways of converting the double index into a
single index, known as the Noll index ([36]) and the OSA index ([48]). In
the Noll system, polynomials with cosine and sine terms alternate, starting
the index at 1; whereas in OSA numbering, all polynomials with the same

radial order n are consecutive and the index starts at 0.

The conversion from one system to another is given by the expressions

, n(n+2)+m
7= Ty
. {—3+\/W8jw
2 )

m = 2j—n(n+2).

In Table 1.1, we show the explicit expressions for Zernike polynomials up

to degree 4 and in Figure (1.1) some of their graphs are shown.
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jln| m Polar Coordinates Cartesian Coordinates
010 0 1 1
1]1]-1 2psin(0) 2y
2 1| 1 2p cos(6) 2x
32| -2 V62 sin(26) 2v/62y
4121 0 V3(2p% = 1) V3(22% +2y% — 1)
512 2 V6% cos(20) V6(2? —y?)
6 3] -3 V/8p3 sin(36) V8(3z%y — ?)
713 -1] 8(3p®—2p)sin(9) V8(3z%y + 3y3 — 2y)
8 (3] 1| V8(3p®—2p)cos(h) V8(3z%y + 3y® — 22)
93] 3 V/8p? cos(30) V8(z3 — 2xy?)
10144 V10p* sin(46) V10(4z3y — dzy?)
11| 4| -2 /10(4p* — 3p?) sin(26) V10(823y + 8zy® — 6xy)
12 14 VB(6p* —6p% +1) | VB(62* + 122292 4 6y* — 622 — 62 + 1)
134 V10(4p* — 3p?) cos(26) V10(4x* — dy* — 322 + 3y?)
144 4 V10p* cos(46) V10(x* — 62292 + y*)

Table 1.1: Zernike Polynomials, with N =

V(2= Gom)(n+ 1),

1.5 Sobolev orthogonal polynomials on the
unit ball

One type of modification that can be made to an inner product defined
on II? is the so-called Sobolev inner product. In the theory of orthogonal
polynomials in one variable, the Sobolev name is associated with polynomials
that are orthogonal with respect to an inner product involving both functions

and their derivatives or other differential operators.

This type of polynomials has been widely studied and is the main subject
of a large portion of the literature (see, for example, [20, 25, 29, 30, 34] and
the references cited therein). However, as far as we know, orthogonal Sobolev
polynomials in several variables have been studied only in some particular
cases. At this time, some references on the subject related to the orthogonal
polynomials on the unit ball can be found in [7, 15, 33, 37, 38, 39, 51, 52].
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Z Z

Zs Z Zs

R

Figure 1.1: Some Zernike Polynomials with OSA index. Graph made using
the tikz package in KTEX.

In [51], the author considers an inner product motivated by an application
in the numerical solution of the nonlinear Poisson equation —Au = f(-,u)
on the unit disk with zero boundary conditions (see [2]). This inner product
is defined by

(f.9)a =aq /Bd AL = [lzl*) £ @) AL = [|l=]*)g(x)]da, (1.16)

where A is the usual Laplace operator and oy = 1/(4d*Vy) is a normalization
constant so that (1,1)a = 1.

We denote by VI(A) the linear space of orthogonal polynomials of degree



14 Preliminaries

n with respect to (-,-)a. The symmetry of the inner product allows the
construction of a basis of mutually orthogonal polynomials, which can be
expressed in terms of the harmonic polynomials. Hence, emulating the con-
struction of the basis in (1.10), Xu searched for a basis of the form ([51])
v(r) = q;(2)|z]]* — )Y F (2), 0<j<n/2 (1.17)
where ¢; is a polynomial of degree j in one variable and {V;""% : 1 < v <

d
n—2j-

On—2;} is an orthonormal basis for ‘H
In [51], it was also proved that the ¢; in (1.17) is orthogonal with respect
to a univariate Sobolev inner product, which depends on the degree of the
polynomials. In fact, the polynomial g; is orthogonal with respect to the
inner product

1
1

(1,905, = | (ToP)6)(To,0)(5)(1+5)%ds,
where ; =n —2j+ (d —2)/2, and

(T5,05)(s) = (1 = s")q5 () + (B — L = (B; + 3)s)q;(s) — (B; + 1)g;(s).

Using this property, an explicit representation of the orthogonal Sobolev

polynomials can be obtained.

Theorem 1.5.1. ([51]). A mutually orthogonal basis for V4(A) is given by

Qo () = Y(x),

n 2 (2»"*2j+%) 2 n—2j .
Qi () = (1—|=[I) P Cll=ll” =)y (), 1<j<n/2
The explicit formula of the basis given in Theorem 1.5.1 leads to an in-

teresting result, which involves the orthogonal polynomials with respect to
Wa(z) = (1 = [lz]*)?

Va(B) = Hy @ (1= ||2]|*)V;_o(Wa). (1.18)

In addition, the explicit formula can be used to study other properties of the
orthogonal basis. In particular, it turns out that the orthogonal expansion
of a function f in the basis presented in Theorem 1.5.1 can be computed

without involving of the derivatives of f.
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In [52], the author analyzes orthogonal polynomials with respect to other
types of inner products defined on the ball. There, inner products involving
the usual gradient operator V are considered. In particular, two Sobolev

inner products are defined as follows

()= 2 [ Vi) Volado+ [ 7(€e(©)do(6). ¢ €51
d-1 /B Oq—1 /S
A > 0 and
<f: 9>U = O'd)\1 /Bd Vf(aj) . Vg(:c)d:c + f(())g(()), A >0,

where the normalization constants have been chosen in such a way that
(1,1); = (1,1);; = 1. Let denote by V¥(I) and V4(II) the spaces of or-
thogonal polynomials with respect to (-,-); and (-, ), respectively. Using
the same construction as in the previous Theorem, an orthonormal basis for
the spaces is constructed explicitly. The basis in [51] and the one constructed
in [52] involve the Jacobi polynomials. It is interesting to note that the basis
of (-,-); and that of (-,-)o have the same structure as (1.17) which consists
of an univariate polynomial multiplied by a harmonic polynomial, but differ

only in the parameters of the Jacobi polynomials.

The explicit representation of the orthogonal Sobolev polynomials with re-

spect to (-, -)r, is given in the following theorem.

Theorem 1.5.2. ([52]). A mutually orthogonal basis for V4(I) is given by

U, (x) = Y)'(x),

n 2\ p(Ln—2j+42) 2 n—2j )
Ui(z) = (1—|lz]]") P2 @llz)* = DY, (x), 1<j<n/2

It follows that
Vi) =Hi @ (1— [lz]*)Vi_,(W7). (1.19)

For the inner product (-,-);7, the main result also provides an explicit of
mutually orthogonal basis. The proposed basis for V4(IT) turns out to be
similar to the basis of V4(I) given in Theorem 1.5.2. In fact, if n is odd,
the two basis are identical, while for n even, the two basis differ only by one

element.
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Theorem 1.5.3. ([52]) A mutually orthogonal basis for V4(I1) is given by

‘/j,y@j) = Uj,u(x)7 1 < J g 2 )
n B 1 (—1,4=2) 9 n (d/2)%
Vi) = ot (Tl - 0 - s

where Vél(:zr) = V%”J,(:E) is valid only when n is even.

An interesting consequence of these explicit formulas is that the Fourier ex-
pansion of a function f with respect to these orthogonal basis can be com-

puted without the use of the derivatives of f.

Another context in which Sobolev orthogonal polynomial appear are in

partial differential equations.

As it is well known (see [18]), for p > —1, the orthogonal polynomials of
degree n with respect to the weight function W,(z) = (1 — ||z|*)*, = € BY,

satisfy a partial differential equation, which in compact form can be written

as follows
A= (2, V)2 = 2p+d){z, V)| P = —n(n+ 2u + d)P. (1.20)
In [39], the singular case corresponding to the values u = —1,-2, ..., is stu-

died. In particular, explicit polynomial solutions are studied and it is proved
that the equation for 4 = —2,—3, ..., has a complete system of polynomial
solutions if the dimension d is odd. One of the most interesting results
obtained by the authors is that the orthogonal polynomials with respect to

the inner product

(fogh =N [ VIG) - Ve@de+ [ F©g(©do€).  A>0, (121)
which were studied in [52], satisfy (1.20) for p = —1.

In [7], the authors considered a bivariate orthogonal polynomials with

respect to the following inner product:

(f,9)s, = (u, fg) + (v, (V])'OVy), (1.22)

where u, v are linear funtionals and © is a diagonal matrix whose entries are

polynomials in two variables of degree at most 2. It should be noted that
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the polynomials studied in [52] are a particular case of (1.22) when © is the
identity matrix. The connection between the coefficients of the second order
partial differential operator and the moment functionals defining the Sobolev

inner product is also explored.

In [15], Sobolev orthogonal polynomials with respect to an inner product
on B? are studied; the new inner product is defined as a modification of (1.8)
by adding the evaluation of derivatives at several points, that is

()5, = () + A HE 0, (123

where s, € S9!, As main results, relations between the polynomials asso-
ciated to (-,-), and the modified inner product are established. Asymptotics

for the Christoffel function of the Sobolev polynomials are also deduced.

Extensions of (1.21) are studied in [37] by considering the inner products

v = = [, VI@) - Vo@Won)da+ —— [ f(@)g(€)do(c),
) B (1.24)

o = b | [ F@g@Wa@)de + X [ V() Vo)W (e)da]
(1.25)

for A > 0. Orthogonal bases are constructed, having the same form of
(1.17) where the corresponding ¢; is orthogonal with respect to an interesting

Sobolev inner product in one variable.

1.6 Polynomial approximation on the unit ball

We define the Sobolev space: For m € Ng, let 0™ = 97" --- 9'*. For pp > —1
and s > 1, we denote by Wj(W,; BY) the Sobolev space

Wi (W, BY) = {f € L(W,;; BY); 0™ f € L*(Wyisjmp; B, [m| < s, m € N}
The following estimate was proved in [38]: for n > 2s and f € Wi2*(W,; BY),

Cc

Y
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and for n > 2s 4+ 1 and f € Wi (W,; BY),

&
Eli S i1 Zé’n 25 10 A Fygasn + > Ea(Dij A3l (1.27)

1<i<j<d

where ¢ is a generic constant independent of n and f but may depend on
i and d, and its value may be different from one instance to the next. As
pointed out in [38], each term involving A and Ag on the right hand side of
the above inequalities is necessary since the first term deals with the radial
component of f and the second one deals with the harmonic component of
f defined on the ball.

It is known that the elements of the basis of V4(W,) defined in (1.10) are
eigenfunctions of another second order linear partial differential operator £,

which is clearly different from (1.20). More precisely, we have ([38])

L,P ()] = An,; P (), (1.28)
where
L,=1—z|)A=2(p+1)(z-V), (1.29)
and
)\Z,j:—[4j(n—j—|—,u+d/2)+2(n—2j)(,u~|—1)]. (1.30)

Unlike in (1.20), where the eigenvalues depend solely on n, in this case they

depend on both n and j.
In [38], the authors also show that the basis defined in (1.10) satisfy a

relation involving the Laplacians and also show that the gradients of this
basis satisfy an orthogonality property on the unit ball. Let u > —1 and let
P (x) be the mutually orthogonal polynomials in V¢(W,,) defined in (1.10).

1V

Then,
b / VP (@) - VP () Wy (2) dz = H (V) Opm 05500y (1.31)
where
Hi (V) =[4jn—j+p+d/2)+2(n—2j)(u+1)] Hf,,
and

AP (a) =y PPy (@) and Ao P (x) = 0y Py (x),  (1.32)
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where

d d—2
f@ﬁ:4<n+,u+2> <n+2> and ¢, =-n(n+d-2).

It turns out that the partial derivatives commute with the partial sum

operator, as shown in the following Theorem.

Theorem 1.6.1 ([38]). Let u > —1. Then,
o Shf = Sih@if), 1<i<d,

and
DijStf = SMD;; f), 1<i<j<d

The relations in the above Theorem pass down to the Fourier coefficients.

Theorem 1.6.2 ([38]). Let f € W2(W,;B?), u > —1. Then,

— n—2,u+2 -~ . n— 2

Afj,u = Kg—j—l fjiﬁw 0<J< 5
and o n
Aofj, = on2 fi), 0<j< 5

1.7 Bernstein polynomials

In 1912, S. Bernstein [4] published a constructive proof of the Weierstrass
approximation theorem that affirms that every continuous function f(z) de-
fined on a closed interval can be uniformly approximated by polynomials. For
a given function f € C|0, 1], Bernstein constructed a sequence of polynomials

(lately called Bernstein polynomials) in the form

Bufo) = (B, 1)@ =3 1 (5] (1) 0 —or o

for0<z<1,and n > 0.

Clearly, B,, f is a polynomial in the variable x of degree less than or equal
to n, and (1.33) can be seen as a linear operator that transforms functions

defined on [0, 1] to polynomials of degree at most n.
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Hence, in the sequel, we will refer to B, as the n-th classical univariate

Bernstein operator.

If we define

Pni(T) = (Z) (1 —2)"% 0<2<1, 0<k<n, (1.34)

then, the set {p,x(x) : 0 < k < n} is a basis of the linear space of polynomials
with real coefficients of degree at most n, that we will denote by II,, called
Bernstein basis. Then, the n-th Bernstein polynomial associated with f(x)

is usually written as

B 10) =3 1 (%) poate)

Among others, classical Bernstein operators satisfy the following properties

([27]):

e They are linear and positive operators acting on the function f, and
preserve the constant functions as well as polynomials of degree 1, that

is,

o If f is continuous at a point z, then B, f(z) converges to f(z), and
B, f converges uniformly if f is continuous on the whole interval [0, 1].
Moreover, the order of approximation is wf(n_l/ %), where w; denotes
the modulus of continuity of f. Because of this property, Bernstein

operators are called Bernstein Approximants.

« Bernstein operators satisfy a Voronowskaya type theorem, that is, if f
is twice differentiable at x, then B, f(x) — f(z) = O(1/n).

Bernstein operators admit a complete system of polynomial eigenfunctions;
however, this system depends on n and, therefore, is associated with each
operator B,. Another inconvenience of Bernstein operators associated to an

adequate function f is its slow rate of convergence towards f.
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For years, several modifications and extensions of Bernstein operators
have been studied. The modifications have been introduced in several direc-
tions, and we only recall a few interesting cases and cite some papers. For
instance, it is possible to substitute the values of the function on equally
spaced points by other mean values such as integrals, as was stated in the
pioneering papers of Durrmeyer ([19]) and Derriennic ([16], [17]). In [9],
the operator is modified in order to preserve some properties of the original
function. Another group of modifications given by the transformation of the
function by means of convenient continuous and differentiable functions is
analyzed in [10]; and, of course, the extension of the Bernstein operators to
the multivariate case. The most common extension of the Bernstein opera-
tor is defined on the unit simplex in higher dimensions ([27], [3], [42], [44],
among others), since the basic polynomials (1.34) can be easily extended to

the simplex.

1.7.1 Univariate Bernstein operators

In this section, we recall the modified univariate Bernstein-type operators
that we will need later. We start by shifting the univariate Bernstein opera-

tor.

Using the change of variable
r=QPL—-a)s+a, a<p, 0<s<1, (1.35)

the univariate Bernstein basis can be defined on the interval [, 5]. Indeed,
if we let
- T— 1 n k &

; = = - —x)" <z <
Poi(z;[a, B]) = Pk (5—Oé> B ay <k>(x Q)" (f—x)"" a<x <P,

then the set {ppi(x;[a,f]): n>0,0< k <n, a <z <P} isa basis of 11,

on the interval [«, ] satisfying
L ‘ e rT—a) 1 " (n  kia ok
S sl 1) =3 s (522 = 2 2 (3o - - 0

1

:7(B_a)n(m—a+ﬁ—x)":1.
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Moreover, since
Pok(i[a, B]) = par(s), 0<s<1, 0<n, 0<k<n,

we have that Bernstein basis on [«, 8] (see Figure 1.2) satisfies the following
properties:

* Dun(x;lo, B]) 2 0 for a <z < B,

o Pnil(a) = 0o and Dy x(B) = Ok, where, as usual, J,, denotes the
Kronecker delta,

. (B a)ﬁfz,k(iﬁ; [, B]) = n(Pn-1k-1(7; [, B]) — po—1.k(x; [, B])),

o If n # 0, then p,x(z; [, B]) has a unique local maximum on [a, 5] at

z = (8- )£ + a. This maximum takes the value

DPrk ((5 — ) : + a; [mﬁ]) = Pnk <7]z> = <Z> sz(n — k)",

Figure 1.2: Bernstein on basis [, §] for n = 5.

For every function f defined on I = [«, 5], we can define the shifted

univariate n-th Bernstein operator as
- n k N
k=0

Note that B, [f(x), 1] is a polynomial of degree at most n. In this way,

Bulf(2),1]= B, F(s), 0<s<1

Y
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where F(s) = f((8 —a) s+ «) is a function defined on [0, 1] associated with
f. From this, and since the change of variable (1.35) is linear, it is clear
that B, has analogous properties to those satisfied by the classical Bernstein

operator.

1.7.2 Bivariate Bernstein operators

In 1963, Stancu ([44]) studied a method for deducing polynomials of Berns-
tein type of two variables. This method is based on obtaining an operator in
two variables from the successive application of Bernstein operators of one

variable.

Let ¢1 = ¢1(x) and ¢o = ¢o(x) be two continuous functions such that
¢1 < ¢y on [0,1]. Let 2 C R? be the domain bounded by the curves y =
¢1(x), y = ¢o(x), and the straight lines z = 0, x = 1. For every function
f(x,y) defined on €, taking into view

y = (¢2(x) = dr(2)) t + ¢1 (), (1.36)

let us define the function

Fa,t) = [z, (¢2(2) = ¢1(2)) t + ¢ (2)), (1.37)

where 0 < ¢ < 1.

The n-th Bernstein-Stancu operator is defined as

n Nk

A0 =35 F (5 D) pa@n. 039

k=0 35=0

where each ny is a non negative integer associated with the k-th node z, =
k/n, and t is given by (1.36).

If we denote by B the univariate Bernstein operator acting on the variable

t, then the Bernstein-Stancu operator can be written as

astona-[oer (L) o
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We have the following representation of %, in terms of a matrix deter-
minant.
Proposition 1.7.1. Let f(x,y) be a function defined on the domain €,
and let F' be the function defined on (1.37). Denote by B® the univariate

Bernstein operator acting on the variable ¢. Then, the n-th Bernstein-Stancu
operator is given by the determinant

1 O | BYF(,1)
1 BYF(1/n,t)
Bl f(2,y),Q] = — :
O 1 BUF(1,1)
Pno(®) pa(x) oo pan(T) 0

Remark 1.7.2. Observe that the step size of the partition of the x axis is
1/n and, for a fixed node x; = k/n, the step size of the partition of the ¢
axis is 1/ng. Therefore, the step size of the partition of the y axis is 1/my,

where
ng

S e () -a ()

(o) = G ()
n ng n mpg n

We point out that, in general, 4,[f(z,y), 2] is not a polynomial. How-

my

and, thus,

ever, it is possible to obtain polynomials by an appropriate choice of ¢, ¢o,

and ny. For instance:

1. The Bernstein-Stancu operator on the unit square Q = [0, 1] x [0, 1] (see
for instance [27], [44]) are obtained by letting ¢1(x) = 0 and ¢o(z) = 1.

Hence, for a function f defined on Q, we get
2)2)
n ng n ng

Bl ). Q =3 f (’“ 7,{) P ()P (4):

k=0j=0 \"

and
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Note that when ny is independent of k (e.g., ny = m for some positive

integer m), %, is the tensor product of univariate Bernstein operators

on Q.

2. The Bernstein-Stancu operators can be defined on the simplex T? =
{(z,y) €eR?*: 2,y > 0,1 —x —y > 0} (see for instance [3] and [44]). In
this case, we set ¢1(x) =0, ¢o(z) =1 —2x,and n, =n —k, 0 < k < n.

In this way, m; = n and, since

we have

AT~ 551 (52) ot (122)
550 () Ao

for (z,y) € T?, where

") = ! 0<k+j<n
kj)  Kjlm—k—gy = ST TIST

In [44], Stancu proved the following convergence result on T?.

Theorem 1.7.3 ([44]). Let f be a continuous function on T?. Then
B f(x,y), T? converges uniformly to f(z,y) as n — +oo.

Stancu only gave a detailed proof of the approximation properties of %,
on triangles. In Chapter 2, we consider a slightly general operator and prove
the uniform convergence on any bounded domain {2, and we recover Stancu’s
result when Q = T2
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Chapter

Approximation via gradients on the
ball. The Zernike case

We deal with a d dimensional unit ball equipped with an inner product
constructed by adding a mass point at zero to the classical ball inner product
applied to the gradients of the functions. Apart from determining an explicit
orthogonal polynomial basis, we study approximation properties of Fourier
expansions in terms of this basis. In particular, we deduce relations between
the partial Fourier sums in terms of the new orthogonal polynomials and the
partial Fourier sums in terms of the classical ball polynomials. We also give
an estimate of the approximation error by polynomials of degree at most n in
the corresponding Sobolev space, proving that we can approximate a function
by using its gradient. Numerical examples to illustrate the approximation
behavior of the Sobolev basis are given. The results presented in this chapter

have recently been published in [31].

