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RESUMEN

Este apartado contiene un resumen en español del contenido de esta memoria
de la tesis. El resumen incluye, la introducción, el contexto, la justificación,
los objetivos, el desarrollo de la tesis y las conclusiones y trabajos futuros.

INTRODUCCIÓN

La detección de anomalías es un campo de interés en muchos dominios.
Por ejemplo, en la industria la detección de anomalías es necesaria para la
detección de fallos [1, 2, 3], en ciber-seguridad para detección de intrusos
[4, 5, 6] y en entidades bancarias para detección de fraudes [7, 8, 9]. Hasta
no hace mucho tiempo la detección de anomalías se hacía de forma manual,
estableciendo revisiones periódicas para revisar el estado de las maquinas en
el ámbito industrial o bien fijando reglas de forma manual basándose en el
conocimiento de expertos en los entornos de ciber-seguridad y en entidades
bancarias. Sin embargo, las empresas requieren ser cada vez más competitivas
y aprovechar sus recursos al máximo, por lo que sus requisitos son cada vez
más exigentes.

Por ejemplo, en la industria requieren buenas estrategias de mantenimiento
que permitan detectar los fallos nada más ocurrir e incluso poder predecirlos
para maximizar la vida útil de la maquinaria y minimizar los costes. En
cuanto a los dominios de la ciberseguridad y las entidades bancarias, requieren
técnicas de detección capaces de adaptarse rápidamente a las estrategias
de ataque o fraude que evolucionan rápidamente. Para dar soporte a esta
demanda, surge la necesidad de modelar e implementar métodos de detección
automática capaces de analizar los datos pasados para aprender a predecir o
detectar de forma eficaz las anomalías.

CONTEXTO

Teóricamente, un problema de detección de anomalías puede definirse como
un problema de minería de datos (DM). La minería de datos se describe como
el estudio de la recopilación, la limpieza, el procesamiento, el análisis y la
obtención de información útil a partir de los datos. Las contribuciones en esta
área de conocimiento intentan crear modelos matemáticos y computacionales
que permitan a las maquinas construir sistemas de detección de anomalías
de manera automática.

9
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Formalmente, una anomalía se define como un dato o conjunto de datos
que difieren significativamente del comportamiento esperado [10]. Dependi-
endo del ámbito de aplicación, la anomalía puede denominarse de diferentes
maneras, como detección de valores atípicos, de fallos, de intrusión o de
fraude. Hay varios aspectos a tener en cuenta a la hora de elegir o im-
plementar un algoritmo de detección de anomalías [11]: la naturaleza de
los datos de entrada, los tipos de anomalías a detectar, las etiquetas de
los datos y la salida de la detección de anomalías. Por ejemplo, los datos
pueden ser descritos por una única característica (univariante) o varias
características (multivariante) y pueden ser etiquetados para indicar si una
instancia es o no anómala. En función de las etiquetas disponibles en el
conjunto de entrenamiento, existen tres tipos de aprendizaje: supervisado,
semisupervisado y no supervisado. Debido a la dificultad de obtener datos
etiquetados, la detección de anomalías suele realizarse en un marco no super-
visado. Además, es esencial definir el tipo de anomalía que se va a detectar;
pueden ser anomalías puntuales, secuenciales o contextuales. Además, la
salida del detector también es determinante; mientras que las salidas de
algunos detectores son binarias, otras son puntuaciones de anormalidad que
aportan más información.

La detección de anomalías es un problema complejo que debe tratar
con conjuntos de datos no etiquetados, conjuntos de datos parcialmente
etiquetados o conjuntos de datos desbalanceados, entre otros. Además,
recientemente, con la aparición de la digitalización, el Internet de las Cosas
(IoT) y la generación masiva de datos, han surgido nuevas necesidades para
la detección de anomalías: el procesamiento en streaming u online y el
procesamiento BigData [12, 13]. Gran parte de los datos que se recogen
actualmente son series temporales, es decir, se almacenan de forma ordenada
y están correlacionados en el tiempo. Además, uno de los requisitos más
demandados para la detección de anomalías, considerado dentro de los
problemas de BigData, es la detección de anomalías en series temporales
en streaming u online, donde los datos llegan muy rápido. Por un lado,
cuando los datos llegan en tiempo real, el orden o el tiempo de llegada de los
datos cobra vital importancia, ya que es una fuente de información extra de
gran valor que al ser explotado pueden mejorar los resultados, por ejemplo,
detectando patrones repetitivos en el tiempo. De ahí que la detección de
anomalías en las series temporales sea de gran interés en el procesamiento
online o streaming. Por otro lado, la rápida y continua generación de datos
hace que su almacenamiento sea demasiado costoso y a menudo inasequible.
Además, el conjunto de datos siempre estará incompleto (siempre habrá
nuevos datos por llegar), y con el tiempo la distribución de los datos puede
cambiar, haciendo que los modelos queden obsoletos.
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JUSTIFICACIÓN

Debido a su interés y creciente demanda, en esta tesis nos centramos en
la detección de anomalías online en series temporales univariantes. A pesar
de que en los últimos años, han surgido progresivamente varias propuestas
de algoritmos todavía hay varios problemas abiertos que abordar.

La primera es que existe muy poco software público para la detección
de anomalías en series temporales online. El software público es impor-
tante desde un punto de vista aplicado, pero también es indispensable en
la comunidad científica para evaluar, comparar y mejorar los algoritmos
existentes. Aunque las propuestas algorítmicas son cada vez más numerosas,
la mayoría de ellas han quedado relegadas al contexto teórico. Es más, en la
mayoría de los casos, están mal explicados, por lo que hay muy poco software
público disponible. Debido a la gran demanda, la mayoría del software es de
pago, como las soluciones propuestas por diferentes empresas como AWS,
Azure y Anodot. El software público existente hasta el momento consta de
aproximadamente nueve librerías entre ellas [14, 15, 16, 17, 18, 19, 20, 21,
22] implementados en diversos lenguajes de programación como C++, Java,
Matlab, Python y R. Es importante señalar que todos ellos implementan una
único algoritmo, por lo que actualmente hay nueve algoritmos disponibles
para la detección de anomalías en series temporales de streaming.

La segunda cuestión es que todas las propuestas que hay en la actualidad
para la detección de anomalías en series temporales online dan una gran tasa
de falsos positivos y negativos. Las razones pueden ser muchas, como los
retos derivados del aprendizaje no supervisado, la correlación temporal de
los datos, el procesamiento en tiempo real y las características de las series
temporales. Por ello, y como está ampliamente demostrado en la literatura,
no se puede determinar que un único enfoque o algoritmo sea el mejor
respecto al resto. El mejor detector dependerá del problema en cuestión,
de las características de la serie temporal, y de los tipos de anomalía entre
otros. Por lo tanto, es esencial contar con una amplia gama de detectores de
anomalías que se enfoquen en analizar los patrones de series temporales de
diferentes maneras.

En relación con esto, a pesar de que no se puede determinar ningún
algoritmo como el mejor de todos, muchos estudios recientes en detección
de anomalías [12, 23] han demostrado que los ensembles o sistemas de
clasificación múltiple están entre las líneas de investigación más prometedoras
para obtener detectores de anomalías más robustos y precisos. Estas técnicas
combinan varios modelos base (o detectores) para producir modelos más
robustos y detectar anomalías de manera eficiente [12]. Esta técnica es útil
para robustecer el rendimiento de los detectores, ya que pueden reducir la
dependencia del modelo en el conjunto de datos [23] y complementar las
debilidades de los detectores individuales y a su vez mejorar sus puntos
fuertes. Los ensembles han sido ampliamente estudiados y es una de las
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técnicas más efectivas en otras áreas del aprendizaje automatico, como
la clasificación [24] o el clustering [25], estando siempre entre los mejores
resultados en la mayoría de las competiciones [24]. Sin embargo, los ensembles
para la detección de anomalías son todavía un dominio reciente, por lo que la
formalización, la documentación y el software disponible son escasos. Además,
debido al reciente interés en el procesamiento de streaming, actualmente no
hay estudios sobre los ensembles para la detección de anomalías en streaming.
Por este motivo, es fundamental revisar el estado del arte y analizarlo a
fondo para identificar los métodos de combinación disponibles y que sean
aplicables al procesamiento en línea.

OBJETIVOS

Esta tesis propone tres soluciones para solventar estos problemas: un software
de código abierto que implementa varios algoritmos del estado del arte
reciente de detección de anomalías en series temporales online, un marco de
trabajo para adaptar cualquier algoritmo de predicción online a la detección
de anomalías sobre series temporales, y un novedoso detector de anomalías
online basado en el aprendizaje de ensembles capaz de superar a los detectores
de la literatura. Para conseguir estos objetivos se han definido las siguientes
líneas de investigación:

1. Estudio del estado del arte de la detección de anomalías online en
series temporales y ensembles para la detección de anomalías.

2. Implementación de un conjunto de algoritmos de detección de anoma-
lías de series temporales online.

3. Framework para adaptar cualquier algoritmo de predicción de series
temporales online a la detección de anomalías.

4. Una algoritmo novedoso para la detección de anomalías online en series
tiemporales utilizando técnicas de ensembles.

DESARROLLO DE LA TESIS

A continuación, se detalla un resumen de cada uno de los capítulos de la
tesis. Debido a su reciente interés y creciente demanda, en esta tesis nos
centramos en la detección de anomalías en series temporales univariantes. En
los últimos años han surgido progresivamente varias propuestas de algoritmos
de detección de anomalías de series temporales online. Sin embargo, todavía
hay varios problemas abiertos que abordar: la escasez de software de código
abierto y la alta tasa de falsos positivos y negativos de las propuestas del
estado del arte. Esta tesis pretende profundizar en la línea de investigación



13

de la detección de anomalías en series temporales online y resolver estos dos
problemas.

El Capítulo 2 introduce los conceptos preliminares necesarios para desar-
rollar y comprender esta memoria. Este capitulo se divide en dos partes. En
la primera se describen los conceptos básicos de la detección de anomalías en
series temporales online y en la segunda se recogen los conceptos y el estudio
bibliográfico correspondiente a los ensembles de detección de anomalías.

La primera parte, el estudio del estado del arte de los métodos de detección
de anomalías en series temporales online describe las diferencias entre los
problemas clásicos de detección de anomalías, la detección de anomalías en
series temporales y el procesamiento online. Además, también identifica las
características específicas de cada uno de los problemas, los tipos de técnicas
y los desafíos. Este primer análisis ya deja en evidencia de que a pesar del
reciente interés y la demanda emergente, existen pocas propuestas y tipos
de técnicas para la detección de anomalías en series temporales online.

En la segunda parte, se realiza una revisión bibliográfica exhaustiva de
los métodos de ensemble para la detección de anomalías, prestando especial
atención a las técnicas que han sido o pueden ser utilizadas en la detección
de series temporales y en el procesamiento online. Aunque las técnicas
de ensembles han sido ampliamente estudiadas y utilizadas para obtener
algoritmos más robustos en otros campos, los ensembles para la detección de
anomalías son todavía una línea de investigación reciente. A través de este
estudio, hemos identificado los diferentes pasos para construir un ensemble,
así como las técnicas disponibles y los retos para realizar cada uno de estos
pasos en la detección de anomalías en series temporales online. Tras este
estudio, observamos que los ensembles rara vez se aplican en la detección de
anomalías en series temporales online. Sin embargo, concluimos que pueden
ayudar a fortalecer los detectores, y es posible generar nuestros propios
ensembles siguiendo los pasos y técnicas identificadas en esta tarea.

El Capítulo 3 recoge la primera aportación significativa de esta tesis. En
concreto la implementación de una librería R eficiente y fácil de usar llamada
otsad. otsad es el primer paquete de R que recoge un conjunto de detectores
de anomalías de series temporales online. En este caso implementa seis de
los algoritmos de detección más recientes de la literatura: PEWMA, SD-
EWMA, TSSD-EWMA, KNN-LDCD, KNN-CAD y CAD-OSE. También
implementa una nueva técnica de reducción de falsos positivos para mejorar
significativamente los resultados de los detectores. Inspirada en una situación
de la vida real en la que hay un lapso de tiempo entre que se dispara
una alarma y hasta que se toma una acción correctiva, nuestra propuesta
utiliza el número de datos procesados entre dos anomalías detectadas para
reducir el número de falsos positivos. Además, otsad también incluye algunas
funcionalidades avanzadas, como la técnica de medición del detector NAB
y una función de visualización. Por último, se ha realizado un estudio
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comparativo de la eficacia y la eficiencia de los métodos implementados para
añadir valor al trabajo.

Se han realizado varios experimentos lazando los algoritmos sobre un
amplio conjunto de datos de diferentes características y dominios. Para medir
el rendimiento de los algoritmos se han evaluado dos aspectos: cual generaliza
mejor y cual tiene mayor capacidad de adaptación al conjunto de datos.
Por un lado, para ver cual generaliza mejor, hemos evaluado el rendimiento
de los detectores implementados utilizando siempre la misma (la mejor)
configuración de parámetros de entrada del algoritmo en todos los conjuntos
de datos. Por otro lado, para evaluar la capacidad de adaptación, hemos
evaluado el rendimiento de los detectores utilizando su mejor configuración
de los parámetros de entrada en cada conjunto de datos.

Los experimentos realizados, además de revelar los mejores detectores,
muestran que el buen rendimiento de los algoritmos está correlacionado
con el uso de técnicas de reducción de falsos positivos y los parámetros de
entrada elegidos para cada conjunto de datos, demostrando a su vez que el
reductor de falsos positivos propuesto es eficaz. Además, durante el estudio
comparativo, observamos que todos ellos dan una alta tasa de falsos positivos
y negativos y que todos tienen una alta dependencia del conjunto de datos.
Por todo ello, dedujimos que todavía hacen falta mejores estrategias para
robustecer los algoritmos y que no hay un algoritmo mejor que otro, sino
que este dependerá del conjunto de datos en cuestión.

El Capítulo 4 recoge la última contribución de la tesis que se divide en
dos partes. En primer lugar, proponemos un marco que permite generar más
algoritmos de detección de anomalías en series temporales online, facilitando
la adaptación de los algoritmos de predicción de series temporales online
disponibles en la literatura. En segundo lugar, para demostrar la eficacia del
marco proponemos un nuevo detector de anomalías basado en ensembles.

El marco pretende permitir la extrapolación de los avances realizados
en la predicción de series temporales online a la detección de anomalías y
así proporcionar las herramientas para ampliar el catálogo de detectores.
El marco propuesto implementa varios métodos de normalización de los
datos de entrada y puntuación de anormalidad capaces de funcionar en
tiempo real a medida que llegan nuevos datos. Los métodos de normalización
de los datos de entrada en tiempo real son muy necesarios no solo en el
campo de la detección de anomalías sino también en muchos otros como
la clasificación, ya que muchos algoritmos, como por ejemplo las redes
neuronales, requieren que los datos estén normalizados en un rango especifico
como [−1, 1] o [0, 1] o estandarizados con una media y desviación fijas. Dado
que en el procesamiento online la distribución de los datos puede cambiar y
no disponemos del conjunto de datos completo para poder calcular el máximo
y el mínimo, actualmente son muy pocos los métodos de normalización y
estandarización online. Por otro lado para poder adaptar los métodos de
predicción de series temporales online a la detección de anomalías, son
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necesarias técnicas que dado el error de predicción, es decir la diferencia
entre el valor esperado y el predicho, sean capaces de calcular una puntuación
de anomalía normalizado en un rango facilmente interpretable como [0, 1].

Con este fin, el marco propuesto implementa algunas de las técnicas de
normalización y puntuación de anomalía ya disponibles en los modelos de
última generación, así como nuevas propuestas diseñadas para mejor estas.
En concreto, se proponen dos nuevos métodos de normalización: one-pass
adaptive normalization (OAN) y one-pass adaptive min-max normalization
(OAMN), así como dos métodos de puntuación: sigma scoring (SS) y dynamic
SS (DSS).

Para demostrar la utilidad y eficacia del marco propuesto realizamos la
adaptación de un algoritmo de predicción llamado online recurrent extreme
learning machine OR-ELM y proponemos una variante más robusta basada
en ensembles. El nuevo detector se ha denominado ensemble-based online
recurrent extreme learning machine anomaly detector EORELM-AD y se
creó implementando los pasos del marco propuesto sobre un conjunto de
OR-ELMs. La propuesta de ensemble combina varias instancias inicializadas
con diferentes configuraciones de parámetros de entrada. De este modo, se
evita el problema de la selección de los parámetros de entrada, lo que reduce
la dependencia del modelo al conjunto de datos. Además, EOR-ELM elimina
los modelos que se desvían en cada iteración inicializando nuevos modelos,
por lo que puede adaptarse rápidamente a los cambios de distribución y
reducir significativamente los falsos positivos. Por lo tanto, EORELM-AD
proporciona un enfoque mucho más robusto ante los cambios de distribución
y las anomalías en las series temporales.

Los extensos experimentos muestran que el método de puntuación que
mejor funciona para el detector propuesto es DSS propuesta en este estudio.
Es rápido, no requiere parámetros de entrada, y su rendimiento no depende
de la técnica de reducción de falsos positivos. Además, el rendimiento del
detector EORELM-AD es competitivo frente a los del estado del arte, y
se comporta mejor en varias de las categorías específicas de conjuntos de
datos. Basándonos en los experimentos y en las conclusiones extraídas del
estudio sobre la eficiencia temporal de EORELM-AD, podemos concluir que
el marco propuesto puede servir como herramienta de referencia para que la
comunidad adapte los algoritmos de predicción de series temporales online a
la detección de anomalías. Además, la estructura del ensemble propuesto es
eficiente y puede reducir los falsos positivos.

CONCLUSIONES Y TRABAJOS FUTUROS

En esta tesis, hemos profundizado en la línea de investigación de detección de
anomalías en series temporales online. Entre otras muchas, nuestras tareas
nos han permitido: adquirir los conocimientos básicos y especializarnos en el
tema a través del estudio inicial del estado del arte, aprender a interpretar
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artículos científicos implementando los algoritmos del paquete otsad, y
finalmente aplicar los conocimientos adquiridos para realizar una propuesta
innovadora, como es el marco para adaptar los algoritmos de series temporales
online y el nuevo detector de anomalías EORELM-AD.

A pesar de que en esta tesis hemos realizado nuestras aportaciones para
solucionar la escasez del software público y la alta tasa de falsos positivos
y negativos, estos no han sido resueltos del todo. Todavía hay una gran
necesidad de obtener algoritmos de detección más robustos y que mejoren el
rendimiento de los actuales, así como que el software de estos sea libre. En
concreto hemos identificado las siguientes futúras líneas de investigación:

Investigar nuevos métodos de generación de diversidad para el proce-
samiento online capaces de generar nuevos subconjuntos de datos
seleccionando dinámicamente instancias o características manteniendo
la información de correlación temporal entre los datos.

Investigar nuevos métodos de combinación de ensembles específicos
para series temporales que tengan en cuenta la correlación temporal
de los resultados a la hora de combinar.

Generar nuevos ensembles heterogéneos combinando algoritmos de
diferentes tipos, como los implementados en otsad, e investigar si es
posible obtener un mejor detector que supere los individuales.

Utilizar técnicas de paralelización para mejorar la eficiencia temporal
de los ensembles. A pesar de que se ha demostrado que es temporal-
mente eficiente, destacamos la estructura inherentemente paralela del
enfoque EORELM-AD propuesto que tras su programación utilizando
paradigmas de paralelización como el map-reduce, debería permitir su
uso sobre datos de series temporales de velocidad ultra alta.

Proporcionar nuevos algoritmos de detección basados en otros modelos
de aprendizaje incremental con métodos de entrenamiento eficientes.

Realizar un estudio detallado de la adaptabilidad del algoritmo a
series temporales con valores atípicos de diferente naturaleza y la
caracterización incremental de las anomalías.

Aplicar los conocimientos adquiridos y continuar con la investigación
en series temporales multivariantes.



ABSTRACT

The identification of unusual patterns or anomalous features allows critical
information to be extracted from data. With the development of the Internet
of Things, real-time time series anomaly detection has become a relevant task
in many domains, including fault detection in the manufacturing industry,
intrusion detection in cybersecurity, and fraud detection in banks. Within this
research area, online time series anomaly detection is a more challenging task
compared to classical outlier detection for several reasons. First, a complete
dataset is not available for training, and therefore, training must be performed
incrementally. Second, every new incoming data sample must be processed
once without multiple passes through the entire dataset (i.e., one-pass
learning). Third, the distribution of data is non-stationary and can change
over time (concept drift), requiring the inclusion of adaptation/forgetting
mechanisms in outlier detection methods. These constraints hinder the design
of online methods that effectively detect anomalies in time series data under
such challenging conditions.

This Thesis delves into research around the detection of anomalies in online
time series. In recent years, several proposals for online time series anomaly
detection algorithms have gradually emerged. However, the literature study
performed in this Thesis has identified two crucial shortcomings in online
time series anomaly detection: the scarcity of open-source software and the
high rate of false positives and negatives of state-of-the-art proposals.

To reduce false positives, the Thesis focuses on ensemble techniques.
Ensemble techniques are helpful to solve this type of problem since they can
reduce the dependence of the model on the data set and complement the
weaknesses of single detectors while enhancing their strengths. Furthermore,
several of the most recent studies on anomaly detection demonstrate that
ensembles or multiple classifier systems are the most promising research line
to obtain robust and accurate detectors.

In order to provide more open source software, the first significant contri-
bution of this thesis is the implementation of an efficient and easy-to-use R
library named otsad and the comparative study of implemented detectors.
otsad is the first R package that collects a set of online time-series anomaly
detectors: PEWMA, SD-EWMA, TSSD-EWMA, KNN-LDCD, KNN-CAD,
and CAD-OSE. It also implements a new false positive reduction technique
to improve detectors’ results significantly. Inspired by a real-life situation
where there is a time-lapse between an alarm being triggered and until cor-
rective action is taken, our proposal uses the number of processed data points
between two detected anomalies to reduce the number of false positives.
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Furthermore, it also includes some advanced functionalities, such as the
NAB detector measurement technique and a visualization function. Finally,
a comparative study of the effectiveness and efficiency of the implemented
methods was carried out to add value to the work.

The last contribution is divided into two parts. First, we propose a frame-
work that allows the generation of more online time series outlier detection
algorithms by facilitating the adaptation of available time series prediction
algorithms. The framework aims to allow the extrapolation of the advances
made in online time series forecasting to anomaly detection and thus pro-
vide the tools to expand the detectors catalog. The proposed framework
implements several online normalization and outlier scoring methods already
available in state-of-the-art models, as well as novel proposals designed to
improve upon baselines. Specifically, two novel normalization methods—one-
pass adaptive normalization (OAN) and one-pass adaptive min-max normal-
ization (OAMN), as well as two scoring methods—sigma scoring (SS) and
dynamic SS (DSS) are proposed.

Then, we demonstrate the usability and efficacy of the proposed framework
by discussing the adaptation of a novel ensemble-based online recurrent
extreme learning machine, EORELM-AD. The EORELM-AD was created
by implementing the steps of the proposed framework over an ensemble
of Online Recurrent Extreme Learning Machines. The ensemble proposal
combines several instances initialized with different parameter settings. In
this manner, the hyperparameter selection problem is circumvented, which
reduces the dependency of the model’s configuration on the target dataset.
Furthermore, EOR-ELM removes deviating models in each iteration by
initializing new models, so it can quickly adapt to distribution changes and
significantly reduce false positives. Therefore, EORELM-AD provides a much
more robust approach to distribution changes and anomalies in time series.

To conclude, extensive experiments on well-known benchmark datasets for
time series outlier detection are presented and discussed, yielding two main
conclusions. First, the performance of the proposed EORELM-AD detector
is competitive in comparison to several state-of-the-art outlier detection
algorithms. Second, the proposed framework is a useful tool for adapting an
online time series prediction algorithm to outlier detection.
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1
INTRODUCTION

The recognition of unusual patterns or anomalous features allows extracting
critical information from data, hence providing helpful information for a
variety of applications in diverse activity sectors, such as industry [1, 2, 3],
cyber-security [4, 5, 6], and banking [7, 8, 9], among others. Anomalies in
data collected in these domains can be a valuable asset or a critical threat,
depending on the event/phenomenon causing it in practice. For example, in
the industry, an anomaly can represent a machine failure. In cyber-security
applications, an anomaly may expose the presence of an intruder. Likewise,
in banking an anomalous event can be an alarm of fraud or theft. Due to
the rapid technological evolution and competitiveness, the success of today’s
business environment depends on detecting these opportunities and threats
as quickly as possible, as close to real time as possible.

Until recently, when there were only a few metrics to be controlled,
anomaly detection was carried out manually, mainly by means of domain-
driven expert rules. In industrial setups, periodic reviews were scheduled
to check the status of machines, while for intrusion and fraud detection,
rules were manually fixed and tailored based on domain experts’ knowledge.
Much differently, nowadays companies collect a greater number of metrics,
which are furthermore captured at significantly faster rates. Consequently,
the requirements to exploit this collected data flows effectively are becoming
increasingly demanding. For example, good industrial maintenance strategies
are required to detect failures as soon as they occur and even predict them,
maximizing machinery’s remaining useful life and eventually minimizing
maintenance costs. Similarly, the cybersecurity and banking domains require
detection techniques that quickly adapt to rapidly evolving attacks and fraud
strategies so as to avoid the damage caused by these events. To support this
demand, a necessity to model and implement automatic detection methods
emerges to analyze past data and to detect anomalies effectively, meeting
the near real-time requirements of the aforementioned data streams.

1.1. CONTEXT

From a theoretical perspective, an anomaly detection problem can be defined
as a Data Mining (DM) problem. DM is described as the study of collecting,
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cleaning, processing, analyzing, and extracting useful insights from data
[26]. Contributions in this knowledge area attempt to create mathematical
and computational models that allow machines to build automatic anomaly
detection systems by learning them from the available data. Formally, an
anomaly is defined as data that differ significantly from the expected behavior
[10]. Depending on the application domain, the anomaly can be regarded
in different ways, such as an outlier, a fault, an intrusion, or a fraud event.
There are several aspects to consider when designing and implementing an
anomaly detection algorithm [11], such as the nature of the input data, the
types of the anomaly to be detected, the a priori availability of annotation,
and the output of the anomaly detection algorithm itself. For example,
data can be described by a unique feature (univariate) or several features
(multivariate), and can be labeled to indicate whether an instance is or is
not anomalous. Depending on the availability of annotation in the training
data, three types of learning tasks can be generally distinguished in DM,
namely, supervised, semi-supervised and unsupervised learning. Due to the
difficulty of obtaining labeled data for anomaly detection, this particular
DM task is usually conducted within an unsupervised framework. Moreover,
it is essential to define the anomaly type to be detected, which can be point,
sequential or contextual anomalies. In addition, the output of the detector is
also another aspect to be determined; while the output of some detectors is
binary, other detectors elicit soft anomaly scores, providing more information
about the anomalous nature of the input data to the end user.

