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Abstract

In the golden era of information, vast amounts of data are available to perform analysis on
and extract valuable insight from. The area of science devoted to this problem is known as
Knowledge Discovery in Databases; particularly, it is its branch of Data Science where this
thesis is framed in. Specifically, this thesis focuses on clustering techniques that are capable
of including relational information into the clustering process. This type of information does
not fit into the classic supervised and unsupervised learning paradigms. However, the Semi-
Supervised Learning (SSL) paradigm does provide us with the tools to perform clustering in
the presence of relational information. This task is known as Constrained Clustering (CC).

Four objectives shape this thesis:

1. A comprehensive study in the area of CC, from an SSL standpoint. The goal of this ob-
jective is to produce the first comprehensive analysis of the CC state-of-the-art, includ-
ing a standardization of the experimental procedures and a ranking of all CC methods
proposed so far.

2. The development of metaheuristic-based proposals for the CC problem, from both
single-objective and multi-objective optimization perspectives. Two metaheuristic-
based methods are designed to achieve this objective. Both are first proposed in this
thesis and have been specifically designed to obtain quality solutions for the CC prob-
lem. An empirical study compares both methods against the state-of-the art in their
specific areas, demonstrating their superiority.

3. The proposal of hybrid models for the CC problem. Motivated by the high quality re-
sults that hybrid methods usually obtain in the field of CC, this thesis introduces a
new hybrid model that combines the two broadest categories in the area: partitional
CC and constrained distance metric learning. This proposal also includes a procedure
to automatically determine the relevance of the pieces that make up the set of rela-
tional information. The empirical study carried out provides evidence of the proposal
being superior to the state-of-the-art.

4. Finally, motivated by the existence of real-world problems where multiple types of
background knowledge are available, this thesis tackles the issue of combining rela-
tional and monotonicity information. This combination gives rise to the monotonic
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constrained clustering paradigm. The suitability of the problem is proved, and a base-
line algorithm is proposed. The experimental study shows the superiority of mono-
tonic constrained clustering algorithm over both purely constrained and purely mono-
tonic clustering algorithms. This finding is backed by positive results in a classic set
of benchmarks and a real-world monotonic constrained clustering problem.

The four objectives have been successfully addressed, and the thesis has made significant
contributions to the field of CC from the point of view of SSL. The comprehensive study car-
ried out in the first objective provides a solid basis for understanding the state-of-the-art
in CC and enables the standardization of experimental procedures, which is crucial for a
scientifically sound comparison of different methods. The development of metaheuristic-
based proposals in the second objective provides new and efficient techniques to solve the
CC problem, while the proposed hybrid models in the third objective demonstrate the poten-
tial of combining different approaches to further improve the quality of the results. Finally,
the proposed monotonic constrained clustering paradigm in the fourth objective addresses
the problem of combining multiple types of background knowledge and achieves superior
results over purely constrained and purely monotonic clustering algorithms.
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Resumen

La edad de oro de la informacion trae consigo la generacion de enormes cantidades de datos,
disponibles para ser analizados con el fin de extraer de ellos informacion valiosa. El drea de
la ciencia que se encarga de esta tarea se conoce como extraccion de conocimiento en bases
de datos (Knowledge Discovery in Databases - KDD). En concreto, esta tesis se centra en las
técnicas de clustering que son capaces de considerar informacién relacional. Este tipo de in-
formacion no encaja en los paradigmas supervisado y no supervisado considerados clasicos
en el aprendizaje automaético. Sin embargo, el paradigma de aprendizaje semisupervisado
(Semi-Supervised Learning - SSL) nos proporciona las herramientas necesarias para aplicar
técnicas de clustering en presencia de dicha informacion relacional. Esta tarea se conoce
como agrupamiento restringido o clustering con restricciones (Constrained Clustering - CC).

Esta tesis aborda los siguientes cuatro objetivos:

1. El primero consiste en un estudio exhaustivo en el area del CC desde el punto de vis-
ta del SSL. Su finalidad es realizar el primer analisis exhaustivo del estado del arte
en CC que incluya una estandarizacion de los procedimientos experimentales y una
clasificacion de todos los métodos de CC propuestos hasta ahora.

2. El segundo aborda el desarrollo de propuestas basadas en metaheuristicas para el CC,
incluyendo técnicas de optimizacion tanto monoobjetivo como multiobjetivo. Para
plantear este objetivo se han disefiado dos métodos. Ambos se proponen por primera
vez en esta tesis y han sido disefiados especificamente para el CC. Un estudio empirico
compara ambos métodos con el estado del arte en sus respectivas areas y demuestra
su superioridad.