2.1 Introduction

In this Chapter we start dealing with a d dimensional unit ball equipped with

the inner

(f;9)v, = (0)g(0) + A/Bd V() Vg(x) (1 - ||z]*)" da,

27
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for A > 0 and p > —1. While these conditions are necessary for the positive
definiteness of the inner product, our contribution involves only the case when
i = 0. We show that if we only know the gradients of the functions, we can
compute approximants by using the Sobolev Fourier orthogonal expansions,
and the approximation is similar or even better than the classical one. In
the introduction of [26], Li and Xu explain why and how the approximation
based on the Sobolev orthogonal expansions could be better than the classical

orthogonal expansions.

The particular inner product involving gradients that we will study in
our paper was introduced and studied in the particular case y = 0 by Xu in
[52], where the author finds a complete system of orthonormal polynomials

with respect to these inner products and explores their properties.

Our objective, apart from the extension and completion of the results
obtained by Xu in [52] to the more general case p > 0, is to study the analytic
properties of approximation by means of the corresponding Fourier sums. We
remark that, using our results, we can compute the coefficients of the Sobolev-
Fourier sums without using derivatives. The Chapter is organized as follows.
The Sobolev inner product with a mass point at the origin and associated
bases of orthogonal polynomials are discussed in Section 2.2. Section 3.3
is devoted to the study of Sobolev Fourier orthogonal expansions and their
approximation behavior. Finally, in Section 2.5, we illustrate our results with

numerical examples.

2.2 Sobolev orthogonal polynomials with a
mass point at zero

This section is devoted to the study of the orthogonal structure on the unit

ball with respect to the Sobolev inner product

(£.9)v,= 1O + A [ Vf(@) Vo)W, ()dz, A>0.  (21)
Orthogonal polynomials with respect to inner products involving derivatives

are called Sobolev orthogonal polynomials. Let us denote by V¢(V,W,,) the

linear space of Sobolev orthogonal polynomials of degree n with respect (3.2).
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Let U(W,;B?) denote the Sobolev space
U(Wu;Bd) ={f¢€ Wzl(Wu;Bd) 2 [ f(0)] < +oo},
and let || - ||v,, denote the norm of U(W,; B?) defined by
1/2
1f e = ( - Z 10; f||2> : (2.2)
N i=1

In the following proposition, we construct a mutually orthogonal polynomial

basis with respect to the inner product (3.2).
Proposition 2.2.1. For 1 > 0, define the polynomials

n, L n,u—1 n,pu—1
Q) (x) = Pl () =P (0), n>1, (2.3)
Qoo(e) = 1.

Then{QZ’f: 0<j<5 1<v<a
basis of V¢(V,W,). Moreover,

<Q] L Qr > = Hfﬁu Onm 0jik Oy,

al_,;} constitutes a mutually orthogonal

where

A
Hp ol = by [4jn—j+p+d/2—1)+2(n—27)pl H, "~ (2.4)

Proof. We note that since Y""% € He_ 5; are homogeneous polynomials,
Y»7%(0) = 0 when n — 2j > 1, and, therefore, P "0)=0forn—2j>1.
Moreover, Q}7/(0) = 0 forn > 1.

v

On one hand, it is clear that
< o, 8:5>V7M:1 and < oo,Q > =0, m>1
On the other hand, we compute
(@.Qrt e, = [ VP @) VP (@) Wa(a) da.

From (1.31) we get

<@Z#,Qz?;r>
A\
A

4 (n—j+n+d/2=1)+2(n—=25) pl Hiy im0k 60

b

n—1



30 Approximation via gradients on the ball. The Zernike case

Observe that we can write the basis (3.2.2) as follows:
o () =Y.' (2),
Qi) = PUT IR (a2 1) v Ua), 1< <
2 (d4/2)5
(n/2)"

where Q%ﬁ (x) holds only when n is even. Here, we have used the fact that
PEO(=1) = (= 1)H(B + /B

The case when p = 0 was previously studied in [52]. Here, we recall

n—1
2 )

Qyh(x) = PY @2 al? — 1) - (1)

the explicit expression for the basis in this case. Let us denote by gx(x) the

univariate polynomial defined by

o) =1, q / P

"w\:x.

k>1

d—2

The Jacobi polynomials P,S_ ) (x) are well defined for k > 1, satisfying
[46, (4.5.5), p.72]

d (1452, 1 d—2\ L0
%Pk (x) = 3 (k: + 5 > P, ¥ (z). (2.5)
Hence, we have
4 (1,452 d/2
() =505 <Pk ? (z) - (—1)'“( k!)k :

Proposition 2.2.2. A mutually orthogonal basis for V4(V, W) is given by
(@) = Y)(o),

n 1,n—2 n—2 . e
Q@) = (1= 2| PL @l - ) Yr¥(e), 1<) <5t
4 o (d)2)n
n,0 9 n s
n = — | Pn 2 —(=1)2
) = g (Pl - - (r ).
(2.6)
where Q%’?l () holds only when n is even. Furthermore,
< o,,, > = nAog_1,
<Q 7 > = 24.)\0'01 1, 1<‘]<L717 (2 7)
v n—l—— 3 )
(@3%.Q3%),, = —am o
ED A N - ) d—1-

n+ 452
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2.3 Sobolev Fourier orthogonal expansions and
approximation

For > 0 and f € U(W,;B?), let us denote by fj #(V) the Fourier coeffi-
cients with respect to the basis of fo(V, W,) defined in (3.2.2), that is,

~

L' (V) = e (L Q5

HV“

Let projy* : U(W,; BY) — V4V, W,) and Sy : U(W,;B?) — I1¢ denote

the projection operator and partial sum operators

L%J al o n
projm f m,,“(x) and Snv’“f(x) = Z proj,?“f(x).
j=0 v=1 m=0

2.3.1 The case >0

The Fourier coefficients with respect to the basis (1.10) of V¢(W,,) are related
to the Fourier coefficients fff,“ (V).

Proposition 2.3.1. Let x> 0. Then, for f € U(W,;B?),
Fmwy = Lttt on=1,
foi'(V) = £(0).

Proof. Since Quf(z) = 1 and H[YO 1 for u > 0, f YY) = (. Qo) =
f(0).

Let 4> 0. Forn > 1,
(L@, = TOQGLO+A [ V@) Vi (@) W) da

- )\/Bd V() VP (@) W(x) da.

Using Green’s formula and (1.28), we get

(ra),,

=N[4 —j+p+d2=D+2n=25)u] [ f@) P @) W) do
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A . o . . . n”u_l
b#71[4j(n jHntd/2=1)+2(n—25) u] (f, P} >#_1~

From (3.10), we get

~

Fiut(v) = U@>

1

-1 7 n,u—1
= PTL,[,L = . H
v M rru—1 <f’ Jv _ Jv :
H Hm I

]

It is important to note that the Fourier coefficients can be computed without

involving the derivatives of f.

For o > 0, we can deduce the relationship between the projection oper-

ators with respect to the classical and Sobolev bases.

Proposition 2.3.2. For u > 0,

projov’“f(m) = f(0),
projy* f(x) = proji ' f(x) — projt ' f(0), m > 1,

and

Sy " f(x) = f(0),
SV f(z) = £(0) + St f(x) — SELF(0), n > 0.

Proof. Clearly, projy * f(z) = f(0). For m > 1,

=3 S [t ) - e P o)

v v

Then,
proj,* f(x) = projh ' f(x) — projy, ' f(0), m > 1,

where we have used Proposition 2.3.1 to write f]"/(V) = f]"“ "forn > 1.

v
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Moreover, since proji " f(z) — proja~ ' £(0) = 0

ST () = proj¥ " f(x) + 3 projTt f(x)
m=1

= f(0)+ > [proji ! f(x) — projls ' £(0)] .

m=0
Therefore,
Syt f(x) = S f(a) + f(0) = SEHF(0), >0, (2.8)
and, consequently, SY*f(0) = £(0). O

We have the following proposition stating the interaction between differ-

entiation and the partial sum operator SY* for y > 0.

Proposition 2.3.3. Let 4 > 0 and n > 1. Then,
0 S f(x) = Sha (0 i), 1<i<d,
or, equivalently,
0 Sy f(w) = SETHO: () + Si1(0:)(0) = (i £)(0).
Proof. Differentiating (2.8) and using Theorem 1.6.1, we obtain
0 Sy f () = 9 S~ f(a) = Si_1(0, f)(w).
Using (2.8) again, we get

St (0 f) (@) = SYATHO; f)(x) + Sh_1(0; £)(0) — (0; )(0),

and the result follows. O]

We have the following expression for the Parseval identity.

Corollary 2.3.4. For > 0 and f € U(W,;B?),

Jan 27

I, = +*ZZ 2.

u1n1]0y1

e

jmn

where )\Zf are defined in (1.30).
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Consequently,

oo [3]an—s;
[ ISP Wl de = 3250 S ] |t

n=135=0 v=1

Proof. Parseval’s identity for f € U(W,;B?) with respect to the orthogonal
basis defined in (3.2.2) is written as

~ 2
Fat ()" =Y.

v

1£1l5,, = £0)° + -

The result follows from Proposition 2.3.1 and (3.10).

The last equation follows from

/Bd Vi) Vf(x)W,(z)de = lim M.

A——+00 A
O

Let &,(f)v,, denote the error of best approximation by polynomials in

I1¢ in the space U(W,; BY):

En()v= I = S7* fllv

We have the following estimate.

Theorem 2.3.5. Let ;1 > 0. Then, for n > 2s+ 1 and f € U(W,;B%) N
W28+1 (Wlﬂ Bd)7

N d
gn(f)V,u < Z gn—2s—1(Asaif)M+2s + 5n—1<A(S)aif>M1 )
=1

CESEP)
and for n > 2s + 2 and f € U(W,; BY) N W3*T(W,; BY),
gn(f)v,,u

g%HZ[ZSn 2528kA8f>,u+23+1+ Z gnlegAaf)]
i=1 =

( 1<k<t<d

Proof. For n > 1, we have

E o= = ST flI%,. = Z 10: f — 3 Sy FII7

Hzl
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Using Proposition 2.3.3, we get

A d
&l Z 10: f = Sia (@ DIl = - 32 Enr (D L
:U' =1 Hog=1
and the result follows from (1.26) and (1.27). O

Lemma 2.3.6. Let u > 0. For f € U(W,41; BY),

7

Proof. From Corollary 2.3.4 and the Parseval identity (1.14), we get

gn(f)u < gn(f)V,u—&—l-

L% am—
2 m
IF-S= % > Z
m=n+1 j=0 v=1
Sy )
, f:‘j’“
m=n-+1 j=0 P\ v= ’
()}
2 (,U, i 1) n V,p+1>
-1 1
where ¢ is a constant. The inequality follows from ’/\Z ]’ < ——— for
’ 2(p+1)n
n}landogjgg. ]

Moreover, the following proposition shows that the rate of convergence
of SY#f towards f is faster than the rate stated in Theorem 2.3.5.

Theorem 2.3.7. Let 1 > 0. Then, for n > 2s+1 and f € U(W,49541; BY)N
W25+1(Wm Bd),

c

d
5n(f)v,# < w Z [gnZSl(Asaif>V,y+23+l + 5n1(ASaif)V,u+1] )
i=1

(n

and for n > 2s + 2 and f € U(W 4 9542; BEY) NW3ST2(W,; BY),

. d [ d
En(flvu < MWZ[Z&L 25-2(Ok A°0i )V piy2st2
=1L k=1

+ > 5n1DMAaf)vu+1]

1<k<i<d
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Consequently,
d
c S S
Enlf)vp < (n 1) [HA Oif v urast1 + ||Aoaif||v,u+1]>
=1
and
5n<f)V7M
c d d
Smopen > [Z 10k A 0ifll v pi2ss2 + > [ Dred30if |Iw+1],
i=1 Lk=1 1<k<i<d
respectively.

Proof. For n > 2s+ 1 and f € U(W,12.11; BY) N W3 (W,; BY), Theorem
2.3.5, together with Lemma 2.3.6, implies

d
c
En(f)vu < m Z En25s-1(A°0; f)v pr2s41 + En1(AGO0i f) v 41 | -
i—1

Moreover, from the fact that, for i =1,...,d,

En—2s-1(A°0; f)v pr2s41 < || A°0i f||v pt2st1,

and
En-1(A00if)v 1 < c|AGOi f |9t

d
c s s
Sn(f)v,u < 25+1/2 Z HA aif”V,,u—l—Qs—o—l + ||Aoaz'fHV,u+1 .
=1

(n—1)

The remaining part of the theorem follows similarly. ]

2.4 The Zernike case ;=0

This case is more complicated than the previous one. Hence, we consider it

separately here.
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Proposition 2.4.1. For f € U(Wy; BY),

:)TL;O(V) = <f7 Yun>sd*1 )

~n n+422(n—j+ %52 n
(V) == ( P ) @) P (@) de
—{(£,Y;7) 1<t
» Xy gd-1 | SRS 5
~ n + 42 n+d—2 e
Frpew) =" g - PR ) Pt ) d:v],
2 Od—1 Bd 2

foi’ (V) = £(0),

where féﬁ’f(V) holds when n is even.

Proof. Here, we use spherical-polar coordinates x = r£ where » > 0 and
£ e sit,

Let n > 1. Using Green’s identity and the fact that Q&’S(O) =Y"0) =0,
we get

n aC?’n’l(/) n
(F.O0) g = [, FOZ2Odo(©) =\ [ f(2) AQ(x) da.
Observe that AQ&’B () = AY(x) = 0. Moreover, by Euler’s equation for
homogeneous polynomials (1.1), we have that

Then, from (2.7), we get

A £.Q5
fOTLV’O(V) = <<n,0 - ni);p = <f7 l/n>Sd*1 :
Vv,0

0,vy w0O,v

Similarly, for 7 > 1, we have

(£:Q1) = A 76252 ¢) do () — A /B F@) AQ(w) da.

gd-1 or
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Using the following facts ([52]):

o . (1,n—2j+42) n—2j
oy @@ = 2P Y,
r=1
1n—2j+%452 .
PR =
n . ood—=2 e
AQ)(x) = —4j ("—]+2 >Pj_12,;1(x),

we get
(FQ0) = =25 [ FOY () do(s)
4 =2 P2 x)d
w4 (n=i+ =) A [ f@) P @) d
and, therefore, from (2.7), we obtain

d72
FO9) = =2 ()

Q(n—i—dT) (n—j—l—%)

JOd—1

+

L, @) P @) da.

. _qd=2
Similarly, g? (V) is deduced by using the fact that Pé aE )(2 |z||> = 1) is
a radial function and that

0 (-1.452)
or 2
1 d 2

APn

2r* =1 =(n+d-2),

r=1

2 p(1.52) 2
2P -1) = (n+d—2) o2 72l = 1), (2.9)
where we have used (1.5) and the identities ([46] and [37], respectively)

d 1
T PeO(@) = S+ a+ B+ 1) R (@),

BRED) + (14 1) S PO = (5 +n) P (0),

to compute APn (2 z|” —1). O
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For the case when p = 0, the Parseval identity reads

||f||V0 +/\Jd 1Z[Zn|f Sd 1|

n,
Ap— 27

+ Z Z (2n+d—2)
2
2(n_]+%) n—2,1 n—24
X Oy 1 Bdf(ﬂli)Pj,l,,(a:)dx_<f7YV 2J>Sd71

2

> 2k+d—1 -
F Aot 3 (W d = 2) (Vg — D T ) PP (@) ]
k=1 Od—1 B?
Since
/ Vi(x) - Vf(x)de = lim %
Bd Aot N

we have the following corollary.

Corollary 2.4.2. For f € U(Wy; BY),

1

— [ V@) dx—z[znm Mgl

0d—1 n=1 | v=1

1
5] an—2;

+ 3 Y 2n+d-2)

]:O v=1
2
2(n—j—|—%) n—2,1 Y
x| P [ @) B @y de = (1Y)
2
iy 2k+d—1
Z 4k+d—2 <f,1>sd—1_(>/ f( )Pk2k1211(x)d$
P Od—1 Bd

Therefore, if f(z) = (1 — ||z||*) g(z) € U(Wy; BY),
ous [ VI @) do
[e’e] I_HT_lJ An—2j 21 2
=433 Y (2n+d-2) (n—j+> ‘ m205 1y
n=1 j=0 v=1

~2k—2,1

Z (4k +d —2) (2k +d — 1)*|H,_ 12k—2 9 k—1.1
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We will denote the projection operator on H% by projyq. It is well known
that

nt Gl 1)

. (53
projy f(z) = |l —— [ 1)
=

(' y)do(y),

for v € B? and 2’ = x/||z|| € S, where C™(t) denotes the Gegenbauer
polynomial of degree n and z - y is the usual dot product in R%. Moreover,

we will denote by P#(-,-) the reproducing kernel on V¢(W,) given by

- P(a) P’W(y)_

Ph(x,y)
Proposition 2.4.3. For f € U(Wy;BY) and n > 1

projf°(x) = projyf(z) + (1 - |l u>[<d/fj” [ TR, )dy

Bd

1252

d—?2 201 (1n—2j+42) .

_<”+2> > SBT e = 1 projyy_, f(a)
j=1

~n,0 n,0
T Q).
where the last term holds when n is even.

Consequently, if f(x) = (1 — ||z||*) g(z) € U(Wy; BY), then

projy 'f (x) = (1 = ||z*) proj,_, g(=)

(n+d-—2) <n+d;22> (n+d)HlnAn1 0
9us g1(37)

- 804-1 by

Proof. From Proposition (2.3.1), we have fg:g(V) = (f,Y))ga-1. Then,

(f S )gi Y, (2) = projya f ().

I
1Ma

ad R
> fo (V)Y ()
v=1

Again, from Proposition (2.3.1), we have that for 1 < j < "T_l,

d—2
oy = - (e
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2(n—|—d—f) (n—j—l—%)

JOd—1 B4

+ f(x) PI=3) () da.

Therefore,

d—2 2 LnT_lJ 1 (1,n— 2j+ 2 .
=t ) A=) 2 2k Y2l - 1) projya_, f(x)
d

j=1
1252 ] a5y d—2
d—2 2 ‘n—7—1+%5=
o (n+ ) (1= el 115
=0  v=1 J+1
1 n— n—
< [ TWIP W) B @) dy,

where we have made the change 7 — 1 — 7 in the last line. Using

7 (7 +1)(d/2)(d/2+1)
I (g B2 (n— 1 -+ )

we obtain

d—2 = 1 1,n—2j+9=2 .
:—(n+2) TEEES P @l — 1) proj 1)
j=1

d(d/2+1)
ST~ (all) [ )P olw,y) dy.
d—1 B
Note that
d(d/2+1)
by = ———,
0d—1

is the normalization constant for Wi (x).

[]

The study of the interaction between differentiation and the partial sums

SV:0 depends on the following proposition. First, we recall integration by
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parts in higher dimensions. From the Divergence Theorem and the product

rule, if u is a real valued function and V is a vector field, then

[ uVcdo@=[ V-@wVyde=[ uV-Vir+ [ Vu Vi

Therefore, the integration by parts formula on the unit ball is

/BduV~de:/SdiluV-§da(§)—/Bqu-de.
Proposition 2.4.4. For f € U(Wy; B?) and m > 1, we have
di projy  f(x) € Vi (W), 1<i<d,

and
D;jprojy’ f(x) € VE(V, W), 1<i<j<d

Proof. By the definition of projy.° f(x), it is sufficient to show that 9, Q}’;;O(x) €
Vi (Wo) for 0<j <2, 1<v<al_,,and1<i<d

Fix i € {1,2,...,d}. For j =0, we have
0.Q50(x) = 0,Y."(x).
We compute
m  pk, m k,
(0,Y" FES) = by /B 0 () P () da.
Applying the integration by parts formula to Pf;f(x) and the vector field

Y (x) e;, where e; is the i-th canonical vector in R"”, we obtain

/B 0 () P () da —pF ) L GO (©) da(e)

- /B 0L () Y () da

The integral over S?! vanishes for k& < m — 2. Moreover, since Ynm(x) =
P(Z;’O(x), then the second integral on the right also vanishes for £ < m — 2.

Therefore,
(0 Y, PY) =0, k<m-—2
’ 0

Consequently, @ng;,o(x) e vi_,(Wy).
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m—1

For 1 < j < ™5=, we have
0:Q7 (x) = 0 (1 — ||=|*) P"73 (x).

From the integration by parts formula and the fact that 1 — ||z||* vanishes
on the sphere, we get

L 0= llel®) P @) P @) da = = [ Pt (@) P (@) Wae) dar

Hence,
(0: (1= ||=]?) P3N (), Py () =0, k<m =2,

and, thus, 0; Q;{ly’o(x) e Vi_ (Wy).