Anomaly detection is a complex problem that must deal with unlabeled
data sets, partially labeled data sets, or labeled yet mostly imbalanced data
sets, among other practical issues. Moreover, recently, with the emergence
and progressive maturity of digitization, the Internet of Things (IoT), and
the massive generation of data in almost any field, new needs for anomaly
detection have arisen: among them, streaming/online processing and Big
Data processing [12, 13]. Much of the data currently collected by sensors and
monitoring systems are time series, i.e., data instances are stored orderly
and are correlated over time. Furthermore, one of the most stringent compu-
tational requirements for anomaly detection within problems that fall within
the Big Data paradigm is anomaly detection over time series in streaming or
online settings, where data samples are generated continuously and arrive
very fast. On the one hand, when data comes in the form of streams, the
order or time of arrival of the instances becomes critical for the detection
of anomalies. Time is hence a domain over which data is produced and,
when exploited by the algorithm, can improve the results, for example, by
detecting concurrently occurring anomalous patterns over time. Particularly,
the detection of anomalies in time series is of great interest in streaming pro-
cessing. On the other hand, the rapid and continuous data generation makes
its storage too expensive and often unaffordable. Furthermore, the data set
will always be incomplete as there will always be new samples to arrive and



1.2 motivation and hypothesis 5

be fed to the algorithm. This continuous flow and the possible presence of
exogenous factors affecting the statistical characteristics of the produced
data streams may cause that their distribution changes over time, making
the knowledge captured by the anomaly detection algorithm potentially
obsolete.

1.2. MOTIVATION AND HYPOTHESIS

Due to its recent interest and growing demand, this Thesis focuses on
anomaly detection over streaming univariate time series. In the last few
years, several proposals have been reported in the literature to deal with
this problem. However, there remain several open issues that deserve further
research efforts:

The first remarkable open problem is the scarcity of open-source soft-
ware available for online anomaly detection over time series. The public
availability of software is of great importance from an applied point
of view, but it is also crucial for the scientific community to evaluate,
compare, and improve existing algorithms for this modeling task. Al-
though the spectrum of algorithmic proposals stemming from this field
has grown sharply in recent times, most proposals have been relegated
to the theoretical context. What is more, in most cases proposals are
loosely explained and their implementation is very poorly organized
and documented, so that very little public software can be found in the
literature that can support future research advances solidly. Due to the
high demand for these algorithms, most available software implement-
ing them require a paid subscription, such as the solutions contained
in the frameworks proposed by different companies, such as AWS,
Azure, and Anodot. In detail, the public software for online anomaly
detection consists of nine libraries [14, 15, 16, 17, 18, 19, 20, 21, 22]
implemented in various programming languages, including C++, Java,
Matlab, Python and R. It is important to note that all these libraries
implement a single proposal, implying that currently there are only 9
algorithms available for anomaly detection over streaming time series.

The second issue noted in this research area is that all up-to-date
proposals for online outlier detection over time series still render high
false positives and negatives detection rates when applied to real-world
time series. Reasons for this statement can be many and diverse
in nature, such as the challenges that learning from unsupervised
stream data can impose, the effective exploitation of the temporal
correlation among successive data instances along the stream, the
algorithmic design constraints set by the low latency required by
streaming processing, and the evolving features of the analyzed time
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series. Due to these reasons, it has been widely acknowledged and
proven in the literature that no single modeling approach can be
concluded to perform best when compared to any other algorithm
when the comparison is made over the totality of streaming time series
that can occur in practice. Consequently, the best performing detector
depends on the problem at hand, the characteristics of the time series,
and the types of anomaly to be identified, among other factors. Thus,
it is essential to have a wide range of anomaly detectors capable of
differently analyzing and discerning anomalies from time series.

Related to this second issue, although no algorithm can be claimed to
perform best in all cases, many recent studies in anomaly detection [12, 23]
have shown that ensembles or multiple classification systems are among
the most promising lines of research to obtain more robust and accurate
anomaly detectors. Ensembles rely on different strategies to combine several
base learners (or detectors) together to produce more robust models and
detect anomalies efficiently [12]. These strategies can be helpful to improve
the performance of anomaly detection algorithms, since they can reduce
the dependence of the model on the data set [23] and complement the
weaknesses featured by single detectors, while preserving their individual
strengths. Ensemble learning has been widely studied in the literature [27],
and is an effective approach to tackle learning problems in other areas
of Machine Learning, such as classification [24] or clustering [25]. Indeed,
ensembles are among the top performers in most competitions [24].

Interestingly, ensembles for anomaly detection are still a domain in its
infancy, with very few contributions falling in this crossroads to date. Con-
sequently, a formalization of ensemble learning models as online anomaly
detection algorithms over time series is needed, supported by a thorough and
informed study of the state of the art on streaming anomaly detection ensem-
bles. This analysis is necessary to identify which ensemble-based proposals
can meet the requirements of online processing. Furthermore, following up
on the first issue noted above, unified and well-documented software for
implementing online anomaly detection methods is also in need towards
supporting advances in this area. These two statements, which are later
argued in further detail, constitute the justification of the research presented
in this Thesis.

1.3. CONTRIBUTION AND OBJECTIVES

The overarching contribution of this Thesis to the niches presented in the
previous section are threefold: i) an open-source software that implements
several avant-garde online time series anomaly detectors; ii) a framework
for adapting any online prediction algorithm to outlier detection over time
series; and iii) a novel online outlier detector based on ensemble learning.
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Specifically, these research advances break down into different objectives
that must be pursued to realize them fully:

Study of the state of the art related to online time series anomaly
detection, as well as outlier detection ensembles: a necessary first
step of the Thesis is to collect and inspect in depth the different
proposals reported to date for the online detection of anomalies in
time series data, so that a profound understanding of the benefits
and weaknesses featured by the most competitive approaches can be
gained in an informed fashion. Furthermore, analyzing the different
ensemble strategies followed by the community to detect outliers from
data is essential to build new ensemble detectors that improve current
baselines used for this task in online settings.

Implementation of online time series anomaly detection algorithms:
departing from the knowledge acquired after studying the state of
the art of online time series anomaly detection algorithms, the Thesis
pursues to implement several selected algorithms in a public software
library in response to the scarcity of public software available for the
community. Beyond its inherent contribution to the research commu-
nity, the implementation of competitive outlier detection methods for
time series can help identify the algorithmic aspects at their core that
cause the general high false detection rates observed in other studies,
and outline how to overcome them by adopting ensemble techniques.
For this reason, a second objective of the Thesis is to develop a public
software library that implements some of the most recent online time
series outlier detectors.

Framework for adapting any online prediction algorithm to outlier
detection over time series : no single detector can be considered better
than the others over the totality of possible datasets. Therefore, having
a systematic framework to produce a wide range of anomaly detectors
of different natures can be very suitable to evaluate and choose an
approach that best suits the online anomaly detection problem at
hand. For this reason, the third objective of the Thesis is to design
a framework to adapt online time series prediction techniques to
anomaly detection. Online time series forecasting is a more mature
research area than online outlier detection over time series, and can be
used as a profitable source of modeling alternatives to be adapted for
online anomaly detection. As the third objective, the Thesis aims to
construct a methodological framework to allow the extrapolation of the
advances made in online time series forecasting to anomaly detection,
encompassing streaming data normalization, online anomaly scoring
and the identification of outliers from forecasting prediction errors.



8 introduction

This framework provides the community with the tool chain needed to
expand the current portfolio of available online anomaly detectors.

Exploration of ensemble learning for the online time series anomaly
detection task : finally, the Thesis seeks to explore whether the use of
ensemble learning can yield competitive algorithms for the detection
of anomalies in time series. To this end, the literature study (first
objective), the implemented software library (second objective) and the
methodological framework (third objective) support a fourth objective:
the creation, implementation and performance assessment of a neural
network-based bagging ensemble that has been used for online time
series prediction, adapting it to detect outliers from time series data
in an online fashion.

1.4. RESEARCH METHODOLOGY

The above set of objectives will be accomplished by following several scientific
methodological steps, which are adapted to the specific needs of this Thesis.
Such steps are summarized as follows:

1. Problem characterization, which includes the review and understanding
of the scenarios and problems to be addressed in the Thesis, as well
as their characteristics. Specifically, the Thesis covers unsupervised
anomaly detection in online time series and ensembles for outlier
detection, from both classical and online points of view.

2. Hypothesis formulation, which spans three different contributions: the
design and development of an open-source software package, a frame-
work for adapting online time series prediction algorithms to anomaly
detection, and an ensemble-based anomaly detector.

3. Experimentation, which encompasses the implementation of the soft-
ware needed to validate the formulated hypotheses and, where appli-
cable, the evaluation of the results of the novel algorithmic proposals
over public datasets used by the research community working in this
area. Performance evaluation is done by complying with the standards
used for the task at hand, including performance metrics, statistical
significance assessment and repeated trials.

4. Hypothesis contrasting, which refers to an empirical comparison of the
results obtained by the proposed approaches and those of state-of-the-
art algorithmic alternatives. This analysis measures the capacity of
the proposed algorithms to solve problems in different scenarios.

5. Hypothesis validation or refutation, which implies accepting or rejecting
– and modifying – the stated hypothesis once the results gathered in
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the different experiments have been analyzed. If the hypothesis is
rejected, changes must be considered before iterating over the previous
methodological steps toward eliciting a new set of experimental results.

6. Scientific thesis, including the extraction, writing, and acceptance
of the conclusions obtained during the process. The findings and
their scientific approach must be collected and presented in a thesis
dissertation and peer-reviewed journal publications.

1.5. STRUCTURE OF THE THESIS

The Thesis is organized in three parts: Part I, which introduces the reader to
the context, motivation and objectives of the Thesis (Chapter 1) and presents
preliminary concepts necessary to develop and understand the technical
contributions thereafter (Chapter 2); Part II, which exposes in details the
two novel contributions of the Thesis in connection to the objectives stated
previously:

In correspondence with the second objective of the Thesis, Chapter 3
presents otsad, the first R package which implements a set of novel
online anomaly detection algorithms for univariate time-series, along
with some advanced functionalities and contents, such as a new false
positive reduction algorithm, and a novel NAB detectors measurement
technique. This chapter starts with a description of the implementa-
tion and functionalities of the package (Section 3.2). Then, extensive
experimentation is carried out to compare the performance and time
efficiency of the proposed algorithms (Section 3.3). In addition, some
illustrative examples of the use of the otsad package are provided
(Section 3.4).

Part II ends with Chapter 4, where two contributions are presented to
cover the third and fourth objectives of the Thesis. First, a framework
to generate new online time series anomaly detection algorithms by
adapting available time series prediction algorithms is described in
Section 4.2. Second, by harnessing this designed framework, a new
ensemble-based online time series anomaly detection algorithm is pro-
posed (Section 4.3) and experimentally compared to several competitive
approaches from the state of the art (Section 4.4 and Section 4.5).

Finally, the Thesis concludes with Part III, which expands a single Chap-
ter 5 in which final remarks and lessons learned from the research results
attained in the Thesis are outlined. This chapter also includes a summary of
the scientific publications where the research outcomes have been presented,
as well as an outlook toward future research stimulated by the findings
reported in the Thesis.
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PREL IMINARIES

This Thesis deals with two important research topics that have been widely
studied in the literature: anomaly detection and ensemble methods. Moreover,
it delves into less addressed issues in each of such topics: online anomaly
detection in time series, and ensembles for anomaly detection. As a starting
point, this chapter introduces preliminary concepts of these main topics
to provide the reader with the background required to understand the
contributions that follow this chapter. Section 2.1 introduces the basic
concepts related to online time series anomaly detection, whereas Section 2.2
presents the theoretical framework of ensembles used for anomaly detection.

2.1. ONLINE TIME SERIES ANOMALY DETECTION

Anomaly detection is a vast field, which has been studied for decades.
However, tackling anomaly detection in online time series requires first
introducing some of the basic concepts of both traditional anomaly detection
and anomaly detection in time series. For the sake of comprehensiveness,
this section describes background knowledge about these two tasks, so that
their combination can be understood in a smoother and better informed
manner. Specifically, the section starts with the basic principles of traditional
anomaly detection posed in Section 2.1.1. Then, fundamentals of time series
outlier detection are introduced in Section 2.1.2. The chapter concludes by
addressing online time series anomaly detection in Section 2.1.3.

2.1.1. Anomaly detection

Theoretically, an anomaly is defined as an observation significantly different
from the rest of the observations and of interest to the analyst [28]. There are
several terms which many researchers used interchangeably as synonyms of
anomaly [29, 28], such as outlier, abnormality, noise, discordant observations,
discords, exceptions, aberrations, surprises, peculiarities, or contaminants.
Moreover, as described in the following sections, outlier detection is a complex
problem that must deal with imbalanced, partially labeled, or unlabeled
data sets. Moreover, anomalies may have different definitions depending on
the application domain into others. Due to the diversity of practical uses for
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which the identification of anomalies can be pursued, anomaly detection is
an important field for many domains, such as industry [1, 2, 3], energy [4, 5,
6] and security [7, 8, 9].

The following sections describe the main aspects of anomaly detection
problems (Section 2.1.1.1), systematically classify anomaly detection tech-
niques (Section 2.1.1.2), and enumerate several challenges of outlier detection
problems that remain unsolved to date (Section 2.1.1.3).

2.1.1.1. Main aspects of anomaly detection problems

There are several aspects to consider when choosing or implementing an
anomaly detection algorithm [11]. The most important ones are summarized
in Figure 2.1, namely, the nature of the input data, types of anomaly to
be detected, availability of annotated labels, and the output sought for the
anomaly detection approach.

ANOMALY DETECTION 
PROPERTIES

INPUT  
DATA DATA LABELS ANOMALY  

TYPES

Semisupervised

Class imblance

OUTPUT

Score Binary label

Crisp detectorSoft detectorUnsupervisedUnivariate

Multivariate Class imblance One-class

Point anomaly

Sequential anomalies

Contextual anomaly

Univariate

Multivariate

Supervised

Class imblanceMultivariate Class
imbalance One-class Sequential anomalies Score

Figure 2.1: Main design aspects of anomaly detection problems.

nature of the input data: Usually, the input data is a collection
of data instances, where each instance can be described by a unique feature
(univariate) or several features (multivariate). Such features can be of different
types: binary, categorical, continuous, or mixed. Besides the application, the
representation of the data may differ. Data can be multivariate, without any
relation between successive points, can be sequential and ordered temporally,
or be defined in the form of a network with arbitrary relations between the
data instances.

anomaly types: The definition of what is normal or anomalous is not
an easy task. It depends on the context of each problem and domain. Even so,
in the classical literature, three types of anomalies are distinguished as shown
in Figure 2.2: point anomaly, collective anomalies, and contextual anomaly.
A point anomaly occurs when a single data instance can be considered
anomalous when compared to any other. On the other hand, collective
anomalies happen when a collection of instances is anomalous with respect
to the entire dataset. Finally, a contextual anomaly holds if and only if an
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instance is deemed to be anomalous in a specific context, not the entire
dataset.

(a) (b) (c)

Figure 2.2: Types of anomaly that can occur, exemplified in a two-dimensional dataset.
Figure (a) shows a point anomaly isolated from the rest of the points of the set. Figure
(b) depicts the collective anomalies as a set of reduced points away from the rest in the
data set. Figure (c) illustrates a contextual anomaly where the class gives the context.
In this case, the value of the anomalous point is normal within the complete data set.
However, its value is anomalous for the class to which it belongs.

data labels: In some practical scenarios, it can be possible to have
a labeled training data set so that each instance has a label that indicates
whether it is or it is not anomalous. Depending on the availability of these
labels on the training set (annotation), three learning types can be defined:
supervised, semi-supervised and unsupervised. Supervised learning techniques
assume that the training data set is composed of labeled data containing both
abnormal and normal instances. Semi-supervised learning techniques assume
that only some instances are labeled as normal and/or anomalous, whereas
the rest lacks any annotation. For example, only normal class instances can
be available. Finally, unsupervised learning assumes that the entire training
data set is unlabeled, and can be composed of both normal and anomalous
instances.

output of anomaly detection: The output resulting from the
application of an anomaly detection technique can be of two different types.
The first and most common option is to inform about the presence of an
anomaly in terms of an anomaly score, that is, the probability or confidence
of the model on the input instance to be anomalous. A detector that produces
scores is called a soft detector [30, 8]. The second option is to report a binary
predicted label that indicates if the input instance is or is not anomalous.
When detectors produce a label instead of a score, they are referred to as
crisp detectors. It should be noted that the transformation of anomaly scores
into binary labels is straightforward by applying a cut-off threshold to such
scores, labeling those instances that exceed the threshold as anomalous.
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2.1.1.2. Anomaly detection techniques

Over the years, different categories have been proposed to classify all anomaly
detection methods. Based on some of the older and most recent studies [11,
31, 12], these are the most relevant categories:

Statistical-based techniques: These techniques calculate the difference
between a point and the model or statistical distribution assumed
for the data, and determine that a point is anomalous if this dif-
ference is greater than a threshold. These methods distinguish two
categories: parametric-based anomaly detection algorithms [32, 33]
and non-parametric anomaly detection algorithms [34, 35].

Nearest neighbor-based techniques: these approaches analyze the dis-
tance between a test instance and its nearest neighbors. They assume
that the distances from an anomalous point to its neighbors are much
larger than the distances between a normal point and its neighbors. In
the literature a manifold of proposals can be found within this category
[36, 37, 38].

Clustering-based techniques: Techniques falling within this category
group normal data into a cluster space, and label as anomalous data
those instances that do not fit into the clusters within that space, i.e.,
anomalies that belong to very small groups or that are far from the
centroids of the clusters that are representative of normal data. Some
clustering based proposals are reported in [39], [40] and [41], to cite
an exemplifying few.

Spectral-based approaches: These methods attempt to approximate
normal data by using features with lower dimensionality that capture
most of the data variability. It assumes that data can be represented in
a lower-dimensional subspace, where normal and anomalous instances
can look significantly different from each other [42].

Information-theoretic-based methods: these algorithms rely on different
information-theoretic measures (e.g., entropy or relative entropy) to
analyze the information content in the data at hand. They further
assume that the anomalies in the data induce irregularities in the
information content. Some examples are those proposed in [43], [44]
and [45].

Ensemble-based methods: schemes inside this last category combine
several diverse models to detect outliers more reliably. To this end,
such diverse models explore different views (subspaces) of the input
data, so that their outputs are combined to yield a consensus detection
on the abnormal nature of the input data. Several proposals have
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been done in recent years that leverage the use of ensembles for the
detection of outliers [46, 47, 48].

2.1.1.3. Challenges of anomaly detection problems

Despite its profitable past of research achievements, anomaly detection is
a complex problem with many challenges to be faced, which makes each
practical scenario in which this task is accomplished unique and difficult to
solve on its own. A representative fraction of usual difficulties that anomaly
detection problems encounter in practice is offered below:

1. Definition of the normal region is a challenging task. The boundary
between normal and abnormal is not always clear as per the information
and indications provided by domain experts towards the definition of
the task.

2. Related to the previous point, when anomalies result from malicious
acts, attackers tailor their attacks to make them appear as normal
as possible. Thus, distinguishing normal instances from anomalies is
even more difficult in such adversarial settings. This is the reason
for which the recent past has witnessed the emergence of a new field
(adversarial machine learning [49]), focused on the development of
adversarial attacks for Machine Learning models, as well as defenses
to counteract them effectively.

3. The notion of anomaly is different for each application domain. For
example, in the medical domain, small fluctuations (i.e., body tem-
perature) can be an anomaly, while a similar fluctuation in the stock
market domain can be normal.

4. The noise often mimics the behavior of anomalies in the data space,
so it is difficult to discern and eliminate anomalous events based on
their effect on the input data.

5. In multivariate datasets, anomalies can be hidden and visible or de-
tectable for only a subset of the features. Therefore, as the dimen-
sionality of the dataset increases, it becomes unfeasible to explore all
feature subsets and reliably detect eventual anomalies that reflect only
on some of them.

6. The cost, difficulty, or even impossibility of obtaining annotation is
already a problem in itself, so having annotated anomalous data for
all types of anomalies under target is often an unfeasible assumption
to approach the problem from a supervised learning framework.

7. The lack of annotation is a problem for measuring the detector’s per-
formance, therefore affecting the performance-driven choice of the best
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model, its hyperparameter tuning and comparison to other counter-
parts.

2.1.2. Time series anomaly detection

A time series is a time or chronological-ordered sequence of observations
that are correlated in time [28]. Due to continuous data generation and
recollection, time series is one of the most used data types in our life. For
example, credit, personal, financial, judicial, medical, or web usage data
are temporal. In this context, time series outlier detection aims to analyze
anomalous behaviors over time series data, becoming arguably one of the
main tasks that can be tackled in time series data mining. It has been studied
in various application domains, such as credit card fraud detection, fault
detection in industry, and intrusion detection in cybersecurity. Surprisingly,
only two literature reviews can be found out related to this research area:
the first one was introduced in [50], whereas the second one was recently
contributed in [28].

The following sections introduce time series anomaly detection: in Sec-
tion 2.1.2.1, essential time series properties are presented. Next, Section 2.1.2.2
summarizes different techniques used to detect anomalies in this particular
type of data, while challenges to be addressed are discussed in Section 2.1.2.3.

2.1.2.1. Properties of time series

As in traditional anomaly detection problems, time series data have their
own properties, such as input data, stationarity, and anomaly types, which
are summarized in Figure 2.3. Such properties are decisive to choose and
eventually implement an anomaly detection algorithm for time series data.

TIME SERIES
 PROPERTIES

Point anomaly

INPUT 
DATA STATIONARITY ANOMALY 

TYPES

NonstationaryUnivariate

Multivariate Seasonal
variation

Trend

Stationary

NATURE OF  
THE METHOD

Remainder

Sequential anomalies

Anomaly  
time series

Univariate in
each variable

Dimensionality
reduction

MultivariateUnivariate

Figure 2.3: Properties of time series data that are relevant for the design of anomaly
detection algorithms over them.
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input data: Time series can be univariate or multivariate. A univariate
time series is an ordered set of real-valued observations, where each observa-
tion is recorded at a specific time. In contrast, a multivariate time series is
described by ordered k-dimensional vectors, where for each specific time, k
real-valued observations are collected.

stationarity: Time series can be stationary or non-stationary. Sta-
tionary time series are those in which the mean and variance are constant
over time. An example of stationary time series is depicted in Figure 2.4. In
contrast, as shown in Figure 2.5, in non-stationary time series the mean or
variance may change over time.

Figure 2.4: Example of a stationary time
series.

Figure 2.5: Example of a non-stationary
time series.

Nonstationary time series can be represented as the sum of three com-
ponents: trend, seasonal variation, and noise. An example of a time series
decomposition is shown in Figure 2.6. Trend reflects the direction in which
the series aims at in the long term. Seasonal variation reflects the oscillations
that occur around the trend, repetitively and in short-term periods. Finally,
noise or remainder are the residual values that are not explained by the
trend or the stationary components of the time series, and may or may not
have a random statistical behavior.

Most traditional statistical algorithms in the literature are based on
stationary time series because of its several advantages. First, as the mean
is constant, it is easily estimated to predict a new observation. Furthermore,
assuming that the data follow a known distribution, such as a normal, it is
also possible to estimate prediction (or confidence) intervals, assuming that
the data follow a known distribution, such as a normal. However, although
stationary time series have significant advantages, in most cases, the time
series are nonstationary. For that reason, many statistical techniques try
to convert nonstationary time series into stationary ones, such as [22], by
employing different strategies to eliminate these three components of the
time series.
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Figure 2.6: Example of a time series decomposition.

anomaly types: The recent study in [28] distinguishes among three
anomaly types in time series: point anomalies, sequential anomalies, and
anomaly time series. Point anomaly is a data instance considered anoma-
lous concerning others in a specific instant of time. Such anomalies may
arise in univariate and multivariate time series, and can be global or local.
An anomaly is called global when a data instance is considered anomalous
concerning the time series, and local when it is considered anomalous when
compared to its neighboring points. Instead, sequential anomalies are con-
secutive instances in time whose behavior is unusual. As in point anomalies,
sequential anomalies can also be global or local. To conclude, anomaly time
series refers to an anomalous entry time series. This kind of anomaly can
only be detected when the input data is a multivariate time series.

nature of the method: Anomaly detection methods can be univari-
ate or multivariate. Univariate methods only consider a single time-dependent
variable, whereas multivariate can work with more than one time-dependent
variable. There are two techniques to deal with multivariate time series. The
first one consists of employing univariate techniques over each time-dependent
variable. Some of these methods do not consider variable correlation. Instead,
other approaches use dimensionality reduction techniques to find a new set of
uncorrelated variables, and then a univariate detection method is applied to
each of them. The second method is to employ fully multivariate techniques.
This method can only be applied to multivariate time series, and they cannot
be used in univariate time flows.
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2.1.2.2. Time series anomaly detection techniques

According to the aforementioned studies in [50, 28], anomaly detection
techniques for time series can be classified into three categories: model-based
methods, distance-based methods, and histogramming:

Model-based or statistical methods: these are the most common ap-
proaches in the literature. They determine if a point at a time xt as
anomalous if the distance to its expected value x′

t is higher than a
predefined threshold. These methods distinguish two sub-categories: es-
timation model-based anomaly detectors and prediction-based anomaly
detectors. Estimation models [51, 52, 22] need previous and subse-
quent observations to the current data to compute the expected value,
while prediction-based techniques [53, 54, 53] only require past data
to calculate the expected value.

Dissimilarity-based methods : approaches in this category measure the
previous dissimilarity between multivariate points or representation,
and they do not need to fit a model. An anomaly is detected if the
dissimilarity between the current multivariate point and its expected
value is higher than a predefined threshold. Some dissimilarity-based
anomaly detectors are [55] and [56].

Histogramming : These techniques compare the error given by the
original histogram generated from all the data and the histogram
obtained by removing the point from the data. The point is detected as
an anomaly if the histogram representation when removing the point
yields a smaller error than the original one. An anomaly detection
algorithm hinging on this principle is the one proposed in [57].

2.1.2.3. Challenges in anomaly detection problems over time series data

As a result of the temporal correlation between data points in time series,
additional challenges emerge besides those already present in traditional
anomaly detection problems:

The statistical distribution underlying the data points in a time series
may change over time as a consequence of the effect of exogenous
factors (concept drift), causing that the consideration of what an
anomaly is by the anomaly detection algorithm may become obsolete.
Hence, models that adapt suitably to non-stationary time series data
must be able to detect distribution changes and adapt to them when
they occur.

Input data may be collected in regular or irregular time intervals, and
may contain missing values. It is essential to analyze such missing
values to declare them as an anomaly and impute them before model
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training. In anomaly detection over multivariate time series, data
corresponding to different time-dependent variables must be collected
within the same time intervals.

Time continuity plays an essential role, since time series data values
are highly correlated at successive points in time. In multivariate
time series, time correlation may exist between different variables.
Thus, some anomalies can only be observed in specific subspaces.
Moreover, when several time-dependent variables are correlated with
each other, outliers in one variable can cause new outliers to appear in
the correlated variables.

Temporal context is determinant to detect anomalies, since it is possible
that a point is a normal value, but not at the specific time instant at
which it is observed. For example, 25 degrees Celsius can be a normal
temperature in summer, but not in winter.