Finally, from (2.5), we have
m, k, 0,8) k,
L@ @) P @) =4 [ i PER el ~ 1) PR o) o
m—1, k,
=4 L P%j’?(a:) PMO(a:) dx,
where we have used the fact that Y;!(z) = z;. Therefore,
m,0 k,0 o

<3¢Q%71,P&n >O—O, kgm_2
Hence, we conclude that 8&2@701 (r) € VI _ | (Wp).
Now, D; ; maps H? to itself, and

Dy Quy(x) =0, 1<i<j<d,
since Q"%lol(as) is a radial function. This implies that D, ;proj¥*f(z) €

ng—l(vaw(J)' [

We use the previous result to show that differentiation commutes with

the partial Fourier sum Sy

Proposition 2.4.5. Let u = 0. Then,
08, °f = Su(0if), 1<i<d,

and
D SY°f = SYOD;; f), 1<i<j<d.
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+o00
Proof. By its definition, f — SY°f = > projy’f. From Proposition
m=n+1
2.4.4 we get that (0; (f — SY°f), P)g = 0 for all P € II¢_,. Consequently,

SO (0if —0;SYPf) = 0. Since S° ;| reproduces polynomials of degree at
most n — 1, then S°_,(9;SY°f) = 9;SY"*f, which implies that

0=2S_1(0if —0iSN f) = So_1(0:f) — DSV ° f,

and the first communation relation is proved. The second relation can be
established in a similar way:. O

The relation in the proposition above passes down to the Fourier coeffi-

cients.

Proposition 2.4.6. Let f € U(Wp; BY) N W2(W;; B?). Then,

—n—2,1 . i d—2 ~n,0 . ?7/—3
Af = —4(+1) <n—]—1+2> fj+1,u(v)> 0<J< 5
—Nn— 21 A’Vl,o
where the last relation holds only when n is even. Moreover,
——n,0 , , ~n,0 . on—1
AOf]z/( ):_(n_2j)(n_2]+d_2)fj,u(v)7 0<]< 9

—~—n,0

Kol 51(V) = 0.

Proof. From proj¥f = SVO0f—SY f Proposition 2.4.5, and Theorem 1.6.1,
we obtain Aprojy?f = projl ,(A f).

On the other hand, we have

a;lL—Qj
Aprojl® = 3 F o (V) AV (2)
n2lj "0 n—2,1
+ZZf]V Al = ||z|?) P ()

4 ~n,0 d2

1,
+mf (V)AP" (2||$||2—1)-
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Using AY"(z) = 0, together with (2.9) and

d—2

A= ol B0 =~ (=54 O5%) BB @, (52)

we obtain

S d—2Y\ 2no
Apmﬁ”=—4§:§]j+n<n—j—1—2>fﬁwﬂﬂﬂlm@)
j=0 v

FaA(n+d) (n+d—1) T3 (V) Py (a).

Hence, by Aproj¥’f = projl, (A f), the first result follows.
Similarly, using D; ; SY'°f = SY2(D;; f), we get Agprojy f = projy*(Ag f).
Then, using

AgY(€)=—-n(n+d-2)Y(), VYeHl ces !

we get the second result. O]

The main results of this section are the following theorems.

Theorem 2.4.7. Let s > 1 be an integer and f € U(Wy; BY) NW325 (W, BY).
Then, for n > 2s + 2,

C
El£)90 € s [Enaea( 8 Flasss + Eal B3 vl

and, consequently,

C
n25—1

gn(f)V,O <

14 a1 + 143 1o |-

Proof. The Parseval identity reads,

5n(f)2v,0 =[f - SZ’Ofuzv,o = Z Z Z

o L7
m=n+1 j=0 v

~m,0 2 __
fiv (V)‘ HY =351+ 32+ 33,

where we split the sum as
| 252)

m= Y Y%

m=n+1 j:L%J v

~m,0 2 750
)| B

.77m7
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[e.9]

D= Y

m={152

~m 2 __
P

2 2

o0

21
I

m=n+1 j5=0 vV

Am,O 2 NO
fj,z/ (V)‘ Hj,m‘

We estimate ¥ first. Using Proposition 2.4.6, we get
2 1 2

1652 (m—j + 52)?

— m—2,1

A fj—l,u

~m,0

fiw (V)

Y

and iterating the first identity in Theorem 1.6.2, we obtain

2 s—1 _9e_ 2
Pl = oz M) ™ BT
’ Jom—7+ 7 i=1 ,
For | 7] <j < [%], we have j ~ m, and, thus
~m,0 2 /s\m—28—2,28+1 2
fj,z/ (V) ~ Jj—s—1,v
m4s
Furthermore,
70 70 0 1
vam — vam vam Hjil’m72
2s+1 - 0 1 2541 :
j—s—1,m—2s—-2 Hj,m Hj—l,m—2 Hj—s—l,m—25—2

From (1.11) and (2.7), we have

ffgm Ao (m+ D) (m—j+ )42

HYp  dm+%52)(m—j+2)
HY,  (m—2+§)(m—j+ %5
Hjlfl,me (g + 1) (m + g)j ’
Hl e (2 (m—j—s+%52), (m—j+52),
gzi—jil,m—zs—Q (1+ %)25 (J—8)s (5 +1)s

It is easy to verify that when j ~ m,

70
Hj,m ~ m2
H2s+1 :
j—s—1,m—2s—-2
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Consequently, it follows that

S

Y, <e Z Z me4s+2

m=n+1 j= L%J v

—m—25—2,25+1]2

As f j—s—1lv

2s5+1
j—s—1,m—2s—-2"

Similarly, we obtain

2

25+1
H%—s—l,m—Qs—Q'

——m—25—2,2s5+1

As f H—s—1,1

o
S, < ¢ Z iy~ 4s+2
m=|"£2 |

Next, we estimate Y3. Iterating the identities involving Ay in Proposition
2.4.6, we obtain

2 1 2

C(m—2§)%(m—2j +d—2)%

2

—m,0

Ay S50 (V)

~m,0

fiw (V)

—m,0
Y

(V)

9

m45 0 j»l/

for 0 < j <[], Consequently, it follows that

Putting these estimates together completes the proof of the theorem.

2.4.1 Approximation behavior in terms of the frac-
tional Laplace-Beltrami operator

In the proof of Theorem 3.3.5, we do not need to specify the basis of spherical
harmonics in the definition of QZ’S. It is far more complicated to give a bound
for the error &,(f)vo in terms of derivatives of odd order involving A and
Ay, for which we do need to specify the basis as in [38]. Thus, here we shall
choose a more convenient distributional differential operator in order to avoid

having to specify a basis.



48 Approximation via gradients on the ball. The Zernike case

Recall that the space H? of spherical harmonics can be characterized as

the eigenfunction space of the Laplace-Beltrami operator Ay on S9!
= {fec*8"™"): —Agf=n(n+d—2)f}.

Therefore, we can define the fractional powers of —A,.

Definition 2.4.8. For a € R, we define
(=20)™ f = Z (n+ d — 2))** projy f.

It is shown in [13] that

|(=20)72 1

gd—1 = Hvof”sd*l’

where || -||ga-1 is the norm induced by (-, -)ga-1 and V( denotes the tangential

gradient defined as
Vof = VFlg. with F(z)=f (HZI) .z e R\ {0}

Theorem 2.4.9. Let s > 1 be an integer and f € U(Wy; BY) NW325(W;; BY).
Then, for n > 2s + 3,

Eflvo < iy [zsn 25-3 (0" sz + Ea (=20 )”(“Aéf)vp]-

=1

Consequently,

Eafo < [z 1A F s + (- AoWzASfuv,o] .

Proof. On one hand, from Lemma 2.3.6, we have

C
Sn 25— Q(Asf)zsﬂ < ngn 25— Q(Asf)v 25+2 X 5 Zgn 25—3 aAsf)zs-ﬂ} :
=1
On the other hand, we have
Agf VO Z Z Z Agf]y ' ]m(v)

m=n+1 j=0 v
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H;,(V)

— m, 2
C S Y222 5517 )

mn+1jOV

=&, (=008 )

The result follows from combining the inequalities above and Theorem 3.3.5.
O

2.5 Numerical experiments

In this section we present numerical experiments to compare the approxi-
mation behavior of Fourier orthogonal expansions with respect to classical
and Sobolev ball polynomials with d = 2 variables. To this end, we consider
different functions defined on B2 For each function f(z,y), we compute
SEf and SYOf for different values of ;1 and n. The two approximations were
compared by computing their respective root mean square error (RMSE) as

follows. We generate a circular mesh consisting of 1441 points

{(ricos(8;),risin(8;)) : r; =14/20, 6; = jn/36, 0 <i<20, 0<j <71},
(2.10)
We set z; j = f(r;icos(6;),risin(d;)), and 2; ; equal to the value of the approx-

imation (classical or Sobolev) at the same point, and compute the RMSE as:

20 71 1/2
(20,0 — 200)? +ZZZM ’ZZJ
i=1 j=0

RMSE(S) = i

(2.11)

where S denotes either S¥ f(z,y) or SYf(z,y).

We consider three different continuous functions and provide figures showing
their approximation overlapped with their graph. We also provide tables with
the approximation error of S# and SY° for different values of y and n. The
figures and errors were obtained using Wolfram Mathematica®. To gain a
more comprehensive perspective when comparing calculated errors, we have

selected functions that are combinations of infinite class functions, with the
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exception of the last example. We point out that the approximation error in
the Sobolev case seems to be smaller than the classical approximation error

as the value of n gets large.

Example 1
First, we consider the function

f(z,y) = xsin(bz — 6y) + y.

The graph of f(x,y) is shown in Figure 2.1, and the approximations S3, f (z, v)
and SQVO’lf(a:, y) are shown in Figure 4.5. We list the RMSE of both approx-
imations for different values of n and p in Table 2.1. For p > 0, a seemingly
faster rate of convergence can be observed for the Sobolev approximation.
Nevertheless, for ;4 = 0, the rate of convergence of the Sobolev expansion
does not seem to be much faster than the classical one. This is consistent

with the theoretical rates of convergence that appear in Section 3.3.

Figure 2.1: Graph of f(x,y) = zsin(5z — 6y) + y.

Figure 2.2: Approximations overlapped with the graph of f(z,y). Left:
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o1

p | n | RMSE(SY f(z,y)) | RMSE(SY* f(x,y))

5 0.29919 0.29001

0 10 0.01235 0.01704
15| 1.26607 x 10~* 1.74117 x 10~*
20| 8.9264 x 1077 5.35549 x 1077

5 0.30721 0.29003

) 10 0.01913 0.01196
15| 2.65266 x 10~* 1.23246 x 1074
20 | 3.54923 x 1076 9.9071 x 1077

5 0.32634 0.29171

L5 10 0.02730 0.01365
“115| 4.22629 x 10~* 1.63851 x 10~
20| 9.80412 x 10°° 4.10402 x 106

5 0.35935 0.30226

5 10 0.03816 0.01882
15| 6.42325 x 1074 2.62762 x 1074
20| 4.32089 x 1076 6.58669 x 106

5 0.53568 0.41311

55 10 0.08591 0.05138
21 15| 1.73557 x 1073 9.31567 x 1074
20| 2.1150 x 10~* 1.10783 x 104

Table 2.1: Approximation errors for f(z,y).

Example 2

Now, we consider the continuous sinusoidal function

g(x,y) = sin(10z + y).

Its graph is shown in Figure 2.3, and the approximations Sh,f(x,y) and
Soit f(x,y) are shown in Figure 2.4. We note that the approximation error
in the classical and Sobolev case seems to be larger at the maximum and
minimum values of the function. Table 2.2 shows the errors corresponding
to the approximations of g(x,y). Again, the rates of convergence seem to

corresponding to the theoretical rates.
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Figure 2.3: Graph of g(x,y) = sin(10z + y)

Figure 2.4: Approximations overlapped with the graph of g(x,y). Left:
S309(z,y). Right: SQVO’lg(x,y)

Example 3

Here, we consider the continuous function
22 —qy2
h(I7y) =€ v— xy,

whose graph is shown in Figure 2.7. Both approximations are shown in Figure
4.9, and their respective RSME are listed in Table 2.4. Observe that, in this
case, the RSME for both approximations are significantly smaller than in
the previous examples. Note that the errors apparently do not change for a

large n but this may be due to rounding errors.
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p | n | RMSE(Skg(x,y)) | RMSE(SY #g(x,y))
5 0.69811 0.75427
0 10 0.17290 0.20945
15| 7.21219 x 1074 8.09666 x 10~*
20| 4.35377 x 1076 4.70028 x 1076
5 0.80258 0.69811
) 10 0.32401 0.17290
15 0.00210 0.00071
20| 1.59163 x 107 4.35377 x 1076
5 1.01491 0.70814
L5 10 0.48232 0.21956
<115 0.00356 0.00117
20| 2.87009 x 10~° 1.08525 x 107°
5 1.34532 0.80258
5 10 0.69211 0.32401
15 0.00568 0.00210
20| 5.24189 x 10~° 1.59163 x 10~°
5 2.89127 1.77811
55 10 1.62760 0.95300
115 0.01719 0.00856
20| 3.98356 x 1074 1.1693 x 1074

Table 2.2: Errors of the expansions of g(z,y)

Figure 2.5: Graph of h(z,y) = e* ¥ — xy

Figure 2.6: Approximations overlapped with the graph of h(x,y).

S%Oh(x,y). Right: SQVO’lh(x,y)

X

y

Left:
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| n | RMSE(Shh(z,y)) | RMSE(SY"h(z, y))
) 0.01063 0.01141
0 10| 8.52813 x 107 1.80036 x 107°
15| 8.41258 x 1077 1.50115 x 107°
20| 9.02632 x 107 1.5485 x 107°
) 0.01097 0.01061
1 10 8.7175 x 1076 8.5254 x 1076
15| 1.80786 x 10~ 6.95056 x 10~7
20 | 1.42097 x 106 6.95056 x 1077
5 0.01182 0.01098
15 10| 8.98758 x 10? 1.57057 x 107°
115 299213 x 1076 1.3121 x 107°
20| 1.29664 x 107° 1.75648 x 107°
) 0.01218 0.01126
9 10 9.2924 x 1076 8.7124 x 1076
15| 1.74896 x 10~ 1.57222 x 1076
20| 2.61056 x 107° 1.57222 x 107°
) 0.01342 0.01235
35 10| 1.12976 x 1079 9.79411 x 1076
115 | 1.27364 x 107° 9.79411 x 1076
20| 1.9156 x 1075 2.72889 x 107°
Table 2.3: Errors of the expansions of h(z,y)
Example 4

Here, we consider the following univariate C? spline defined on [0, 1] by:

“1.50391(t + 0.8)? + 3.96995(t + 0.8)% — 2.22067(¢ + 0.8) + 0.35, 0 <t < 0.8,
q(t) =
5.41466(t — 0.8)% — 3.2488(t — 0.8)% — 1.06683(t — 0.8) + 0.8, 08<t< 1.
Then, we construct the radially symmetric function h(z,y) = q(z* + v?)

defined on B2 whose graph is shown in Figure 2.7. The classical and Sobolev
approximations are shown in Figure 4.9, and their respective RSME are listed
in Table 2.4. We remark that, contrary to the previous examples, h(x,y) is
not an analytic function. In spite of this, the approximation errors appear

to behave similarly than in the previous examples.
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Figure 2.7: Graph of h(z,y) = q(2*® + y?)

y

Figure 2.8: Approximations overlapped with the graph of h(x,y). Left:
Ssoh(x,y). Right: Sy h(z,y)

po| n | RMSE(SY f(x,y)) | RMSE(SY* f(z,y))
5 0.032115 0.105139
0 10| 1.69904 x 1073 7.90909 x 103
15| 2.81159 x 10~* 8.211484 x 10~*
20| 7.60244 x 1075 1.19557 x 104
5 0.03692 0.06976
LT 917275 % 1073 7.2697 x 1073
10| 3.88087 x 1073 3.06606 x 1073
15| 2.59168 x 10~* 4.45460 x 10~*
20| 2.53382 x 107* 2.18760 x 10~*
5 0.047003 0.060414
L5 | 10] 542702 x 1073 2.71346 x 1073
<115 2.34768 x 10~* 5.35595 x 10~*
20| 6.85998 x 10~? 1.81918 x 10~*
5 0.059031 0.058599
5 | 10| 6.93792 x 1073 3.79857 x 103
15| 9.35486 x 1074 4.16972 x 10~*
20| 1.35988 x 1072 2.93696 x 10~*
5 0.09692 0.08112
55| 10 0.010308 8.25693 x 103
2115 | 4.58444 x 1073 1.9499 x 103
20| 3.93952 x 1073 2.22019 x 1073

Table 2.4: Approximation errors for h(zx,y).
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Crapter
Chapter

Simultaneous approximation via

Laplacians on the unit ball

We study the orthogonal structure on the unit ball B¢ of R¢ with respect to

the Sobolev inner product
{(fr9)a=A /Sd_lf( §)do(§ +/ (1= [l2l) f(@)] Al = [|2]*)g(x)] dz,

where A > 0, ¢ denotes the surface measure on the unit sphere S%~!, and A
is the usual Laplacian operator. Our main contribution consists in the study
of orthogonal polynomials associated with (-, -) o, proving that they satisfy a
fourth-order partial differential equation. We also study the approximation
properties of the Fourier sums with respect to these orthogonal polynomials
and, in particular, we estimate the error of simultaneous approximation of a
function, its partial derivatives, and its Laplacian in the L?(B?) space. The

results of this Chapter are contained in [32].

3.1 Introduction

In [2], Atkinson and Hansen studied the problem of finding the numerical
solution of the nonlinear Poisson equation —Au = f(-, u) with zero boundary

conditions on the unit ball B on R?, and asked the question of finding an

o7
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explicit orthogonal basis for the Sobolev inner product

1
(f.9)a=— /Bd AL = [l=*) f(@)] AL = [|z]*)g(z)] dz,  (3.1)
where A denotes the usual Laplace operator.

Y. Xu answered that question in [51], where he constructed such basis in
terms of spherical harmonics and classical Jacobi polynomials of varying
parameter. In addition, he studied the orthogonal expansion of a function in
that basis, and proved that it can be computed without using the derivatives

of the function.

Our main objective is to study the influence of the additional term in the
study of the basis and its impact into the Fourier coefficients and the errors

for a given function.

The work is structured in the following way. Section 3.2 describes the
first considered Sobolev inner product, deducing a Sobolev basis for that
inner product, and proving that the polynomials satisfy a partial differential
equation. Section 3.3 is devoted to analyze the Sobolev Fourier orthogonal

expansions and approximation, giving explicit bounds for the errors.

3.2 Sobolev orthogonal polynomials

This section is devoted to the study of the orthogonal structure on the unit

ball with respect to the Sobolev inner product

(b= [ 1€ (e do(e) N
N 3.2
i 80—1(“ L, Al = [l2) £ @) Al = |lz|)g(a)] dz, A >o0.

The normalization constants are chosen to simplify expressions in the sequel.
Let us denote by V¢(A) the space of Sobolev orthogonal polynomials of degree
n with respect to (3.2). We point out that when A = 0, we recover the inner

product studied in [51] up to a normalization constant.

For our purpose, we need the following lemma.
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Lemma 3.2.1. Let 3 =n—2j+ %2 and Y% € ’Hfl,zj. Then, for any

polynoimal ¢(s),
AL = [l2l?) a(llzl®) V'~ (2)] = 4 (Tpa) (l2[I*) Y~ (z),  (3.3)
where

(Tpa)(s) =s(1=s)q"(s)+ (B+1—=(8+3)s)d(s) — (B+1)als).

Proof. Using spherical-polar coordinates, we can use (1.5) and (1.7) for the
radial and spherical part of A, respectively. After a tedious calculation, we
get that

A [(1 ~Jal) q<||x||2>yy"-2f<x>] N [(1 ) gr?) Yf—zﬂ‘(g)]
[ G 1 (543 (54107 Ve ),

Setting s+ r? gives the desired result.
O

We use the univariate Jacobi polynomials to construct the following mul-

tivariate polynomials defined on B9,

Definition 3.2.2. Forn >0 and0 < j < %, let {Y" % (z): 1 <v <al_y}

d We define the polynomials

denote an orthonormal basis of Hy ;.

Qb () = V) (a),
n 2,n—2j+ 452 27 . .n
Q@) = (1= o) P72l - DY) ¥(@), 1<5<3

It turns out that these polynomials are eigenfunctions of a fourth order linear

partial differential operator.