2.1.3. Online time series anomaly detection

With the emergence of digitization, the Internet of Things (IoT), and
massive data generation, online time series outlier detection has become
a relevant task in many domains, such as fault detection (prognosis) in
manufacturing industries [58, 59], intrusion detection in cybersecurity [60],
and fraud detection in banks [61]. Due to the speed at which data are
generated, massive data storage is not always possible, and its distribution
may change over time. Thus, new challenges have emerged: i) the entire
dataset is not available for learning, and hence learning must be performed
incrementally; ii) every newly incoming data must be processed once, without
multiple passes through the entire data set (namely, one-pass learning); and
iii) the distribution of data is not stationary and can change over time
(concept drift), requiring the inclusion of adaptation/forgetting mechanisms
in outlier detection methods [50, 19]. These constraints hinder even further
the design of time series anomaly detection methods that effectively detect
anomalies in time series data under such challenging circumstances.

Most contributions reported to date in online times series outlier detection
[19, 62] consist of adapting traditional offline learning algorithms to stream
processing. Recent research focuses on two different methodologies [28]:
retrain the model each time a new data arrives or learn the model in
an incremental manner by adjusting the learning algorithm itself. These
approaches are often combined with techniques to handle drifting data
distributions over the stream, leading to several of the most renowned
learning algorithms for non-stationary data streams known in the area [63].

Sections that follow hereafter introduce some of the main aspects related
to online time series anomaly detection. To begin with, Section 2.1.3.1
describes the properties of streaming time series. Then, different techniques
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for outlier detection in online time series are categorized and summarized in
Section 2.1.3.2. Finally, similarly to previous section, challenges of anomaly
detection resulting from the requirements of online processing are discussed
in Section 2.1.3.3.

2.1.3.1. Properties of online time series anomaly detection

In addition to those characterizing traditional anomaly detection and offline
time series anomaly detection, online time series anomaly detection problems
have their particular properties that are determinant when choosing or
implementing an online anomaly detection algorithm for time series. These
main characteristics are summarized in Figure 2.7, and consist of the amount
of arrived data each time, types of online learning, and types of anomalies
in online processing.

ONLINE TIME SERIES
PROPERTIES

Point anomaly

DATA ARRIVAL ONLINE LEARNING 
TYPES ANOMALY TYPES

IncrementalOne-pass

Chunk-by-chunk Window-based

Window-based

Adaptive

Retrain

Figure 2.7: Properties of online time series anomaly detection problems.

data arrival: One of the main characteristics to consider when de-
signing or choosing a model is how the data is received. Data may come in
the form of samples, one at a time, named one-pass processing, or chunk-
by-chunk, also referred to as batch processing. In both cases, models must
process and detect anomalies in time whenever new data arrive, either as
samples in isolation or in chunks.

online learning types: There are several ways to adapt to the
evolution of time series. The most intuitive one is to retrain the model within
the past data every time new data arrive. This is usually done by resorting
to a sliding window of past data, which is used as the data for retraining the
model. However, this strategy may be computationally expensive depending
on the model, and past information relevant for the discrimination of what is



22 preliminaries

normal and what is anomalous can be lost depending on its temporal depth.
A generally better approach is based on incremental learning, where the
model is not rebuilt from scratch every time new data arrive, but is instead
updated incrementally by using only the new information received. Two
techniques can be distinguished to realize incremental learning: adaptive
methods and window-based methods. Adaptive methods update the statistics
whenever a new value arrives, without any need for retaining historical
values. These methods require little memory and are very fast. On the other
hand, window-based methods use sliding windows to maintain and update
parameters on the most recent data [28]. These techniques are especially
useful for training neural networks and distance-based methods, as sliding
windows reduce the set of observations to be considered and maintain the
most recent subset of data that may influence the current data.

type of anomalies: Online time series anomaly types should be
the same as those defined in traditional time series anomaly detection, i.e.,
point anomalies, sequential anomalies, and anomaly time series. However,
currently all streaming processing works are only focused on point anomaly
detection.

2.1.3.2. Online time series anomaly detection techniques

As already mentioned, point anomaly detection for univariate time series is
closely related to online processing. Hence, as can be concluded from most
recent studies, many proposals are for real-time and fall within three general
categories [28]: model-based, density-based, and histogramming.

Model-based approaches: as explained for offline time-series anomaly
detection, two model-based strategies can be noted: estimation-based
[64, 62] and prediction model-based [65, 66, 19].

Density-based methods, such as [67, 20, 68], analyze the number of
neighbors within a distance. They build upon the intuitive assumption
that anomaly points have fewer neighbors, less than τ within a distance
threshold.

Dissimilarity-based approaches: As introduced in offline time series
detection techniques, these methods measure the pairwise dissimilarity
between the current multivariate point and its expected value, and
detect it as an anomaly if the dissimilarity is higher than a predefined
threshold. A representative dissimilarity-based detector is proposed by
Li et al. [69].

Histogramming : as before, histogramming methods consider that a
point represents an anomaly if the new histogram generated by remov-
ing the query point gives a smaller error than the histogram using the
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entire available data. Muthukrishnan, Shah, and Vitter [57] introduced
a proposal based on histogramming.

2.1.3.3. Challenges of online time series anomaly detection problems

In addition to the traditional anomaly detection and offline time series
anomaly detection, the requirements of online processing jeopardizes even
further the detection of anomalies in a number of aspects:

As in traditional anomaly detection over time series, in online pro-
cessing time series can also be stationary or non-stationary, the latter
being the most common circumstance in stream settings. Consequently,
models must be able to adapt to distribution changes over time, so as
to preserve steady detection figures in varying data contexts.

In steam processing, the training data continuously change, and can
be incomplete since data is constantly collected, and models must be
updated with recent data. Furthermore, as a result of this variability
and incompleteness, the scale of the data, mean, and variance are
not static, and are difficult to reliably compute or estimate for a
significantly long time, hindering even further the process of identifying
abnormalities over the flowing data.

In streaming environments, normal behavior may evolve and not be
sufficiently represented in the future.

The high dimensionality of the data, especially in Big Data problems,
can insert redundant, irrelevant, or correlated characteristics that can
damage the definition of normality and the model itself.

The arrival speed is also critical. Data can be produced very fast,
e.g., each second, or more sparsely, e.g., every ten minutes or each
hour. When data flows fast, storing a massive amount of data points is
computationally costly, even unaffordable by any technological means.
Moreover, according to the arrival time interval, some models may be
limited due to their high time computational cost and their inability
to incrementally learn within the imposed latency and/or memory
constraints.

To handle multiple large data streams, computing systems must be
able to distribute the workload in parallel, assigning processing tasks
to more than one physical processor. This distribution requirement and
the need for exploiting the time correlation pose a challenge for the
design and parallel implementation of anomaly detection algorithms.
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2.2. ENSEMBLES

Ensemble learning, also referred to as committee-based learning or learning
multiple classifier systems, are methods used in data mining that combine
the results of multiple base learners (or detectors) to enhance the overall
reliability and accuracy of the model when undertaking a given modeling task
[70]. By combining diverse learners, ensembles can reduce the dependence
of the model on the specific data set, and overcome the weak performances
resulting from the lack of ground truth. Furthermore, they alleviate the
model selection problem, and have in general better generalization abilities
than a single method.

Ensembles are extensively studied in different data mining contexts, such
as classification or clustering. However, their application to anomaly detec-
tion tasks is more limited. Investigations conducted on anomaly detection
ensembles have shown that the theoretical foundations of ensembles in this
field are not very different from those known for classification ensembles. As a
result, much of the research is focused on adapting these ensemble techniques
to anomaly detection problems. Nevertheless, certain limitations arise from
the natural absence of ground truth that makes this line of research more
challenging.

The construction of an ensemble is defined by two phases: base learner
generation and combination method selection (see Figure 2.8 and Figure 2.9).
Each phase can be broken down into several sub-steps. On the one hand,
base learner generation can be divided into two steps: algorithm(s) selection
and diversity generation. On the other hand, the selection of the combi-
nation method comprises another two sub-steps: component selection and
combination method selection. Component selection is optional, but it can
be used to improve the overall performance of the ensemble even further.

Learner 1

Learner 2

Learner M

Combination

Figure 2.8: Common ensemble schema.

The first step, algorithm(s) selection, consists of choosing the most suitable
algorithm(s) that will constitute the ensemble components. With this aim, the
main aspects of specific anomaly detection problems, and the characteristics,
advantages, and drawbacks of each technique, described in Section 2.1,
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Figure 2.9: Design steps of an ensemble anomaly detection algorithm.

must be considered. As the ensemble comprises several base learners, it is
possible to choose a single algorithm (homogeneous base learners) or combine
several different techniques (heterogeneous base learners), to complement
the weaknesses of single detectors while enhancing their strengths.

The rationale for the rest of steps and a summary of the methods available
to implement them in practice are described in the following sections. In
particular, Section 2.2.1, Section 2.2.2, and Section 2.2.3 correspond to
the analysis of diversity induction, combination, and selection, respectively.
Then, Section 2.2.4 reviews shortly different types of ensemble strategies.
To conclude, Section 2.2.5 analyzes the challenges of this specific flavor of
anomaly detection algorithms.

2.2.1. Diversity induction techniques

The diversity among the individual base learners is a key aspect to ensure the
effectiveness of an ensemble when solving a given learning task. That is, the
results of base learners when queried with a given input data instance should
be as different as possible, yet coherent with respect to the data distribution
to be modeled. It is intuitive to think that to harness the combination of
the learners’ outputs, the results of the base learners should be different;
otherwise, there will be no improvement in performance. Hence, in general
it is convenient to increase the number of learners that will take part in the
ensemble, provided that they are built differently from the available data.

When approached as an unsupervised learning problem, the absence of
ground truth in outlier detection problems makes it difficult to effectively
measure and guarantee a degree of diversity between the base learners in
the ensemble. However, heuristic mechanisms for diversity generation exist
to construct outlier detection ensembles. This section examines in depth
such diversity generation methods, categorizing them in data-based diversity
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induction methods (Section 2.2.1.1), model-based diversity induction (Sec-
tion 2.2.1.2), and different strategies to combine several diversity induction
techniques (Section 2.2.1.3).

2.2.1.1. Data-based diversity induction

Data-based diversity induction methods are based on the idea that each
part/view of the dataset provides a specific insight about its underlying
distribution. Therefore, using an ensemble over different portions/views of
the data allows modeling its distribution diversely, yet coherently. These
techniques aim to induce diversity training the base learners on different
training subsets generated by distinct parts, samples, projections, or functions
of the original data. Different training subsamples can be drawn by selecting
a sample of data instances, or by choosing a relevant subspace of the feature
space. At this point it is necessary to distinguish between instance-based
and feature-based diversity generation methods, depending on the domain
over which such diversity is produced:

Instance-based diversity generation: these techniques generate differ-
ent training subsamples by choosing a fraction samples of the original data.
This sampling is performed by following a given criteria, such as random
sampling. Diversity generation techniques utilized in recent contributions
include:

• Bagging : this method is one of the most popular instance-based
diversity generation methods in classification ensembles. Bagging
applies bootstrap sampling to generate different base learners. Given
a training data set of n training samples, bagging uses sampling with
replacement to generate different subsamples and train a base learner
on each subsample. This process implies that some original instances
may appear more than once in the samples drawn from the available,
while others will not be present. As a result of this bootstrapping
process, a variation named wagging has been recently analyzed by
[23]. As duplicated data points can be seen as a kind of weight that
adds diversity, in wagging all the points are retained, choosing their
weights explicitly from a particular distribution.

• Subsampling : some outlier detection algorithms (e.g., Local Outlier
Factor, LOF [36]) are not robust to the presence of repeated points,
making the bagging approach an unsuitable choice for creating diver-
sity in outlier detection ensemble. To overcome this, given a training
data set of n training samples, a training subsample can be drawn
by sampling without replacement. Over the years, some variants of
subsampling have emerged, including variable subsampling [71] to
reduce the bias induced by the data size, and geometric subsampling
[23].
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• Boosting/Data set pruning : boosting is very popular in data classifica-
tion, having coined well-established ensemble models for this specific
task (e.g., AdaBoost [72]). Specifically, boosting is a sequential en-
semble technique that uses weak base learners to classify instances
into normal or anomalous. At each iteration, misclassified samples
are given an increasingly higher relevance. By proceeding over several
iterations, base learners constructed along the boosting chain strive
to classify difficult examples correctly. Ultimately, a set of diverse
learners is produced and their output is combined. Due to the ab-
sence of ground truth, it is hard to identify anomalous samples and
thus, weight them correctly along the boosting chain. Consequently,
very few unsupervised sequential boosting ensembles can be found in
the literature, and most of them aim to refine the training data set,
removing possible anomalous samples instead of weighting them [73].

• Other approaches : alternative diversity induction methods operating
on the data themselves have been designed based on the properties
of the selected base models. Some examples are projected clustering
[47], adaptive sampling [74], stream mini-batch learning [75] and
noise injection into the training dataset [5], among others.

Feature-based diversity generation: differently to data-based ap-
proaches, feature-based diversity generation techniques generate different
training subsets by choosing or extracting features from the original data.
This is done by following any of the criteria described in what follows:

• Feature bagging or random subspace: this method exploits the data-
locality effect in detecting high-dimensional anomalies. During several
iterations, it selects some dimensions uniformly at randomly (without
repetition) from the original dataset, and creates dimensional pro-
jections or training sub-datasets. There are few works, such as [76]
(supervised), [3, 77] (semi-supervised) and [48] (unsupervised), whose
proposal for inducing diversity in their utilized ensembles rely on this
feature bagging approach. Recently, a few variations have emerged
with the aim to reduce the existing correlations among detectors,
such as rotated bagging [71] and non-redundant feature bagging [78].

• Random projection: Recently contributed by Khan and Ahmad [77],
this method maps several points to a high-dimensional space, where
the Euclidean distance of any two points in the original feature space
is approximately preserved in the projection.

• Randomized feature weighting : This method was introduced by Ag-
garwal and Sathe [23], and can be viewed as a soft version of feature
bagging. Distinct to other feature bagging methods, in random-
ized feature weighting no dimension is dropped. Instead, features
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are weighted with the use of a specific distribution to produce the
weights.

• Other approaches: other strategies have been adopted to create
different training sets by operating on the features of the original
data. For example, some works [79, 58, 80] train one or more models
per feature, data source or data source type. Other methods use
different feature extraction techniques to create new training datasets
[80, 5, 81]. To conclude, Wang, Mao, and Huang [82] uses Kernel
Principal Component Analysis (KPCA) to create new diverse feature
sets.

2.2.1.2. Model-based diversity induction

Model-based diversity induction methods hinge on the idea that differently
generated base models can learn from the same data in different ways. Thus,
when used for anomaly detection, these techniques aim to induce diversity by
creating diverse base learners by using various anomaly detection algorithms,
initializing them with different hyperparameters, or by adding randomness
to their learning process. Specifically, these model-based diversity induction
strategies give rise to three different subcategories, namely, heterogeneous
base learners, parameter tuning, and model randomization, which are further
described below:

Heterogeneous base learners: an effective way to achieve diversity
between models is by selecting different anomaly detection techniques
as base learners. These methods model anomalies differently from each
other, based on processing and analyzing diverse aspects of the data
towards detecting anomalies in them. Using distinct detection techniques
in constructing an ensemble makes it possible to generalize unique base
models that analyze the data from different points of view. Due to its
simplicity and effectiveness, this is one of the most used techniques in
recent contributions to this area, not only when tackling anomaly detection
as a supervised learning problem [2, 7, 9, 46, 83, 84, 85, 86], but also for
semi-supervised [6, 8, 87, 88, 89, 90, 91, 92] and unsupervised learning
[93, 94, 95, 96, 97].

Parameter tuning: This technique consists of initializing the same
anomaly detection algorithm by using different hyperparameter sets. Hy-
perparameter selection can be made manually based on previous domain
knowledge or, as it occurs in most cases, randomly over reasonable value
ranges for every hyperparameter. This technique is very common in semi-
supervised [98, 99, 100, 101] and especially in unsupervised [102, 30, 103]
formulations of the anomaly detection problem. The absence of ground
truth when formulated as an unsupervised learning problem makes it
difficult to choose the most appropriate hyperparameter values for each
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practical circumstance in which anomalies are to be detected. Moreover, as
most outlier detection algorithms have different associated parameters, this
technique circumvents the problem of selecting the best hyperparameters
and hence, allows generating more robust anomaly detection ensembles.
Nevertheless, it is important to note that varying the hyperparameter
values may not necessarily lead to very dissimilar base learners, hence
producing non-diverse results within the ensemble. Thus, hyper-parameter
tuning is used as a complementary diversity generation method in many
unsupervised works published in the area [104, 105, 82, 106, 107, 108].

Model randomization: another alternative way to induce diversity
among models in an ensemble is to introduce randomness at different
steps of the learning process of the base detector. Randomness can be
generated in many ways. For example, a common method is the one
used in [74], which introduces random connections by randomly dropping
connections in a neural network or in this particular case, autoencoders.
This method is also used to build well-known random forests [109] for
classification or isolation forests [13] for anomaly detection. In this case, a
random feature selection is performed within the learning process rather
than before learning, as it is done when using feature bagging.

2.2.1.3. Combining multiple diversity induction methods

Except in those cases where heterogeneous base learners are used (and even
in some of these cases), it is common to combine several diversity generation
techniques to ensure the effectiveness of the ensemble for the modeling task at
hand. A plethora of works combining several diversity induction techniques
can be found in the literature for supervised [110, 1], semi-supervised [87, 91,
90, 92, 3, 111, 76, 112, 5, 80, 113] and unsupervised anomaly detection [108,
104, 82, 106, 105, 107, 74]. From the unsupervised point of view, almost
all the works classified in this section use parameter tuning as one of the
complementary diversity techniques. As mentioned previously, this is done
because in unsupervised problems it is not straightforward to select the best
hyper-parameter values for the model in the absence of annotation that can
drive this choice.

2.2.2. Combination techniques

As in other modeling tasks, the combination phase of an anomaly detection
ensemble is an essential part of the design process. Combining different
models can reduce both variance and bias, providing more accurate and
robust results. Therefore, this is a crucial phase to get strong generalization
skills. In the literature, there are several combination methodologies and
variants. In this section, a new taxonomy is proposed to categorize them
according to the type of base model outputs. As such, a distinction is done
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between crisp-wise combination, score-wise combination, meta-learning-wise
combination and the fusion of multiple combination methods. Figure 2.10
depicts this taxonomy proposed to classify the detection methods.
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Figure 2.10: Classification of the combination methods that can be used to aggregate the
outputs of the base detection algorithms in an anomaly detection ensemble.

2.2.2.1. Crisp-wise combination

Crisp-wise combination techniques combine the binary detection labels
obtained by the different base detectors. A usual strategy to combine anomaly
scores that are not comparable to each other is to convert them into binary
outputs by applying a threshold. However, it is essential to note that this
can lead to relevant information loss. In the following, we distinguish two
popular crisp-wise combination methods: voting and weighted voting.

Voting: The voting method is the most popular and fundamental method
of the literature related to ensemble learning. Voting-based ensembles
resemble an electoral system in which each base learner votes for one of
the classes. Based on the agreement percentage, or the number of votes
for each class, three voting variants can be distinguished:

• Majority voting : This is the most popular voting strategy. Here
each base model votes for one class label, and the final output class
label is the one that receives more than half of the votes. Majority
voting is the most used crisp combination method for supervised [83,
109, 114, 84], semi-supervised [75, 79, 4, 77, 112] and unsupervised
formulations of the anomaly detection problem [96, 108].

• Exclusive voting : This is is the least restrictive variant of the voting
combination method. Here, an instance is labeled as an anomaly if
at least one detector detects it as such. This combination method is
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useful for reducing the rate of false negatives of the ensemble. A use
case of this combination method is proposed by Diao, Naqvi, and
Pecht [95].

• Unanimity voting: Unanimity voting is the most restrictive voting
variant. In this case, an instance is labeled as an anomaly if all
the detectors detect it as such. It is useful for reducing the rate of
false positives of the ensemble. An interesting use of this method is
proposed by Liu et al. [47].

Weighted voting. Weighted voting is the most powerful crisp combina-
tion method. It can be used when the base detectors perform unequally
to each other. Intuitively it makes sense to grant a higher importance
to the detection results provided by the most accurate base detector.
This importance is modeled by defining different weights per base model.
Usually, such weights are normalized in such way that their sum equals
1. The weight assignment is usually allocated based on the base learners’
performance. That is why it is more common to note the use of weighted
voting in anomaly detection problems formulated over supervised data [2,
114].

2.2.2.2. Score-wise combination

Scoring-wise combination techniques fuse the anomaly scores obtained by
the different base learners. Combination techniques within this category
can be further divided into three subcategories: ranking-based methods,
algebraic-based techniques and decision template-based techniques.

Algebraic Methods: in the literature, there are several score-wise combi-
nation methods. These methods require anomaly scores to be comparable
to each other, having to be normalized or standardized if their value
ranges differ from each other. The most popular score-wise combination
methods are the average and its weighted version. However, there are
other approaches that have been less frequently adopted, but that they
are essential in the ensembles’ literature tackling other modeling tasks:
maximum, minimum, median, mode, sum and product. In what follows
all algebraic combination methods are described in further detail:

• Average: This is the most popular score-wise combination method.
There are few recent works for semi-supervised [5, 80, 91, 92] and for
unsupervised learning [13, 106, 73] that use this combination method
to construct their ensembles. This method consists of averaging
the anomaly scores given by the base detectors. In addition to the
traditional average over the years, some variations such as soft voting
[86] and dumped average [115] have been explored.
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• Weighted average: The weighted average is a powerful variant of the
average combination method. In this case, as in weighted major-
ity voting, each base model has a different weight according to its
performance or diversity. Despite the absence of ground truth in un-
supervised learning settings, this combination method has been very
popular in the last years, being used in several semi-supervised [99,
98, 100, 89, 101, 76] and unsupervised ensembles proposals [105, 82,
107]. Other variations of the weighted average combination method
have been proposed in recent times, including the so-called exponen-
tial induced ordered weighted averaging (EIOWA) approach presented
in [116].

• Maximum: This method computes the maximum of anomaly scores
achieved by each detector. It can be considered as a scoring version
analogous to exclusive voting. This technique can obtain considerably
better results than those obtained by averaging, especially in complex
datasets (i.e., with high dimensionality where anomalies are well
hidden).

• Minimum: This method calculates the minimum of anomaly scores
achieved by each detector. It can be considered a scoring version
analogous to unanimity voting. This technique can be useful to reduce
high false positive rates. However, it usually leads to an increased
rate of false negatives, and hence this method is hardly used.

• Median: this combination method reports the median score over the
base learners. It gives a more stable central representation of scores
than the average, and is not greatly affected by unusual deviations.
This method has been used in several unsupervised anomaly detection
works [74, 117]. The major disadvantage of this combination strategy
is that part of the underlying diversity between the base detectors
can be lost.

• Mode: this method computes the output as the most repeated
anomaly score between all detectors. This method is rarely used
in outlier ensembles, but it can be useful to construct outlier detec-
tion based on forecasting ensembles, as done in [118].

• Product : This technique calculates the product of all the anomaly
scores. It is especially appropriate for anomaly scores that are inter-
preted as a probability. In statistics, under the assumption that all
detectors are independent from each other, the product rule allows
finding the probability that an instance is detected as an anomaly
by all detectors simultaneously.

• SoftMax : this combination method is used by Chakraborty, Narayanan,
and Ghosh [110], and is similar to the average and soft voting meth-
ods. It uses the softmax function to combine normalized anomaly
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scores. Although this combination method is proposed for a super-
vised multi-class classification task, it is worth noting that it can be
extrapolated for semi-supervised and unsupervised learning problems,
as well as for binary detection problems.

Rank aggregation: in some cases, the anomaly scores obtained by
the different base detectors are not comparable to each other, so the
threshold selection or score normalization can be complex to perform. Rank
aggregation is an effective unsupervised alternative that allows combining
the scores of different detectors without the need for normalization or
the use of a specific threshold. Due to its inherent advantages, rank
aggregation is a popular method among recent unsupervised anomaly
detection ensembles [119, 120, 94]. These methods transform the anomaly
scores obtained by each detector into a rank list ordering the scores in
descending order. On the negative note, the main drawback featured
by this method is that it dismisses information concerning the relative
difference between anomaly scores. Nevertheless, rank aggregation has
a rich history in which a variety of solutions have been proposed. Next,
rank aggregation methods used in recent works are summarized:

• Kemeny Young rank aggregation. Recently used by Rayana and
Akoglu [94] and proposed by Kemeny [121], Kemeny Young rank
aggregation is a voting strategy that combines several rank lists using
preferential ballot and pair-wise comparison counts, in which the
detectors are treated as voters and the points as candidates to vote
for.

• Inverse rank aggregation. This method was recently used in [94]. It
re-scores the anomaly scores of each instance based on the inverse of
its ranking position 1/rpos. Then the average of these scores across
detectors is computed.

• Robust rank aggregation. This method was also recently used in [94].
It can identify the detectors whose ranking is consistently better
than expected under the null hypothesis of uncorrelated inputs and
assign a significance score to each detector.

• P-norm rank aggregation. Do, Tran, and Venkatesh [120] introduce a
near-optimal rank aggregation to minimize the disagreement with
all ranks. Optimal minimization requires searching through a size n!
permutation space for n instances, which is unfeasible. Thus, this
method looks to a small portion of data at the top to search through
a smaller permutation space.

• Rank product aggregation. It is a non-parametric statistical tech-
nique biologically motivated to detect differentially expressed genes
in replicated microarray experiments. This method computes the
aggregated anomaly score by the product of all rank values. After
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ranking the observations by their rank product, the significance level
is usually computed. For example, in Lopes et al. [119] the corre-
sponding p − values are computed under the null hypothesis that
each ranking is uniformly distributed.

Decision template: Decision template [122] is a robust supervised com-
bination method that fuses the outputs of different models compared to a
characteristic template for each class. Although it is a supervised method,
the recent works by Wang, Mao, and Huang [90] and Wang and Mao [87]
suggest a solution to use this method deriving pseudo anomaly labels from
the decision profile assuming that the training set could have a 10% error.

2.2.2.3. Meta-learning-wise combination

Meta-learning-wise combination, also known as stacking, is a special com-
bination method that uses a meta-learner (a new learner) to learn how
to combine the first-level learners (base learners) [24]. The general idea of
stacking (see Figure 2.11) is to use the original training data set to train the
base learners and then to create a new data set (meta-dataset) using these
outputs as new features.

Learner 1

Learner 2

Learner M

Meta-learner

Figure 2.11: Schematic diagram of a stacking ensemble.