Proposition 3.2.3. The polynomials in Definition 3.2.2 satisfy

Al =2 @ (x)] = cin P, n>0, (3.4)

v

%m:{—A(n+®,j:Q

47(i+1), 1<j<3%,

with
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and
(1= [lz|*) AP (2) = djn QF,(x), 1 >0, (3.5)

with
0, J=0,
d'n: . . _ .
Proof. For j =0, by (3.3), we have

Al = olP) @5, )] = [0 o) ¥ ()] = =1 (n+ § ) ¥ o)

Now, we deal with 1 < j < §. The Jacobi polynomials satisfy the following
property ([46, p. 71]):

1
(1—s) PPP(25—1) = T [G+1) PP (25 — 1) — 5 P (25 — 1))
(3.6)

Furthermore, the Jacobi polynomials Pﬁlﬂ )(25 — 1) satisfy the differential

equation
s(l=s)y"+(B+1-(B+3)s)y == -1+ B+1)y.
Using these two facts, we can easily deduce that
(2 +B8+1)T;s l(1 —5) PP (25 — 1)]
= (j+ 1) TP (25 = 1) = j TP (25 - 1)

— 4D =G0 G5+ - (40| P2
—j[—j(j +B+2) - (B+ 1)]13;1"*%28 —1)
=—j(j+1) [(y‘ +8) PLI(2s — 1) — (j+ B +1) PMP (25 — 1)

We need yet another formula for Jacobi polynomials ([1, p. 782, (22.7.18))]):
(25 +8+1) PP (25 —1) = (j+8+1) P (25 = 1) = (j+ ) P (25 - 1),

which implies immediately that

T [(1 —5) PP (2 — 1)] =j(+1) PP (25 —1). (3.7)
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Then, by (3.3) and (3.7) with 8 =n — 2j + 42,

A (L= |l2l?) @, (x)| =45 ( + 1) P}y (x).
This proves (3.4).
Using AY*(x) = 0, we get

(1=l AP = 0 = don @, (@).

From (1.32) and Definition 3.2.2, we obtain
(1= ll2l*) APy = dj (1= [l2l]*) P75 (2) = djn Q5 (),

proving (3.5). O

Combining (3.4) and (3.5), we get a partial differential equation for the

Sobolev orthogonal polynomials.

Corollary 3.2.4. The polynomials in Definition 3.2.2 satisfy

(1= %) A% (1 = [|2]*) @}, (2)] = @, Q] (@), (3.8)
where

d d—2

The following relation follows readily from (1.10) and (3.6).
Proposition 3.2.5. The polynomials in Definition 3.2.2 satisfy

Q5. (2) = Py (),

8 = (G+1) Pl (@) — 5 Pi)], 1< <

n
5 .

In the following proposition, we show that the polynomials in Definition
3.2.2 constitute a mutually orthogonal basis with respect to the inner product
(3.2).

Proposition 3.2.6. For n > 0, {Q?’V 0K <5, 1 <v< azfzj}
constitutes a mutually orthogonal basis of VI(A). Moreover,

n m _I7A
< j,l/’ Qk777>A - H],TL 5n7m 5]7k 5’/7777
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where,
Atn+ g, j=0,

A 9
Hj,n = j2 (j + 1)2 (0,n—2j+%2) o (3.10)
ek C1<i<n
271—2]4—5 J

Proof. If j = k = 0, then using the formula
[ faydr= [ [ fee dote)dr
and (3.3), we get
(@h Q)5 =0 S [N+ (B 1 [ 5] = b 1+ 6 41),
where # =n —2j+ %2, If j =0 and k > 1, then
Qo Q) —4@+nk@+¢mmw%@m43$@@s—nﬁwzo,

since the factor (1 — ||x||?) vanishes on S~

For 1 < j,k < 5, applying Green’s identity

/Bd(uAv — vAu) dr = /Sdil

with o(z) = (1 = [|l2]]*) @7, (x) and v = (1 — [|2[|*) @}, (x), we get

( ov ou

L (‘9nv> do(§) (3.11)

(Qf,, Qiy)a =—— Q5,(8) QF, (&) do(§)

Sdl

L, (1= 1al®) Qi @) A2[(1 = 2])Q}, (=) da

Then, by (3.8) and Definition 3.2.2, we can write

80d—1

Wn,j n—2,2 m—2,2
< YR Qk,’ 77> ) O-djl Bl ijl,l/ (l‘) Pkfl,r] (l') WZ(‘I) dx
W, j
= 8 Od_jbz ]2—1,7’7,—2 5” m 6]7k 51’777
Using (1.11), we get
1), 2 (n—j+9)(n—3j+%
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Moreover, using (1.12) and the fact that by = (£ + 1) (£ + 2) by, we obtain

72+
< ka 77> Wh(-o P) 5n,m 5j,k 51477

Corollary 3.2.7. For n > 2,

Va(B) =Hy & (1= [l2]*) Vy_o(Wa).

3.3 Sobolev Fourier orthogonal expansions and
approximation

Consider the Sobolev space
B'(B) = {f € C(BY); 0™f € L*(BY), Im| < s, m € N{},
where L?(BY) = L?(Wy; BY).

For f € H?(BY), let us denote by fj?y’A the Fourier coefficients with respect
to the basis of V4(A) defined in (3.2.2), that is,

J?j»TlL”A HA <f Q >

where ﬁfn is given in (3.10).

Let proj2 : H2(BY) — V4 (A) and S2 : H2(B?) — II¢ denote the projection

operator and partial sum operators

proj3 f i 32 m(x) and S5f(x) =3 projdf(a).
j=0 v=1 m=0

We denote by || - [|a the norm induced by the inner product (3.2), and by
E.(f)a the error of best approximation in H*(B?) given by

E(f)a = IIf = S3fla.

It turns out that the orthogonal expansion can be computed without

involving the derivatives of f.
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Proposition 3.3.1. For j > 1, let 3; =n — 25 + <2 Then,

Fit = 2O @) 3+ + ) [ ) Qo) do
7m
1 )
- 5 g1 f(g) YVTL—QJ (5) dO’(f) )

furthermore, for 5 = 0,

A
fou =

Aﬁfﬁﬂﬁﬁwd@.

Od—1
Proof. Applying Green’s identity (3.11) with v(xz) = (1 — ||z||*) f(z) and
u=A[1 = [2l?) Q2 (x)] =4j (j+1) Pj’(x), j > 1, shows
A 1 o
=i [ [ T© Q) do(e)
5 L8]0 el 1) a0 = 1ol @) d:c]

: [/Bd(l—IIIHQ)f(x)AQ[( o) @5 (0)]

- A

8+ [ HOYIHE) da(ﬁ)] ,

where we have used (3.3) and Pj(o’ﬁ)(l) = 1. The stated result for j > 1
follows from (3.8). The proof of j = 0 is similar but easier, in which we need
to use A[(1— [|z]?) Vi(2)] = —4(n+ ) Y, (z) and HS, =A+n+ 4 O

We point out that the linear operator D defined by
D[P(z)] = A[(1 = ||z]*) P(x)], PeT,

is a bijection on I1%. Indeed, by Proposition 3.2.3, D[Q},(x)] = ¢jn P;L;,O with
c¢jn # 0. Therefore, for each n > 0, D is a one-to-one correspondence between
the classical basis for V4(W,) and the Sobolev basis for V¢(A) defined in
Definition 3.2.2.
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The following results will be used to estimate the error of approximation
of the Sobolev orthogonal expansion with respect to the basis in Definition
3.2.2.

Proposition 3.3.2. For f € #*(B?) and m > 0, we have
D proj, f(x) € Vi (Wo).
Furthermore, for m > 0, we have

Ao projo f(z) € VE(A).

Proof. By the definition of proj5 f(x) and (3.4), we have

A — 27

Z [ A (1= l2)*) Q7 (x)

v=1

D proj5 f(

s P @),

T Mw\g T Mw\3
] MSR

Therefore, D proj2 f(x) € Vi(Wo).

The second part of the proposition is a direct consequence of identity (1.7).

[]

We use the previous result to show that D commutes with the partial

Fourier sum S-.

Proposition 3.3.3. For f € H2(BY),

DS} = S(Df) and NSy f = Sp(Aof).

Proof. By its definition, f — S5 f = > ., proj5 f. From Proposition 3.3.2
we get that (D[f — Sff], P)y = 0 for all P € T1¢. Consequently, SO(Df —
DS2f) = 0. Since S° reproduces polynomials of degree at most n, then
SYUD S2f) =D S2f, which implies that

0=Sy(Df =DSpf)=Su(Df) =DSyf,
and the communation relation is proved.

The second part can be established in a similar way taking into account that
Ay maps HE to itself. O
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The relation in the proposition above passes down to the Fourier coeffi-

cients.

Proposition 3.3.4. For [ € H*(BY),
——n,0 d\ ~nA
DfO,V = —4 <n+2> fO,Va
~n,A

=70 . . n
Df],y:4.](]+1>fj,y7 1<]<§7

and

——n,A ~n,A

Aofjw :—(n—2j)(n—2j—|—d—2)fj7y7 0<]<§'

Proof. From projs f = S f—S2 | f and Proposition 3.3.3 we obtain D proj4 f =
proj (D f). Then the first identity follows from (3.4). The second result fol-
lows directly from (1.7). O

Theorem 3.3.5. For f € H2(BY),
En(f)a=c&(Df)o, n=0.

Proof. The Parseval identity reads,

w L%

~m,A 2 __
EPA=IF=SaflA= > DD\ 5w | Hiw =21+,
m=n+1 j=0 v
where we split the sum as

o L% AR

El == Z Z Z fj,l/ Hj,m?
m=n+1 j=1 v

e ’\m,A 2NA

22: Z Z fO,V HO,m‘

m=n+1 V

We estimate ¥ first. Using Proposition 3.3.4, we get

2 2

~m,A

S o

— m,0

ij,u

T 1652 (5 + 1)2
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Furthermore,

PGS et
Hﬁm _ 2n72j+% J _ 2]2 (] + 1)2
HY,,  booa-1  (0n-2j+452) booa1

gn—2j+§+1 7

Consequently, it follows that

— m,0 2
ij,l/

0
Hj7m.

Next, we estimate Y,. Using Proposition 3.3.4 again, we obtain

2

— m,0

Dfo,u

- 16(m+9)?

Moreover, -
Heyy  (m+9)(m+4+))

0 — d :
Hy,, 3

Consequently, it follows that

Lo 3%

m=n+1 Vv

2
— m.0

’ 0
Df;,| Hjn

Putting these estimates together completes the proof of the theorem.

The main result of this section is stated in the following theorem.

Theorem 3.3.6. For f € H*(BY) and n > 1,

Df—DSyf| = E(Df)o,

0

o= 1alP) (1 - 521)

< SE(Df)y, 1<i<d,
0 n

C
= E.(Df)o.

n

(1= el (f - 557) H <

Proof. By Proposition 3.3.3,

IDf=DSfllo =D f = Sa(D fllo = EalD fo

(3.12)

(3.13)
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which proves (3.12).

Now, we deal with (3.13). We use the well-known duality argument, the so
called Aubin-Nietsche technique ([12]). We use the characterization

N 2 QA
g 001 l#1) (£ = S24)l 514
o lglo#0 lgllo

0= 1ol (7 - 529)

We introduce the following auxiliary boundary value problem:
A?p, = g, in B?
Ap, =0, onS¥ 1 (3.15)
¢, = 0. on S4-1,

Observe that, by Green’s identity, for h € H*(B?), we have

1 1
A 1— 2 h A d — / 1 — 2 hAQ d
Sor /B l( l1%) ] poda = g | (L= le|*) h A%y de
1
= 1—||z]]*) hg(x)d
o o ) () da
1

= 5% (L= [[zl*) Ao,
(3.16)
where we have used by = d/o4_1. Moreover, since ¢, = 0 on S?=1 there is a
function @, such that ¢, = (1—||z||?) @, If g = 0, then ||G,||A = (g, Pg)a =
0, which implies that ¢, = 0. This shows that the homogeneous version of
(3.15) has a unique solution ¢, = 0 and, by the linearity of the problem
(3.15), we also have that the non-homogeneous problem with g € L?(B¢) has

a unique solution.

Using (3.16), we get

1

(f=S21.80), = 57

(9,1 =1zl (f = S21)), -
Since S2 reproduces polynomials of degree n, it follows that

(f = S2f. Spég)a =0.
Consequently,

g, (A=lll|®) (f = S2F))ol < (f=S2F, Bo—SaBoda < | f=S2fllallFo—Sa@lla-
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Therefore, by (3.14), we have

_ ”f _ SAf”A ( sup ”959 — S$¢9HA> ‘
0 ! oo ll9llo

[ =1 (7 - 529)

Moreover, by Theorem 3.3.5 and (1.26),

||¢g - SnASBQHA = an(D‘:Eg)O =c&, (A 909)0
c

) (3.17)
< ﬁ gn72<A @g)2+8n(AOAgpg>0 .

Let us bound the term &,(ApA ;). Since ng;jo and Pg:(l) are harmonic and

radial functions, respectively, then Ay AFy O = 0 and A APg:(l) = 0. This
means that

m2] 0

En(DoA 9,3 Z Z > AOA Py u qum‘
m=n+1 j=1 wv=1
We need the following identities (Theorem (1.6.2))
— m,O /\m,O —_— M 22 0 /\m70
AgA Pgip = Am—2; Aapgjvy and A? Cgi 1, = Fm—j Agpgjvy ,

for 0 < j < % in the first identity and 0 < j < mT” in the second identity,

where \,,_9; and H%_j are defined in 1.32. Using these identities we get

Ay 25 |>\ 9 ’2 /\771—272 2
En(ApA 909 Z Z Z 0 j’2 9i-1v HJQ,m-
m=n+1 j=1 v=1 m i

Moreover,
Hp, _2(m—j+932)(m—j+ %5
HJZ—Lm—Q (d+2)ﬂ (J+1)

Therefore, for 1 < j < ™2,

|)\m72]‘ H]O,m m + d
’“9:1—3‘2 ngfl,m72 m + %

Consequently,

En(DoA )y <c D




70 Simultaneous approximation via Laplacians on the unit ball

Putting together (3.17) and (3.18), we get
~ N c c c c
18— S28lla < pnslB%0,)0 < S1A%0gll < S1A%05ll0 = Sloll

where we have used (3.15) and the fact that (1 — ||z]|*)?> < 1 on B¢. This
implies that
~ o A,—v
sup 169 — Si@glla < <
lolozo —[l9llo n

and, therefore, by Theorem 3.3.5 again, we have

H<1 ) (£ - 525)

C
. g ﬁgn(pf)m

which proves (3.13).

The intermediate case follows from the multivariate Landau-Kolmogorov ine-
quality ([6]): for i =1,2,...,d,

1/2 1/2
<c Df-DSf

0

o - LalP) (1 - 527)

(- llel?) (f - 52)

0 0

]

3.4 Numerical Experiments

In this section we present numerical experiments to compare the approx-
imation behavior of Fourier orthogonal expansions with respect to classi-
cal and Sobolev ball polynomials with d = 2 variables. To this end, we
consider different functions defined on B2 For each function f(z,y), we
compute SOf, SV:1f (defined in Chapter 2) and S2 f for different values of
n. The three approximations were compared by computing their respective
root mean square error RMSE(S*) defined in (2.11), where S* denotes either
SOf(x,y), SV f(x,y) or S2f(x,y). We will use the circular mesh consisting
of 1441 points defined in (2.10).

We consider two different continuous functions and provide figures showing
their approximation overlapped with their graph. We also provide a table

with the approximation error of SO, SV:' and S2 for different values of n.
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The figures and errors were obtained using Wolfram Mathematica®. We
have selected test functions from the virtual library of simulation experiments
(see [45]). We would like to highlight that, as the value of n increases, the
approximation error in the Sobolev cases appears to be smaller than the

classical approximation error.

Example 1

First, we consider the continuous function called Franke’s function ([45]):

flz,y) = fillz +1)/2,(y +1)/2),

where

filz,y) = —02exp (= (92 — 4)* — (9y — 7)%)

1 1

+0.5exp (7 9 —7)? — 59 - 3)2)
1 |

+0.75exp <—Z(9x —2)P = (9 - 2)2>

+0.75exp (—%(93; L2 %(995 4 1)) .
The graph of f(z,y) and the approximation S f(z,y) are shown in Figure
3.1. We list the RMSE of the three approximations for different values of n
in Table 3.1.

Figure 3.1: Left: f(x,y). Right: Approximations S5 f(z,y) overlapped with
the graph of f(z,v).
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n | RMSE(S] f(z,y)) | RMSE(SY"! f(2,y)) | RMSE(S} f (2, y))
) 0.033664 0.03698 0.03864
10 0.004819 0.005102 0.00474
15 0.000902 0.001062 0.000811
20| 1.05053 x 10~* 1.05892 x 10~* 8.99766 x 107
30| 6.21477 x 10°° 6.37865 x 10~° 2.51665 x 10~°
Table 3.1: Approximation errors for f(z,y).
Example 2

Now, we consider the Gramacy & Lee (2008) function ([45]):

Figure 3.2 shows both the function and its approximation, and their respec-
tive RSME are listed in Table 3.2. Note that the errors apparently do not

g(x,y) =2z exp (—4:c2 — 4y2) :

change for a large n but this may be due to rounding errors.

Figure 3.2: Left: g(x,y). Right: Approximations S4g(x,y) overlapped with

the graph of g(z,y).

RMSE(S,"g(.y))

RMSE(Szg(x,y))

n | RMSE(S;g(x,y))

b} 0.025847 0.025847 0.028736
10 0.001384 0.001384 0.00139

15| 4.40898 x 107° 4.40895 x 1076 3.95585 x 1076
20| 5.31368 x 107° 5.03082 x 1078 4.24346 x 1078
30| 1.82081 x 1078 5.03082 x 1078 7.29434 x 107°

Table 3.2: Approximation errors for g(z,y).




Chapter

A class of Bernstein-type operators on
the unit disk

We construct and study sequences of operators of Bernstein type acting on
bivariate functions defined on the unit disk. To this end, we study Bernstein-
type operators under a domain transformation, we analyze the bivariate
Bernstein-Stancu operators, and we introduce Bernstein-type operators on
disk quadrants by means of continuously differentiable transformations of the
function. We state convergence results for continuous functions and we esti-
mate the rate of convergence. Finally some interesting numerical examples
are given, comparing approximations using the shifted Bernstein-Stancu and
the Bernstein-type operator on disk quadrants. The results of this Chapter

are presented in [40)].

4.1 Introduction

In this Chapter, we are interested in finding an extension of the Bernstein
operator to approximate functions defined on the unit disk. In this way, we
will consider two kinds of modifications: by transformation of the argument
of the function to be approximated, and by definition of an adequate basis of
functions as (1.34). We present and study two Bernstein-type approximants,

and we compare them by means of several examples.

73
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The structure of this Chapter is as follows. In Section 4.2 we extend
the Bernstein operator through a domain transformation. In Section 4.3 and
Section 4.4, we define the shifted n-th Bernstein-Stancu operator and the
shifted n-th Bernstein-type operator, and study their respective approxima-
tion properties. Section 4.5 is devoted to describing an extension of certain
linear combinations of univariate Bernstein operators that give a better order
of approximation. The last section is devoted to analyzing several examples,
comparing the approximation results for both Bernstein-type operators on

the disk, and the linear combinations introduced in Section 4.5.

4.2 Bernstein-type operators under a domain
transformation

In the previous chapter we defined the Bernstein-Stancu operator 4, [f(z,v), ]
as in (1.38). Writing %, [f(x,y), 2] explicitly, we have

B AU RPN
s 9= 3 (2 L) paate) s (G520 ) )

where Fl(z,t) = f(z, (¢2(x) — d1(2))t + ¢1(2)).
One way to extend the Bernstein operator on the unit square Q to ano-

ther bounded domain Q C R? is through an appropriate transformation or

change of variables. In this section, we study several cases.

1. Let Q = [—1,1] x [—1,1]. The operator defined as

Bl f(2,y),Q] = iif <2kn_n 2‘77;”’“) Prk (T) Pr.j <y_2H>

k=0 j=0

is a Bernstein operator on /Q Indeed, for every function f defined on /Q,
we define the function F': Q — R as

F(u,v) = fu—1,2v-1), (u,v)€ Q.
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Then, using the transformation x = 2u — 1 and y = 2v — 1 which maps Q

into /Q, we get

Zif ZZF( )pm ) e (0)

—

:’%n[ (uvv)aQ]> ($7y> €Q.

2. An alternative way to obtain the Bernstein-Stancu operator on the simplex

T2 is by considering the Duffy transformation

x:u,yzv(l—u), (U,U)GQ,

which maps Q into T?. Let f be a function defined on T?. We can define
the function F': Q — R as

F(u,v) = f(u,v(l —u)), (u,v)e Q.

Then, the operator

B, f(x, Zn: fjf ( (1 - k)) Pk (T) Py <1 f ) ,

k=0 =0 n r

is a Bernstein-type operator on the simplex since, using the Duffy trans-

formation, we get

—

’@n[f(xay)arlﬁ] = Pu[F(u,v),Q], (v,y) € T?.

Observe that @n[f(x,y), T?| is not a polynomial unless n — k — ng > 0.
We recover the usual Bernstein-Stancu operator on the simplex by setting

n,=mn—=k.
Consider the unit ball in R?:
B? = {(z,y) e R?: 2®+y° < 1},

and the transformation z = 2u — 1, y = (2v — 1) /1 — (2u — 1)? which
maps the square Q into B2. For every function f defined on B2, we can
define the function F': Q — R? as

Flu, )_f( (20 —1) 1—(2u—1)2), (u,0) € Q.
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The operator
Bl f(x,y), B

-y 3 <2kn_n 2o Hn_k)) Pok (Hl)pm,j <£”2 H),

Tong n 2

k=0 j=0

is a Bernstein operator on the unit ball since

Bl f(2,9),B%] = B,[F(u,0),Q], (v,y) € B
Observe that, in this case,
r+1 7/% +1
s () oo <2>

() ()t ) ()

In contrast with the previous two cases, there is no obvious choice of ny
such that %,[f(x,y),B? is a polynomial. Nevertheless, notice that for

y = 0, we have

e () s (3) = e () () o

and for z = 0 we have

(8 s (5) = () () 1 4070

Therefore, @n[ f(x,y),B? is a polynomial on the x and y axes for any

choice of ny.

In Figure 4.1, the representation of the mesh in this case for n = n; = 20

is given.
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A

4. Let
Bi={(r,y) €B*:2 >0,y >0}, By={(z,y) €B’:2<0,y>0},
Bs = {(x,y) e B : 2 <0,y <0}, By={(r,y) €B*:2>0,y <0},

denote the four quadrants of B2, and consider the transformation

2 y2 2
U=, U:m, (I,y)EB,

which maps each quadrant to Q. The corresponding Bernstein operators

on the quadrants are:

Bolf(@,y), B1] = éi;f \/E\/W) Prk(2%) P g (fxz)

Al Bl = Y50 —\/EW) sl s (2
Bolf(x,y), Bs] = é;éf —\/E,—W>pn,k(xz)pnk,j(132332),
Bl B = 33 \/E—W) s s (12 )

Indeed, for every function f defined on B2, we can define the functions on

Q:

Fi(u,v) = f (\/ﬂ, Vou(l— u)) : Fy(u,v) = f (—\/ﬂ, Vou(l— u)) ,




78 A class of Bernstein-type operators on the unit disk

Fy(u,v) = f <—\/_,—\/U(1 —u)) , Fy(u,v)=f <\/_,—\/v(1 —u)> .

Then,

Bl f(2,y), Bi] = BuFi(u,0),Q), Bulf(2,y), Ba] = Bu[Fa(u,v), Q)
@n[f($ay)>33] = ‘%H[F3(uvv)’ Q]> @n[f(I’y)>B4] = ‘@H[F‘l(uvv)’ Q]
If we choose n, = n — k, we have that @n[f(x,y),Bi], i =1,2,3,4, are

polynomials of degree 2n since

2 y? o\ ok 2 2 2\n—k—j
pmk(x )pn—k,j 1_7:172 = ko My (1—1’ —y) .

In this case, observe that for £ = 0, the mesh corresponding to By and Bsy,
and similar to B3 and By, coincide on the y axis (see Figure 4.2). Moreover,
for 5 = 0, the mesh corresponding to adjacent quadrants coincide on the
x axis. Therefore, we can define a piece-wise Bernstein operator on B? as

follows:

Figure 4.2: Circular mesh after applying the transformation (u,v)

(\/ﬂ,w/v(l—u» for (u,v) € Q with n =10 and ny, =n — k, for 0 < k < n.

Proposition 4.2.1. For any function f on B%, %,[f(x,y), B?] is a continu-
ous function on B2.
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Proof. Clearly, %,,|f(x,y), B? is continuous on the interior of each quadrant.
For x = 0,

Bl f(2,y) ﬂ: ;:Zk%f(\f\/ o )pnkz ) Py (V7))
£ (o) o)

= Balf(x,), Ba)|

z=0"

= @n[f(xay)a B4]‘

z=0"

Similarly, for y =0

— —

Bl f(@,y) Bil| _, = Bl f(w,9). Bl|
and
Bulf(w9). Bal| _ = Bulf(w0). Bal| -
Therefore, 8,[f(x,y), B is continuous on the z and y axes. L

4.3 Shifted Bernstein-Stancu operators

Motivated by the examples of Bernstein operators on different domains in-
troduced in the previous section, we define the shifted n-th Bernstein-Stancu

operator and study its approximation properties.

Let ¢1 and ¢ be two continuous functions, and let I = [a, b] be an interval
such that ¢; < ¢y on I. Let © C R? be the domain bounded by the curves
y = ¢1(z), y = ¢a(x), and the straight lines z = a, z = b. Observe that
for a fixed x € I, the polynomials p, x(y; [¢1(x), p2(z)]), n = 0, 0 < k < n,
constitute a univariate shifted Bernstein basis on the interval [¢1(x), ¢2(x)].
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For every function f(x,y) defined on €2, define the function

F(u,v;2) = f((b—a)u+a,(2(u) = b1(w) v+ i(u)) (4.2)

where

(ﬁz(U,) :qbz((b—a)u—i—a), 1= 1,2,
0<u<l,and 0 <v <1,
The shifted n-th Bernstein-Stancu operator is defined as
% ZZF< ) pnk(x I)pnkj(ya [¢17¢2]) (ﬂ%y) GQ,
k=0 5=0

where n, = n—k or ngy = k for all 0 < k£ < n. Written in terms of the

univariate Bernstein basis, we get

— no 2k k j rT—a y— ¢1(2) )

3, (5 20) s (22) s |
fo =22, < )“ b=a) "7\ 6s(@) = n(@)

The following result plays an important role when studying the convergence

of the shifted Bernstein-Stancu operator.

Lemma 4.3.1. Let ¢; and ¢ be two continuous functions, and let I = [a, b
be an interval such that ¢, < ¢y on I. Let Q C R? be the domain bounded
by the curves y = ¢1(x), y = ¢2(x), and the straight lines = = a, x = b.
Then:

E

Proof. (i) Obviously %,[1,9Q] = 1.
(ii) We compute

Bl =33 oalo: Dl o,2]) (0~ 0 4]

k=0 j=0
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b_a ank X, ] i (ankj Y; ¢17¢2])) +a§n[1’9]

k=0

=(b—a) Xn:ﬁn,k(x;f)i +a

k=0
T —a n—1 N
:(b—a)b an,m(:v, I+a
Y k=0

(iii) Observe that
s () (Y- (I) (z) —y)™™ j
ankj Y; ¢1 ¢2 z:: ( ) o (1 (x))nk Tlik

(z)
:"’“71 ne — 1\ (y — ¢1(x)) (@52(93) y)t 43
%( J ) (P2(x) — d1(x))™ (43)
_ Yy — ¢1(x)

Po(r) — Pr(z)

Therefore, applying the linearity, we get

By, Q) = zn: iﬁn,k(wsf)ﬁnk,j(y; (91, ¢2]) K@ () — (i)) }Z + (i)]

B(6(0)- (o]t
o5 ()t

=Bl — 001 Y

+ Bn[¢17 I]7

where B, denotes the univariate shifted Bernstein operator acting on the

variable z. Since B,, converges uniformly for a continuous function, we have
lim Z,ly, Q= lim By[¢s — ¢, 1]

y— ¢1(x)
n—-+00 n—-+00 ¢ (

=1 (@)
= [pa(x) — a(a)] L)

+ hm B [¢1, ]

Y=\
¢2(x) = o1 ()
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(iv) We compute

Bl 0 =33 s D s o2 (0 )%+

k=0 j=0

n _ ]{?2 x_an—1~
=(b—a)*> Pur(z; )= +2a(b—a) > Pocig(z; ) +a°

k=0 n — % k=0

—1 /2 —a\2=2 loz —a=

—(b—a)* (" ( ) Boo(2; 1) + ~ ool ]
(b—a) < n b a kz:%p 2. (5 )+nb—&,§)p Le(z; 1)
+2a(x —a) + d?
e a2

n

(v) Finally, if f(z,y) = y? in (4.2), we get

F) =3 () -4 ()
-(=()-4C)) %

(o) -a (D)o () wea )

Bult. 2 = 305 Pl 1) By 0 (01, ) (% (ﬁ) — 1 @) -

k=0 j=0 n N

12 znj iﬁn,k(:ﬂ; )Py (Y5 (01, 2]) (52 (i) — (i)) & (fz) 7;

k=0 j=0

Then,

30 S a5 ) By (4 61, 00]) (’“) |

k=0 j=0 n

Observe that

nk_1< y — ¢1(x) >2nk2
¢

Tk o ﬁ B ) N
j;opnk,] (y7 [¢1a ¢2]) n% - n, Q(ZL‘) N ¢1(£L") ]20 Pny—2,5 (y, [¢1, ¢2])

1 y=—al) o
t o (@) = oa(a) 2 P[00



A class of Bernstein-type operators on the unit disk 83

:nk—1< y — 61(x) >2+1 y— 61(x)
g\ ¢2(x) — d1(x) ng ¢2(x) — ¢1(x)

:<y~m<x>)2+<y—¢1<x>><¢ () —y)

pa(z) — b1 () ny, (¢2(z) — ¢1(2))?
Together with (4.3), we get

12 _ y—¢1($) g o 2
A0 = (G52 Blor—ou

+(y;(<i;((:;;)(¢z() y) Zopnkarl ( <k> 3 (D)Qn:/n

Y= ¢i@) \ moe B, (2
v2 (S0 Bullon - o on 11+ Bofet 1)

If n, =n — k, then

St (53 -5 sl -

and if ny = k, then

St (5 -5 () sl -

In either case, %, [y2, Q] — y? as n — +oo. O

1_:va

(¢2(2) = 61())? ]]

The convergence of the operator is clear from Lemma 4.3.1 and Volkov’s
theorem ([49]).

Now, we study the approximation properties of the shifted Bernstein-

Stancu operators.

Definition 4.3.2 ([42]). Let f be a function defined on 2. The modulus of
continuity of f is defined by

w((517 52) = Sup ‘f(xlla y”> - f(xla y/)la

where 01,09 > 0 are real numbers, whereas (x',y') and (2”,y") are points of
Q such that |x" — 2’| < 61 and |y" — | < da.
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Theorem 4.3.3. Let f be a continuous function on 2. Then,

lim B,[f(z,y),Q = f(z,y),

n—-+4o0o

uniformly on €.
Proof. Let 01,62 > 0 be real numbers.
Note that on Q we have Z,[1,Q] = 1,
Pre(@ 1) Dy (43 (01, 02]) 20, 0<k<n, 0<j<my,

and
(2" y") = f(@ )] S w(l2” = 2|, [y" = ¢/]) < w(dy,d2).

Taking into account the inequality (see, for instance, [42, 44])
W(Cl 51,C2(52) < (Cl+62+1)W((51,52), C1,Co > 0,

we compute

n N
éw(m—

< (A1 + A2 + 1) w(dy, 62),

k
b—a)s — _
( a)n al,|y

where
1
M = M(x,n, k,01,a,b) = 5 x—(b—a)g—a ,
and
1 ~ (k ~ (k ' ~ (k
Ao = Xo(@,n, kg, 02, D1, P2) = e <¢ () — ¢1 ()) A P1 ()‘
9 n n ny n
Therefore,
|f(:v,y) - @Jn[f<x7y)7Q”
Zzpnk Z; ] pnkg(% ¢1,¢2 ‘f T y ( j39>‘
k=0 ;=0 n’ny
n ng

<3S B3 ) By (3 [B1, B2]) (M1 + Ao + 1) w (81, 02).

k=0j=0
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We will deal with each term in the last inequality separately.

Since Z[1,Q] =1, 0 < pus(w; 1) < 1,0 < P, (Y3 [01, P2]) < 1, and z +— 21/2
is a concave function, by Jensen’s inequality, we have

n Nk k
SN Puge(@ 1) P (5 [01, ¢2]) |2 — (b — a)ﬁ —a
k=0 j=0
0 " 91 1/2
= Z Zﬁn,k(x; 1) Py, (Y5 (@1, @2]) [(m —(b— a)ﬁ - a)
k=0 j=0 1
- " 01 1/2
< |33 sl Do) (= - ) )
k=0 j=0 |
Using (i), (ii), and (iv) in Lemma 4.3.1, we get
DD Dk 1) Py (s (P15 d2]) |2 — (b — a)ﬁ —a
k=0 j=0

= [xQ Bo1,9] — 22 B2, Q) + B[22, QHI/Q —0 as n— oo,

uniformly since %,[1,Q] =1, B[z, =z, and lim %,[2* Q] = 2°.

n—-+o0o

n ng

Similarly, from Jensen’s inequality, and using (i), (iii), and (vi) in Lemma
ZZﬁn,k(iE; I)ﬁnk,j(%%,%)

4.3.1, we get
- (0 () -2 () -2 G)
=0 =0 n n un n

<[EEpnminen (- (5() -4 () 44 ()]

k=0 j=0
:| 1/2

= [P 21,9 = 2y By, A + Zuly®, Q] T =0 as n— 400,

uniformly since %,[1,Q] =1, lim Z.[y,Q] =y, and lim Z,[y* Q] = v>.

n—-+o0o n—-+0o00

Finally, choosing &, = 5 = 1/y/n, then w(1/y/n,1/y/n) — 0 as n — +o0,
and, thus, 4,[f(z,y),?] converges uniformly to f(x,y) on Q. O]

Recall that the univariate shifted Bernstein operator satisfy the following

Voronowskaya type asymptotic formula: Let f(x) be bounded on the interval
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I, and let zg € I at which f”(z) exists. Then,

— f(zo) = O(n™1h). (4.4)

T=x0

By[f(x), 1]

Now, we give an analogous result for the Bernstein-Stancu operator.

Theorem 4.3.4. Let f(x,y) be a bounded function on Q = {(x,y) € R? :
a<xz<b ¢1(r) <y < pox)}, and let (xg,y0) € Q be a point at which
f(z,y) admits second order partial derivatives, and ¢ (zo), ¢ = 1,2, exist.
Then,

Bl f(2.y), ) — o yy) = O (i) |

(z,y)=(0,90)
Proof. Let us write the Taylor expansion of f(u,v) at the point (xq, yo):

fu,v) =f(zo,90) + (u — 0) fa(T0,y0) + (v — v0) fy(0,Yo)

—+ Mfm:<$07 yO) + (u — xO)Q(v - yO) (fry(xm yO) + fym(‘r(h yO))

2
(v —40)°

I o os o) + () = (o, o) b, v),

where h(u,v) is a bounded function such that h(u,v) — 0 as (u,v) = (xo, Yo)-

Applying %, to both sides, we get:

@n[f(% v)] = f(@o,y0) + fo(0,10) @n[u — o) + @n[v — ol fy (o, yo)

b 5 o0, 90) Bl = 20)) 5 (o0, 90) + Fyn, 00)) il = ) (0 = o)

45 0,90 Zallw — 90)"] + Z [ (,0) — (o, w0) [ ha,0)],

where we have omitted € for brevity. We deal with each term separately.

= 0. Next, from the proof of

From Lemma 4.3.1 (ii), we get %, [u — o]
U=xQ

Lemma 4.3.1 (iii), we have

Bulv — o) = Baloole) — a(a), 1] =)

But using (4.4), we get

Blv - yo]‘ Yo — ¢1(z0)

</52(l‘0) — ¢ (330)

_ (¢2<xo> B CORNY (rlz»

(u,v)=(z0,90)
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1 1
+¢1(I0)+0(> -y = (9( )
n n
Similarly,
—~ 1
— 2 p—
Fullw =20, = 0(5)),

B (u = o) (v = yo)]

1
=o(,).
(u,0)=(z0,y0) n

1
- O <> i
(u,0)=(z0.40) n

Now we deal with the last term

Bnl(v —1y0)*]

B [, 0) = (0, y0) |2 b1, v)]

"k 7\ ~(k 7\ _ _
k=0 35=0

where

) |
(0=t vaa) (& (5)-a(E) Lra(t) ),

and

~(k k ~ (kK ~ [k j ~ [k
n’ ng n n n n n
Fix a real number € > 0. Then there is a real number § > 0 such that if

[(w, v) — (o, yo)|| < 0, then |h(u,v)| <e. Let Ss be the set of k and j such
that 5%F (%, j) > 1. Then,

i,

> Duk(20: 1) Py i (yo: (01, 02])

(k,j)€Ss

1 ~(k 7
<§ Z F(ﬂ,J)ﬁn,k(xo;[)ﬁnk,j(yo;[¢17¢2])

(kD)eSs "
< 5 (Ballw = 20+ Zol(w — o))

o(3)

(uw,v)=(0,y0)
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Moreover, we have

(k%;saF<” ”k> |H <fl ﬁ:)
<o ¥ F(E D) bt stusfon o <0 (1),

P (231) Py (Y3 [ 01, 02])

(k,5)ZSs n
Thus,
1B [, ) = (@0, yo) I A, v)]|
kg
k])ZGS(; (n nk> H <n nk> pnk(l‘ [)pnk](yJ (1, ¢2])
ko j
ﬂk%;&F(n L) |7 (B L) ot )t 61,62
<MY ﬁn,mo;I)ﬁnk,j(yo;[¢1,¢2]>+o(711)
(k,3)€Ss
1
<o(y).
where

M= sup|l|(uv) = (o, 30)|* Al 0)].
(u,0)eQ

Putting all the above together, we get

Bl f(2,y), ] — f(x0,%0)

(x,y):(wo 7y0)

and the result follows. O

4.4 Shifted Bernstein-type operators

We will use the following Bernstein-type operator studied in [10] and [21]:
Cof =Bu(for)or,

where 7 is any function continuously differentiable as many times as neces-
sary, such that 7(0) =0, 7(1) = 1, and 7/(z) > 0 for = € [0,1]. Throughout
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this work, it will be sufficient for 7 to be continously differentiable.

In [10], the following identities were given:
1
Chil=1 Cir=r (= (1_>72+7.
n n
We have the following result.

Proposition 4.4.1. Let f be a continuous function on [0, 1] and 7 is any
function that is continuously differentiable, such that 7(0) = 0, 7(1) = 1,
and 7'(z) > 0 for x € [0,1]. Then,

lim Cf(2) = ().

n—oo

That is, C7 f(x) converges uniformly to f on [0, 1].

F(7(£)) pustri)

(
e
Buf (77 (w)).

Since B, f (7' (u)) — f (7 (u)) = f(x) as n — o0, the result follows
from taking the limit on both sides of C7 f(x) = B, f (). O

Proof. Set uw = 7(x). We compute

I
[M]=

Crf(z)

i

0

I
I M:

We also introduce the following shifted Bernstein-type operator
T k e
Crlf(x ZfOT ( a)n+a> Prge((2); [, B]), a<a<pB,

where 7(z) is any function that is continuously differentiable, such that
(o) = a, 7(8) = B, and 7'(x) > 0 for = € [o, A].

Proposition 4.4.2. Let f be a continuous function on [«, 5] and 7(x) is any
function that is continuously differentiable, such that 7(«) = «a, 7(8) = 5,
and 7'(x) > 0 for « € [a, §]. Then,

lim C7[f(2), [, ] = f(o).

n—oo
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Proof. Set u = 7(x). We compute

=31 (7 (-0t + o)) st o)
oY

#(m (- +a)) pustisla )

Bn[f (7" @) o B])-

Since B, [f (771 (), [o, B]] = f (77! (u)) = f(z) as n — 400, the result fol-
lows from taking the limit on both sides of C7[f(z), [a, 8]] = Balf (z), [a, B]].
[

Crlf(x

We define the shifted bivariate Bernstein-type operator. Let ¢; and ¢, be
two continuous functions, and let I = [a, b] be an interval such that ¢; < ¢
on I. Let Q C R? be the domain bounded by the curves y = ¢1(x), y = ¢o(z),
and the straight lines © = a, x = 0. Let

T(x,y) = (7(x),0.(y)), (z,y) €,

where 7 is any continuously differentiable function on I, such that 7(a) =
a, 7(b) = b, and 7'(z) > 0 for x € I, and for each fixed x € I, o, is any
continuously differentiable function on [¢p1(x), ¢2(x)], such that o,(¢p1(x)) =

$1(x), 02(da(2)) = ¢2(x), and o (y) > 0 for y € [p1(x), da(2)].
For every function f(x,y) defined on 2, define the function

F(u,0:9) = foT7' ((b—a)u+a,(da(u) — d1(w) v+ di(u)),
for 0 <u<1,and 0 < v <1, where ¢;, i = 1,2, are defined in (4.2).

The shifted bivariate Bernstein-type operator is defined as

n  ng

)= S5 F (2 2:0) 51alr(0) D st o1,62),
k=0 5=0

for (z,y) € Q, where ny =n —k or n = k for 0 < k < n.

Written in terms of the univariate classical Bernstein basis, we get

iteanl=E () me (57 e (5500)
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Proposition 4.4.3. For every function f(x,y) defined on €,
lim €7 (f(2,9),9) = f(z,y).

n—-+o0o

Proof. Let u = 7(x) and, for each z € I, v = 0,(y). Then,

n  ng

T SR ( I b) P15 1) B (05 61, 2]

k=0 7=0

= Za(f o T)(u, v) €.

From Theorem 4.3.3, we have %[(foT)(u, v), Q) = B, [f(x,y), Q] converges
uniformly to f(z,y). Hence, €7 [f(z,y), 2] converges uniformly to f(z,y).
[

Now, we study shifted Bernstein-type operators defined on each quadrant
of B2, denoted by B; for i = 1,2, 3,4. We will choose T and ny, such that, for
any function, the approximation given by Bernstein-type operators on each

quadrant is a polynomial.