Three different strategies can be followed to create the meta-dataset
considering some old and recent stacking ensembles. One option is to regard
the outputs of base learners as the input features of the new training dataset,
and if the meta-learner requires so, to consider the original labels as the
annotation of the newly furnished training dataset [7, 93, 46, 9]. Another
option is to extend the original features regarding the outputs of base learners
as additional features [1, 46, 85]. The last option is to extract new features
from the base learning outputs and then to regard these new ones to create
the meta-dataset [6]. In addition, based on the learning paradigm used
to construct first-level learners and meta-learner, three stacking ensembles
types can be distinguished:

Supervised stacking: this method uses supervised learning models as
first-level base learners and the meta-learner. This is the most common
stacking structure and one of the best ensemble techniques in classification
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tasks. However, as we already mentioned, obtaining a labeled data set
in anomaly detection tasks is hard to accomplish in practical scenarios.
Therefore, very few works have been proposed in this direction in recent
years Vanerio and Casas [7], Tama et al. [9], and Ouyang et al. [1].

Semi-supervised stacking: in this second case, stacking uses unsuper-
vised or semi-supervised first-level learners and a supervised meta-learner.
It is helpful to use unsupervised base learners to detect never-seen-before
anomalies, and to train a supervised meta-learner to combine the out-
puts and ultimately reducing the rate of false positives. Recent use cases
adopting semi-supervised stacking ensembles can be found in [46] and [85].

Unsupervised stacking: this third stacking method relies on unsuper-
vised or semi-supervised learners for the implementation of first-level
learners and the meta-learner. Due to the complexity of obtaining labeled
data, it is intricate to use unsupervised algorithms as meta-learners to
create an unsupervised stacking ensemble. However, despite its complexity,
Zhou et al. [93] introduce a completely unsupervised stacking ensemble
by proposing a novel meta-learner referred to as Maximum Likelihood
Estimation (MLE).

2.2.2.4. Fusion of multiple combination methods

It is possible and even desirable to use multiple combination methods
within a multilevel ensemble. One of the main advantages of merging several
combination methods is that it can better balance the bias/variance trade-off
by leveraging the strengths of each combination method [71]. Furthermore,
this technique eases the combination of heterogeneous detectors learned from
different task formulations (supervised, semi-supervised, unsupervised) or
with different outputs (crisp, or anomaly scores in diverging scales). From the
unsupervised perspective, there are some well-known combination methods
that hinge on fusing multiple ensemble decisions:

AOM/MOA: Introduced by Aggarwal and Sathe [71], Average of
maximum (AOM) and Maximum of average (MOA) are two well-
known bi-level ensemble fusion methods. In the first stage of AOM,
the M base detectors of the ensemble are distributed into M/q buckets
of q components, and each bucket is combined by the maximum (and
by average in the case of MOA). In the second step, the M/q resultant
outputs are fused by averaging (with the maximum in MOA). Recently,
two new variants based on dynamic ensembles have been presented:
LSPC_AOM/LSPC_MOA [103] and ADAHO_AOM/ADAHO_MOA
[104].

SELECT : Rayana and Akoglu [94] suggest an alternative two-level
ensemble that learns heterogeneous base learners for which the best
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are selected and combined by seven different combination strategies.
Then, the selection process is carried again to select the outputs of the
best combination methods. Finally, inverse rank aggregation is used
to fuse the selected results, returning a unified rank list ordered from
most to least anomalous.

DELR: Zhang et al. [48] propose a bi-level ensemble, named DELR, for
unsupervised anomaly detection. In the first level, for each detector,
inverse rank is used to compute new anomaly scores, whereas in the
second stage, a weighted average is applied. Weights are computed
based on the intermediate scores and rank information.

Note that the multilevel fusion of combination methods allows generating
an infinite number of different ensemble structures, such as those proposed
in supervised [1] and semi-supervised formulations of the anomaly detection
problem [113, 111, 81, 3].

2.2.2.5. The best base learner

Choosing the best base learner is not a combination method by itself. Nev-
ertheless, there are cases, as in some sequential ensembles or dynamic
ensembles, where it makes sense to select a single base learner. In some
sequential ensembles, as in Zhang, Li, and Chen [73], the best base learner(s)
is trained in the last iteration (i.e., on the pruned data set). Besides, in
dynamic ensembles, the anomaly scores associated to some instances can be
computed by a unique base learner. At this point, two different cases should
be noted. The first case is when for each instance, only one base learner (the
best one) is selected [88]. In the classification domain, this strategy is also
known as dynamic classifier selection. The second case, adopted in recent
dynamic ensembles [87, 90, 92, 91], is to determine, for each instance, which
is the best option, either by select the best detector or by choosing a set of
detectors. In the latter case, one of the combination techniques described
above is often implemented to combine the outputs of the selected base
models.

2.2.3. Learner selection techniques

Selection techniques are an optional but very effective step to increase the
performance and robustness of ensembles. The goal of selection techniques
is to choose the optimal subset of learners by selecting the best perform-
ing learners while preserving the ensemble’s diversity. Moreover, it should
be noted that some combination techniques, particularly those based on
weighting, are closely related to selection methods. All of them are based
on the same criteria: to assign each learner a higher or lower weight. When
a learner is assigned a very low weight, it effectively reduces to a deletion
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of the base learner from the ensemble (pruning). This section overviews
different categories in which learner selection techniques can be organized,
starting by inspecting the literature related to pruned ensembles, and ending
with a review of dynamic ensembles. Figure 2.12 illustrates the taxonomy of
learner selection methods that is followed throughout this literature analysis.
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Figure 2.12: Taxonomy of learner selection methods for ensemble learning.

2.2.3.1. Pruned ensembles

Usually, pruned ensembles aim to maximize either performance or group
diversity. However, due to the absence of ground truth, all analyzed works
are focused on optimizing the performance of the pool of base learners.
Specifically, we can distinguish them into three different weighting and
selection techniques: manual weighting, ranking-based selection, stacking
and weighted Bayesian inference.

Manual weighting is the oldest and most straightforward option. How-
ever, it can be also regarded as the most complex approach in practice,
as it implies establishing the weights of the base learners manually
based on domain knowledge. However, not many practical cases afford
domain knowledge that can be used for this purpose. To facilitate
the analysis process and create efficient anomaly ensembles, Xu et
al. [107] develops a complete toolkit for ensemble construction and
visualization.

Ranking based selection: Rayana and Akoglu [94] present SELECT
approach to build selective anomaly ensembles. SELECT assumes
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that there are inaccurate detectors in the ensemble, and provides two
unsupervised orthogonal selection strategies – vertical and horizontal
selection – to discard inaccurate detectors. The vertical selection strat-
egy exploits correlation among the results, removing those detectors
that do not agree with the pseudo ground truth. At the same time,
the horizontal approach uses order statistics to filter out far-off results,
eliminating the detectors that provide inaccurate ranking (compared
to the others) of the target anomalies.

Stacking : The use of another machine learning algorithm (meta-learner)
to learn to combine diverse base learners’ outputs is a common approach
to effectively weigh and select the most accurate base learners. As
already introduced in Section 2.2.2.3, several stacking-based proposals
have been proposed for supervised and semi-supervised tasks, being
only one work reported in [93] where this approach has been explored
for unsupervised problems due to the lack of ground truth.

Weighted Bayesian inference: most ensembles proposed for process
monitoring [100, 99, 98, 89, 101, 76] use a weighted average approach
as their combination method. These works combine the control limits
instead of the anomaly scores, so the resulting output of the fusion
is a threshold instead of an anomaly score. Although the application
of this combination and weighting method has been so far specific of
process monitoring applications, its use can be extrapolated to any
other domain.

Estimated errors-based weighting : Rayana, Zhong, and Akoglu [105],
in their ensemble proposal, introduce a novel unsupervised weighted
aggregation method based on estimated errors of the base detectors.
In concrete, they examine unsupervised agreement rates for all possi-
ble pairs of base detectors to estimate their error rates and thereby,
compute weights for their aggregation.

2.2.3.2. Dynamic ensembles

As opposed to pruned ensembles, dynamic ensembles select the best subset
of base learners on the fly for each new test instance. The term dynamic
highlights the adaptability of the ensemble structure to process each incoming
instance, selecting the best subset of base learners for each in contrast to
static ensembles and pruned ensembles, where an identical subset of the
base learners within the ensemble are used for every new query instance.

Classical dynamic ensembles, also known as dynamic classifier selection
or dynamic ensemble selection, are increasingly popular in the last years,
having been applied to a variety of supervised [2, 114], semi-supervised
[87, 90, 91, 92, 88] and unsupervised anomaly detection problems[103,
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104]. As shown in Figure 2.13, the construction of these ensembles consists
of four fundamental steps: i) the definition of a labeled validation set; ii)
the determination of the region of competence; iii) the establishment of a
competence measure; and iv) the choice of the selection criterion.
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Figure 2.13: Steps of classical dynamic ensembles.

i) Definition of a labeled validation set : dynamic ensembles require a
labeled validation set V S to compute the competence of the learners.
Some related works [88, 114, 2, 90] distinguish explicitly between
training dataset and validation dataset. In contrast, in [91, 92, 87, 103,
104], the training dataset is used as the validation dataset. Due to the
absence of labels, most semi-supervised [87, 90, 91, 92] (excluding [88])
and unsupervised [103, 104] proposals suggest different techniques to
generate the pseudo labels: a rejection rate of 10% of the training
data to be declared as anomalous, the modification of the decision
boundary learned after training, the rejection of 50% of the training
samples, or an averaging of the outputs of the base learners. These
pseudo labels are only used to select the best base learners, but are
not part of the final result.

ii) Determination of the region of competence: the competence of a
detector defines how effective or good it is at detecting or classifying
instances. Then, the competence region RCtest concerning a test
instance can be defined as a subset of the validation set V S which is
used to evaluate the competency of the detectors, by classifying the
test instance. This step identifies the similarity between the known
instances in the validation set and the given observation. Methods for
determining the region of competence proposed by the most recent
publications can be classified into three groups: the use of the entry
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validation set [88, 2], nearest neighbors-based [91, 114, 92, 103, 104]
and clustering-based criteria [87, 90].

iii) Competence measure: this step defines the criterion to measure each
model’s performance or competence. Alves Ribeiro et al. [114] pro-
poses to measure the competence of a detector as the true positive
rate and true negative rate obtained by the model in the region of
competence. This is a supervised dynamic selection approach and
for this reason, there is no uncertainty of the correctness of the
labels of the region of competence. To deal with this uncertainty
and make model selection more reliable, the remaining supervised
[2] and semi-supervised works [88, 87, 90] compute the detector’s
region of competence. This is done by first calculating the detector’s
local competence using assorted techniques, such as the posterior
probability [91, 92, 90], minimal difference measure [88], randomized
reference classifier [87], full competence measure [88] or the entropy
measure [88]. Secondly, they calculate the global competence by the
normalized potential Gaussian function [2, 87, 90, 123] or by the
Pearson correlation [103, 104].

iv) Selection: Once the measure of competence of each base learner has
been computed, it is necessary to establish the selection criterion.
Several strategies have been reported for this purpose, from the
selection of the most competent detector [114, 88, 104], the use of
non-parametric statistical tests [87, 90, 91, 92], histograms [103] or
the retention of learners whose competence is above a threshold [2].

Other dynamic ensembles: in the literature, some proposals meet the
definition of a dynamic ensemble, but are not referred to as such. The
following describes the most recent proposals that could also be classified
as dynamic ensembles:

• Pruned average: This pruning method, introduced by Aggarwal [115],
can be considered as a simple but effective dynamic ensemble, where
the base learners with low anomaly scores are removed before the
combination phase. Pruning can be done, for example, by using an
absolute threshold imposed to the anomaly score, or by choosing the
k best models for each data point.

• Predictive uncertainty-based weighting : in this self-adapting weighting
strategy proposed by Wang, Mao, and Huang [82], the base learners
of the ensemble are predictors, whose outputs are weighted and
combined before the overall detection of the anomaly is produced.
The weighting procedure is based on predictive uncertainty, in which
base learners’ influence is automatically adjusted by their predictive
variance.
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• A dynamic pool of base learners : Bose et al. [112] propose an ensemble
that dynamically adds or removes base learners based on the majority
voting results. If an instance is detected as an anomaly, to reduce
possible false positives, two new base learners are added to the
ensemble. If the instance is still detected as an anomaly, an anomaly
is reported. Nevertheless, if an inlier instance is detected, the two
base learners are removed from the ensemble.

• Exponential induced ordered weighted averaging (EIOWA): this weight-
ing strategy was introduced by Yager and Filev [124] and used for the
first time in an outlier ensemble by Parhizkar and Abadi [116]. It can
be seen as a variation of weighted average and as a dynamic selection
strategy. The weights change according to the order-inducing values
of their associated base classifiers. The order-inducing values may be
defined differently, e.g., based on detector performance or diversity.
However, in these two works, the order is governed by the anomaly
score produced by the base learners inside the ensemble.

2.2.4. Types of ensembles

Several other criteria can be used to classify ensembles according to their
components [23, 91], usually related to the methods selected to perform
the first two steps of the ensemble construction process. A summary of
these classification criteria is shown in Figure 2.14, whereas a more detailed
explanation of each type of ensemble is given next:

TYPES OF 
ENSEMBLES

COMPONENT 
INDEPENDENCE

COMPONENT
HOMOGENEITY

COMPONENT  
TYPE

SELECTION
TECHNIQUE

One-level

LEVEL  
NUMBER

Multilevel

Sequential

Independent

Homogeneous

Heterogeneous

Model-centered

Data set-centered

Static

Pruned

Dynamic

Sequential

Independent

Homogeneous

Heterogeneous

Model-centered

Data set-centered

Static

Pruned

Dynamic

Figure 2.14: Taxonomy of the different types of ensembles.

categorization by component independence: This is the
most common and it consists of classifying the ensembles according to the
dependence or independence of the base learners [23]. In this case, there are
two types of ensembles: sequential ensembles and independent ensembles.
Sequential ensembles are those that apply one or more base learner(s) sequen-
tially to all or part of the data, so that at each iteration, either the dataset
or the model changes. In other words, the execution of each model depends
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on the result from previous executions. Most of these ensembles require
calculating the error made in intermediate steps. Because the absence of the
ground truth and the need for computing the intermediate error, sequential
ensembles are not usually applied to the detection of anomalies. Even so
recently several successful proposals have been made such as [73], [104] and
[81] into others. On the contrary, independent ensembles learn independently
or in parallel a set of different base learners, and then combine them to
obtain a more robust result. Diverse models provide different perspectives
on various aspects of the data. Hence, combining these perspectives can
provide more robust results that do not depend on specific parameters of
the algorithm or the dataset itself.

categorization by component homogeneity: An alternative
way for ensemble categorization is based on the homogeneity of the base
learners, differentiating between homogeneous and heterogeneous ensembles
[23]. Homogeneous ensembles use a single learning algorithm. In most cases,
except for some sequential ensembles, it is necessary to use an additional
technique to increase the number of base learners and their diversity. Hetero-
geneous ensembles use multiple learning algorithms. These ensembles allow
detecting anomalies using different strategies and providing higher diversity
among base components. Additionally, they can be complemented with other
techniques to further increase their degree of diversity.

categorization by component type: Another way of classifica-
tion is that presented by Aggarwal and Sathe [23]. In this case, they classify
the ensembles according to the type of components, discriminating between
model-centered and dataset-centered ensembles. Model-centered ensembles
are those that combine different models trained from the same dataset. Par-
ticular cases are the combination of homogeneous models instantiated with
different hyperparameter values or with distinct seeds. Data set-centered
ensembles are those which use models learned from base algorithms trained
with different subsets of data. Such subsets can be created from different
samples of instances or different attribute subsets.

categorization by selection techniques: With the emer-
gence of dynamic ensembles, Wang and Mao [91] proposed a new ensembles
categorization according to the selection strategy, yielding three types of
ensembles: static, pruned and dynamic ensembles. Static ensembles are
traditional ensembles where no base learner selection strategy is applied,
i.e. all base models are combined. Instead, pruned ensembles perform the
selection of the most competent algorithms only once, usually during the
training phase. After selecting the most competent subset of learners, the
components of the ensemble remain fixed. Finally, in dynamic ensembles
the structure of the ensemble varies for each new incoming query instance.
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These flexible ensemble structures allow efficiently choosing the appropriate
subset of base learners for each incoming example.

categorization by level number: another alternative criterion
can be proposed to categorize ensembles used in the literature according to
the number of levels of the ensemble. Based on this criterion, we distinguish
two types of ensembles: one-level ensembles and multilevel ensembles. To
begin with, one-level ensembles follow traditional the ensemble architecture
shown in Figure 2.8. In this case, the ensemble comprises a set of base
models, a single combination method, and optionally a selection step. Multi-
level ensembles, however, combine the base learners in several phases using
the same combination method in each level or, instead, by using different
combination methods. This spans a myriad of ensemble architectures that
can be created; among them, the most popular multilevel approach is to con-
struct an ensemble that blends together other ensembles featuring different
combinations and/or diversity induction methods.

2.2.5. Challenges of anomaly detection ensembles

As it occurs with the detection of anomalies, the absence of ground truth
and the computational challenges derived from stream processing jeopardize
the construction of anomaly ensembles in several phases reviewed heretofore,
which are further discussed below:

1. Challenges in the algorithm(s) selection: since this first step of the
ensemble construction process aims to choose the most appropriate
anomaly detection algorithm for each problem, this step undergoes the
same challenges of anomaly detection already introduced in Section 2.1.

2. Challenges in base learner augmentation and diversity generation:
The main challenge when inducing diversity in an anomaly detection
ensemble is the complexity of measuring the performance and the
diversity among base learners in the absence of ground truth. Additional
difficulties arise in real-time processing scenarios, such as the complexity
of generating different subsets of instances (especially when data points
are correlated through time) or the constraints in creating subsets of
features, since some variables may be useless or even disappear over
time, while new predictors may eventually emerge from the processed
data streams.

3. Challenges in component(s) selection: Selection techniques used in clas-
sification ensembles mainly rely on available ground truth to measure
the classification performance and/or the diversity of the base learners.
Therefore, the absence of the ground truth that frequently prevails in
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real-world anomaly detection problems handicaps the adaptation of
these methods to address the detection of anomalies.

4. Challenges in the selection of the combination method : Some of the
classical combination methods used in classification, such as mean,
maximum, or majority, do not need any knowledge about the ground
truth of the data over which the anomaly detection task is formulated.
Therefore, they can be used in unsupervised anomaly ensembles without
any modification. However, other effective combination techniques in
classification ensembles, such as weighted mean, weighted median,
weighted voting and stacking, usually require ground truth and finite
datasets, so their adaptation to unsupervised anomaly detection and
online processing remain unsolved in the current literature.



Part II

CONTRIBUT IONS

This part presents the original contributions associated with
this Thesis. The first chapter covers the advances made towards
solving the shortage of public software. The second chapter of
this second part has two objectives: on the one hand, the proposal
of a methodology to generate new anomaly detectors from online
time series prediction algorithms, which is proposed to stimulate
the creation of new online time series outlier detection proposals.
On the other hand, the second chapter presents a new ensemble-
based anomaly detector that results from the application of the
aforementioned methodology, which is shown to improve the
performance of current detectors by reducing the rates of false
positives and negatives with respect to other modern outlier
detection alternatives.





3
OTSAD : A PACKAGE FOR ONL INE
T IME -SER IES ANOMALY
DETECTORS

Online time series outlier detection (TSOD) is a young research line which is
gaining interest within many domains in recent years. Compared to classical
anomaly detection, online time series outlier detection is a more challenging
task for many reasons: these problems do not have entire data set available,
they must be able to consider the arrival time, and they have to deal with
stationarity or non-stationarity of the data. Due to these constraints, there
is still a long road ahead plenty of challenges and research opportunities
for the research community working on TSOD. Indeed, the number of
proposals has increased over the years. However, most tools and algorithms
for TSOD are currently available via paid subscription, with very few free
software proposals. The absence of open-source implementations hinders
future research and proposals since it is difficult to compare and evaluate
the performance and features of the literature detectors with new ones.

To cover this research niche, this chapter presents the otsad1 R software
package available at the Comprehensive R Archive Network (CRAN). In
contrast to other packages used for online TSOD, otsad is easier to use and
includes six powerful online TSOD algorithms for univariate time-series that
cover different current needs, such as online processing and the ability to
work in both stationary and non-stationary environments. It also provides
a new original false positive reduction algorithm, called ReduceAnomalies
capable to be used with all the algorithms in otsad. Finally, it also includes
some advanced functionalities, such as NAB [125] detector measurement
technique and a visualization function.

The rest of the chapter is organized as follows. The next section reviews the
state of the art in online TSOD and the available open-source packages. Then
Section 3.2 provides detail about the implementation and functionalities
of the developed package. Next, a benchmark is performed in Section 3.3.
Section 3.4 describes an example of the use of otsad. Finally, Section 3.5

1 https://CRAN.R-project.org/package=otsad
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concludes the chapter and sketches some future lines of research inspired by
the package herein presented.

3.1. BACKGROUND

Online TSOD is a novel research line and challenging for several reasons:
the entire dataset is not available; time correlations must be considered, and
stationarity or non-stationarity of the data must be handled. Hence, despite
classic anomaly detection methods, which have been widely studied and
have extensive open-source software available, there is little documentation
[50, 28] and open-source software available for this purpose. In the following
sections we provide some background about the state of the art in online
TSOD (Section 3.1.1) and open-source libraries (Section 3.1.2).

3.1.1. Online time-series outlier detection

Two learning paradigms have emerged for online TSOD in recent years:
model retraining and incremental learning. Model retraining retrains the
model over a window of the most recent data each time new data arrives. On
the other hand, incremental learning updates the model and its parameters
each time new data comes.

3.1.1.1. Model retraining

Perhaps the most intuitive way to apply an outlier detection algorithm
in streaming is retraining it by time windows each time new data arrives.
However, this may not be the best option depending on the selected technique.
It may lead to high computational costs and being unavailable to respond
timely. In addition, by training the model over the most recent data window,
relevant information from the past can be lost. Because of this, not many
works embrace this strategy. Nonetheless, we describe the most representative
ones that follow a retraining strategy.

To begin with, Basu and Meckesheimer [126] proposed two methods for
time series outlier detection and removal. Both are prediction model-based
detectors. The first one, two-sided median method for cleaning noisy data,
determines whether a particular data point is an outlier by computing the
median value of a neighborhood of data points over a non-overlapping sliding
window considering past and future data. This method has an overlay of a
few samples, as it needs to wait for future data. The second method, named
one-sided median method for cleaning noisy data, is designed for fully-stream
processing. In this case, they only look at the first difference of the observed
series to compute the median value of a neighborhood of data points over an
overlapping window. The window width and threshold values are determined
arbitrarily (for example, the percent deviation from the mean) and may
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depend on the signal. However, they suggest that it is not always possible
when dealing with a non-stationary process, so it seems more appropriate
for stationary data. Moreover, although all examples have been done in
univariate time series, the proposed techniques can be also used to detect
anomalies over multivariate streaming time series.

More recently, Siffer et al. [127] introduce two prediction model-based
approaches to detect outliers in streaming univariate time series using past
data and retraining. Both are based on Extreme Value Theory, do not require
handset thresholds, and do not make an assumption on the distribution.
The two algorithms are SPOT for streaming data having any stationary
distribution and DSPOT for streaming data that can be subject to concept
drift, i.e., nonstationary.

Finally, Zhou et al. [128] propose retraining an ARIMA model within a
sliding window to compute the prediction interval and detect anomalies. In
this manner, the parameters are refitted each time that the window moves a
step forward. As it is well known, ARIMA is designed to work in stationary
time series, and it can be applied in univariate as well as in multivariate time
series. Moreover, this method can be classified as prediction model-based.

3.1.1.2. Incremental

Two types of incremental algorithms can be distinguished: i) adaptive algo-
rithms, which do not require historical data; and ii) window-based algorithms,
which store the history of the most recent data to update the model:

Adaptive methods update the model’s statistics whenever a new value
arrives over the stream, without retaining any historical value. These
methods require little memory and perform very fast. However, there
are few adaptive online TSOD methods due to their design complexity.
The first work is the Probabilistic Exponentially Weighted Moving Av-
erage (PEWMA) proposed by Carter and Streilein [64]. This algorithm
is a probabilistic method that hinges on EWMA at its core, and dy-
namically adjusts its parameters based on the probability of the given
observation. It is an estimation-based outlier detector for univariate
TSOD, and it only performs reliably over stationary time series.

Later, also based on EWMA, Raza, Prasad, and Li [62] introduced
Shift-Detection based on EWMA (SD-EWMA) and Two-Stage Shift-
Detection based on EWMA (TSSD-EWMA). SD-EWMA is an adaptive
method that uses an Exponentially Weighted Moving Average (EWMA)
model-based control chart to detect covariate shift-point in univariate
or multivariate stationary time-series. In addition to SD-EWMA, they
also proposed TSSD-EWMA, which can work over non-stationary time
series. The algorithm works in two phases. In the first phase, it applies
SD-EWMA, while in the second phase, it checks the authenticity of
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the anomalies using a Kolmogorov-Smirnov test to reduce the rate of
false alarms. It should be noted that this method has an overlay of a
few samples, as it needs to wait for future data to perform the false
positive reduction.

Window-based methods embody the most used strategy to learn from
data incrementally. These methods use a sliding window to maintain
and update the model over the most recent data. Several works have
been proposed based on this online learning approach. Xu, Kerst-
ing, and Ritter [65] present a prediction model-based non-parametric
Bayesian method (ATOS) to detect anomalies in stationary univariate
time series data. This method is based on the student-t process to
learn the dynamics of the time series with submodular optimization-
based kernel selection and thus, identify potential anomalous behavior.
Similarly, Xu, Kersting, and Ritter [66] proposed OLAD, a prediction
model-based online non-parametric Bayesian method based on the
student-t process and stochastic gradient descent to learn the under-
lining dynamics of the time series and detect outliers in univariate
stationary time series. Further along this line, Angiulli and Fassetti
[67] introduced the Stream Outlier Miner (STORM) for univariate
nonstationary time series. This nearest neighbors method is based on
density and detects outliers that are abnormal concerning data within
the current window. Likewise, Burnaev and Ishimtsev [20] proposed
Conformal KNN Anomaly Detector (KNN-CAD), a density-based
model-free anomaly detection method for univariate time series. This
method adapts itself to non-stationary data, and provides probabilistic
abnormality scores based on the conformal prediction paradigm. Based
on a similar approach, Ishimtsev et al. [68] presented the so-called
KNN Lazy Drifting Conformal Detector (KNN-LDCD), a variation
of KNN-CAD that also hinges on density and which is suited for uni-
variate non-stationary TSOD. Both methods use different measures
for dissimilarity and conformity calculation. In recent years, Ahmad
et al. [19] introduced Numenta HTM, a prediction model-based online
outlier detection algorithm for non-stationary univariate time series
based on an online Hierarchical Temporal Memory (HTM). Differently
from the above, Muthukrishnan, Shah, and Vitter [57] presented a
histogramming-based algorithm for outlier detection for both univariate
and multivariate non-stationary time series.

3.1.2. Open source software for online TSOD

The existing public software tools for online TSOD consists of nine libraries
implemented in different programming languages, including C++, Java,
Matlab, Python and R. Specifically, such publicly available packages are
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libspot [18], STORM [15], SCREEN [16], SCR [17], spirit [14], NumentaTM
[19], KNN-CAD [20], CAD-OSE [21], and AnomalyDetection [22]. These
available software packages and their source code repositories are summarized
in Table 3.1.