(i) For = € [0,1], let 7(z) = z? and, for each fixed value of x, let o,(y) =

y?/V1—22 Let ny =n—k, ¢1(x) =0, and ¢o(x) = /1 — 22. Then,
~ 2 n\ o2k 2\n—k
Pni(x%[0,1]) = <k>$ (1 —a%)" ",

ﬁ”—k,j(gz<y>; [¢17 ¢2]) = (1) (TL - k) y2j (1 . 1172 i y2)”_k_j,

FT(u,v; By) = f(\/_ V(1 —u) )

where B) = {(z,y) € R? : 22 +4? < 1, z,y > 0}. Then,

g[f(%y);&]z}é%f(\/i \f) (k ]> 2, 2(] g2 y2)nkd

(i) For z € [—1,0], let 7(z) = —? and, for each fixed value of x, let o, (y) =

y? /1 — 22 Let ny =k, ¢1(x) =0, and ¢o(x) = v/1 — 22. Then,
~ 2. _ (" 2k .2n—2k
Dnk(—2%[—1,0]) = (k:)(l —az ) ,
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j
F"(u,v;By) = f(=vV1—u, vuv),

where By = {(z,y) € R?: 22 + 4> < 1, z <0, y > 0}. Then,

a5l = S5 (-i- 5 2) (1) (e aaiapro

(iii) For z € [—1,0], let 7(z) = —? and, for each fixed value of z, let 0, (y) =

—y?/V/1 — 22 Let ny =k, ¢1(x) = —v/1 — 22, and ¢o(x) = 0. Then,

~ 1 k\ 9 2 2\kJ
Pr,j(02(y); [¢1, ¢2]) = (1—$2)k< ,)y (1 —r =y ) ;

Pag(—2%[1,0]) = (Z) (1 — 2?)k g2k

~ 1 k 2 2\7  2k—2;j
Pr.j(0x(y); [¢1, d2]) = (1—$2)k<]> (1 - -y ) y,

F’T(U,U;Bg) =f <—m,—m),

where By = {(z,y) € R?: 22 +4*> < 1, z,y < 0}. Then,

@t 2= 337 (-5 ) () (ersamati,

k=0 j=0 n J

(iv) For = € [0,1], let 7(z) = z* and, for each fixed value of z, let o,(y) =

—y?/V/1—22 Let ny =n —k, ¢1(x) = —v/1 — 22, and ¢y(x) = 0. Then,

Pns(2510,1]) = (Z) i (L L

ﬁn—k,j(gac(y)é [¢1> ¢2]) = (1_;2)7]_16 (n ; k) (1 — y2)j y2n—2k—2j’

F(uw,0 1) = £ (v, —/0=w) (1= ).

where By = {(z,y) € R?: 22 + 4> < 1,z > 0, y < 0}. Then,

n n—k -
%Z[f(xvyL By = Z Z f(\/g, —1/1 — kJrj) (k,nj>$2k(1—$2—y2)j y2n—2k—2j'

k=0 j—=0 n
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Similar to (4.1), we can define a piece-wise Bernstein-type operator on

B? as follows:

%[f(x7y)a31]’ ($7y> eBlv
Yoz 21 ‘fnT[f(x,y),Bg], (Q?,y) S BQ;
an[f<x7y)7B } - %[f(x,y),Bg], (ﬂf,y) e Bg, (45>
(gg[f(x7y)7B4]a (ZE,y) € B4-

The proof of the following proposition is similar to that of Proposition 4.2.1.

Proposition 4.4.4. For any function f on B2, €,[f(z,y), B? is a continu-
ous function on B2.

4.5 Better order of approximation

In [8], Butzer studied a certain linear combination of univariate Bernstein
operators that, under certain conditions, give a better order of approximation
compared with the classical operators. For a bounded function f(z) defined

on [0, 1], Butzer considers the linear combination of Bernstein polynomials
LM () = o Boin f(x) + gy Bos—1,, f(2) + - -+ + g Buf (), k>0,
where the constants a; = a;(k) satisfy
o+ a1 +---+ag=1.
The polynomials £2¥ f(z) satisfy the recurrence relation

(2" — 1) f(z) = 2820 o) — 2R f (), o)

and, if f(?*) exists at a point 2 € [0, 1], then
g2t (2) — @) =0 (n7"), k>0

Using (4.6), we can obtain the following explicit expressions for the constants

k .
27 ,
1=0
1#]
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In [35], May considers a slightly more general operator
SHI[f(x);do,dy, ..., dp) = SH[f(x);d;] given by
k

SPlf(a)id] =3 H

] djnf(x)7
di (4.8)

j=0

SIS () dy) = Bdonf( );

where dp, dy,...,d) are positive integers. Notice that if d; = 27, then
SH[f(x);d;] = L£2¥ f(x). Moreover, if d; = j + 1, then S ~U[f(z); j + 1] is
a polynomial of degree 2*n. However, May proved that if f(QkH) exists,
then SE"~U[f(x),j + 1] converges to f(z) at a rate of n~2" and, hence,
S f(x),j + 1] and £2¥f(2) are polynomials of the same degree, but
SZ*[f(x),5 + 1] has a faster rate of convergence than €121 f(x). Observe
that for k = 1, we have S ~U[f(x); j + 1] = SM[f(z); 27].

Motivated by the construction in (4.8), we define the following bivariate

operators
N k k d. N
S yid) = 3 12— Bl (@), B
3=0 =0 % (4.9)
87[1,0} [f(xv y)’ dj] = %don[f<x)y)7 B2]7
and
N k k d. -
Rf][f(xay)adj] = Z H d—Jd ngjn[f(xvy>7B2]v
J=0 120 % (4.10)
RY[f(@,9);dj] = Cagnlf (2,),B?):

Although we do not study the approximation behavior of these operators
here, the numerical experiments in the following section suggest a better
rate of convergence than %, and %,,.

4.6 Numerical experiments

In this section, we present numerical experiments where we compare the
shifted Bernstein-Stancu operator @n on B2 and the shifted Bernstein-
type operator €, in (4.5). To do this, we consider different functions de-
fined on B?. For each function f(z,y), we compute @n[f(x,y),BQ] and
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Cnlf(z,y),B?. We use a set of points randomly distributed on the unit disk
(generated by mesh function in Mathematica®) to compare the function to
its approximations. For @n[f(x,y), B?], we use 630 points (z;,y;). We set
zi = f(x;,y:), 1 < i <630, and 2; equal to the value of @n[f(x, y), B?] at the
respective point (z;,%;), and compute the root mean square error (RMSE)

as follows:
— 830 (2 — %)2
RMSE(f, %,) = R
Similarly, for €,[f(z,y),B?], we use randomly distributed 1082 points
(z,y;). We set w; = f(x;,7;), 1 < j < 1082, and w; equal to the value
of €,[f(x,y), B? at the respective point (Z;,;), and compute the RMSE as
follows:

o 1082 (4. — qp; )2
RMSE(f,¢,) = L4
J; 1082

In each case, we plot the RSME for increasing values of n using Mathema-
tica®. For each operator, the set of points used to compute the RSME
consists of a fixed number of points. On the other hand, the number of
mesh points used to represent each operator depends on n. We represent
Gl f(7,y),B? on each quadrant using different colors as shown in Figure
4.3. We take n = 100, then the mesh required to obtain the operator for
each quadrant consists 20200 points. For @/n[f(x,y), B?], we take n = 200.
Then the mesh required to obtain the operator for all the unit disk consists
of 40401 points.

Figure 4.3: Left: Mesh for €,, with n = 15. Color code for disk quadrants
(B red; By green; Bs yellow; B, purple). Right: Mesh for %, with n = 15.
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We note that the operator %, requires two evaluations at the mesh points
on the common boundaries of two adjacent quadrants. Therefore, the oper-
ator ;%7,1 needs a smaller number of evaluations than the operator &, since,
for a fixed n, %, and €,, are composed of (n+1)% and 2 (n+1) (n+2) evalu-
ations, respectively. Additionally, we compute the RMSE for g,[}] [f(z,y),27]
and RI[f(z,y),27] using the same set of randomly distributed points as

before.

From definitions (4.9) and (4.10), we have

SWf(2,y); 2] = 2Baulf(x,y), B — Bu[f(2,y), B,
R f(2,), 2% = 2@2a[f(2,y), B — €, [f(z,y), BY.

For a fixed n, the mesh required to obtain %, (respectively, €5,) is
a refinement of the mesh required for B, (respectively, €,). Therefore,
R f(x,y),27] and SW[f(z,y),27] require (2n 4 1)% and 2 (2n + 1) (2n + 2)

evaluations, respectively.

Example 1

First, we consider the continuous function

f(z,y) = zsin(5x — 6y) +y, (x,y) € B

The graph of f(x,y) is shown in Figure 4.4, and the approximations
Clf(x,y), B and B,[f(z,y),B?] are shown in Figure 4.5. We list the
RSME of both approximations for different values of n in Table 4.1 and
plot them together in Figure 4.6, where the characteristic slow convergence
inherited from the univariate Bernstein operators is observed. Moreover,
the corresponding RSME are shown in Table 4.2 and Figure 4.7 for
SW[f(z,y), 2] and RIW[f(x,y),27], where a seemingly better approximation

behavior can be observed.
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Figure 4.4: Graph of f(z,y) = xsin(5z — 6y) + y on B2.

Figure 4.5: Approximations overlapped with the graph of f (x,y). Left:

Culf(z,y), B?. Right: B,[f(z,y),B?.

n an[f($ay)’B2] L@n[f(m,y),BQ]
10 0.191411 0.30623

20 0.117881 0.209091

30 0.0860663 0.16182

40 0.0682511 0.132416

50 0.0568288 0.112151

60 0.0488602 0.0972969
70 0.0429694 0.0859318
80 0.0384267 0.0769527

Table 4.1: RMSE for different values

of n.

RMSE
0.3 1

0.25 1

0.2

0.15 ¢

0.1+

0.05 ¢

10

n
20 30 40 50 60 70 80

Figure 4.6: Plot of RMSE in Table

4.1.



98 A class of Bernstein-type operators on the unit disk

— T ' RMSE

n | RO () 2] | SPIf(x,); 2] 014y e

10| 0.0592126 0.14241 012 bl

20| 0.0306588 0.0666483 01 e

30| 0.0217412 0.0389384 0.08 |

40| 0.0171251 0.0258265 205 .

50 | 0.014188 0.0185806 ‘

60| 0.0121117 0.0141754 o

70| 0.0105426 0.0112949 0.02 | I T

80 | 0.00929964 0.009302 o B 5 o "
Table 4.2: RMSE for different values Figure 4.7: Plot of RMSE in Table
of n. 49
Example 2

Now, we consider the continuous periodic function
g(z,y) =sin(10z +y), (v,y) € B

Its graph is shown in Figure 4.8. It can be observed in Figure 4.9 that
the approximation error for both operators is larger at the maximum and
minimum values of the function. Table 4.3 and Figure 4.10 contain further
evidence of this larger error. Moreover, in comparison with the previous ex-
ample, it seems that the rate convergence of €,[g(x,y), B? is significantly
faster than the rate of convergence of %,[g(z,y), B2. Table 4.4 and Figure
4.11 show the errors corresponding to RI[f(z,y), 2/] and SW[f(z,y),2]. In
comparison to @n and €, 7@1}1 and ‘§1[11] appear to have a better approxima-

tion behavior.

Figure 4.8: Graph of g(z,y) = sin(10z + y) on B2



A class of Bernstein-type operators on the unit disk 99

Figure 4.9: Approximations overlapped with the graph of g(z,y). Left:
Culg(z,y), B]. Right: Z,[g(z,y), B?].

— — RMSE
n %n[g(l',y)7B2] %n[g(xvy)aBQ] 0.7 ’ «Zulg(z, y), B
10| 0535344 0.700146 06 ° B oo o). B
20| 0.366915 0.613427 05 ° ° ’
30| 0.278477 0.526227 04 °
40| 0.225091 0.454904 0 : T
50 | 0.189454 0.398559 * .
60|  0.163967 0.353775 02 e .,
70| 0.144812 0.317628 01
80 0.129872 0.287968 10 20 30 40 50 60 70 80n
Table 4.3: RMSE for different values Figure 4.10: Plot of RMSE in Table
of n. 4.3.
. - RMSE
n | RU[g(z,y); 27] | SMg(x,y); 2] os] ° o RW[g(z,y); 2]
10| 0.231422 0.53511 . 5{;][§(§’§)j ]
20| 0.116893 0.300211 0.4 | —
30| 0.0799078 0.18369 03l i
40| 0.061706 0.122657 .
50 | 0.0506578 0.0873721 02} o
60 |  0.043083 0.0652876 o1l . °
70| 0.0374756 0.0505948 e o3 g
80| 0.0331074 0.0403428 o0 0 10 50 6 o o
Table 4.4: RMSE for different values Figure 4.11: Plot of RMSE in Table

of n. 4.4.
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Example 3

Here, we consider the continuous function
h(£7y) = 6x2—y2 - 2y, (1‘, y) € Bza

(see Figure 4.12). Both approximations are shown in Figure 4.13, and their
respective RSME are listed in Table 4.5 and plotted in Figure 4.14. Ob-
serve that, in this case, the RSME for both approximations are significantly
smaller than in the previous examples. Moreover, based on Figure 4.14, it
seems that for sufficiently large values of n, the rate of convergence of both
approximations is considerably similar to each other. Table 4.6 and Figure

4.15 also show similar approximation behavior between SW[f(z,y),2’] and
RUf(x,y),27).

Figure 4.12: Graph of h(z,y) = ¥ — zy.

Figure 4.13: Approximations overlapped with the graph of h(z,y). Left:
Cnlh(x,y), BY. Right: %,[h(z,y),B?].
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n | Gulh(z,y), B | Za[h(z,y), B
10 0.0505862 0.140837
20 0.0293585 0.0685387
30 0.0213945 0.0455634
40 0.017105 0.0342737
50 0.0143844 0.0275514
60 0.0124871 0.0230843
70 0.0110789 0.0198962
80 0.00998647 0.0175041
Table 4.5: RMSE for different values
of n.
n | RUA(z,y); 2] | SV [h(x, y); 2]
10 0.015677 0.0188267
20 0.00931191 0.0087729
30 0.0068375 0.00610222
40 0.00545586 0.00479186
50 0.00455264 0.00399096
60 0.00390752 0.00343958
70 0.00341937 0.0030301
80 0.00303472 0.00270966

Table 4.6: RMSE for different values
of n.

RMSE
0.14

0.12

0.1
0.08
0.06
0.04
0.02

0]

e}
e}
° e}
L] ° °

© o
L4 .

10 20 30 40

Figure 4.14: Plot of RSME in Table

4.5.
RMSE
0.018 |
0.015 f
0.012 f
0.009 f
0.006

0.003 |

n
50 60 70 80

e}

y °§m{h(r~,y); 2]

oe

°
o
[
o °
° 8

g s

Figure 4.15: Plot of RMSE in Table

4.6.

‘ ‘ ‘ ‘ — : - n
10 20 30 40 50 60 70 80

Example 4
In this numerical example, we are interested in observing the behavior of
Bernstein-type and Bernstein-Stancu operators at jump discontinuities.
Let us consider the following discontinuous function:
1, if a? +y2 < 0.5,
if 0.5 <a?+y?
if 0.8<z?+y

n(x,y) =10,

0.8,
0.5, 1.

<
2 <

The graph of n(z,y) is shown in Figure 4.16 and the approximations are

shown in Figure 4.13. It is interesting to observe the behavior of the
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approximations at the points of jump discontinuities and, thus, we have
included Figure 4.18, where we show a cross sectional view of the approxi-
mations with increasing values of n. As in the univariate case, it seems
that the Gibbs phenomenon does not occur. Finally, Table 4.7 and Figure
4.19 expose a significantly slow convergence rate for this discontinuous
function in comparison with the previous continuous examples. As can
be seen in Table 4.8 and Figure 4.20, it seems that a better approxima-
tion can be obtained with the operators SU[f(z,y), 2/] and RIV[f(z,y),27] .

y

Figure 4.16: Graph of n(x,y).

Figure 4.17: Approximations overlapped with the graph of n(z,y). Left:
@uln(z,y),B%. Right: %,[n(x,y), B.
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Figure 4.18: Cross sectional view of the approximations for increasing values
of n. Left: €,[n(z,y),B?]. Right: B,[n(z,y), B?].

n | Culn(z,y),B? | Buln(z,y), B
10 0.216588 0.270366
20 0.175754 0.243468
30 0.156563 0.223305
40 0.144805 0.210916
50 0.136559 0.205949
60 0.130305 0.192988
70 0.125319 0.193887
80 0.121205 0.187675
Table 4.7: RMSE for different values
of n.
n | RV [n(z,y);27] | SMn(x, y); 27]
10 0.173582 0.203794
20 0.132669 0.149787
30 0.121201 0.140103
40 0.108429 0.122498
50 0.102915 0.120874
60 0.0959724 0.111816
70 0.0923721 0.111529
80 0.0878217 0.105521

Table 4.8: RMSE for different values

of n.

n
10 20 30 40 50 60 70 80

Figure 4.19: Plot of RSME in Table

4.7.

RMSE

0.1

n
10 20 30 40 50 60 70 80

Figure 4.20: Plot of RMSE in Table

4.8.






Future work

Finally, we present several open problems that we intend to address in future
research. We have listed these problems and provided a brief description of

each.

P1 In Chapter 2, the inner product

(.95, = FO)9(0) + X [ V(@) Vg(x) (1 = [lal|*) da,

is explored, under the restrictions ¢ > 1 and pu = 0. Seve-
ral results are obtained, but a question that arises is whether

similar results can be obtained in the case where 0 < p < 1.

P2 In Chapter 2, is it possible to establish an estimate for || f — Sy f|,.
or perhaps |[f — ST 1?

P3 The following inner products may be considered.

(.90 = FO)9(0) + [ AL = [lo])f ()] ALL — [lal)g(a)] da.

and

o =A L, F€)9(€) do(©)

+/ (L= [l=*) f (@] AL = 2]*)g(@)](1 — [l2]*)* dz.
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P4

P5

P6

P7

The preservation of the form of the bases with respect to these inner
products compared to the Sobolev bases being analyzed is a natural
question. Additionally, exploring the possibility of obtaining similar

error bounds as those previously studied is worthwhile.

In Chapter 4, Bernstein operators that are introduced in (4.9) and
(4.10) seem to provide a better order of approximation, but a formal

proof of this claim is necessary.

The Bernstein-Jacobi operators is defined as ([41]),

n

Blad 5 (f,Pnk)(a,8) ().
" 2_: (1, Dn ) (@, )p’k(x)

Can this operator be extended to some inner product on the ball?

Study the approximations through numerical experiments using data

collected from optical measurement devices.

The concept of a coherent pair was initially introduced by Iserles et al.
([23]), there are several generalizations of this concept, so it may be
interesting to investigate whether coherent pairs exist with respect to

the Sobolev inner products under study.
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Appendix

Mathematica® Codes

In this Section, we provide the Mathematica® codes used to generate the
plots and calculate the errors presented earlier. These codes cover various
aspects, such as Fourier series computation, polar mesh discretization, and
numerical integration. The codes are presented in a clear and concise manner,
with comments and explanations where necessary, to allow readers to easily
understand and modify them for their own purposes. These codes have been

made by using Mathematica® version 12.

A.1 Code used in Chapter 2

A.1.1 Code for >0

In[1]:= Clear[n]

In[2]:= m=5;

In[3]:= \[Mu]=1.5;

Function, g is the same as f used to evaluate the polar mesh.
Inf[4]:= f{[x_,v_]:=x*Sin[5x—6y]+y

¢ (x Ji= £ [x [[1]] % Cos [x [[2]]] ,x [[1]]* Sin [x [[2]]]]

Graph of the function over the unit disk.

In[6]:= PReal=Plot3D[f[x,yv],{x,—1,1},{v,—1,1},AxesStyle—>Thick,

PlotRange—> All,RegionFunction—>Function [{x,y,z},x 24y "2<=
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1] ,Boxed—>False , AxesStyle—>Thick, AxesOrigin—>{0,0,0},
AxesLabel—>{x,yv,z},PlotStyle—>Directive [Opacity [0.4] , Blue,
Specularity [Black ,30]], Ticks— None]

Basis L2(W).

In[8]:= expn[j_,n_ ]:=1f[n==2j,0,1];

In[9]:= Pl[r_,\[Theta]_,n_,\[Mu]_,j-]:=Piecewise [{{r " (n—2j)=*
JacobiP [j,\ [Mu] ,n1—2j,21"2—1]*(Sqrt[2" (expn[]j,n])])*Cos[(n—2])
x\[Theta]] ,n!=2j},{JacobiP [j,\[Mu],0,2r"2—1],n==2j } }]

In[10]:= P2[r_,\[Theta] ,n_,\[Mu]_,j_ ]:=r"(n=2j)*JacobiP [j,\[Mu
],0—2j,2r"2—1]*(Sqrt[2" (expn[j,n])])*Sin[(n—2]) *\[Theta]]

Norm

In[11]:= h[j-,n_,\[Mu]_]:=Pochhammer [\ [Mu]+1,]]*Pochhammer |1 ,n—j
] (n—j+\[Mu]+1) /(j!'* Pochhammer [\ [Mu]4+2,n—j | * (n4+\[Mu]+1))

In[12]:= hs[j_,n_,\[Mu] ]:=(Pi/(\[Mu]))=*(4j(n—j+\[Mu])+2(n—2j)
w\ [Mu])*h[j,n,\[Mu]—1]

Fourier coefficient L2(W)

The integral is numerically computed in polar coordinates.