Table 3.1: Summary of the publicly available open-source software.

Library Lenguage Code

libspot [18] C++ https://github.com/asiffer/libspot
STORM [15] Java https://github.com/Waikato/moa/tree/master/moa/src/main/java/moa/clusterers/outliers/Angiulli
SCREEN [16] Java https://github.com/zaqthss/sigmod15-screen
SCR [17] Java https://github.com/zaqthss/sigmod16-scr
spirit [14] Matlab http://www.cs.cmu.edu/afs/cs/project/spirit-1/www/
NumentaTM [19] Python https://github.com/numenta/NAB/tree/master/nab/detectors/numenta
KNN-CAD [20] Python https://github.com/numenta/NAB/tree/master/nab/detectors/knncad
CAD-OSE [21] Python https://github.com/smirmik/CAD/
AnomalyDetection [22] R https://github.com/twitter/AnomalyDetection

The proposed otsad library is implemented in R. R is a language and free
software environment for statistical computing and graphics. It is one of
the most popular languages used among statisticians and data miners to
develop statistical and data analysis software. CRAN "Comprehensive R
Archive Network" is a network of FTP and web servers around the world
that store identical, up-to-date versions of code and documentation for R.

Nowadays CRAN servers include a lot of influential packages for outlier
detection domain which are very closed to the central learning task of this
Thesis. outliers [129], SMLoutliers [130], univOutl [131] and OutliersO3 [132]
are some of the packages available for anomaly detection. There are few
more for outlier detection in time-series i.e. tsouliers [133], qicharts [134] and
washeR [135]. We also found few complete packages for imbalance problems
i.e. smotefamily [136], imbalance [137], ebmc [138], and multi-imbalance
[139]. There are also multiple packages for change-point detection i.e. ocp
[140], ecp [141], bulletcp [142] and MFT [143]. However, only one R package
deals with online TSOD, namely, AnomalyDetection [22], and it is no longer
available in CRAN.

Based on this short study, it is fair to conclude that very few packages are
available for online TSOD regardless of the programming language. Moreover,
is important to note that all of them implement a single proposal, so there
are currently only nine algorithms available for online TSOD. Therefore, it
is essential to provide more algorithms and software tools to implement and
evaluate them systematically.

3.2. OTSAD: IMPLEMENTATION AND FUNCTIONALITIES

Otsad is the first R package that collects a set of online TSOD. This package
provides the first open source implementations of a set of up-to-date and
powerful detectors (from Table 3.2 detectors 1-4). Moreover, to increase the
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diversity of the initial set of detectors and ease its use to R developers, Otsad
also includes two of the best detectors in NAB competition (detectors 5-6 from
Table 3.2). It is also worth noting that all functionalities with the exception
of CAD-OSE are developed in the R language. There is no documentation
for the CAD-OSE algorithm, and due to the sensibility of some python
methods used in its original code, it was kept in python and adapted to
python3 and its use in R. All developed functions and functionalities are
thoroughly documented and bundled alongside the package, giving the user
detailed guidelines, such as recommended parameters values and running
examples.

This package’s main functionalities and implementation details are de-
scribed in the following sections. The implemented TSOD algorithms are
introduced in Section 3.2.1. Then, the detector measurement technique is
described in Section 3.2.2. Section 3.2.3 describes the proposed false positive
reduction technique. Finally the datasets and the graphic tool are introduced
in Section 3.2.4 and Section 3.2.5, respectively.

3.2.1. Anomaly detection algorithms

Implementing algorithms based on their description in the article where they
are first proposed is not always an easy task. Frequently the formulation is
complex yet poorly explained. Sometimes even part of their algorithmic steps
are missing. We have chosen four of the algorithms reviewed in the previous
section to create this library: PEWMA [64], SD-EWMA [62], TSSD-EWMA
[62], and KNN-LDCD [68]. This selection has been made based on their
properties and interpretability. All these selected algorithms are incremental
since, concerning model retraining, they generally require less computational
resources and retain temporal information better than other counterparts.
We choose heterogeneous algorithms covering different types of learning,
adaptive and window-based, as well as the ability to process stationary and
non-stationary time series. In addition, to increase the diversity of the initial
set of detectors and facilitate their use to R developers, we also include
two of the detectors that have performed best in the NAB competition:
KNN-CAD [20] and CAD-OSE [21].

In particular, this package implements and documents the set of detectors
listed in Table 3.2. On the one hand, the first three detectors are adaptive,
while the next three are window-based. On the other hand, the first two
algorithms can be used with stationary data. In contrast, the other four
are suitable for use with non-stationary data. Each of these algorithms
were implemented to work in two different scenarios: i) classical processing,
used when the complete data set (train and test) is available, and ii) in-
cremental processing, used when the complete dataset is not available but
produced continuously over time. In addition, it should be noted that given
their algorithmic similarity, the KNN-LDCD and KNN-CAD detectors have
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been implemented in the same function CpKnnCad and distinguished by the
ncm.type parameter.

Table 3.2: Features and functions of the anomaly detectors available in the otsad package.

Online Anomaly
Detectors

Incremental Stationarity Functions

Classic processing Online Processing

PEWMA [64] Adaptive Stationary CpPewma IpPewma

SD-EWMA [62] Adaptive Stationary CpSdEwma IpSdEwma

TSSD-EWMA [62] Adaptive Non-stationary CpTsSdEwma IpTsSdEwma

KNN-LDCD [68] Window Non-stationary CpKnnCad(ncm.type= "LDCD") IpKnnCad(ncm.type= "LDCD")

KNN-CAD [20] Window Non-stationary CpKnnCad(ncm.type= "ICAD") IpKnnCad(ncm.type= "ICAD")

CAD-OSE [21] Window Non-stationary ContextualAnomalyDetector ContextualAnomalyDetector

3.2.2. Detector measurement technique

In recent years, Lavin and Ahmad [125] introduces a novel scoring method
(NAB) for measuring the performance of online TSOD algorithms. This
measure is specifically designed for the evaluation of online TSOD. Besides
traditional detection statistics, such as precision, recall or f1-score, the NAB
score also accounts for the time elapsed until the anomalies are detected.

Specifically, the NAB scoring method works as follows: first, a time win-
dow is centered on each ground truth anomaly in order to determine the
corresponding labels of detected outliers. A detected anomaly is labeled as
true positive (TP) when it falls inside the window, and as false positive (FP)
when it falls outside. A false negative (FN) label is considered when there
are no detected anomalies inside the window. The window size is calculated
as the ratio between 10% of the number of observations and the number of
ground truth anomalies in the time series. Then, to account for the elapsed
time until detection, this measurement technique resorts to different weights
(WTP , WFP , WFN for TP, FP, and FN, respectively). As such, FN and FP
will be assigned a negative score, whereas the early detected positives will
get a higher score than late ones. In this regard, the NAB scores establish
three profiles, each with different weights summarized in Table 3.3: standard
(WFP = WFN ), reward low FP rate (WFP > WFN ) and reward low FN rate
(WFP < WFN ). Finally, the total score is calculated as the sum of the scores
assigned to each detected anomaly and the cumulative scores of missed
anomalies. This score is then scaled as:

Scorefinal = 100
Scoredetector − Scorenull
Scoreperfect − Scorenull

, (3.1)

where Scoreperfect is the score of a perfect detector, i.e., detecting all anoma-
lies taking the maximum score. The Scorenull value is the score of a null
detector, i.e., one that does not detect any anomaly (and no FP). It must
be noted that the theoretical range of the NAB score is between [−∞, 100],



54 otsad: a package for online time-series anomaly detectors

where value 100 corresponds to perfect detection. To conclude, a visual
example of all procedures is shown in Figure 3.1.

Figure 3.1: Scoring example for a sample anomaly window, taken from [125], which
exemplifies how the scores of detected anomalies vary according to their relative position
within the window.

Table 3.3: Label weights per profile.

Standard Reward low FP rate Reward low FN rate

WTP 1.0 1.0 1.0
WFP -0.11 -0.22 -0.11
WTN 1.0 1.0 1.0
WFN -1.0 -1.0 -2.0

The otsad package implements this metric to measure the detectors’ per-
formance. For these objectives, there are three main functions implemented:
GetDetectorScore, which calculates the detector score without normaliza-
tion; GetNullAndPerfectScores, used to obtain the scores of the perfect
and null detectors for the dataset; and NormalizeScore, which allows nor-
malizing detector scores. Besides, the package incorporates an additional
function (GetNumTrainingValues) to allow the user to obtain the number
of instances used as a training set in NAB. The training set size is computed
as 15% of the dataset size, and is fixed to 750 for datasets accounting for
less than 5,000 data points.

3.2.3. False positive reduction technique

Some algorithms already included techniques to reduce false positives. These
can be only applied to the above algorithms. For this reason, a novel algorithm
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is implemented, referred to as ReduceAnomalies, aimed to reduce false
positives, ensuring that it can be applied to all the detection algorithms
developed inside the package.

W1 W2

xt xt+1 xt+w 

Figure 3.2: Explanatory example of false positive reduction by ReduceAnomalies algorithm.
Unfilled circles are inline points and colored ones are anomalies detected by a detector.
The blue ones are those ones detected as true positives by ReduceAnomalies and the green
ones, as they are inside the windows ReduceAnomalies detects them as false positives.

The ReduceAnomalies algorithm is inspired by the real-life situation where
a time lapse exists between the time an alarm is triggered and the instant
at which a corrective action is performed. In other words, the minimum
time lapse between the first and the second alarm. The algorithm uses the
number of processed data points between two detected anomalies to reduce
the number of false positives. When the first anomaly xt is detected, a
new window of length w is created, with xt+1 as the starting point, and
xt+w as the ending point. For each newly detected anomaly, its relative
position compared to the window is evaluated. Detected anomalies inside the
window are excluded. If a detected anomaly is outside the window, it is then
considered as a real anomaly and a new window is calculated in the same
way as mentioned above. A visual example showing how ReduceAnomalies
operates is shown in Figure 3.2.

3.2.4. Datasets

Otsad includes 51 of the 58 labeled one-dimensional time-series from different
fields available in the NAB [125] repository, which are gathered in a number
of groups or families:

artificialWithAnomaly, comprising synthetically generated time se-
ries data with varying types of anomalies;

realAdExchange, composed by online advertisement clicking rates,
where the metrics are cost-per-click and cost per thousand impressions;

realAWSColudwatch, built upon AWS server metrics;

realKnownCauses, such as hourly registered taxi schedules in New
York or CPU utilization;

realTraffic: Real time traffic data from the Twin Cities Metro area
of Minnesota (USA), with occupancy, speed, and travel time data from
specific sensors;
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realTweets: A collection of Twitter mentions of large publicly-traded
companies such as Google and IBM;

Each of the datasets included in otsad is composed of these three columns:
timestamp, value and is.real.anomaly, the latter containing the labeled
ground truth anomalies.

3.2.5. Visualization tool

The otsad package also implements two functions to visualize the obtained
results. The first function, named PlotDetections, displays the detection
results in an interactive graph. In addition to the detected anomalies, the
print.real.anomaly and print.time.window parameters allow displaying
the ground truth and the validation windows as defined in NAB. Also, other
basic elements can be configured and customized, including the title, x-label,
or y-label of the displayed axis. Moreover, if further customization of the
chart is needed, it is possible to obtain an easily customizable ggplot object
using the parameter return.ggplot. A live example can be found at this2
GitHub repository.

The second graph functionality is integrated with the GetDetectorScore
function. Through the print and title parameters, you can activate and
define the title of an interactive graph that will show the scores assigned to
each instance by the NAB metric. In addition to this information, you can
also see the validation window, along with the false positives, true positives,
and false negatives, distinguished by different colored dots. A live example
can be found at this3 GitHub repository address.

3.3. PERFORMANCE AND TIME EFFICIENCY BENCHMARKS

In order to choose a suitable algorithm for online TSOD, there are three
main characteristics that need to be evaluated for each proposal: processing
time, performance, and simplicity in the parameters’ configuration. For this
reason, several benchmarks have been performed to test the capabilities of
the algorithms included in the otsad package. Results of these benchmarks
are discussed in the following subsections:

3.3.1. Performance benchmark

A first benchmark is performed to determine which algorithm performs
best over the datasets included in the developed package. To this end, two
different aspects are analyzed. First, we explore which algorithm general-
izes better across the considered datasets, for which only the best general

2 https://alaineiturria.github.io/otsad/KNN-CAD.html
3 https://alaineiturria.github.io/otsad/KNN-CAD-numenta.html
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hyperparameter configuration of every detector is used. This general hyper-
parameter setting is very useful when the domain knowledge is poor. Second,
the adjustment capability of the algorithms is evaluated. To this end, the
best parameters settings for each dataset are considered. This case is useful
when there is enough knowledge to adjust the detector to the dataset at
hand.

As a first step, the detectors are applied to each dataset considering
different parameter configurations (see Table 3.4). At this point, false positive
reduction techniques are also applied. In the case of PEWMA, SD-EWMA
and TSSD-EWMA, our algorithm with a one-day window size is used. For
KNN-CAD, KNN-LDCD and CAD-OSE the reduction techniques proposed
by their authors are applied. After that, the final score of each detector is
calculated as the sum of the scores obtained over each dataset ScoredDetector.
Finally, the detector’s score is normalized using max-min normalization.
In the following Table 3.6, Table 3.7 and Figure 3.3, the two benchmark
results are shown. The obtained best general parameters are summarized in
Table 3.5.

Figure 3.3: Performance benchmark. A) using the NAB scoring method, i.e. a single
hyperparameter setting for all data sets. B) Using the best parameter setting for each
dataset.

Table 3.6 and Figure 3.3-A evince that the top performing algorithms when
configured with general parameters are KNN-CAD and KNN-LDCD, followed
by CAD-OSE. Moreover, TSSD-EWMA performs worse than SD-EWMA
with general parameters. In Table 3.7 and Figure 3.3-B, it can be observed
that the algorithm with the highest adaptability is TSSD-EWMA, followed by
CAD-OSE. Finally, when comparing the results obtained in Figure 3.3-A and
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Table 3.4: Benchmark parameter settings.

Detector Parameters Value Description

PEWMA
alpha0 {0.1, 0.2, ..., 1} Maximal weighting parameter
beta {0.1, 0.2,..., 1} Weight placed on the probability of the given

observation
l {2, 3, ..., 8} Control limit multiplier

SD-EWMA threshold {0.01, 0.02, ..., 0.1} Error smoothing constant
l {2, 3, ..., 8} Control limit multiplier

TSSD-EWMA
threshold {0.01, 0.02, ..., 0.1} Error smoothing constant
l {2, 3, ..., 8} Control limit multiplier
m {100, 200, ..., 700} Length of the subsequences for applying the

Kolmogorov-Smirnov test

KNN-ICAD
AND
KNN-LDCD

threshold {0.9, 0.95, 1} Threshold used to determine if the current
instance is an anomaly

l {10, 19, 30} Window length
k {5, 21, 27, 31} Number of neighbours to take into account

CAD-OSE

max.left.
semicontexts

{3, 5, 15} Number of semicontexts that should be main-
tained in memory

max.active.
neurons

{5, 15, 25} Number of neurons of the model

num.norm.
value.bits

{3, 5, 9} Granularity of the transformation into discrete
values

base.threshold {0.70, 0.75, 0.76, 0.8} Threshold used to determine if the current
instance is an anomaly

Table 3.5: Best general parameters

Detector Parameters Standard Low FP Low FN Reduced
Standard

Reduced
Low FP

Reduced
Low FN

PEWMA
alpha0 0.9 0.9 0.9 0.8 0.8 0.8
beta 0.1 0.1 0.1 0.6 0.1 0.3
l 8 8 8 8 8 4

SD-EWMA threshold 0.01 0.01 0.01 0.01 0.01 0.01
l 7 8 7 6 7 6

TSSD-EWMA
threshold 0.01 0.01 0.03 0.01 0.01 0.01
l 7 8 6 6 7 4
m 300 300 600 600 300 600

KNN-ICAD
AND
KNN-LDCD

threshold 1 1 1 1 1 1
l 10 10 10 19 19 19
k 5 5 5 27 27 27

CAD-OSE

max.left.semicontexts 7 7 7 7 7 7
max.active.neurons 15 15 15 15 15 15
num.norm.value.bits 3 3 3 3 3 3
base.threshold 0.7 0.7 0.7 0.7 0.7 0.7
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Table 3.6: NAB scores obtained by detectors in the otsad package over the Numenta
Anomaly Benchmark, using global-best hyper-parameter values for all datasets. The
highest scores are highlighted in bold.

Detector Standard Low FP Low FN Reduced
Standard

Reduced
Low FP

Reduced
Low FN

PEWMA 16.80 -30.50 33.90 37.80 18.90 51.10
SD-EWMA 39.90 17.80 50.40 49.20 34.40 56.70
TSSD-EWMA 42.30 29.90 49.00 47.10 35.50 53.90
KNN-ICAD -2.60 -80.10 24.70 59.20 45.10 65.90
KNN-LDCD -2.60 -80.10 24.70 59.20 45.10 65.90
CAD-OSE 56.50 41.50 63.20 57.50 48.50 62.20

Figure 3.3-B, it is straightforward to conclude that the performance of every
algorithm is highly related to the parameter configuration of the detector
and the false positive reduction techniques. Furthermore, it also exposes
that the false positive reduction approach is effective towards improving the
detection results. However, it is worth mentioning that all these algorithms,
even the best ones, are far from obtaining perfect results, so better false
positive reduction strategies and, thus, more robust detectors are still in
need for prospective research efforts.

Table 3.7: NAB scores obtained by detectors in the otsad package over the Numenta
Anomaly Benchmark, using the best hyper-parameter values found for each dataset. The
highest scores are highlighted in bold.

Detector Standard Low FP Low FN Reduced
Standard

Reduced
Low FP

Reduced
Low FN

PEWMA 42.20 -7.10 60.50 66.70 45.30 75.50
SD-EWMA 61.50 37.40 72.60 68.70 53.20 75.90
TSSD-EWMA 74.70 61.10 81.40 75.70 66.80 80.80
KNN-CAD 6.30 -64.30 31.80 66.20 54.80 72.00
KNN-LDCD 6.20 -64.30 31.70 66.10 54.80 72.00
CAD-OSE 72.20 62.90 78.30 74.60 67.70 79.10

3.3.2. Time efficiency benchmarks

In this section, the time efficiency of each detector is evaluated by two different
benchmarks. On one hand, a first time efficiency benchmark analyses the
execution time of the detection algorithms over the full length of every
dataset, i.e. batch processing. For this study, synthetic datasets of different
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lengths ({1000, 3000, 5000, . . . , 29000}) are used. The number of training
points is calculated using GetNumTrainingValues function, whereas all
other parameters are configured using the best general parameters obtained
in the previous performance benchmark. The outcomes of this first time
efficiency benchmark is shown in Figure 3.4. On the other hand, the second
time efficiency benchmark considers the online or incremental processing
operation of the algorithms, measuring the execution time needed by each
detector to process a unique value. For this aim, a synthetic dataset of 1000
points is used and the time needed to process each data instance is collected.
The rest of parameters are configured as in the classical processing time
efficiency benchmark. A summary of the results of this second time efficiency
benchmark is shown in Table 3.8.

Figure 3.4: Time efficiency of detection algorithms when processing the entire dataset at
once (batch processing).

Table 3.8: Time efficiency over one point processing using incremental processing algo-
rithms.

Detector Minimum Mean Maximum

PEWMA 0 0.00256 0.08
SD-EWMA 0 0.00048 0.02
TSSD-EWMA 0 0.00980 0.02
KNN-ICAD 0 0.00177 0.25
CAD-OSE 1.64 1.87000 2.41

Figure 3.4 reveal that PEWMA, SD-EWMA and TSSD-EWMA are the
most time-efficient approaches, with running times falling below a half of
a second for datasets comprising 29,000 data points. By contrast, the least
efficient algorithm is KNN-ICAD, which requires more than four minutes
to process the same dataset. Even so, it could be a reasonable time for
in-laboratory experimentation. When it comes to the results of the online
processing benchmark shown in Table 3.8, PEWMA, SD-EWMA, TSSD-
EWMA and KNN-ICAD can operate with a collection period of less than a
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half of second. CAD-OSE is the least time efficient, largely because in this
implementation, it queries Python code from R for each processed point,
but it still operates robustly with collection period of less than 3 seconds.
Finally, we can conclude that all these algorithms are time-efficient for online
processing, as the smallest recollection period prescribed in the NAB datasets
is 5 seconds.

3.4. ILLUSTRATIVE EXAMPLE

To further exemplify the use of the developed package for online TSOD, this
section details how to find and plot anomalies in the Speed_7578 dataset
using the KNN-ICAD detector, as well as how to evaluate the detector’s
performance and plot the results.

1. First of all, it is necessary to install and load the otsad library. As it is
available in CRAN, the installation and loading are done in the usual
way by using the following code:

# Install and load the otsad package
install.packages('otsad')
library(otsad)

2. The next step is to choose the dataset. A list of all available datasets
can be retrieved by performing the following command:

# Get a list of the data sets in otsad
data(package = "otsad")

## Data sets in package otsad:
## TravelTime_387 TravelTime_387.
## TravelTime_451 TravelTime_451.
## Twitter_volume_AAPL Twitter_volume_AAPL.
## Twitter_volume_AMZN Twitter_volume_AMZN.
## Twitter_volume_CRM Twitter_volume_CRM.
## Twitter_volume_CVS Twitter_volume_CVS.
## ...

In this use case, the Speed_7578 dataset is chosen by simply typing
its name as follows:

# Get a list of the data sets in otsad
speed_7578

## timestamp value is.real.anomaly
## 1 2015−09−08 11:39:00 73 0
## 2 2015−09−08 11:44:00 62 0
## 3 2015−09−08 11:59:00 66 0
## 4 2015−09−08 12:19:00 69 0
## 5 2015−09−08 12:24:00 65 0
## ...
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3. Now it is time to train the KNN-CAD model on the given data set.
To do this, we first use the function GetNumTrainingValues to obtain
the number of instances of the dataset. At this time, the KNN-ICAD
can be trained by CpKnnCad for offline or by IpKnnCad for incremental
processing:

# Get the number of instances to use as training set
n.train <− GetNumTrainingValues(nrow(speed_7578))

# KNN−CAD by classic processing
result <− CpKnnCad(

speed_7578$value,
n.train,
threshold = 1,
l = 19,
k = 27,
ncm.type = 'ICAD',
reducefp = TRUE

)

# KNN−CAD by incremental processing
# Initialize parameters for the loop
last.res <− NULL
result <− data.frame()

## Calculate anomalies
for(i in 1:nrow(speed_7578)) {
# calculate if it's an anomaly
last.res <− IpKnnCad(
data = speed_7578[i,"value"],
n.train = n.train,
threshold = 1,
l = 19,
k = 27,
ncm.type = "ICAD",
reducefp = TRUE,
to.next.iteration = last.res$to.next.iteration

)

result <− rbind(result, c(last.res$anomaly.score, last.res$is.anomaly))
}

## anomaly.score is.anomaly
## ...
## 285 0.960000000 FALSE
## 286 0.953333333 FALSE
## 287 0.966666667 FALSE
## 288 1.000000000 TRUE
## 289 0.500000000 FALSE
## ...

It is important to note that all information regarding the function,
such as, description, parameters, recommendations, and use examples,
are documented and accessible by ?CpKnnCad or help(CpKnnCad). The
output is shown in Figure 3.5.

4. Now the results are visualized in an interactive graph. The output of
the PlotDetections function is shown in Figure 3.6.

# Plot Results
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Figure 3.5: Extract from CpKnnCad detector documentation page.
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myData <− cbind(speed_7578, result)
PlotDetections(myData, title = 'KNN−CAD_ANOMALY_DETECTOR')

Figure 3.6: Anomaly detection results obtained by the KNN-ICAD detector.

5. To conclude, the performance of the detector is computed in terms of
the NAB metric by using the code below:

# Get detector score
score <− GetDetectorScore(myData)
# Normalize standard result
null.perfect <− GetNullAndPerfectScores(myData)
NormalizeScore(

score$standard,
perfect.score = null.perfect[1, 'perfect.score'],
null.score = null.perfect[1, 'null.score']

)
## standar.s
## 65.63917

The GetDetectorScore function has two additional parameters that
allow visualizing the results of the scores in an interactive graph. The
output is depicted in Figure 3.7.

score <− GetDetectorScore(
myData,
print = TRUE,
title = "speed_7578␣results␣using␣KNN−ICAD␣detector"

)

3.5. CONCLUSIONS

This chapter has addressed the lack of publicly available software for online
TSOD by presenting a new package developed to undertake this task. The
package, called otsad, is an efficient and easy-to-use R package that fully
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Figure 3.7: Performance scores obtained by the KNN-CAD detector using the Numenta
metric.

meets the demand for anomaly detection algorithms over univariate time se-
ries in online environments. It also implements a new false positive reduction
technique to improve the detection statistics of the detectors included in the
package. Furthermore, the novel NAB [125] detector measurement technique
is also included in the package, allowing users to compare the performance
of anomaly detectors easily and more realistically.

Complimentary to the description of the package itself, the experimental
results elicited by several benchmarks have been run to ascertain the time
efficiency and detection performance of the algorithms implemented in the
package. This experimentation has shown that all proposed algorithms are
time efficient. However, in terms of performance, the results attained by the
algorithms are far from the perfect detection scores. The outcomes have
shown that the performance of the detectors is stringently subject to the
use case, the hyperparameter values chosen for the algorithms, and the
technique used for reducing the amount of false positives. This highlights
the need for deriving more efficient algorithms capable of being applied
to real streaming environments without the need for expert knowledge to
adjust its parameters. To stimulate this search for new algorithmic proposals,
additional functionalities will be added to the otsad package in the future,
increasing its portfolio of anomaly detection algorithms and false positive
reduction techniques.





4
A FRAMEWORK FOR ADAPTING
ONL INE PREDICT ION ALGORITHMS
TO OUTL IER DETECTION OVER
TIME SER IES

As concluded in the previous chapter, more and better algorithms are of
utmost need for online TSOD. Most contributions reported thus far for online
TSOD [19, 62] consist of adapting traditional offline learning algorithms
to stream processing. However, online time series anomaly detection’s con-
straints hinder the design of TSOD methods that effectively detect anomalies
in time series data under such challenging conditions.

In the search for more and better algorithms for online TSOD, we found
that several works [29, 28] have suggested that prediction-based algorithms
are suitable for adaptation and use as online TSOD approaches because
only past data are required during the training phase. This suitability is
rooted in the maturity of real-time time series forecasting, which has been
developed over decades to reach a relatively high degree of maturity compared
to TSOD. However, the continuously changing behaviors of training data,
their potentially non-stationary nature, and the unavailability of a complete
dataset to accommodate this variability in the training phase make the
adaptation of online prediction algorithms to outlier detection even more
complicated, as evidenced by the scarcity of research in this domain [19, 66].