In[13]:= Si[n_,j ,\[Mu] J:=(14+\[Mu])/(Pixh[j,n,\[Mu]])*Chop |
NIntegrate [f[r*Cos[\[Theta]],r*Sin[\[Theta]]]*r*(1—r"2) "\ [Mu
]*P1[r,\[Theta] ,n,\[Mu],j],{r,0,1},{\[Theta],0,2%«Pi}, Method—>
"LocalAdaptive” ,AccuracyGoal —>8],10" —8];

The Fourier coefficients are stored in a matrix initially filled

with zeros.

In[14]:= Coefl=Table[0,{j,0,m},{i,0,m/2}];

Calculation of the coefficients (first part)

In[15]:= For[i=0,i<=m, i=i4+1,For[j=0,j<= 1/2,j=j+1,Coell [[141,]
+1]]=51[i,),\[Mu]]]]// Timing

Out[15]= {5.9375,Null}

In[16]:= MatrixForm [ Coefl ]

In[17]:= S2[n_,j_,\[Mu] _J:=(14+\[Mu]) /(Pixh[j,n,\[Mu]])*Chop|
NIntegrate [ [r*Cos[\[Theta]],r=Sin[\[Theta]]]* rx(1—1r"2) "\ [Mu
]*P2[r ,\[Theta] ,n,\[Mu],j],{r,0,1},{\[Theta],0,2%xPi} , Method—>
"LocalAdaptive” ,AccuracyGoal —>8],10%" —8];

In[18]:= Cocf2=Table[0,{j,0,m},{i,0,m/2}];

Calculation of the coefficients (second part)

In[19]:= For[i=0,i<=m, i=i+1,For[j=0,j<i/2,j=j+1,Coef2 [[i+1,]
#1]]=82[1,] ,\[Mu]]]]// Timing

Out[19]= {5.875,Null}

In[20]:= MatrixForm [ Coef2]
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Discretization of mesh to calculate errors.

In[21]:= xx={};

For[jj=0,jj<2«Pi, jj=jj+1.0«sPi/36,For[ii=0,ii <1,ii=1140.05;xx=
Join [, {11, 77 1115

In[23]:= Length[xx];

In[24]:= zzReal=g/Qxx;

Fourier series (double summation with coefficients multiplying
the basis elements)

In[25]:= Sx[r_]:=Sum|[Sum|[Coefl [[n+1,j+1]]*P1[r[[1]],r[[2]],n,\]
Mul,jl.{j,0,n/2}],{n,0,m}]+Sum[Sum|[Coef2 [[n4+1,]+1]]*P2[r
(1217, 1210 m N [Mu] 51545 ,0,0/2}] 4 {n,0,,m}]

Evaluation of the series on the polar mesh

In[26]:= aa={[0,0] —Limit [Sx[{x,v}],{x—>0,y—=> 0}];

In[27]:= 72z1=Sx/0xx;

In[28]:= bbl=zzl;

In[29]:= For[i=1,i<=Length[zz1],i4++,bbl[[i]]=Join[{xx[[i,1]]* Cos
P [11,20] o [11, 1] Sim D [[1,2]11F {221 (1111 }]

In[30]:= Imagl=ListPlot3D [bbl,InterpolationOrder —>8 PlotRange—>

All , PlotStyle—>Red, Boxed—>False , AxesStyle—>Thick,
RegionFunction—=>Function [{x,yv,z},x 24y "2<= 1], AxesOrigin
—>{0,0,0},Ticks—> None, AxesLabel—>{x,y,z }];

Plotting of the function with the series

In[31]:= Show|[Imagl, PReal]

Out[31]=

Sobolev Basis

n[32]:= QI[r_,\[Theta] ,n_,\[Mu]_,j_]:=P1[r,\[Theta],n,\[Mu]—-1,
j]=P1[0,0 ,n,\[Mu]—1,]];

In[33]:= Q2[r_,\[Theta] ,n_,\[Mu]_,j_]:=P2[r,\[Theta] ,n,\[Mu]—-1,
iNE

Fourier coefficient L2(\[Del],W)

In[34]:= Si1[n_,j ,\[Mu] ]:=(\[Mu]) /(Pixh[]j,n,\[Mu] —1])=*Chop [
NIntegrate [f[r*Cos[\[Theta]],r*Sin[\[Theta]]]*r*x(1—r"2) " (\[Mu
]—1)«P1[r ,\[Theta] ,n,\[Mu]—1,j],{r,0,1} ,{\[Theta],0,2xPi},
Method—>" LocalAdaptive” ;AccuracyGoal —>8],10%" —8];

In[35]:= Coefll=Table[0,{j,0,m},{1,0,m/2}];

In[36]:= For[i=1,i<=m,i=i+1,For[j=0,j<=1/2,j=j+1,Coefll [[i+1,]
+1]]=S11[i,j,\[Mu]]]]// Timing

Out[36]= {7.67188,Null}

In[37]:= MatrixForm [ Coefl1]
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In[38]:= S22[n_,j_,\[Mu]_]:=(\[Mu]) /(Pi*h[j,n,\[Mu] —1])*Chop|
NIntegrate [f[r*Cos[\[Theta]],r*Sin [\[Theta]]]*r*(1—1r"2) " (\[Mu
|—1)«P2[r ,\[Theta] ,n,\[Mu]—1,j],{r,0,1},{\[Theta],0,2xPi},
Method—>" LocalAdaptive” ; AccuracyGoal —>8],10%" —8];

In[39]:= Coef22=Table[0,{j,0,m},{i,0,m/2}];

In[40]:= For[i=1,i<=m,i=i+1,For[j=0,j<i/2,j=j+1,Coef22[[i41,]
+1]]=5221[1,j,\[Mu]]]]// Timing

Out[40]= {6.59375,Null}

In[41]:= MatrixForm [ Coef22]

In[42]:= Sxx[r_]:=1{[0,0]4+Sum|[Sum|[Coefll [[n+1,j4+1]]*«QI[r[[1]],r
[[2]] ,0,\[Mu],j],{j,0,n/2}],{n,1 m}]+Sum[Sum[Coef22 [[n+1,]
FQ20r [[1]] 0 [[2]] o\ [V 531240 50,0/23] (0,1 ,m)]

n[43]:= z22=Sxx/0xx;
In[44]:: bb2=222;
In[45]:= For[i=1,i<=Length[zz2],i++,bb2[[1]]=Join[{xx[[i,1]]* Cos

Lo [T 28] ] e [ ] Sin o [T, 2]0] ), {222 [[1]] 3105

In[46]:= Tumgz ListPlot3D [bb2, InterpolatlonOrder —>8,PlotRange—>
All ,PlotStyle—>Red, Boxed—>False , AxesStyle—>Thick,
RegionFunction—>Function [{x,y,z},x 24y "2<= 1], AxesOrigin
—>{0,0,0},Ticks—> None, AxesLabel—>{x,y,z }];

In[47]:= Show[Imag2,PReal]

Out[47]=

Errors

In[48]:= aa=f{[0,0] —Limit [Sxx[{x,v}],{x—>0,y—=> 0}];
In[49]:= aaa=[{[0,0] —Limit [Sx[{x,v}],{x—>0,y—=> 0}];
In[50]:= Errorl=(zzl—zzReal) " 2;

In[51]:= Error2=(zz2—zzReal) " 2;

In[52]:= Errorl=Join[Errorl {aaa”"2}];

In[53]:= Error2=Join[Error2 {aa”2}];

Comparison of errors

In[54]:= Sqrt[Total [( Errorl)/(Length[Errorl]) 1]]
Out[54]= 0.292973

In[55]:= Sqrt[Total [( Error2)/(Length[Error2]) ]]
Out[55]= 0.291705
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A.1.2 Code for ;=0

n[l]:= Clear[n]

In[ ]:= =5
Out[2]= 5
n[3]:

= \[Lambda]=1;

bunclon, g es la misma f usada para evaluar el mallado en
polares

In[4]:=

f[x_,yv_]:=xxSin [5x—6y]+

glx-Ji=1[x[[1]]* Cos[x [[2]]] ;x [[1]]*Sin[x[[2]]]]

In[6]:=

Grafico de la funcion sobre el circulo unidad

In[7]:= PReal=Plot3D[f[x,y],{x,—1,1},{y,—1,1},AxesStyle—Thick,
PlotRange—> All ,R,(,g,lonFllll(,tl()ll*>F11HCtiOIl [{x,v,z},x" 24y "2<=
1] ,Boxed—>False , AxesStyle—>Thick, AxesOrigin—>{0,0,0},
AxesLabel—>{x,y,z},PlotStyle—>Directive [Opacity [0.4] , Blue,
Specularity [Black ,30]], Ticks—> None]

Out[7]=

Exponente para generar el 2 y 1 que multiplica en el 2.3.6

In[8]:= expnl[j_ ,n_]:=1f[n==2j,0,1];

Base L2(W).

In[9]:= Pl[r_,\[Theta] ,n_,\[Mu]_,j J:=r"(n—=2j)*JacobiP [j,\[Mu],
n—2j,2r"2—=1]*(Sqrt[2" (expn[]j,n])])*Cos[(n—2))*\[Theta]]

In[10]:= Pll[r_,\[Theta]_,n_,j_-]:i=(1—1r"2)*r " (n—-2j)*JacobiP [j
—1,1,0—2j,21"2—1]*(Sqrt[2" (expn[],n])])*Cos[(n—2])*\[Theta]]

In[11]:= P2[r_ ,\[Th(‘ta],,n,,\[l\[u],,],] =1"(n—2j)*JacobiP [j,\[Mu
],0—2j,2r"2—=1]%(Sqrt[2" (expn[]j,n])])*Sin[(n—2])«\[Theta]]

Inf[12]:= P22[r_,\[Theta] ,n_,j J:i=(1—r"2)*r " (n—2j)*JacobiP [
—1,1,0—2j,21"2—1]*(Sqrt[2" (expn[],n])])*Sin [(n—2])*\[Theta]]

n[13]:= P3[r_,n_]l:=4/(n)=*(JacobiP [n/2,—1,0,21r"2—1]—(—1) "(n/2)*
Pochhammer[1,n/2]/(n/2)!)

Base esfericos armonicos

In[14]:= Y1[r_,\[Theta]_,n_,j_]:=1r"(n=2])*(Sqrt[2" (expn[j,n])])

Cos [(n—2j ) *\[Theta]]
= Y2[r_,\[Theta] ,n_,j J:=r"(n—=2j)*(Sqrt[2" (expn[j,n])])=*

Sin [(n—2j ) *\[Theta]]

In[16]:=

Coeficiente de Fourier L2(W,0)

La integral se realiza de forma numerica en coordenadas polares
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In[17]:= CO1[n_]:=1/(2Pi)*Chop|[NIntegrate [{[Cos[\[Theta]],Sin[\]
Theta]]]* Sqrt [2]* Cos[n=*\[Theta]],{\[Theta],0,2Pi},Method—"
LocalAdaptive” ;AccuracyGoal —>8],10" —8];

In[18]:= C02[n_]:=1/(2Pi)*Chop[NIntegrate [{[Cos[\[Theta]],Sin[\]
Theta]]]* Sqrt [2]* Sin [n*\[Theta]] ,{\[Theta],0,2Pi},Method—>"
LocalAdaptive” ;AccuracyGoal —>8],10" —8];

In[19]:= Cll[n_,j_]:=Chop[n/j*(2*x(n—j)/(2Pi)xNIntegrate [ [r*Cos
[\[Theta]],r*Sin [\ [Theta]]]*r*P1[r,\[Theta] ,n—2,1,j—1],{r
,0,1} ,{\[Theta],0,2%Pi} , Method—>" LocalAdaptive” ;AccuracyGoal
—>8]—1/(2Pi)*NIntegrate [ [Cos[\[Theta]],Sin [\[Theta]]]*Y1
[1,\[Theta],n,j],{\[Theta],0,2Pi},Method—"LocalAdaptive”,
AccuracyGoal —>8]),10" —38];

In[20]:= C12[n_,j_]:=Chop[n/j*(2%(n—j)/(2Pi)*NIntegrate [ [r*Cos
[\[Theta]] ,r*Sin [\[Theta]]]*r«P2[r ,\[Theta] ,n—2,1,j—1],{r
,0,1} ,{\[Theta],0,2%«Pi} , Method—" LocalAdaptive” ;AccuracyGoal
—>8]—1/(2Pi)*NIntegrate [{ [Cos [\ [Theta]], Sin [\ [Theta]]]*Y2
[1,\[Theta],n,j],{\[Theta],0,2Pi},Method—" LocalAdaptive”
AccuracyGoal —>8]),10" —8];

In[24]:= C21[n_,j ]:=Chop[n/(4Pi)*(NIntegrate [ [Cos[\[Theta]],
Sin [\[Theta]]],{\[Theta],0,2Pi},Method—" LocalAdaptive”,
AccuracyGoal—>8—n*NIntegrate [ [ [r*Cos[\[Theta]],r=Sin [\[ Theta
J11*r*P1{r ,\[Theta] ,n—2,1,n/2—1],{r,0,1},{\[Theta],0,2«Pi},
Method—" LocalAdaptive” ,AccuracyGoal —>8]),10" —8];

In[25]:=

Los coeficientes se guardan en una matriz inicialmente de Ceros

In[26]:= Coefll=Table[0,{j,0,m},{1,0,m/2}];

In[27]:= Coefl2=Table[0,{j,0,m},{i,0,m/2}];

In[28]:= Coefl3={};

Elementos cuando j=0

In[29]:= For[i=1,i<=m,i=i+1,Coefll[[i+1,1]]=C01[i]]

In[30]:= For[i=1,i<=m,i=i+1,Coefl2[[i+1,1]]=C02[i]]

In[31]:= MatrixForm [ Coefl1]

MatrixForm [ Coef12]

Elementos I<= j<= (n—1)/2

In[33]:= kk=0;

In[34]:= For[i=1,i<=m,i=i+1,For[j=1,j<=i/2,j=j+1,1f [j==i/2,(
Coefl3=Join [Coefl3 ,{C21[i,j]}]; kk=kk+1),Coefll [[i4+1,]j4+1]]=C11
e
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In[35]:= MatrixForm[Coefll]

In[37]:= For[i=1,i<=m,i=i+1,For[j=1,j<i/2,j=j+1,Coefl2[[i+4+1,]
+1]=C12[1,j]1];

In[39]:= MatrixForm [ Coefl12]

Discretizacion para calcular los errores

In[40]:= xx={};

For[jj=0,jj <2«Pi, jj=jj +1.0«Pi/36,For|ii=0,ii <1,ii=ii +0.05;xx=
Join [, {431, 17 115

In[42]:= Length [xx]

Out[42]= 1440

In[43]:= zzReal=g/Qxx;

Serie
In[44]'— xx[r_]:=1[0,0]+Sum|[Coefll [[n+1,1]]*r [[1]] nxSqrt[2]=
os [nx* [[2]]] {n,1 ,m}]4+Sum|[Coefl2 [[n+1,1]]*r [[1]] " n*xSqrt[2]=
Sln[l [[2]]] {n,1 ,m}+Sum[Sum[ Coefll [[n+1,j+1]]*P11[r[[1]],1
[12]],n,i1,{i,1,n/2}],{n,1 ,m}+Sum|[Sum|[ Coefl2 [[n+1,]j+1]]*xP22]
1[[1]] r[[2]) ,0,0],{i,1,n/2}],{n,1 ,m}]+Sum[Coefl3[[1,nn]]*P3]
r[[1]],2*nn],{on,1 ,kk}];

In[45]:= MatrixForm [ Coefl13]
Out[45]//MatrixForm= (0.156581
0.32778

In[46]:= 72z2=Sxx/0xx;

In[47]:= bb2=z22;

In[48]:= For[i=1,i<=Length[z22],i4++,bb2[[i]]=Join[{xx[[i,1]]* Cos

P [1,200] e [, 111 Sim Do (11,2011} 5222 [[111 1115

In[49]:= Tnmnz ListPlot3D [bb2, InterpolatlonOrder —>8,PlotRange—>
All , PlotStyle—>Red, Boxed—>False , AxesStyle—>Thick,
RegionFunction—>Function [{x,yv,z},x 24y "2<= 1], AxesOrigin
—>{0,0,0},Ticks—> None, AxesLabel—>{x,y,z }];

n[50]:= Show[Imag2,PReal]

Out[50]=

In[51]:= TImag?2

Out[51]=

n[52]:= aa=f[0,0] —Limit [Sxx[{x,v}],{x—>0,y— 0}];
n[53]:=

Errores
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In[54]:= Error2=(zz2—zzReal) " 2;

In[55]:= Error2=Join[Error2 {aa"2}];

Errores

In[56]:= Sqrt[Total [(Error2)/(Length[Error2]) ]]
Out[56]= 0.290001
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A.2 Code used in Chapter 3

In[1421]:= Clear [n]

In[1422]:= m=5;

Funcion, g es la misma f usada para evaluar el mallado en
polares

In[1423]:= f1[x_ ,yv ]:=0.75%«Exp[—1/4%(9x—2)"2—1/4%(9y—2)"2]+0.75%
Exp[—1/49%(9x+1)"2-1/10%(9x+1)]+0.5xExp[—1/4%(9x—7)"2—-1/4%(9y
—3)"2] —0.2+«Exp[—(9x—4)"2—(9y—7) " 2]

2 [x vy ]i=x*xExp[—x"2—y " 2]

(3 [x_, v ]:=Cos|[x+y]*Exp[x*y]

ey =03 10e41) /2, (v+1) /2]

Flx sy 1= 3 [(x41) /2, (v+1) /2]

oy L= 11 [(x41) /2, (v+1) /2]

[L,.\ J:=1f2[2x,2y]

gl Ji= 1 [[1]]* Cos[x [[2]]] ,x [[1]]*Sin [x [[2]]]]
In[1431]:=

Grafico de la funcion sobre el circulo unidad

n[1432):= PReal=Plot3D [{[x,v],{x,—1,1},{yv,—1,1},AxesStyle—>
Thick ,PlotRange—> All, R(glonP unction—=>Function [{x,y,z},x 24y
"2<= 1],Boxed—>False, AxesStyle—>Thick, AxesOrigin—>{0,0,0},
AxesLabel—>{x,v,z},PlotStyle—>Directive [Opacity [0.4] , Blue,
Specularity [Black ,30]], Ticks—> None]

Out[1432]=
n[1433):= expn[j_,n_|:=1If [n==2],0,1];
Norma
n[1434):= hj[j-,a_,b_]:=2"(a+b+1)*Gamma| j+a+1]*Gamma[ j+b+1]/((2
j4at+b4+1)*j I«Gammal j+a+b+1])

In[1435]:= H[j_ ,n_]:=]"2%(j+1)"2%hj[j,0,n—2j]/(2" (n—2j41))

Base Laplaciano

In[1436]:= Yl[l,,\[T‘heta],,1’1,,,]',]::(Sqrt[2A(expn[j,11])])*1"“(1172j
Y*Cos [(n—2] ) *\[Theta]]
In[1437]:= Y [1,,\[Th(tm],,11,,,],]::(Sqrt[2A((‘xp11['j,11])])*1”(11—2,1

= Y2
)*Sin [(n—2j ) *\[Theta]]
In[1438]:= Ql[r_,\[Theta] ,n_,j_|:
"2—1)xYI1[r,\[Theta] ,n,j]
In[1439]:= Q2[r_,\[Theta] ,n_,j J:=(1—r"2)xJacobiP[j—1,2,n—2],2r

(1—r"2)*JacobiP [j—1,2,n1—2j ,2r
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"2—1]*Y2[r ,\[Theta] ,n,j]

Coeficientes de Fourier : La integral se realiza de forma
numerica en coordenadas polares

In[1440]:= COl[n_]:=Chop[1/(2Pi)*NIntegrate [{[Cos[\[Theta]], Sin
[\[Theta]]]*Y1[1,\[Theta],n,0],{\[Theta],0,2Pi},Method—>"
LocalAdaptive” ;AccuracyGoal —>8],10" —8];

In[1441]:= CO02[n_]:=Chop[1/(2Pi)*NIntegrate[{[Cos[\][Theta]],Sin
[\[Theta]]]*Y2[1,\[Theta],n,0],{\[Theta],0,2Pi}, Method—"
LocalAdaptive” ;AccuracyGoal —>8],10" —38];

In[1442]:= Cll[n_,j_]:=Chop[2) (j+1)/(2PixH[j,n])*(—1/2%
NIntegrate [f[Cos[\[Theta]],Sin[\[Theta]]]*Y1[1,\[Theta] ,n,]