This chapter attempts to fill this research gap by proposing a novel
framework that allows for the easy adaptation of any online prediction
algorithm to online TSOD. To this end, the proposed framework addresses
two important factors and establishes specific methodological steps for
transforming an online prediction model into an outlier detection model
for time series data. First, online data normalization or standardization is
performed, followed by online anomaly scoring based on prediction errors.
The proposed framework implements several online normalization and outlier
scoring methods that are already available in state-of-the-art models, as
well as novel proposals designed to improve upon baselines. Specifically, two
novel normalization methods—one-pass adaptive normalization (OAN) and

67
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one-pass adaptive min-max normalization (OAMN), as well as two scoring
methods—sigma scoring (SS) and dynamic SS (DSS) are proposed.

As a second contribution of the chapter and in response to one of the main
goals of the Thesis, the usability and efficacy of the proposed framework is
shown by discussing the adaptation of a novel and more robust ensemble
variant of an online recurrent extreme learning machine (OR-ELM) [144].
OR-ELM is an online time series forecasting algorithm capable of efficiently
training a single-hidden-layer feed-forward NN in an online fashion. The
variant of this model presented in this study, which is called the ensemble
OR-ELM (EOR-ELM), is adapted to TSOD using the proposed framework,
yielding a novel outlier detector called the EOR-ELM anomaly detector
(EORELM-AD). This new detector exemplifies the potential of the proposed
framework for developing novel online TSOD algorithms. Three experimental
studies are conducted to provide informed answers to two different research
questions (RQs) related to this novel TSOD algorithm:

RQ1: Which streaming normalization and outlier scoring methods perform
best when used within the proposed EORELM-AD approach?

RQ2: Does EORELM-AD perform competitively compared to other TSOD
methods from the literature?

The results discussed later in this chapter in response to these two RQs
reveal that the proposed framework can effectively support the adaptation of
online prediction algorithms to online TSOD, yielding novel approaches that
can perform at par with other methods in the recent literature. Figure 4.1
conceptually summarizes the main contributions of this chapter, illustrating
that the proposed framework facilitates the development of novel approaches
for online TSOD using time series prediction models.

Outlier 
Detection

Online Time Series 
Outlier Detection

Time series 
prediction Predictive 

modeling

Proposed 
framework

New algorithms 
for online TSOD

EORELM-AD

Figure 4.1: Diagram showing that two research lines in the literature (time series prediction
and online TSOD) that have evolved separately over time are connected by the proposed
framework, whose application yields a novel algorithm that performs competitively with
respect to the state of the art.

The rest of this chapter is organized as follows. Section 4.1 describes the
related work and introduces concepts necessary for a complete understanding
of the proposed framework. The proposed framework and its adaptation
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to EORELM-AD are described in Sections Section 4.2 and Section 4.3,
respectively. Section 4.4 presents an experimental setup designed to answer
the RQs formulated above. Section 4.5 presents and discusses the obtained
results and compares different normalization, scoring, and TSOD algorithms.
Finally, the conclusions and future research directions are discussed in
Section 5.1.

4.1. BACKGROUND

Before proceeding further, it is needed to give a brief update on the state of
the art (Section 4.1.1) and pause on the basic concepts and works related
to two processing steps of online TSOD approaches that rely on anomaly
scores: online normalization (Section 4.1.2), and online anomaly scoring
(Section 4.1.3). This brief review is intended to provide the reader with the
background knowledge required to understand the design of the proposed
framework.

4.1.1. Online TSOD

As mentioned above, online TSOD is an emerging field of research whose
interest is growing rapidly. In the time elapsed since the development of the
OTSAD framework, new proposals have emerged from the literature related
to online TSOD. Numenta [19] has ranked first in all related competitions
for several years. Since its inception, various other algorithms have been
proposed to improve the baseline detection performance set by the HTM
Numenta anomaly detector. DeepAnt [97] was one of the first alternatives
to outperform the baseline. In essence, DeepAnt is a deep learning method
that combines convolutional and long short-term memory NNs. However, it
should be noted that although DeepAnt requires very little training data, its
training phase is performed offline. Recently, the online evolving spiking NNs
for unsupervised anomaly detection (OeSNN-UAD) framework [145] has
outperformed both the Numenta anomaly detector and DeepAnt, becoming
one of the main benchmark algorithms for prospective studies. OeSNN-UAD
runs entirely online and leverages eSNNs to learn to label input values in a
time series as inliers or outliers.

From the perspective of prediction-based online TSOD, both of the ref-
erential studies published in [29] and [28] suggest that online prediction
algorithms for time series can be suitably adapted to online TSOD. Although
research on real-time time series forecasting has a relatively high degree
of maturity compared to TSOD, very few proposals based on online time
series forecasting can be found in the literature based on the inherent com-
plexity of online processing. The most representative approaches based on
time series prediction algorithms are the online non-parametric Bayesian
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method (OLAD) [66] and Numenta [19] anomaly detector mentioned above
Section 3.1.1.

In this study, we stepped beyond the principles behind the design of
the Numenta anomaly detector by designing a framework that implements
different methodologies for online data normalization and online outlier
scoring. The effectiveness of this framework was proven by developing a novel
detector called EORELM-AD based on the OR-ELM prediction algorithm.
The performance analysis presented in this study demonstrates that the
performance of EORELM-AD is very competitive compared to that of most
recent state-of-the-art methods for online TSOD [97, 145].

4.1.2. Online normalization

In offline learning, data can be normalized in several ways. One of the most
widely used approaches for data normalization is min-max normalization,
where values are mapped to a predefined range R[low, high] (typically set
to [0, 1] or [−1, 1]). The normalized value x′ for a given feature or variable x
is calculated as follows:

x′ = (high− low) · x− xmin

xmax − xmin

+ low, (4.1)

where xmin = minx (corr. xmax). Another normalization strategy for re-
current use is z-score standardization, where the values of a feature are
normalized according to its mean and standard deviation as follows:

x′ =
x− µ

σ
, (4.2)

where µ denotes the mean and σ denotes the standard deviation.
However, naive min-max normalization and z-score standardization meth-

ods are not appropriate for normalizing streaming data. Min-max normaliza-
tion requires the maximum xmax and minimum xmin values of a variable to
be computed over an entire dataset, which implicitly assumes the availability
of all data samples to learn such values. This assumption clashes with the
requirements of a streaming setup because data instances are generated
continuously, meaning a complete dataset is never available for normal-
ization. Z-score standardization is the most commonly used normalization
methodology for stationary time series because the mean µ and standard
deviation σ are constant under the premise of stationarity. Regardless, in
most real-world streaming time series, the statistical properties of the time
series may evolve over time, meaning this assumption is no longer valid.

To overcome these issues, several alternative normalization methods have
been proposed to modify these popular normalization techniques to make
them suitable for streaming time series. The two main design strategies are
as follows.
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Adaptive methods update normalization statistics whenever a new value
arrives over a stream without the need for retaining any historical values.
These methods require little memory and operate very quickly. However,
because of the complexity of their design, there have been very few adap-
tive normalization proposals. One of these methods is the adaptive z-score
normalization proposed in [146], in which classical z-score standardization
is applied using dynamically calculated means and deviations. To avoid
confusion with other methods, we will hereafter refer to this method as
dynamic z-score normalization (DN).

Window-based methods use sliding windows to maintain and update
parameters based on the most recent data. One traditional approach called
window-based normalization (WN) divides a time series into sliding windows
and normalizes incoming data samples according to statistical properties
(µt and σt) inferred from the current window Wt [147, 148]. Another more
sophisticated window-based approach was introduced in [149]. In this work,
AN was proposed to normalize non-stationary heteroscedastic (non-uniform
volatility) time series. This method was specifically designed for NN training.
Furthermore, it is important to note that this method is not fully incremental
and it cannot be applied to one-pass online learning because it is used to train
different NNs in an offline manner. However, it possesses some incremental
properties that can be exploited to adapt it to an online environment. A
distributed approach to adaptive min-max normalization (AMN) for big
data stream learning was recently proposed in [150]. This method is designed
for online chunk-by-chunk (batches of data) processing, where disjoint (non-
overlapping) fixed-size sliding windows are used. Although this method is
incremental, it is designed for chunk-by-chunk processing and is not suitable
for one-pass online learning.

As discussed above, several proposals for online data normalization are
available in the literature. Among them, AN [149] and AMN [150] require
adaptation to online one-pass processing. For this reason, in this chapter
a novel approach is proposed to adapt these methods to online one-pass
processing, as detailed in Section 4.2.1.

4.1.3. Streaming anomaly scoring

Regarding the estimation of the anomaly scores of instances (points) arriving
in a data stream, prediction-based TSOD relies on the assumption that
an outlier is a point that significantly deviates from its predicted value.
Therefore, a point arriving at time t (i.e., xt) can be considered as an
outlier if the distance to its predicted value (x̂t) is greater than a predefined
threshold θ, i.e.:

If ||xt − x̂t|| > θ then an OUTLIER occurs at time t. (4.3)
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Here, || · || denotes a vectorial norm (e.g., absolute value in the case of
univariate time series or Euclidean norm when dealing with multivariate
time series). With this definition in mind, online prediction-based TSOD
methods must perform two tasks: computing the predicted value x̂t, and
computing the predefined threshold θ.

To compute the expected value, several online time series prediction
algorithms are available in the literature. This research field has been ex-
tensively investigated and comprehensively examined in recent surveys on
the topic [151, 152, 153]. We refer interested readers to these overviews for
additional details regarding the upsurge of algorithms proposed in this field.

Incrementally computing the threshold θ is not an easy task because
not all previous data can be stored in memory. To compute the predefined
threshold, two different strategies can be adopted. First, we can calculate
confidence or prediction intervals. Second, we can use historic prediction
errors to calculate the degree of outlierness or predefined threshold. Based on
the first strategy, the OLAD for outlier detection was introduced in [66]. This
work developed an online Student-t process method to learn the underlying
dynamics of time series for prediction and to compute prediction intervals. In
this method, the current value is considered to be an outlier if it falls outside
the prediction interval. The major drawback of this threshold-based strategy
is that the calculation of the prediction intervals depends on parameters
learned by the prediction model. This makes it challenging to generalize the
threshold calculation method to other prediction algorithms.

Since it is independent of the prediction algorithm and its parameters,
we focus on the second strategy, namely the use of historical prediction
errors to compute the degree of outlierness or predefined threshold. There
are two different approaches to compute normalized anomaly scores and
thresholds based on prediction errors [19, 154]. The anomaly likelihood (AL)
introduced in [19] is a novel incremental threshold used alongside the HTM
prediction algorithm, giving rise to the so-called HTM Numenta anomaly
detector. Specifically, the AL scoring approach is a general method designed
in a completely independent fashion relative to the prediction model in use
and it only requires prediction errors for computing score values. Recently,
the authors of [154] proposed DeepAD, which is an anomaly detector based
on an ensemble of different prediction algorithms. The prediction algorithms
are trained in batches and periodically. Additionally, a dynamic threshold
(DT) method is proposed to detect anomalies in real-time.

Applying a threshold to unbounded raw prediction errors is the easiest so-
lution in practice. However, choosing a threshold value is not straightforward
and can lead to many false positives (FPs) if the value is not tailored to the
target dataset. This weakness was the main motivation for the proposal of
two new streaming scoring methods, which are described in Section 4.2.2.
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4.2. PROPOSED FRAMEWORK FOR ADAPTING ONLINE
PREDICTION MODELS TO OUTLIER DETECTION

The proposed framework is composed of two main components: 1) online data
normalization and 2) streaming anomaly scoring based on prediction errors.
The procedure for adapting an online prediction model for outlier detection
using this framework is illustrated in Figure 4.2. First, if required by the
prediction model itself, incoming data points are normalized incrementally.
Then, normalized data points are used for training and to predict the next
value in the time series based on the chosen prediction model. To compute
the degree of outlierness, the prediction error is then calculated and input
to the outlier scoring function. Finally, a predefined threshold is used to
determine whether the current sample is an outlier.

t

Window normalization (WN)

One-pass adaptive normalization (OAN)

One-pass adaptive min-max

Dynamic threshold (DT)

Sigma scoring (SS)

Dynamic sigma scoring (DSS)
normalization (OAMN)

Proposed framework

Online
scoringtraining

Online
xt outlierxt

Dynamic normalization (DN) Anomaly likelihood (AL)

prediction algorithm
Online time series

Online
normalization

or inlier

Figure 4.2: Procedure to adapt online prediction models for outlier detection using the
proposed framework.

Figure 4.2 presents the normalization and scoring functions embedded
in each component, along with the procedure for transforming a prediction
algorithm into an anomaly detection algorithm.

4.2.1. Online normalization component

As described in Section 4.1.2, there are several incremental normalization
techniques. Some of them are purely incremental (i.e., DN [146]), whereas
others are window-based (e.g., WN [147, 148], AN [149], and AMN [150]).
However, it is worth noting that the adaptive normalization methods (AN and
AMN) are not specifically designed for one-pass data processing. Therefore,
one-pass variations of both methods are proposed, called OAN and OAMN,
to overcome this limitation. Furthermore, because each method has its
advantages and disadvantages, all these normalization methods are utilized
in the normalization component of the proposed framework. In the following
subsections, OAN and OAMN are detailed.
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4.2.1.1. One-pass adaptive normalization for online learning

AN [149] normalizes non-stationary heteroscedastic (non-uniform volatility)
time series and is specifically designed for NN training. Although it features
certain functionalities that can be implemented incrementally, it is not fully
incremental, which is why it is mostly used in offline setups. Therefore, based
on this approach, the OAN method for online learning is proposed. This
novel method is described below. Similar to AN, OAN is divided into three
stages.

1. Data transformation: OAN uses a sliding window Xt = {xt−n, . . . , xt} of
fixed size n to facilitate one-pass online processing, where the window is
updated whenever a new instance arrives.

The normalization procedure begins by transforming the non-stationary
time series Xt into a new stationary sequence Rt composed of disjoint
sliding windows. To this end, given a time series Xt = {xt−n, . . . , xt}
for each sample Xt[i], its moving average of order k is calculated. Two
different moving average techniques can be used. The simple moving
average computes a sequence of non-weighted averages as follows:

S(k)
s [i] =

1

k

k∑
j=1

X[j] i = 1, . . . , n− k + 1. (4.4)

The exponential moving average weights averaged terms by a constant
smoothing factor 0 ≤ α ≤ 1, which is typically expressed in terms of k
(order, e.g., α = 2/(k + 1)) as follows:

S(k)
e [1] =

1

k

k∑
j=1

X[j] (4.5)

S(k)
e [i] = (1− α)S(k)

e [i− 1] + αX[i+ k − 1],

i = 2, . . . , n− k + 1. (4.6)

Then, given the current time series Xt, its k-moving average S(k), and
the length ω of a disjoint sliding window, the new stationary sequence
R ∈ Rϕ×ω

t is computed as:

R(k)[i, j] =
X[i+j-1]
S(k)[i]

, i = 1, . . . , ϕ, j = 1, . . . , w. (4.7)

Therefore, R is divided into ϕ = n−ω+1 disjoint sliding windows of size
ω, as represented in Figure 4.3. The first ϕ− 1 rows are used as training
instances, whereas the last row is used as a testing instance. Because
only the last instance is required for one-pass online model training, the
window size n is fixed to n = w + 1. In this manner, the computational
cost and initialization time are significantly reduced.
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Figure 4.3: Structure of a new sequence R.

It is worth noting that the moving average method and order k used
for data normalization vary in accordance with the target time series.
Therefore, the adjustment levels for all combinations of different moving
averages and orders k are computed to select the best moving average
type and order k as:

δ(S(k), R(k)[i]) =
1

ω

i+w−1∑
j=i

(X[j]− S(k))2, i = 1, . . . , ϕ− 1, (4.8)

δ(S(k), R(k)) =
1

ϕ

∑
δ(S(k), R[i]), (4.9)

where the configuration that yields the lowest adjustment level is selected.

2. Outlier removal: Outliers that occur at the extreme boundaries of a
time series must be removed because they can lead to non-realistic
minimum and maximum values. To this end, a statistical criterion is
employed. Given the first quartile (Q1), third quartile (Q3), and inter-
quartile range IQR = Q3−Q1, all values that do not fall in the range
[Q1 − 3 · IQR,Q3 + 3 · IQR] are considered as outliers. Based on the
changes made in the first step, there may be little training data available
for detecting outliers, potentially leading to many FPs. To overcome this
issue, instead of removing any training row in sequence R that contains
at least one outlier (as is done in AN), in the proposed method, values
lower than Q1− 3 · IQR and higher than Q1 + 3 · IQR are mapped to
−1 and 1, respectively.

3. Data normalization: R is normalized to R[−1, 1] using min-max nor-
malization. Figure 4.4 presents the structure of a normalized sequence.
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Figure 4.4: Structure of a normalized sequence.
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Before proceeding further with the remaining normalization methods, it
is important to note that the OAN approach requires the current value of
xt to normalize its input features. Therefore, this method cannot be used
in prediction problems over a time series, where the goal is to predict a
future value xt+1 at time t. Regardless, we underscore the fact that this is
not a problem for outlier detection because the sliding time series xt can be
used to generate normalized training and testing instances. The normalized
training and testing instances can then be utilized to predict the current
data value xt instead of the next value xt+1. Finally, the error between the
predicted value x̂t and current value xt can be computed.

4.2.1.2. One-pass adaptive min-max normalization for online learning

AMN [150] is a normalization approach designed for online chunk-by-chunk
learning. Therefore, it uses disjoint sliding windows. To adapt this method
for one-pass online learning, OAMN is introduced.

To perform one-pass processing, a sliding window W of the past n data
values is used. First, the algorithm waits for the first n data points to fill up
the first window of samples Wt−1 = {xt−n, . . . , xt−1}. When this window is
full, its statistics (i.e., mean µt−1, minimum mint−1, and maximum maxt−1)
are computed and used to initialize the global minimum globalMin = mint−1

and global maximum globalMax = maxt−1. After these global statistics are
obtained, min-max normalization (see Equation (4.1)) is used to normalize
the first window Wt−1. Then, whenever a new data point xt arrives, the
current window Wt is updated as Wt = {xt−n+1, . . . , xt}. Subsequently, its
mean µt is obtained and used to compute the relative percentage change (i.e.,
δ = |µt−µt−1|/µt−1). Then, if the value of δ exceeds a predefined threshold θ
[%], the minimum mint and maximum maxt values of the current window Wt

are computed and used to update the global minimum globalMin = mint and
global maximum globalMax = maxt. Otherwise, globalMin and globalMax
remain unchanged. Finally, using these global minimum and maximum
values, the current window Wt is normalized.

4.2.2. Online outlier scoring

As described in Section 4.1.3, there have been very few studies on online
anomaly scoring methods based on prediction error. Therefore, both AL
[19] and DT [154] are included in the online outlier scoring component of
the proposed framework. Furthermore, two novel streaming scoring methods
called SS and DSS are proposed and explained below.

4.2.2.1. Sigma scoring

The first proposed online anomaly scoring method, namely SS, is based on
three-sigma control charts and the scoring method proposed in [12]. Similar to
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other online anomaly scoring methods, this method relies on a sliding window
Wt = {et−n+1, . . . , et} of the most recent n prediction errors to operate online.
Specifically, a three-sigma control chart is a statistical process control tool
for determining if a manufacturing or business process is in a state of control.
This method defines upper (UCL) and lower (LCL) control limits considering
three standard deviations (i.e., 3σ) from the mean µ. Samples that lie outside
these limits are considered to be anomalous. However, the major drawback
of this method is that it does not provide any information regarding the
extent to which a sample is anomalous (outlierness), which is important in
real-world settings for assessing the severity of phenomena.

Therefore, to provide a measure of outlierness based on three-sigma control
charts, we adopt the scoring rule proposed in [12], which was originally used
to score anomalies detected by one-class learning-based methods. This rule
is defined as follows:

score(xt) = exp

(
− ln 2

R2
|xt − o|2

)
, R = 3σt, o = µt. (4.10)

It is inspired by the Bayesian theorem and meets the following four desirable
criteria:

(1) 0 < score(x) < 1,

(2) score(x) = 0.5 for samples on the boundary,

(3) score(x) < 0.5 for samples inside the boundary, and

(4) score(x) > 0.5 for samples outside the boundary.

To adapt this scoring method to online three-sigma control limits, the
radius is defined as R = 3σt, and the center is defined as o = µt, where
σt and µt are the standard deviation and mean of the current window Wt,
respectively.

4.2.2.2. Dynamic sigma scoring

The second novel scoring method adopted in the proposed framework is a
dynamic version of the SS method. In this case, the mean and the standard
deviation are computed dynamically whenever a new prediction error is
obtained instead of using a sliding window. Accordingly, the dynamic mean
µt and dynamic standard deviation σt are computed as discussed in [146]
for dynamic data normalization, namely:

µt = µt−1 +
et − µt−1

t
, (4.11)

st = st−1 + (et − µt−1)(et − µt),

σt =
√

st/(t− 1). (4.12)
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DSS then computes an anomaly score similar to SS (see Equation (4.10)),
where the radius R is equal to three times the current standard deviation
(R = 3σt) and the center is equal to the current mean (corr. o = µt).

4.3. ENSEMBLE-BASED OR-ELM AND THE EOR-ELM
ANOMALY DETECTOR

To demonstrate the usability of the proposed framework, this section dis-
cusses the adaptation of a novel robust ensemble variant of OR-ELM, a
randomization-based neural network used in the literature to predict time
series in an online fashion. This section begins with an introduction to OR-
ELM in Section 4.3.1. Then, Section 4.3.2 details the novel ensemble version
of this mode, coined as EOR-ELM. Finally, Section 4.3.3 demonstrates how
the proposed framework is used to construct a novel anomaly detection
algorithm called EORELM-AD using the framework to adapt the EOR-ELM
prediction algorithm described previously.

4.3.1. Online recurrent extreme learning machines

OR-ELM is an online NN that can be applied to several machine learning
problems, including online time series forecasting [144]. OR-ELM is an
improved variation of the online sequential ELM (OS-ELM) [155]. Both
OR-ELM and OS-ELM utilize single-layer feed-forward NNs that are trained
online on a one-by-one or chunk-by-chunk basis, where the latter may have
a fixed or varying chunk size. In contrast to OS-ELM, which randomly
assigns weights to the neural component of the model, OR-ELM utilizes
autoencoders (AEs) combined with a normalization layer to learn and update
the input and hidden weights. In this chapter OR-ELM is adopted as a base
predictor for the proposed anomaly detector because experimental results
reported in the literature demonstrate that it outperforms other online
sequential learning algorithms, including online long short-term memory
[156] and HTM [157], which is used in the popular HTM Numenta anomaly
detector [19].

OR-ELM consists of three networks: a recurrent NN (RNN), which is the
main network used for prediction, and two single-layer feed-forward networks
(SLFNs), which are auxiliary ELM-AE networks [158] used for learning the
RNN’s input and hidden weights. Let fÑ be an SLFN with Ñ hidden nodes,
x ∈ Rn be an n-sized input data vector, and T ∈ Rm be the target vector.
The output of the SLFN is given by:

fÑ(x) =
Ñ∑
i=1

βi ·G (ai, bi,x) , (4.13)
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where x ∈ Rn, ai ∈ Rn, ai, and bi are the training parameters for the hidden
nodes and βi is the output weight that connects the nodes of the hidden
layer to the i-th output node. G(ai, bi,x) can be defined differently according
to the selected type of SLFN node. For example, for additive SLFN nodes,
G(ai, bi,x) is defined as:

G(ai, bi,x) = g(ai · x+ bi), bi ∈ R (4.14)

where g(·) : R → R is the activation function (e.g., sigmoid). Alternatively,
for radial basis function SLFN nodes, G(ai, bi,x) yields:

G (ai, bi,x) = g (bi ∥x− ai∥) , bi ∈ R+, (4.15)

where the activation function g(·) is set to be Gaussian.
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Figure 4.5: Weight learning process followed by ELM-AE. Each color represents a different
layer. The hidden weights (βae)⊤ of multiple ELM layers are calculated using ELM-AE,
in which input and output targets are the same. The output weight βae of ELM-AE is
computed by the conventional ELM method.

For each input, the OR-ELM has three stages, called the input, hidden,
and output stages. Each stage has its own hidden layer output matrix H and
output weights β. In the first two stages, the hidden layer output matrix
weights are learned using ELM-AE [158] (this process is illustrated in Figure
4.5), which is an ELM in which the input data sample x ∈ Rn is also used
as a target x = t. In ELM-AE, the input weight a ∈ Rn×Ñ and bias values
b ∈ RÑ are assigned randomly and then orthogonalized as:

a⊤a = I, b⊤b = 1, (4.16)

which helps enhance the generalization performance of the model. The output
weights β ∈ RÑ×n of ELM-AE are computed similarly to a basic ELM as:

β = H†T, H† =

(
H⊤H+

I

C

)-1
HT , (4.17)

where H† = (H⊤H)−1H⊤ is the Moore-Penrose generalized inverse of the
hidden layer output matrix, which is typically calculated using the singular
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value decomposition method, and C is a regularization constant added to
prevent HTH from being a singular matrix. Because βT is responsible for
the transformation from the input data to the hidden feature space, it can
be used as an input weight for the ELM to extract better hidden features
according to several studies [158, 159, 160].
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Figure 4.6: Diagram showing the architecture of OR-ELM. The structure is the same
as that of a typical RNN, except for the normalization component. The right side is
an unfolded representation for the sake of visual simplicity. The red and white frames
respectively represent the normalization and hidden layers, which are trained recurrently
using the hidden weights as the next input weights. These weights are learned using
ELM-AE-IW and ELM-AE-HW, respectively. The output stage is represented in yellow,
whereas the prediction is represented in green.

Regarding OR-ELM, we recall that it has three stages, namely the input,
hidden, and output stages. Each of these stages has its own hidden layer
output and regular output (see Figure 4.6):

Input stage: Hi ∈ Rn×Ñ hidden layer output matrix and βi ∈ Rn×Ñ

output weight.

Hidden stage: Hh ∈ RÑ×Ñ hidden layer output matrix and βi ∈ RÑ×Ñ

output weight.

Output stage: H ∈ RÑ×m hidden layer output matrix and βi ∈ RÑ×m

output weight.

First, let ELM-AE-IW and ELM-AE-HW denote the ELM-AEs used for
learning the weights of the hidden layer output matrices of the input and
hidden states, respectively. OR-ELM consists of two phases, namely the
initialization phase and online sequential learning phase, which are described
as follows:

1. Initialization phase: The initial output weights βi
0, and βh

0 , β0 and the
auxiliary matrices Pi

0, Ph
0 and P0 are defined as:

β0 = 0, P0 =

(
I

C

)−1

. (4.18)
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The hidden layer output matrix H0 and input weights for ELM-AE-IW
and ELM-AE-HW are drawn randomly following a normal distribution with
a mean of zero and standard deviation of one.

2. Online sequential learning phase: OR-ELM is able to learn sequentially
each time a new chunk of data arrives. Let Nk+1 be a new chunk of data
consisting of NK+1 samples or points. For mathematical simplicity, we assume
that NK+1 = 1. Therefore, if xk+1 ∈ Nk+1 is the input to the OR-ELM, then
three online sequential learning steps are performed:

(Step A) Input stage weights learning: The weights Wi
k+1 of the input

hidden layer output matrix Hi
k+1 are assigned randomly in ELM-AE-IW.

Then, a normalization layer is applied to the activations obtained using these
weights. The resulting hidden layer output matrix Hi

k+1 is calculated as:

Hi
k+1 = g

(
norm

(
Wi

k+1xk+1

))
, (4.19)

where norm(x) is defined as:

norm(x) =
x− µi

√
σi2 + ϵ

, (4.20)

with µi = 1
Ñ

∑Ñ
j=1 xj , σi = 1

Ñ

∑Ñ
j=1 (xj − µi)

2. ϵ is a small additive constant
used to avoid zero division. The output weights βi

k+1 of ELM-AE-IW are
calculated by setting Tk+1 = xk+1 in the recursive-least-squares operation
as:

βi
k+1 = βi

k +Pi
k+1H

i⊤
k+1

(
xk+1 −Hi

k+1β
i
k

)
, , (4.21)

Pi
k+1 =

1

λ
Pi

k,

−Pi
kH

i⊤
k+1

(
λ2 + λHi

k+1P
i
kH

i⊤
k+1

)−1
Hi

k+1P
i
k, (4.22)

where λ ∈ (0, 1] is a forgetting factor that facilitates forgetting outdated
input data and reducing their impact on subsequently learned chunks.

Once the output weights βi
k+1 have been computed, the transpose of these

weights is used as the input weight vector Wk+1 for OR-ELM, yielding:

Wk+1 = βi⊤
k+1. (4.23)

(Step B) Hidden stage weights learning: The weights for this stage are
learned in the same manner as in the first stage, but by using ELM-AE-HW.
The hidden layer output Hk+1 ∈ RÑ is propagated to the corresponding
hidden layer so that the hidden-layer output matrix Hh

k+1 can be computed
as:

Hh
k+1 = g

(
norm

(
Wh

k+1Hk

))
, (4.24)
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The output weights βh
k+1 of ELM-AE-HW are calculated using recursive-

least-squares (see Equation (4.21)) as:

βh
k+1 = βh

k +Ph
k+1H

h⊤
k+1

(
Hk −Hh

k+1β
h
k

)
, (4.25)

Ph
k+1 =

1

λ
Ph

k,

−Ph
kH

h⊤
k+1

(
λ2 + λHh

k+1P
h
kH

h⊤
k+1

)−1
Hh

k+1P
h
k, (4.26)

where the transpose of βi
k+1 is used as the hidden weight vector Vk+1 for

OR-ELM as:

Vk+1 = βh⊤
k+1. (4.27)

(Step C) Output stage weights learning: In the third step of the online
sequential learning procedure of OR-ELM, the hidden layer output matrix
Hk+1 is calculated from the previous weights Wk+1 and Vk+1 as:

Hk+1 = g (norm (Wk+1xk+1 +Vk+1Hk)) . (4.28)

Finally, the output weights βk+1 are calculated as:

Pk+1 = Pk,

−PkH
⊤
k+1

(
I+Hk+1PkH

⊤
k+1

)−1
Hk+1Pk, (4.29)

β(k+1) = β(k) +Pk+1H
⊤
k+1

(
Tk+1 −Hk+1β

(k)
)
. (4.30)

When applying OR-ELM to anomaly detection, two fundamental factors
must be considered, namely the online normalization of data and sensitivity
of the forgetting factor λ.

4.3.1.1. Online data normalization

OR-ELM and OS-ELM are generic NNs that can be used in various machine
learning problems such as classification or forecasting. However, when used
in offline environments, both approaches normalize data prior to training.
To understand how the normalization methods introduced in Section 4.2
can be used in conjunction with OR-ELM or OS-ELM, it is necessary to
explain how input data are transformed into training and testing data to
train a NN.

To train OR-ELM for one-pass time series forecasting, a window W =
{xt−n, . . . , xt−1} of the most recent n values is maintained. To predict the
next value xt+1 given the sliding window W and current value xt, new
training and testing instances must be generated. As shown in Figure 4.7, all
n values in the window W are used as input features for the training phase,
whereas the current value xt is used as an output or label. Once OR-ELM is
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Figure 4.7: Structure of OR-ELM train and test instances.

trained, the next n values {xt−n+1, . . . , xt} are used as features to predict
the future value xt+1. This means that the input dimension for OR-ELM
is n (i.e., the size of the window of recent data instances) and the output
dimension, assuming a univariate time series, is one.

4.3.1.2. Sensitivity of the forgetting factor

As stated in [144], both the OR-ELM and OS-ELM algorithms are very
sensitive to the value of the forgetting factor λ. This parameter allows these
algorithms to forget past input data in their learning procedures so that
the effects of outdated data on the knowledge learned by a trained model
is minimized. When λ = 1, a model does not forget anything. The smaller
the value of λ, the more the information is forgotten and the faster the
error decreases. However, as shown in [144] and verified experimentally in
preliminary experiments performed during the Thesis, if λ < 1 and the
number of hidden nodes in a model is high, then the predictions of an NN
begin to deviate until the error explodes and renders the model useless.

For online processing, it is important to tune the capacity of forgetting
outdated input data to account for possible non-stationarities and undetected
anomalies in a data stream. Regardless, in unsupervised online problems
such as TSOD, it is difficult to find a suitable value of λ and number of
hidden neurons that ensure error-free operation of an algorithm and good
adaptability to the characteristics of the target dataset. This is the main
problem targeted by the proposed EOR-ELM approach, which is an ensemble
that uses several instances of OR-ELM with different parameters. The design
rationale of EOR-ELM is detailed in the following section.

4.3.2. Ensemble-based OR-ELM

As described in Section 4.3.1.2, both the OR-ELM and OS-ELM algorithms
are very sensitive to the value of the forgetting factor λ. Additionally, based
on a lack of ground-truth labels and the potential for concept drift, choos-
ing the optimal hyperparameter configuration is difficult and the optimal
configuration can change over time. To tackle this problem, the EOR-ELM
approach is proposed. By combining diverse learners, ensembles can reduce
the dependence of a model on a specific dataset and overcome the weak
performance stemming from a lack of ground-truth labels [70]. Additionally,
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they alleviate the model selection problem and have better generalization
capabilities than a single method. These factors make ensembles a suitable
solution for outlier detection [108] and online TSOD.

The EOR-ELM proposal combines several instances initialized with dif-
ferent parameter settings. In this manner, the hyperparameter selection
problem is circumvented, which reduces the dependency of the model’s con-
figuration on the target dataset. Furthermore, EOR-ELM removes deviating
models in each iteration by initializing new models, so it can easily adapt
to distribution changes and significantly reduce FPs. Therefore, EOR-ELM
not only overcomes the problems associated with the forgetting factor, but
also provides a much more robust approach to distribution changes and
anomalies in time series that can make the knowledge learned by a model
obsolete.

For the sake of clarity, Section 4.3.2.1 explains the mode of operation of
the proposed ensemble, and then in Section 4.3.2.2, the structure of the
proposed ensemble is analyzed in detail.

4.3.2.1. Operating mode of the EOR-ELM

In the following we explain how the Ensemble-based OR-ELM works. EOR-
ELM is divided into three stages: initialization, training, and testing. A
visual workflow of the proposed EOR-ELM is presented in Figure 4.8.

Figure 4.8: Schematic diagram showing the proposed EOR-ELM workflow. All combina-
tions of different forgetting factors and the number of hidden neuron values are computed
in the initialization step. From this set, m different parameter settings with a forgetting
factor lower than one and five different parameter settings with a forgetting factor equal
to one are selected to initialize m + 5 EOR-ELM networks. In the training step, the
models are trained and used to predict training data. Once the training step is completed,
the best k predictors are selected and used to learn and predict new incoming data. If
the performance of any of the predictors degrades, new OR-ELMs are trained. The final
prediction is the mean of the best three forecasted values.

1. Initialization: First, all combinations of different forgetting factors and
the number of hidden neuron values are computed. Then, from this set,
m different parameter settings with a forgetting factor lower than one are
selected uniformly at random and used as the parameters for m OR-ELMs.
To ensure that we have at least one valid predictor when the error of all
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m previous models increases without bound (particularly when handling
neural architectures consisting of a large number of hidden neurons),
five additional OR-ELMs are initialized, all of which are configured with
random parameter settings and a fixed forgetting factor value equal to
one.

2. Training: During the training phase, m + 5 models are trained and
used to predict training data. Additionally, for each predictor, the mean
absolute percentage error and normalized root-mean-squared error are
computed based on the last prediction errors. Then, the deviating models
are removed. Once the training phase is completed, the best k predictors
are selected to reduce the computational load (memory and speed) of
the model. Within the subset of the best predictors, at least one with
a forgetting factor equal to one is included to ensure that the ensemble
retains a non-forgetting model. All k predictors are trained and used to
produce the corresponding predictions for each current instance. Then,
the mean of the best three predictions is computed and output as the
final prediction.

3. Test: The testing phase begins by reproducing the same steps as the
training phase, but with k learners. Then, if the performance of any of
the predictors has degraded, new OR-ELMs are initialized and trained
according to the training process described above.

4.3.2.2. EOR-ELM ensemble structure

The structure of the proposed ensemble is detailed below, describing the
decisions taken at each step and their justification.

Learner selection: As one of the objectives of this chapter and the
Thesis itself is to show the usefulness of the framework, a prediction-
based algorithms has been selected as the base learner, specifically the
OR-ELM algorithm.

Diversity : The major problem of the OR-ELM algorithm for unsuper-
vised learning is choosing the correct values of the forgetting factor
and the number of hidden neurons. Hence, to overcome this issue and
increase the diversity, a random hyperparameter tuning strategy was
used. Moreover, the algorithm has a randomization process on its own
to generate its initial weights.

Base learner selection: The selection is an optional step, but it can
further improve the results. In the case of this particular ensemble,
it is imperative to detect the corrupted base learners and eliminate
them as soon as possible. Therefore, in order to avoid deviating base
learners and additionally reduce the computational cost and select the
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best base learners for fusion, three different selection strategies have
been employed:

1. Pruned selection: a performance-based selection is made in the
training phase to reduce the computational cost and remove
deviated base learners. Specifically, the k best performing models
are selected based on two prediction evaluation metrics (MAPE
and NRMSE).

2. Dynamic selection 1 : A first dynamic selection strategy is adopted
to avoid harmful models. Each iteration checks if any model has
deviated and new ones are retrained (with their corresponding
selection).

3. Dynamic selection 2 : A second dynamic selection method is
used to avoid overfitting and those models that, for a particular
instance, perform poorly. Before the combination stage, at each
iteration, the three best models are selected, i.e., those leading to
the lowest prediction error.

Combination: The anomaly scores are normalized, so that the available
combination options include score-wise, meta-learning, the fusion of
multiple combination methods, and the best learner. On the one hand,
meta-learning and fusion of multiple combination methods would in-
crease the computational cost, already expensive because of the need
for training several OR-ELM models, compromising the speed require-
ment needed for online processing. On the other hand, choosing the
best learner does not work very well since it suffers from overfitting.
When the models predict the data too well, even if it is anomalous, it
makes the anomaly go unnoticed along the stream, ultimately increas-
ing the rate of false negatives in the detection of anomalies. Ranking
methods are left aside as they cannot be applied in an online fashion
(and relevant information would be lost). In conclusion, the most suit-
able combination method is found out to be a mean. In this way, the
overfitting problem is avoided and the overall computational efficiency
of the detector is not compromised.

4.3.3. EOR-ELM based anomaly detector

To demonstrate the usability of the framework described in Section 4.2, we
now describe the procedure to create an EORELM-AD. This procedure,
which is illustrated in Figure 4.9, is divided into three steps: (A) online nor-
malization and the creation of training and testing instances, (B) prediction
of current data and calculation of prediction error, and (C) computation
of anomaly scores and anomaly detection. Before diving into the details of
these steps, it is important to note a critical difference between the structure
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of the training and testing instances obtained by the OAN approach (see
Figure 4.4) and those used by the OR-ELM NN (see Figure 4.7). Since the
OAN method requires the current value of xt to normalize its input features,
EORELM-AD predicts the current value xt instead of xt+1; therefore, the
prediction error is computed as usual between the predicted value x̂t and
the current value xt. In this manner, the same predictive strategy can be
used for all normalization methods.

Figure 4.9: Procedure showing how EOR-ELM is adapted to construct an EORELM-
AD. First, the current data are normalized and passed to EOR-ELM for training and
obtaining a predicted value. Then, the prediction error is computed and the outlier score
is calculated. Finally, an anomaly is detected when the outlier score is higher than a given
outlier threshold θ.

A. Normalization and creation of training and testing instances

Similar to other NNs, the EOR-ELM algorithm requires normalized or
standardized inputs. To determine the best normalization method for this
particular algorithm, all methods included in the framework are tested
and compared to each other.

As mentioned previously, EOR-ELM requires the previous n data values
to generate a prediction. Therefore, to normalize the current data and
generate the necessary training and testing instances, a normalized sliding
window Xnorm = {xnorm,t−n−1, . . . , xnorm,t} of size n+2 is retained, where
n is the input dimension of the network. Given n and Xnorm, training and
testing instances are generated as shown in Figure 4.10.

. . .

. . .

Figure 4.10: Structure of OR-ELM training and testing instances.

We now elaborate on the normalization methods used to generate the
normalized sliding window Xnorm or, in the case of OAN, to directly
generate normalized training and testing instances:

• Dynamic z-score Normalization (DN): This method takes the current
value xt as an input and returns its normalized value xnorm,t. Therefore,
every time a new data point arrives, it is standardized and then added
to Xnorm.
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• Window Normalization (WN): This is a window-based method that
departs from the current value xt and uses a sliding window of size n.
This function stores a sliding window X, which is updated with the
arrival of each input sample xt. Upon arrival, X is standardized to
return Xnorm. Therefore, in this case, the sizes of X and Xnorm must
be the same.

• One-pass Adaptive Normalization (OAN): This method also hinges on
the use of sliding windows. As inputs, it takes 1) the current value
xt, 2) size of the disjoint sliding window w (in this case, w = n + 1),
and 3) size of the sliding time series n = w + 1 (in this case, n + 2).
This normalization method is specific for NNs and directly returns
normalized training and testing instances.

• One-pass Adaptive Min-max Normalization (OAMN): This function is
also based on a sliding window. As inputs, it takes the current value
xt and window size n + 2 to return the normalized window Xnorm.
Additionally, it also takes a threshold θ as input. The optimal value of
θ depends on the problem and time series under consideration.

B. Prediction of current data and calculation of prediction errors

Given normalized training and testing instances, the EOR-ELM algorithm
is trained and used to predict the current sample xnorm,t, as indicated
in Section 4.3.2. After obtaining the predicted value x̂norm,t, the squared
prediction error is computed as |x̂norm,t − xnorm,t|2.

C. Outlier scoring and detection

Given the prediction error and outlier threshold θ, an outlier score st is
calculated and used to declare whether an outlier has occurred (i.e., if
st > θ, then the current data instance is an outlier). All scoring methods
take the current prediction error as an input. Window-based methods
have two additional input parameters, namely the minimum window size
to start calculating anomalies and the maximum window size. The more
the available data, the more accurate the detection result, but the greater
the computational and memory resources required for calculation.

4.4. EXPERIMENTAL SETUP

A comprehensive experimental setup was developed using several benchmark
datasets to provide informed answers to the RQs posed in the introduction
of this chapter, as listed below.

RQ1: Which streaming normalization and outlier scoring methods perform
best when used within the proposed EORELM-AD approach?



4.4 experimental setup 89

RQ2: Does EORELM-AD perform competitively when compared to other
TSOD methods from the literature?

The goal of the first experiment is to determine the normalization and
scoring methods that work best in conjunction with EOR-ELM. Next, a
second experiment is conducted to compare the performance of EORELM-
AD (using the best normalization and scoring methods) to that of the
detectors included in the otsad package described in Chapter 3, as well as
some state-of-the-art algorithms reported in the literature related to TSOD.
Additionally, a third experiment is conducted to evaluate the time efficiency
of EORELM-AD (i.e., time required to train the model and determine
whether an input data point is an outlier). This section presents the details
of the experimental setup that are common to the experiments later discussed
in Section 4.5.

4.4.1. Datasets

To design experiments capable of providing informed answers to the above
RQs, 52 labeled one-dimensional time series from different fields available
in the OTSAD R package introduced in Chapter 3 are considered. These
time series correspond to those contained in the following categories of
the Numenta Anomaly Benchmark (NAB) repository [125]. The reader is
referred to Section 3.2 for further details. Specifically:

artificialWithAnomaly: Synthetically generated time series data
with varying types of anomalies.

realAdExchange: Composed of online advertisement clicking rates,
where the metrics are cost per click and cost per thousand impressions.

realAWSColudwatch: Built upon AWS server metrics.

realKnownCauses: Data such as hourly registered taxi schedules in
New York or CPU utilization.

realTraffic: Real-time traffic data from the Twin Cities Metro area
of Minnesota (USA) with occupancy, speed, and travel time data from
specific sensors.

realTweets: A collection of Twitter mentions of large publicly traded
companies such as Google and IBM.

4.4.2. Evaluation metrics

To measure the performance of the detectors, classical measures (precision,
recall, and F-measure) and the NAB scoring method [125] introduced in
Section 3.2.2 are used. Classical measures are widely used in imbalanced
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classification or anomaly detection problems. Precision reflects the ratio of
detected anomalies that are labeled as anomalous within a dataset. Recall
quantifies the proportion of true cases among the anomalies detected by
every algorithm. Finally, F-measure is defined as the harmonic mean of
precision and recall. These measures can be computed as:

Precision =
TP

TP + FP
, (4.31)

Recall =
TP

TP + FN
, (4.32)

F-measure = 2 · Precision · Recall
Precision + Recall

, (4.33)

where true positive (TP) refers to labeled anomalies that are detected as
such by the detector, FP refers to the number of non-anomalous data points
that are incorrectly detected as anomalies by the detector, and false negative
(FN) is the number of labeled anomalies that are not identified as such by
the detector.

4.4.3. Implementation details

All the source code for implementing the proposed framework and EORELM-
AD was developed in R and included in the otsad package. This pack-
age is publicly available in a GitHub repository at https://github.com/
alaineiturria/otsad. The user manual can be found at https://github.
com/alaineiturria/otsad/blob/master/vignettes/otsad.pdf.

4.5. RESULTS AND DISCUSSION

We now present and discuss the results obtained from the experiments. For
the sake of clarity and correspondence with the formulated RQs, this section
is divided into comparisons between normalization and scoring methods
(Section 4.5.1. RQ1), a performance evaluation of the proposed EORELM-
AD compared to the detectors included in the otsad library (Section 4.5.2.
RQ2, part 1), and a performance comparison of EORELM-AD to some
state-of-the-art TSOD algorithms retrieved from the literature (Section 4.5.3.
RQ2, part 2). Finally, the results of the study on the time efficiency of
EORELM-AD are presented in Section 4.5.4.

4.5.1. RQ1: Which streaming normalization and outlier scoring
methods perform best when used within the proposed
EORELM-AD?

One of the most important steps in constructing an anomaly detector is to
determine which normalization and scoring methods are the most suitable
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for the selected prediction algorithm. With this goal, different detectors
initialized with different normalization and scoring functions available in
the proposed framework were compared. The results of standardizing all
datasets before using EORELM-AD were also included and are labeled as
“none” in the tables below.

In this first benchmark aimed at answering RQ1, fixed values were defined
for all hyperparameters, except for the number of previous samples n and
anomaly threshold θ, for each detector. Therefore, each detector had only
two hyperparameter values to be tuned. All hyperparameter values in use
are listed in Table 4.1.

Table 4.1: Hyperparameter values adopted for the proposed EOREM-AD

Parameters Fixed Value Description

Normalization

norm-
Method

no {None, DN, WN,
OAN, OAMN}

Streaming normalization method

Ensemble

m yes 30 Number of ORELMs with a forgetting factor lower than
1 to train

k yes 6 Number of best ORELMs to keep into the test phase
Ñ yes {20, 25, ..., 45, 50} Possible values of the number of hidden neurons that can

be used to initialize different ORELMs in the ensemble
λ yes {0.9, 0.91, ..., 1} Possible output forgetting factor values that can be used

to initialize different ORELMs in the ensemble
n no {50, 100, 150} Number of past instances used to predict the current

instance value

Anomaly detection

scoring-
Method

no {AL, DT, SS,
DSS}

Streaming anomaly scoring method

wnMax yes 2000 Maximum window size to compute the anomaly scores
(only for window based scoring methods)

wnMin yes 100 Minimum window size to start to compute the anomaly
scores (only for window based scoring methods)

θ no {0.50, 0.55, . . .,
0.95, 0.99, 0.999,
0.9999, 0.99999,
1}

Threshold used to determine if the current instance is an
anomaly. If the anomaly score is higher than the threshold
an anomaly is reported

To determine which normalization and scoring functions perform best,
two different factors were analyzed. First, we examined which one of the
algorithms performed best. Comparisons were performed in the same manner
as some recent works [68, 145] and a grid search was performed to find the
values of the hyperparameters that worked best for all test cases. Then, the
same n and θ values were used for all time series datasets. This experimental
methodology is appropriate when there is insufficient domain knowledge to
infer which specific configuration (particularly in terms of n and θ) will best
fit the characteristics and dynamics of the time series under consideration in
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advance. Second, we evaluated the performances of all possible EROELM-AD
configurations (see Table 4.1) and recorded the best-performing configuration
for each dataset.

In the first strategy, all detectors were tested using different n and θ
values. Then, the hyperparameter values that performed best for all datasets
were selected and used for comparisons. Similar to [161], we compared the
results before and after FP reduction (using the method available in otsad
with a one-day window size). Based on the random initialization of weights
in EOR-ELM, the results may vary slightly. Therefore, we independently
conducted the same experiment 10 times and recorded the average score
values computed over all trials. Only the values of the NAB measure are
reported to improve the clarity and simplicity of discussion. The obtained
results are summarized in Table 4.2 and presented as a chart in Figure 4.11
(only positive scores are presented for ease of interpretability and comparison).

Figure 4.11: General performance benchmark of EORELM-AD using the NAB scoring
method corresponding to the global-best-performing hyper-parameter setting over all
datasets. Translucent colors and numbers underlying the plots represent the scores
obtained after the FP reduction method is applied. In contrast, opaque colors correspond
to the scores obtained without FP reduction.
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Table 4.2: Comparison of NAB scores obtained over the NAB using different normalization
and scoring methods for the EORELM-AD with the optimal hyperparameter configuration
for all time series datasets. The best scores are highlighted in bold and the scores of the
best-scoring method for each normalization technique are underlined.

Norm. Scoring Standard Low FP Low FN Reduced
Standard

Reduced
Low FP

Reduced
Low FN

None AL 1.25 0.00 11.96 51.84 37.85 58.27
None DT -624.18 -1338.22 -384.91 47.39 16.59 59.92
None SS 41.68 35.62 50.03 53.13 42.17 61.19
None DSS 52.38 42.12 57.83 53.49 46.34 58.26

DN AL 0.18 0.00 11.41 49.05 34.32 55.81
DN DT -114.96 -315.41 -46.87 41.93 12.28 54.12
DN SS 47.52 33.89 55.98 51.86 39.16 59.54
DN DSS 47.53 39.41 53.09 49.38 40.73 56.63

WN AL 0.00 0.00 3.74 42.09 18.82 51.99
WN DT -78.51 -243.52 -22.02 40.05 7.85 52.76
WN SS 41.91 23.40 51.67 45.34 30.60 54.41
WN DSS 41.64 25.07 52.70 45.30 30.98 54.50

OAN AL 0.00 0.00 4.03 32.41 11.06 44.38
OAN DT -17.40 -72.56 1.93 26.08 8.75 38.94
OAN SS 23.45 8.39 34.97 34.48 15.59 46.93
OAN DSS 22.49 8.17 34.29 35.35 16.21 48.21

OAMN AL 11.54 2.79 15.28 34.01 26.47 38.32
OAMN DT -88.82 -252.53 -32.88 35.87 9.13 46.39
OAMN SS -497.14 -1005.78 -327.32 33.01 13.43 46.53
OAMN DSS 35.03 21.47 43.93 44.59 29.92 52.74

Regarding the second strategy, a similar procedure was followed to deter-
mine which detector best adapts to the characteristics of each time series
dataset. In this case, the best hyperparameter values were considered for
each dataset. The results are summarized in Table 4.3 and presented in
Figure 4.12 according to the same visualization criteria used in Figure 4.11.

Figure 4.12: Best performance benchmark of EORELM-AD using the NAB scoring method,
where the optimal hyper-parameter setting for each dataset is used. The interpretation of
colors and numbers follows the same convention as in Figure 4.11.
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We first focus our discussion on the relevance of the normalization methods.
Figure 4.11 reveals that performance is closely related to the selected normal-
ization function. DN yields results similar to those obtained by normalizing
all datasets before applying the detector. In Figure 4.12, one can see that the
results of detectors that utilize window-based normalization are generally
significantly better than those with general parameters. Therefore, we can
conclude that the poor detection results of detectors using window-based
normalization can be attributed to the window size used for normalization,
which depends on the parameter n. According to the results of these two
benchmarks, we arrive at the conclusion that DN is the best normalization
technique for EORELM-AD based on its independence of the parameter n,
as well as its low computational requirements.

We follow the discussion by commenting on the comparison between
different streaming outlier scoring methods. To this end, Figure 4.11 and
Figure 4.12 reveal three methods that stand out from the rest: AL, SS, and
DSS. AL achieves slightly worse results than the other two. Furthermore, its
performance depends significantly on the technique used for reducing FPs.
In contrast, SS and DSS exhibit similar performance, where SS is slightly
better under the standard and reward false negative NAB scoring profiles.
However, DSS depends less on the FP reduction method, in addition to
being faster and non-parametric.
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Table 4.3: Comparison of NAB scores obtained by EORELM-AD configured with different
normalization and scoring methods for the NAB using the optimal hyperparameters
for each dataset. The best detector scores are highlighted in bold and the scores of the
best-scoring method for each normalization technique are underlined. The best scores
for each category are underlined and the best scores between no FP reduction and FP
reduction are highlighted in bold.

Norm. Scoring Standard Low FP Low FN Reduced
Standard

Reduced
Low FP

Reduced
Low FN

None AL 33.12 23.45 40.30 68.47 55.60 75.35
None DT -594.08 -1277.81 -364.73 52.51 21.63 65.11
None SS 67.03 58.14 72.99 69.60 61.34 74.27
None DSS 67.30 59.50 72.29 68.23 62.37 71.86

DN AL 28.30 18.65 36.61 67.76 54.68 74.58
DN DT -97.80 -279.98 -35.60 51.30 22.53 62.83
DN SS 66.39 55.93 73.02 69.48 60.75 74.40
DN DSS 67.93 59.62 73.41 69.38 62.95 73.19

WN AL 23.28 13.12 32.76 64.16 48.21 72.47
WN DT -48.12 -183.46 -1.35 47.96 15.46 60.88
WN SS 62.42 48.31 71.59 66.91 54.38 74.04
WN DSS 64.25 49.72 73.12 67.02 55.12 73.78

OAN AL 21.84 12.64 31.23 60.53 43.09 69.80
OAN DT 3.06 -38.89 19.95 41.68 22.30 51.20
OAN SS 53.17 38.53 63.89 64.20 48.66 73.26
OAN DSS 54.54 39.15 65.34 64.79 49.66 73.66

OAMN AL 33.05 25.86 38.41 57.85 48.19 65.27
OAMN DT -61.63 -199.85 -13.19 46.02 20.36 56.50
OAMN SS -450.30 -969.50 -273.83 63.72 50.24 70.55
OAMN DSS 62.85 50.80 70.49 67.27 57.19 72.72

To support the conclusions of this first set of experiments, an additional
comparison was conducted to determine which of these three scoring methods
performs best. The classic F-measure was adopted to produce the results
summarized in the two tables below. Table 4.4 presents the F-measure
results when using general hyperparameter values, whereas Table 4.5 presents
the results obtained by using the optimal hyperparameter values for each
dataset. Since our prior analysis demonstrated that DN performs the best
as a normalization method, only the corresponding results are presented in
the tables below for simplicity.