], {\[Theta],0,2Pi},Method—" LocalAdaptive” ;AccuracyGoal —>8]+(
n—j)x(n—j+1)«NIntegrate [ { [r*xCos [\ [ Theta]],r*Sin [\[ Theta]]]* rx
Ql[r,\[Theta] ,n,j],{r,0,1},{\[Theta],0,2%xPi}, Method—"
LocalAdaptive” ;AccuracyGoal —>8]) ,10" —8];

In[1443]:= Cl12[n_,j_]:=Chop[2] (J+1)/(2Pi*H[],n])*(—1/2x
NIntegrate [ [Cos[\[Theta]],Sin[\[Theta]]]*Y2[1,\[Theta] ,n,]
],{\[Theta],0,2Pi},Method—>"LocalAdaptive” ,AccuracyGoal —>8]+(
n—j)*(n—j+1)xNIntegrate [ [r*Cos [\ [ Theta]] ,r*Sin [\[ Theta]]]=* rx*
Q2[r ,\[Theta],n,j],{r,0,1},{\[Theta],0,2%xPi}, Method—"
LocalAdaptive” ;AccuracyGoal —>8]) ,10" —8];

In[1444]:=

Los coeficientes se guardan en una matriz inicialmente de Ceros

In[1445]:= Coefll=Table[0,{],0 ,m},{i,0,m/2}];

In[1446]:= Coefl2=Table[0,{],0,m},{i,0,m/2}];

Elementos cuando j=0

In[1447]:= For[i=0,i<=m, i=i+1,Coefll [[141,1]]=C01[i]]

In[1448]:= For[i=0,i<=m, i=i+1,Coefl2 [[14+1,1]]=C02[1i]]

In[1449]:= MatrixForm [ Coefl1];

MatrixForm [ Coef12 ];

Elementos 1I<= j<= (n—1)/2

In[1451]:= For[i=0,i<=m, i=i+1,For[j=1,j<=i/2,j=j+1,Coefll [[i41,]
+1]]=C1i[i, 5115

In[1452]:= MatrixForm|[Coefl1];

In[1453]:= For[i=0,i<=m, i=i+1,For[j=1,j<i/2,j=j+1,Coefl2[[i41,]
+=C12(i, i 11];

In[1454]:= MatrixForm [ Coefl12];

Discretizacion para calcular los errores

In[1455]:= xx={};

For[jj=0,jj <2xPi, jj=jj+1.0xPi/36 ,For[ii=0,ii <1,ii=ii40.05;xx=
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Join [, {1117 Y1111

In[1457]:= Length[xx];

zzReal = g /@ xx;

Serie

In[1458]:= Sxx[r_]:=Sum|[Coefll [[n+1,1]]*YI[r[[1]],r[[2]],n,0],{n
,0 ,m}]+Sum | Coef12 [[n+1,1])]*Y2[r[[1]],r[[2]],n,0],{n,0, ,m}]4+Sum
[Sum|[Coefll [[n+1,j+1]]*QI[r[[1]],r[[2]],n,]],{j,1,n/2}],{n,0,
mp]+Sum [Sum|[ Coefl2 [[n+1,]+1]]*Q2[r [[1]],r[[2]] ,n,j].{]j,1,n
/2}],{n,0,m}];

In[1459]:= 72z2=Sxx/0Qxx;

In[1460]:= bb2=rz2;

In[1461]:= For[i=1,i<=Length[zz2],i4++bb2[[i]]=Join [{xx[[1,1]]*
Cos [ [[1,2]]] o [[1,1]] % Sin [ [[1,2]1]} {22 [[1 1] 1]

In[1462]:= Imag2=ListPlot3D [bb2, InterpolationOrder —>8 PlotRange
— All,PlotStyle—Red, Boxed—>False , AxesStyle—>Thick,
RegionFunction—>Function [{x,y,z},x 24y "2<= 1], AxesOrigin
—>{0,0,0},Ticks—> None, AxesLabel—>{x,y,z }];

In[1463]:= Show|[Ilmag?2,PReal]

Out[1463]=

In[1464]:= Tmag?2

Out [1464]=

Errores

In[1465]:= aa=[([0,0] —Limit [Sxx[{x,y}],{x—>0,y—> 0}];

In[1466]:= Error=(zz2—zzReal) " 2;

In[1467]:= Error=Join[Error,{aa ~2}];

Errores

In[1468]:= Sqrt[Total [( Error)/(Length[Error]) ]]

Out[1468]= 0.542849
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A.3 Code used in Chapter 4

A.3.1 Code for errors of 7, [f, B and %,|f, B

In[1]:= m=30

Out[1]= 30

Definicion de las funciones

In[2]):= f[x_,y_ ]:=x*Sin[5x—6y]+y;
glxJi=x[[1]]*Sin[5xx[[1]] —=6xx[[2]]]+x [[2]]

In[4]:= Binoml[n_,k_ ,j ]:=Binomial[n,k]*Binomial [n—k,j]*({[Sqrt|
k/n],Sqrt[j/n]]);

Binom2[n_,k_,j_]:=Binomial [n,k]*Binomial [n—k, j]|*( f[—Sqrt[k/n],
Sart [j/n]])

Binom3[n_,k_,j_ ]:=Binomial [n,k]*Binomial [n—k, j]*( f[—Sqrt[k/n],—
Sqrt[j/n]])

Binom4 [n_,k_,j-
Sart [j/n]]);

Binomdisce [n_,m_,k_,j ]:=2"(—mrn)*Binomial [n,k]* Binomial [m, j]* 2
k/n—1,(2 Sqrt[—((k (k—=m))/1)] (2 j=m))/(m*n)];

Mallado

In[9]:= xxI=MeshCoordinates[DiscretizeRegion [Disk
[1,{{0,1},{0,1}}]];

xx2=MeshCoordinates [ DiscretizeRegion [Disk[] ,{{—1,0},{0,1}}]];

xx3=MeshCoordinates [ DiscretizeRegion [Disk|[],{{—1,0},{—1,0}}]];

xxd=MeshCoordinates [ DiscretizeRegion [Disk[],{{0,1},{—1,0}}]];

In[13]:= xx=Join [xx],xx2 xx3 6 xx4];

In[14]:= xxx1={};

For|[jj=Pi/36,jj<Pi, jj=jj+Pi/36,For[ii=0.1,ii <1,ii=ii +0.1;xxx1=
Join [xxx1 ,{{ii*Cos[jj],1i*xSin[]]j]}}]]];

xxx2={};

For[jj=PitPi/36,]j <2+Pi, jj=jj+Pi/36,For[ii =0.1,ii <1,ii=ii +0.1;
xxx2=Join [xxx2,{{1i*Cos[jj],11*Sin[jj]}}]]];

)

)

]:=Binomial [n,k]*Binomial [n—k, j]*(f[Sqrt[k/n],—

In[18]:= xxx=Join [xxxl 6 xxx2];
In[19]:= zzReall=g/Qxx;
zzReal2=g/Qxxx;

Operador on disk cuadrants
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In[21]:= BSTI[x_]:=Sum[Sum|[Binoml [n,k,j]*x[[1]]"(2k)*x[[2]]"(2])
*(1—x[[1]]"2—x[[2]]"2) "(n—k—]),{j,1,n—k—=1}]+Binoml[n,k,0]x
[[1]] 7 (2k)*(1—x[[1]]"2—x[[2]]"2) " (n—k)+Binoml [n,k,n—k]*xx
[[1]]"(2k)*x[[2]] (2% (n—k)),{k,l,n—=1}]4+Sum[Binoml[n,0,]]*x
[[2]]°(2))*(1—x][[1]]"2—x[][2]]"2) "(vn—]),{j,1,n—1}]+Binoml [n
,0,0]%(1—x[[1]]"2 —x[[2]]"2) "n+4Binoml [n,0,n]*x[[2]]"(2n)+

Binoml [n,n,0]x[[1]]"(2n);
2[x_]:=Sum[Sum[Binom2 [n,k,j]*x[[1]] " (2k)*x[[2]] " (2])*(1—x
[[1]]72—x[[2]]"2) "(n—k—j),{j,1,n—k—1}]+Binom2[n,k,0]=x[[1]]" (2
K)*«(1—x[[1]]"2 —x[[2]]"2) "(n—k)+Binom2 [n,k,n—k]*x[[1]] " (2k)*x
[[2]]A(2*(n—k)),{k,l,n—l}]—i—Sum[BinomQ[11,0,j]*x[[Z]]A(Zj)*(l—x
[[1]]72—x[[2]]"2) "(n—j),{j,1,n—=1}]4+Binom2[n,0,0]*(1—x[[1]]"2
x[[2]]72) "o4Binom2 [n,0 ,n]*x[[2]] " (2n)4+Binom2[n,n,0]x[[1]]"(2n
);
BST3[x_]: —Sum[Smn[B11101113[11 Ky jlxx[[1]] " (2k)*x[[2]] " (2]))*(1—x
[[1]]72—x[[2]]"2) "(n—k—j),{j,1,n—k—1}]+Binom3[n,k,0]=x[[1]]" (2
kK)*«(1—x[[1]]"2 —x[[2]]"2) "(n—k)+Binom3 [n,k,n—k]*x[[1]] " (2k)*x
[[2]] (2% (n—k)) ,{k,1 ,n—1}+Sum[Binom3[n,0,j]*x[[2]] " (2])*(1—x
[[1]]"2—x[[2]]"2) "(n—j),{j,1,n=1}]4+Binom3[n,0,0]*(1—x
x[[2]]72) "n4Binom3[n,0,n]*x[[2]] " (2n)+Binom3 [n,n,0] x|
)
BSTA[x_]:=Sum[Sum|[Binomd [n,k, j]*x[[1]] " (2k)*x[[2]] " (2])*(1—x
[[1]]72—x[[2]]"2) "(n—k—j),{j,1,n—k—1}]+Binomd [n,k,0]=x[[1]]" (2
K)*«(1—x[[1]]"2 —x[[2]]"2) "(n—k)+Binom4 [n,k,n—k]*x[[1]] " (2k)*x
[[2]] " (2% (n—k)) ,{k,1,n—=1}+Sum|[Binom4 [n,0,j]*x[[2]]"(2])*(1—x

[
1

[[1]]72
[1]

1° (211

[[1]]72—x[[2]]"2) "(v—j),{j,1,n—=1}]+Binom4 [n,0,0]*(1—x[[1]] "2 —
x[[2]]72) "n4Binom4 [n,0,n]*x[[2]] " (2n)4+Binom4 [n,n,0]x[[1]]"(2n
)

In[25]:=

Operador on all disk

In[26]:= BSTD[x_]:=Sum|[Sum[Binomdisc [n,n,k,j]*x(14+x[[1]]) "(k)*(1—
L) (k) s(1— [[1]]72) (= () /2) = (Sare[1—x [1]] 2] +x [[2]])
Sy s(Sart 1 [[1]]*2] —x [[2]]) “(1=1) 3,0, m 3], {10, 0}

In[27]:= errord={};

errorl={};

tamanol={};

tamanod={};

Errores y Comparacion

In[31]:= For[n=10,n<=m,n=n+10,7z71=BST1/Cxx]1; z22=BST2/Qxx2; 723=
BST3/@xx3; z24=BST4/Qxx4; zz=Join [zz1 , 222 ,223 , zz4 ] ; tamanol=Join
[tamanol, List [n]]; error4=Join[error4 , List [Sqrt [Total [(zz—

119



zzReall)"2/Length[zz] ]]]]]

In[32]:= For[n=10,n<=m,n=n+10,722=BSTD/Cxxx; tamanod4=Join [tamanod
,List [n]];errorl=Join[errorl ,List [Sqrt [Total [( zzz—zzReal2) "2/
Length[222] ]]]]]

ListPlot [{ Transpose [{tamano4 ,errorl }], Transpose [{tamanol ,error4
11}, AxesLabel—>{"n” ;"RMSE” } , PlotLegends—>Placed [ LineLegend [{
Row[{” Operator on all disk”}],Row[{” Operators on disk
quadrants” }]},LegendFunction—>"Frame”] ,{0.7,0.85}],PlotStyle
—>{PointSize [0.10] , PointSize [0.10]} , PlotMarkers—>{Graphics [{
Blue, Circle []} ,ImageSize —>8],Graphics [{ Red, Disk []} , ImageSize
—>8]}]

A.3.2 Code for errors of better approxima-
tions: RI[f:2/] and S\V[f;2]

In[l]:= m=10

Out[1]= 10

In[2]:= [[x_,y_]:=Piecewise[{{—1,x<—0.5},{—0.5,-0.5<=x<0},{0,0<=
x<0.5},{1,True}}]

g[x_]:=Piecewise[{{—1,x[[1]]<—0.5},{—0.5,—0.5<=x][1]]<0},{0,0<=x
[[1]] <0.5} ,{1,True}}]

In[4]:= Binoml[n_,k_,j_ ]:=Binomial [n,k]*Binomial [n—k,j]*({[Sqrt]
k/n],Sars [§/n]])

Binom2[n_,k_,j_]:=Binomial [n,k]*Binomial [n—k, j]*( f[—Sqrt[k/n],
Sart [j/n]]);

Binom3[n_,k_,j_ ]:=Binomial [n,k]*Binomial [n—k, j]*( {[—Sqrt[k/n],—
Sart [j/n]]);

Binom4[n_,k_,j_]:=Binomial [n,k]*Binomial [n—k,j]*( {[Sqrt[k/n],—
Sart [j/n]]);

Binomdisc [n_,m_,k_,j ]:=2"(—mrn)*Binomial [n,k]*Binomial [m, j]=* {2
k/n—1,(2 Sqrt[—((k (k—mn))/1)] (2 j—m))/(m=*n)];

In[10]:= xxI=MeshCoordinates|[DiscretizeRegion [Disk
[ {{0,1} {01} }]];

xx2=MeshCoordinates [ DiscretizeRegion [Disk[] ,{{—1,0},{0,1}}]];

xx3=MeshCoordinates [ DiscretizeRegion [Disk[],{{—1,0},{—1,0}}]];

xx4=MeshCoordinates [ DiscretizeRegion [Disk[] ,{{0,1},{—1,0}}]];

In[14]:= xx=Join [xx],xx2 K xx3 6 xx4];

In[15]:= xxxl={};
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For[jj=Pi/36,jj<Pi,jj=jj+Pi/36,For[ii=0.1,ii <1,ii=ii +0.1;xxx]=
Join [xxx1 {{i1i*Cos[jj],1i*Sin[]jj]}}]]];

xxx2={};

For[jj=Pi+Pi/36,jj <2«Pi, jj=]]j4+Pi/36,For[ii=0.1,ii <1,ii=1i40.1;
xxx2=Join [xxx2, {{11*Cos[jj],ii*Sin[jj]}}]]];

In[19]:= xxx=Join [xxxl 6 xxx2];

In[20]:= zzReall=g/Qxx;

zzReal2=g/Qxxx;

BST1[x_,n_]:=Sum[Sum|[Binoml [n,k,j]*xx[[1]] " (2k)*x[[2]]"(2])*(1—x
[[1]]72—x[[2]]"2) "(n—k—j),{j,1,n—k—1}]+Binoml [n,k,0]=x[[1]]" (2

kK)*«(1—x[[1]]"2 —x[[2]]"2) "(n—k)+Binoml [n,k,n—k]*x[[1]] " (2k)*x
]

[[2]] " (2% (n—k)) ,{k,1,n—1}+Sum|[Binoml [n,0,]]*x[[2]]"(2])*(1—x
[[1]]72—x[[2]]"2) "(n—j),{j,1,n—=1}]4+Binoml [n,0,0]*(1—x[[1]]"2
x[[2]]72) "n4Binoml [n,0,n]*x[[2]] " (2n)+Binoml [n,n,0]x[[1]]" (211
)

BST2[x_,n_]:=Sum[Sum|[Binom2 [n,k, j]*x[[1]]"(2k)*x[[2]] " (2])*(1—x
[[1]]" 2—\[[2]]A2)A(11—k i) ,47,1,n—k—=1}+Binom2[n,k,0]x[[1]]" (2
K)*«(1—x[[1]]"2 —x[[2]]"2) "(n—k)+Binom2 [n,k,n—k]*x[[1]] " (2k)*x
[[2]] " (2% (n—k)) ,{k,1,n—=1}]4+Sum|[Binom2[n,0,j]*x[[2 ]]A(Zj)*(l—x
[[1]]72—x[[2]]"2) "(n—j),{j,1,n—=1}]+Binom2[n,0,0]*(1—x[[1]]"2
x[[2]]72) "o4Binom?2 [n,0 ,n]*x[[2]] " (2n)4+Binom2[n,n,0]x[[1]]"(2n
);

BST3[x- ] =Sum [Sum [ Binom3 [n,k, jl*xx[[1]] " (2k)*x[[2]]"(2])*(1—x
[[1 ]] x[[2]]72) " (n—k—]),{j,1,n—k—1}]4+Binom3[n,k,0]x[[1]]" (2

kK)*«(1—x[[1]]"2 —x[[2]]"2) "(n—k)+Binom3 [n,k,n—k]*x[[1]] " (2k)*x
[[2]] (2% (n—k)) ,{k,1 ,n—1}+Sum[Binom3[n,0,j]*x[[2]] " (2])*(1—x
[M1]]"2—x[[2]]"2) "(n—j),{j,1,n—=1}]4+Binom3[n,0,0]*(1—x
x[[2]]72) "n4Binom3[n,0,n]*x[[2]] " (2n)+Binom3 [n,n,0] x|
)
BST4[x_,n_]:=Sum[Sum[Binom4 [n k,j]*x[[1]] " (2k)*x[[2]]"
[[1]]" 2—\[[2]]A2)A(11—k 7),{j,1,n—k—1}+Binom4 [n,k,0]=x[[1]]" (2
K)*«(1—x[[1]]"2 —x[[2]]"2) "(n—k)+Binom4 [n,k,n—k]*x[[1]] " (2k)*x
[[2]] " (2% (n—k)) ,{k,1,n—=1}+Sum|[Binom4 [n,0,j]*x[[2]]"(2])*(1—x

[1]]"2
1]]° (211

[
[
(2))%(1—x

[[1]]72—x[[2]]"2) "(n—j),{j,1,n—=1}]+Binom4 [n,0,0]*(1—x[[1]] "2 —
x[[2]]72) "n4Binom4 [n,0,n]*x[[2]] " (2n)4+Binom4 [n,n,0]x[[1]]"(2n
);

Se define las mejores aproximaciones
In[27]:= BSbetterl [x_]:=2%BSTI[x,2n]-BSTI[x,n];
BSbetter2 [x_]:=2%BST2[x,2n]—BST2[x,n];
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BSbetter3 [x-]:=2%*BST3[x,2n]-BST3[x,n];
BSbetterd [x_]:=2*BST4[x,2n]—BST4[x,n];

n[31]:= BSTD[x_,n_]:=Sum[Sum|[Binomdisc [n,n,k,j]*(1+x[[1]]) " (k)
* (1= [[1]]) "(n=k)* (A= [[1]]72) "(=(n) /2) *(Sart [1—x[[1]] " 2] +x
[[211) “ () *(Sart[L—x<[[1]]"2] —x[[2]]) "(0=7) ,{J,0,n}],{k,0,n}];

In[32]:= BSTDbetter[x_]:=2BSTD[x,2n]—-BSTD[x,n];

In[33]:= errord={};

errorl={};

tamanol={};

tamanod ={};

In[37]:= For[n=10,n<=m,n=n+10,zz1=BShetterl /Qxx];

zz2=BSbetter2 /Qxx2;

z23=BSbetter3d/Qxx3;

zz4=BSbetterd /Qxx4; zz=Join [zz1 ,722 ,723 , 724 | ; tamanol=Join [tamanol
, List [n]]; errord=Join[errord ,List [Sqrt [Total [(zz—zzReall) "2/
Length[72] 1]]]]

In[38]:= ecrrord;

In[39]:= For[n=10,n<=m,n=n+10,zz2=BSTDbetter /Qxxx; tamanod=Join |
tamano4, List [n]]; errorl=Join[errorl , List [Sqrt[Total [(zzz—
zzReal2) "2/ Length[zzz] ]]]]]

During evaluation of In[39]:= General::munfl: —3.68623+*10"—61
7.6274%10°—279 is too small to represent as a normalized
machine number; precision may be lost.

During evaluation of In[39]:= General:: munfl: —7.37246%10"—60
1.22825%x10"—264 is too small to represent as a normalized
machine number; precision may be lost.

During evaluation of In[39]:= General::munfl: —7.00384%10"—59
1.97788%10" —250 is too small to represent as a normalized
machine number; precision may be lost.

During evaluation of In[39]:= General::stop: Further output of
General :: munfl will be suppressed during this calculation.

In[40]:= ListPlot [{ Transpose[{tamanod errorl }], Transpose[{
tamanol ,error4 }]}, AxesLabel—>{"n” ;”"RMSE” } , PlotLegends—>Placed
[LineLegend [{Row[{” Operator on all disk” }],Row[{” Operators on

disk quadrants” }]},LegendFunction—"Frame”],{0.7,0.85}],
PlotStyle —>{PointSize [0.10] , PointSize [0.10]} , PlotMarkers—>{
Graphics [{Blue, Circle []} ,ImageSize —>8],Graphics [{Red, Disk [] },
ImageSize —>8]}]
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