By analyzing Table 4.4 and Table 4.5, one can see that the results obtained
without using FP reduction are better in the cases of SS and DSS. However,
this could be because the adopted FP reduction method prioritizes the
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Table 4.4: Average F-measure values obtained by DN and the top-three EORELM-AD
detectors for the NAB using the general hyperparameter settings for all datasets. The
best scores for each category are underlined and the best scores between no FP reduction
and FP reduction are highlighted in bold.

Norm. Scoring Precision Recall F-measure Reduced
Precision

Reduced
Recall

Reduced
F-measure

DN AL 0.015 0.483 0.027 0.112 0.200 0.114
DN SS 0.261 0.284 0.229 0.270 0.223 0.218
DN DSS 0.279 0.274 0.238 0.270 0.186 0.195

Table 4.5: Comparison of average F-measure values obtained by DN and the top-three
EORELM-AD detectors for the NAB using the optimal hyperparameters for each dataset.

Norm. Scor. Precision Recall F-measure Reduced
Precision

Reduced
Recall

Reduced
F-measure

DN AL 0.020 0.767 0.035 0.141 0.303 0.154
DN SS 0.338 0.561 0.342 0.337 0.406 0.326
DN DSS 0.372 0.579 0.369 0.371 0.403 0.339

first anomaly detected (similar to the NAB measure) and labels subsequent
detected anomalies within a short time period as FPs. Overall, these results
corroborate the idea that DSS and SS perform better than AL. Furthermore,
DSS provides better generalization and adaptation capabilities compared
to SS, as indicated by the reported experimental outcomes, leading to the
overall conclusion that the DSS scoring technique proposed in this study
has the best performance among the scoring techniques considered in the
proposed framework.

4.5.2. RQ2, part 1: Does EORELM-AD perform competitively
when compared to TSOD methods from the otsad library?

In this section, the experimentation from a previous work Section 3.3 [161] is
extended by comparing the performance of the best EORELM-AD detector
to the following detectors included in the otsad package.

The procedure for designing this experiment was the same as the previous
experiments. EORELM-AD with DN and DSS is selected as the best anomaly
detector. The global optimal hyperparameter values are summarized in
Table 4.6. The hyperparameter values used for the otsad detectors are
reported in [161], which were also found by means of a grid search strategy.
Following the same comparison methodology, each detector’s detection and
specific problem adaptation skills were evaluated. In this comparative study,
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only the NAB measure was considered for the sake of a focused and clear
discussion.

Table 4.6: NAB scores obtained by detectors in the otsad package and the proposed
EORELM-AD approach on the NAB using global optimal hyperparameter values for all
datasets. The highest scores are highlighted in bold.

Detector Standard Low FP Low FN Reduced
Standard

Reduced
Low FP

Reduced
Low FN

PEWMA 16.80 -30.50 33.90 37.80 18.90 51.10
SD-EWMA 39.90 17.80 50.40 49.20 34.40 56.70
TSSD-EWMA 42.30 29.90 49.00 47.10 35.50 53.90
KNN-ICAD -2.60 -80.10 24.70 59.20 45.10 65.90
KNN-LDCD -2.60 -80.10 24.70 59.20 45.10 65.90
CAD-OSE 56.50 41.50 63.20 57.50 48.50 62.20
EORELM-AD 47.53 39.41 53.09 49.38 40.73 56.63

Table 4.7: NAB scores obtained by detectors in the otsad package and the proposed
EORELM-AD over the NAB using the optimal hyperparameter values found for each
dataset. The highest scores are highlighted in bold.

Detector Standard Low FP Low FN Reduced
Standard

Reduced
Low FP

Reduced
Low FN

PEWMA 42.20 -7.10 60.50 66.70 45.30 75.50
SD-EWMA 61.50 37.40 72.60 68.70 53.20 75.90
TSSD-EWMA 74.70 61.10 81.40 75.70 66.80 80.80
KNN-CAD 6.30 -64.30 31.80 66.20 54.80 72.00
KNN-LDCD 6.20 -64.30 31.70 66.10 54.80 72.00
CAD-OSE 72.20 62.90 78.30 74.60 67.70 79.10
EORELM-AD 67.93 59.62 73.41 69.38 62.95 73.19

The results are summarized in Table 4.6 and Table 4.7, and visualized in
Figure 4.13.A (generalization across different datasets) and 4.13.B (adapt-
ability to a given dataset). Figure 4.13.A indicates that EORELM-AD
outperforms the PEWMA, SD-EWMA, and TSSD-EWMA detectors, and
achieves competitive results compared to KNN-CAD, KNN-LDCD, and
CAD-OSE. Figure 4.13.B indicates that EORELM-AD with only two hyper-
parameters (n and θ) outperforms PEWMA, SD-EWMA, and KNN-based
detectors. Additionally, it is noteworthy that TSSD-EWMA is not a fully
online anomaly detector because it incorporates a lag of several points
in its detection procedure to reduce FPs. Therefore, it is fair to say that
EORELM-AD is the second-most flexible algorithm in this first benchmark.
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Figure 4.13: Performance benchmark of EOR-ELM-AD and otsad anomaly detectors.
Transparent colors and numbers represent the scores obtained after the FP reduction
method is applied. In contrast, opaque colors correspond to the scores obtained without
FP reduction.

4.5.3. RQ2, part 2: How does EORELM-AD perform compared to
other state-of-the-art TSOD methods?

In this subsection, we focus on the comparison of EORELM-AD to state-
of-the-art TSOD methods reported in the recent literature. To this end, we
extend the benchmarks presented in [97, 145] to demonstrate the capabilities
of the proposed framework and algorithm.

Table 4.8: Comparison of average F-measure values obtained for unsupervised anomaly
detection of streaming time series data and the proposed EORELM-AD for the NAB (the
results for methods marked with * are given in [145]). The highest scores for each dataset
category are highlighted in bold.
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Artificial no Anomaly 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Artificial with Anomaly 0.009 0.004 0.004 0.017 0.003 0.012 0.017 0.021 0.043 0.017 0.013 0.156 0.427 0.186 0.161
Real ad Exchange 0.018 0.022 0.005 0.034 0.024 0.040 0.035 0.024 0.005 0.018 0.026 0.132 0.234 0.564 0.237
Real AWS Cloud 0.006 0.007 0.015 0.018 0.006 0.017 0.018 0.018 0.053 0.013 0.06 0.146 0.369 0.472 0.346
Real Known Cause 0.007 0.005 0.005 0.013 0.008 0.015 0.012 0.013 0.008 0.017 0.006 0.2 0.324 0.102 0.095
Real Traffic 0.012 0.02 0.011 0.032 0.013 0.033 0.036 0.033 0.091 0.020 0.045 0.223 0.340 0.497 0.252
Real Tweets 0.003 0.003 0.003 0.010 0.004 0.009 0.010 0.006 0.035 0.018 0.026 0.075 0.310 0.391 0.337

The results of this comparison are summarized in Table 4.8, where the
performance of EORELM-AD with DN and DSS for the NAB is compared
to that of the other unsupervised anomaly detection methods and algorithms
from the literature. Similar to the benchmark results presented recently
in [97] and [145], the mean F-measure obtained for each category of the
Numenta data files is reported. The quantitative scores in both [97] and [145]
were obtained using the optimal hyperparameter settings for each dataset.
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Because it is important to determine the generalization and adaptation
skills of the algorithms, in this table, we consider the two hyperparametric
configurations of the EORELM-AD detector explained previously, namely
the best hyperparameter setting for each dataset (identified as b.EORELM-
AD, where b. is the prefix used to refer to best setting for each dataset) and
the global optimal hyperparameter settings for all datasets (n = 150, θ = 1),
identified as g.EORELM-AD, where g. stands for global best).

When analyzing these performance scores, one can see that when consid-
ering the best hyperparameter values for every dataset (b.EORELM-AD),
EORELM-AD significantly outperforms the other approaches for most of the
categories in the Numenta benchmark, ranking first in four of the categories,
and second and third in the other two. Furthermore, when considering the
global optimal hyperparameter settings (g.EORELM-AD), EORELM-AD
is the second-best method in all categories except for the realKnownCause
category, where it is the third-best method.

To assess the statistical significance of the performance gaps reported in
Table 4.8, we focused on the two configurations of the proposed EORELM-AD
approach (namely b.EORELM-AD and g.EORELM-AD) and OeSNN-UAD,
which is the model performing most similarly to EORELM-AD according
to the scores reported in the above table. We first analyze the output of a
Wilcoxon signed-rank test applied to the F-measure values obtained by every
pairing of these methods. Based on a confidence value α, this non-parametric
hypothesis test determines whether the median difference between paired
F-measures is zero. Table 4.9 indicates that except for the case where OeSNN-
UAD and g.EORELM are compared to each other, the null hypothesis can be
rejected for a significance level equal to α = 0.05. Therefore, we can conclude
that the performance gaps are statistically significant for OeSNN-UAD and
b.EORELM-AD when they are compared to g.EORELM-AD. However,
when comparing OeSNN-UAD and b.EORELM-AD, a closer inspection of
performance differences is required.

Table 4.9: Results of the Wilcoxon signed-rank test applied to the results of the best
models reported in Table 4.8.

g.EORELM-AD b.EORELM-AD OeSNN-UAD

g.EORELM-AD - < 10−7 0.040

b.EORELM-AD - - 0.330

OeSNN-UAD - - -

Following the guidelines in [162], we proceeded by performing Bayesian
analysis on the differences in F-measure between OeSNN-UAD and both
b.EORELM-AD and g.EORELM-AD. This analysis yields an adjusted pos-
terior probability that according to the given performance measurements,
one approach performs better than the other (or vice versa) or that such per-
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p(OeSNN-UAD)

p(rope)

p(g.EORELM-AD)

(a) OeSNN-UAD vs g.EORELM-AD

p(OeSNN-UAD)

p(rope)

p(b.EORELM-AD)

(b) OeSNN-UAD vs b.EORELM-AD

Figure 4.14: Sampled posterior distributions (105 points) of (a) OeSNN-UAD vs.
g.EORELM-AD and (b) OeSNN-UAD vs. b.EORELM-AD.

formance measurements fall within a so-called region of practical equivalence.
This region is delimited by a threshold (denoted as rope) that imposes the
minimum difference in terms of F-measure for the compared models to be
declared equivalent. Figure 4.14 presents the sampled posterior distribution
(105 points) of OeSNN-UAD versus g.EORELM-AD (a) and b.EORELM-AD
(b) corresponding to a rope of 0.05. One can see that OeSNN-UAD is the
clear winner when compared to g.EORELM-AD with region-based accu-
mulated probabilities equal to P(OeSNN-UAD > g.EORELM) = 0.97368
and P(g.EORELM > OeSNN-UAD) = 0.02632. However, when examining
the comparison between OeSNN-UAD and b.EORELM-AD, the posterior
distribution is skewed toward b.EORELM-AD with an imbalanced distri-
bution of P(OeSNN-UAD > b.EORELM) = 0.1395 versus P(b.EORELM
> OeSNN-UAD) = 0.8605. This indicates that on average across different
datasets, b.EORELM-AD performs better than OeSNN-UAD. No cases of
practical equivalence were identified (P(rope) = 0.0).

These results demonstrate the competitive performance of the developed
method, as well as the potential of the proposed framework for easing the
discovery of novel online TSOD approaches based on prediction models.

4.5.4. Time efficiency of the EORELM-AD algorithm

We conclude our analysis by inspecting the time required by different
approaches to process data in an online or incremental fashion. Specifically,
the execution time required for processing a unique value is studied. To
this end, a synthetic dataset of 1, 000 points is considered and the time
required to process each dataset is reported. All other parameters are con-
figured according to the best general configuration obtained in the previous
experiments. The results of this benchmark are summarized in Table 4.10.

As shown in Table 4.10, although EORELM-AD is slightly slower than
PEWMA, SD-EWMA, TSSD-EWMA, and KNN-ICAD, all models are
able to process data with a collection period of less than half of a second.
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Table 4.10: Time efficiency over one point processing using incremental processing algo-
rithms for online TSOD.

Minimum Mean Maximum

PEWMA 0 0.00256 0.08
SD-EWMA 0 0.00048 0.02
TSSD-EWMA 0 0.00980 0.02
KNN-ICAD 0 0.00177 0.25
CAD-OSE 1.64 1.87000 2.41
EORELM-AD 0 0.01000 0.12

Therefore, we conclude that EORELM-AD is efficient for online processing
because the smallest recollection period among the NAB datasets is 5 s.
Additionally, based on its ensemble structure, EORELM-AD can be easily
parallelized to reduce processing time further.

4.6. CONCLUDING REMARKS

This chapter has presented presented a novel outlier detection framework that
facilitates the adaptation of any online time series prediction algorithm to
construct an online outlier detection algorithm for time series covering both
streaming data normalization and online anomaly scoring. The proposed
framework not only defines the methodological steps required to realize this
adaptation, but also provides different algorithmic options to implement them
in practice. In addition to the framework itself, its application yielded a novel
anomaly detection algorithm called EORELM-AD, which is a more robust
ensemble-based variant of the OR-ELM prediction algorithm. Extensive
experiments have been conducted to answer two different RQs:

RQ1) Which online normalization and online scoring methods perform
best when used with the proposed EORELM-AD?

Our first round of experiments demonstrated that the normalization
method that works best for the proposed detector is DN, which is
parameter-free and requires very little computational resources. Re-
garding the outlier scoring method, the DSS technique proposed in
this study provides the best performance. It is fast and parameter-free,
and its performance does not depend on the FP reduction technique.

RQ2) How does EORELM-AD perform when compared to state-of-
the-art TSOD methods?

Our second round of experiments revealed that the performance of
the EORELM-AD detector is competitive with that of some state-of-
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the-art TSOD algorithms, and that it outperforms them on certain
dataset categories.

Based on our experiments and insights drawn from our study on the time
efficiency of EORELM-AD, we can conclude that the proposed framework
can serve as a referential tool for the community to adapt online time series
prediction algorithms to outlier detection.

Several future research lines can be outlined based on the findings reported
in this chapter. Among them, it is worth highlighting the inherently parallel
structure of the proposed EORELM-AD approach, which should enable its
application to ultra-high-rate time series data. Additionally, other recurrent
learning models with efficient training methods (e.g., recurrent broad learning
systems or echo state networks) could be also considered to develop novel
outlier detection algorithms over time series that are compliant with the
computational requirements of online settings.
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CONCLUS IONS , PUBL ICAT IONS ,
AND FUTURE RESEARCH
DIRECT IONS

5.1. CONCLUSIONS

Due to its recent interest and growing demand, this Thesis has focused on
anomaly detection over streaming univariate time series. Several algorithmic
proposals have been proposed in the last few years to tackle this learning
task from different formulations and perspectives. However, a thorough
study of the state of the art in this research area reveals several issues
that remain open to date: the scarcity of open-source software to support
further knowledge advances, and the high false positives and false negatives
rates observed for state-of-the-art proposals in benchmarks and studies
reported in the literature. This Thesis has gravitated around these noted
issues, proposing several original contributions aimed to overcome these two
problems.

To this end, a first study of the state of the art related to online time
series anomaly detection methods has been performed and summarized in
Chapter 2. On the one hand, this initial study has permitted to set clear
grounds in what refers to the modeling implications of classical outlier
detection problems, time series outlier detection, and online processing. On
the other hand, the critical examination of the literature has identified
specific characteristics of these problems, taxonomies of different aspects
of the techniques proposed so far to tackle them efficiently, and a prospect
of challenges and research opportunities. The analysis unveils that despite
the emerging demand of anomaly detection approaches for online time
series, scarce proposals and techniques can be currently found within the
community.

To advance over this noted shortage of proposals, the Thesis has hypothe-
sized the use of ensemble techniques. Although they have been widely studied
and used for this purpose in other fields, ensembles for anomaly detection are
still a recent line of research. For this reason, the Thesis has carried out a lit-
erature review of ensemble methods for anomaly detection, paying particular
attention to the techniques that have been – or can be – used in time series

105
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detection and online processing. This literature study has identified different
methodological steps to build an ensemble, the different techniques available
for this purpose, and the challenges posed by the implementation of each
of these steps under the computational constraints imposed by online time
series anomaly detection. After this study, ensembles have been found to be
rarely applied to online outlier time series detection. However, ensembles
can help strengthen detectors, and it is possible to generate new ensemble
detection approaches by following the steps and techniques identified in this
literature review.

Once all the bibliographic study was done and departing from the con-
clusions drawn therefrom, the first significant contribution of this Thesis
(Chapter 3) has been the implementation of an efficient and easy-to-use R
library named otsad and the comparative study of the implemented online
anomaly detectors for time series implemented in this software package.
otsad is the first R package that collects a set of online time-series anomaly
detectors: PEWMA, SD-EWMA, TSSD-EWMA, KNN-LDCD, KNN-CAD,
and CAD-OSE. It also implements a new false positive reduction technique to
improve detectors’ results significantly. Inspired by a real-life situation where
there is a time lapse between an alarm being triggered and until corrective ac-
tion is taken, our proposal uses the number of processed data points between
two detected anomalies to reduce the number of false positives. Furthermore,
it also includes some advanced functionalities, such as the NAB detector
measurement technique and a visualization function. Finally, a comparative
study of the effectiveness and efficiency of the implemented methods has
been carried out to showcase the inherent utility of the developed package
to support and stimulate further research in online TSOD. Besides revealing
the best performing detectors among those included in otsad, the conducted
experiments have revealed that the performance of the algorithms is linked to
the use of false positive reduction techniques and the hyperparameter values
chosen to process each dataset, proving that the proposed false positive
reducer is effective for this purpose. Furthermore, the comparative study
has verified that all detection algorithms for TSOD give high false positive
and negative rates, and that all of them have a high dataset dependency.
Therefore, we conclude that better strategies are still in urgent need to
surpass the relatively poor performance of current algorithmic proposals,
and that there is no algorithm better than another when considering many
diverse datasets: the winning proposal in a performance benchmark depends
stringently on the dataset in question.

These last two observations have paved the way towards the last contribu-
tion of the Thesis (Chapter 4), which breaks down into two achievements.
First, a framework has been proposed in Section 4.2 to allow the generation
of new online time series outlier detection algorithms by adapting available
algorithms for time series prediction to the online detection of anomalies.
The devised framework aims to extrapolate advances made in online time
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series forecasting to anomaly detection, and thus embodies an useful tool
to quickly and systematically expand the number and diversity of online
anomaly detectors for streaming time series. The proposed framework im-
plements several online normalization and outlier scoring methods already
available in state-of-the-art models, as well as novel proposals designed
to improve upon baselines. Specifically, two novel normalization methods
have been proposed – one-pass adaptive normalization (OAN) and one-pass
adaptive min-max normalization (OAMN) – as well as two scoring methods,
namely, sigma scoring (SS) and dynamic SS (DSS).

Then, Section 4.3 and subsections thereafter have shown the usability
and efficacy of the proposed framework by adapting a novel ensemble-based
online recurrent extreme learning machine, EORELM-AD, to deal with the
online detection of anomalies in streaming time series. EORELM-AD has
been created by implementing the steps of the proposed framework over an
ensemble of Online Recurrent Extreme Learning Machines. The proposed
ensemble combines several instances initialized with different parameter set-
tings. In this manner, the hyperparameter selection problem is circumvented,
reducing the dependency of the model’s configuration on the target dataset.
Furthermore, EOR-ELM removes deviating models at each iteration by
initializing new models, so it can quickly adapt to distribution changes and
can significantly reduce false positives. Therefore, EORELM-AD provides a
much more robust approach to evolving time series data and the presence of
different anomalies in time series data. Experiments performed to evaluate
the performance of EORELM-AD have verified that the performance of the
EORELM-AD detector is competitive with respect to some state-of-the-art
online time series outlier detection algorithms, performing best on specific
dataset categories. Based on the obtained experimental results and the
insights drawn from the study on the time efficiency of EORELM-AD, it
is fair to conclude that the proposed framework can serve as a referential
tool for the community to adapt online time series prediction algorithms
to outlier detection, and that ensembles can be efficient online anomaly
detectors that can effectively reduce false positives and perform on par with
other avant-garde methods.

On a summarizing note, this Thesis has delved into the anomaly detection
problem when formulated over streaming time series data, contributing with
several achievements to the general knowledge in this research area: i) a
thorough study of the state of the art in different subareas intersecting
with this topic; ii) a solid understanding of the requirements imposed by
online processing; iii) a detailed exposition of the methodological steps and
algorithmic components involved in an algorithmic proposal devised to tackle
this problem; iv) the proposal of a public software package that collects and
unifies the implementation of approaches for online anomaly detection over
time series data; and finally, v) the application of the knowledge acquired
during the Thesis to realize a framework to produce innovative proposals
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based on time series prediction algorithms, and a novel ensemble anomaly
detection that results from the application of the aforementioned framework.
These contributions comprise a Thesis that aims to ultimately provide
evidence about the challenging nature of online anomaly detection as a
data-based modeling task, and to stimulate its readership towards continued
research efforts in this exciting and rapidly evolving field.

5.2. PUBLICATIONS

The main results stemming from the investigations pursued in the Thesis
have given rise to several publications in top JCR-indexed journals related
to the wide fields of Machine Learning and Artificial Intelligence. Details of
the two journal articles presenting the technical contributions of the Thesis
are next given:

Alaiñe Iturria, Jacinto Carrasco, Santi Charramendieta, Angel Conde,
and Francisco Herrera. «otsad: A package for online time-series anomaly
detectors.» In: Neurocomputing 374 (2020), pp. 49–53.

• Status: Published

• Impact factor (JCR 2019): 4,438

• Subject Category: Computer Science, Artificial Intelligence. Rank-
ing 28/137 (Q1)

Alaiñe Iturria, Jokin Labaien, Santi Charramendieta, Aizea Lojo,
Javier Del Ser, and Francisco Herrera. «A framework for adapting
online prediction algorithms to outlier detection over time series.» In:
Knowledge-Based Systems 256 (2022), p. 109823.

• Status: Published

• Impact Factor (JCR 2021): 8,139

• Subject Category: Computer Science, Artificial Intelligence. Rank-
ing 24/145 (Q1)

5.3. FUTURE RESEARCH DIRECTIONS

The research of this dissertation can be continued in many directions. The
most important topics that can be referred to as having great potential for
further research are shortly discussed below:

Study of online data-based diversity generation methods : most ensem-
bles proposed for online processing are based on static diversity genera-
tion methods, performing feature selection or model initialization only
once before the model’s training process. As explained throughout the
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Thesis, the training dataset may change continuously with the arrival
of new data in online processing. However, most related works train
the base models on the same dataset, being [75] the only contribution
proposing to learn an ensemble on dynamically generated subsets of
training data with the arrival of new instances. Inspired by this obser-
vation, an interesting line of research could be to find a way to generate
new subsets of data dynamically, by selecting instances or features
while maintaining the temporal correlation between the stream time
series data. This aspect is not only interesting for the generation of
ensembles, but is also essential for the parallel implementation and
processing of Big Data time series.

Investigation of ensemble combination methods that take into account
the temporal correlation between the data points of the time series : in
the study about outlier detection ensembles, it was observed that no
combination technique has considered so far the temporal correlation
inherently existing in time series data. A plausible research hypothesis is
that combination methods for time series should consider the temporal
correlation of the results when combining them to yield a final decision
about the outlier nature of arriving data. This being stated, it should be
possible to use prediction algorithms to estimate the current point value
xt, and produce a prediction for the following n points, xt+1, . . . , xt+n.
In this way, when the data to be predicted is xt+n, n predictions
from the previous steps will be available, which can be combined by
averaging or weighted averaging and thereby, the impact of anomalies
when learning earlier instances can be minimized.

Derivation of new algorithms based on heterogeneous ensembles : as has
been showcased in the Thesis, new anomaly detectors can be easily
generated by varying the structure of ensembles. In this context, the
Thesis has proposed a homogeneous EORELM-AD algorithm whose
inter-learner diversity stems mainly from different hyperparameter
sets of OR-ELM base detection algorithm. However, it would also
be interesting to combine algorithms of different types, such as those
implemented in otsad, and investigate if it is possible to obtain better
detection ensembles that outperforms their individual base learners.

Use of parallelization techniques to improve the time efficiency of
ensembles: although ensembles can provide a higher level of robust-
ness, they also require a higher computational cost. Fortunately, the
implementation of the learning algorithm of some ensembles can be
run efficiently over multiple processors due to their inherently parallel
structure. Related to the last contribution of the Thesis, the proposed
EORELM-AD detector falls within the subset of ensembles whose
structure is appropriate for its parallelization. Further efforts can be
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invested towards realizing this implementation and evaluating its use
over ultra-high rate time series data.

Proposal of new detection algorithms based on other recurrent learning
models with efficient training methods: the framework described in
Section 4.2 allows for the use of algorithms from the area of online time
series prediction to their use for anomaly detection. Besides OR-ELM,
other recurrent learning models with efficient training methods (e.g.,
recurrent Broad Learning Systems or Echo State Networks) could also
be studied to yield novel outlier detection algorithms over time series
compliant with the computational requirements of online settings.

Study on the adaptability of detection algorithms to time series with
outliers of different nature and the incremental characterization of
anomalies : the practical use of anomaly detection algorithms could be
complemented in practice with additional mechanisms to consolidate
a recurrently appearing anomaly as a learnable pattern so that, when
assimilated inside the anomaly detection algorithm, the detection of
the consolidated anomaly could be done more reliably in subsequent
instants of time along the time series stream.

Application of the acquired knowledge and research in online anomaly
detection over multivariate time series : a starting point of this Thesis
has been an intended focus on anomaly detection over univariate time
series. However, extrapolating the acquired knowledge to tackle online
anomaly detection in multivariate time series is a mandatory follow-up
research direction to be pursued in the future. Interestingly, some of
the algorithms investigated in this Thesis (e.g., SD-EWMA, TSSD-
EWMA, and EORELM-AD) already have a variant for multivariate
data. Implications of handling multiple variables over the time series
in the methodological steps of the proposed framework and the con-
struction of ensemble detectors will be actively investigated, opening
up the possibility to create new algorithmic approaches capable of
performing competitively over multivariate time series.
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