3. El tercer objetivo tiene como finalidad investigar modelos hibridos para el CC. Moti-
vada por la ya demostrada capacidad de dichos modelos para obtener resultados de
calidad en el &mbito del CC, esta tesis incorpora un nuevo modelo hibrido que combi-
na las dos categorias mas amplias en el area: el CC particional y el aprendizaje métrico
de distancias con restricciones. Esta propuesta también incluye un procedimiento para
determinar automaticamente la relevancia de los elementos que conforman el conjun-
to de informacion relacional. El estudio empirico realizado proporciona evidencia de
que nuestra propuesta es superior al estado del arte.
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4. Por ultimo, motivada por la existencia de problemas para los que estan disponibles
multiples tipos de informacién incompleta (como la informacién relacional), esta tesis
plantea como combinar informacion relacional y de monotonicidad. Dicha combina-
cién da lugar al paradigma del clustering monoténico con restricciones. Tras demos-
trar la relevancia del problema que se aborda, se propone un algoritmo bdasico para
resolver el mismo. El estudio experimental muestra la superioridad de este algoritmo
sobre otros que solo son capaces de considerar informacion relacional o de monoto-
nicidad por separado. Los hallazgos relacionados con este objetivo estan respaldados
por resultados positivos en baterias de pruebas estindar y en un caso de aplicacion
especifico.

La tesis aborda los cuatro objetivos descritos con éxito. De esta manera, quedan suficien-
temente demostradas sus aportaciones en su campo de estudio. La revision de la literatura
llevada a cabo en el primer objetivo proporciona una base sélida para comprender el esta-
do del arte en el CC. Permite la estandarizacién de los procedimientos experimentales, lo
que es crucial para una posterior comparacion cientificamente fundamentada de diferentes
métodos. El desarrollo de propuestas basadas en metaheuristicas en el segundo objetivo pro-
porciona nuevas técnicas eficientes para resolver el CC, mientras que los modelos hibridos
propuestos en el tercer objetivo demuestran el potencial de combinar diferentes enfoques
para mejorar aun m4s la calidad de los resultados. Finalmente, el paradigma del clustering
monotdnico restringido, propuesto en el cuarto objetivo, aborda la combinaciéon de multi-
ples tipos de informacion incompleta, logrando resultados superiores a los obtenidos con
modelos anteriores.
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Chapter I

PhD Dissertation

«The most exciting phrase to hear in science, the one that heralds the
most discoveries, is not “Eureka!” (I found it!) but “That’s funny...”».
— Isaac Asimov.
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1 Introduction

We kindly ask the reader to consider the following situation. You are given two, quite bizarre,
objects. You have time to examine them and learn everything you can about them, without
any help. Then, someone comes to you and asks you to place them into a category. If you are
free to give any answer, and you are lucky enough to have recognized the objects, you will
give a precise category for them. However, if you did not recognized them, and you were
not able to learn much about them, you will probably just make up a category, or say the
category of something you know is similar to them. In short, we can agree that the number
of possible answers to the question “What are the categories of the two objects?” is virtually
infinite, only bounded by your knowledge or imagination. Now, let us consider another
scenario. In the same setup, with the same two objects, you are asked whether they belong
to the same category or not. Now you have only three possible answers: “Yes”, “No”, or “I
don’t know”. This is really good news! We have bounded the possible answers from virtually
infinite to just three by changing the question and giving up categorical information in favor
of relational information. Moreover, the level of knowledge required to categorize the two
objects is much higher than the knowledge required to tell if they belong to similar or to
distinct categories. This makes relational knowledge easier to access. The image below tries
to illustrate the two scenarios of our example.

Il
I

? ?

This is the essence of the research carried out during this PhD, and what all the studies
presented in this thesis focus on. This dissertation and the subsequent studies included in
Chapter II formalize the concepts presented in the above situations: the objects, the ques-
tions, the categories, the answers, the relational information, the answering entity, etc. All
of these concepts need to be formalized for this problem to be understood by a computer—
for it to be computable. Our goal is to study how the “Yes”, “No”, or “I don’t know” type of
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information (relational information) can be used to infer the final categories of the objects,
how a machine can learn from them. In order to do so, we frame this PhD within the data
science research area.

Recent technological advancements have led to the generation and storage of massive
amounts of data by various organizations and entities, including governments, private com-
panies, and research institutes. These organizations have become increasingly interested
in extracting useful insights from the data, which can give them a competitive advantage
and drive innovation. As a result, data science has emerged as a leading field for research,
development and innovation.

However, the standards in data science have become more rigorous, and the range of
applications with varying restrictions has increased. Therefore, the correct implementation
of the Knowledge Discovery in Databases (KDD) process has become crucial [PF91]. This
process involves a set of stages that enable the identification of valuable patterns and relation-
ships within the data. By following the KDD process, organizations can extract meaningful
insights from their data, which can lead to new breakthroughs and a significant competitive
advantage [PF91, HKP12]. The stages of KDD can be described as follows:

« Problem specification: the requirements and objectives of the discovery process are
identified. This helps to establish a clear understanding of what the data mining pro-
cess aims to achieve.

« Data extraction: involves selecting relevant data from various sources with the help
of expert knowledge. The extracted data are then consolidated into a single dataset to
be processed in subsequent stages.

» Data preprocessing: aims to transform the data into a format that can be handled
by data mining techniques [GLH15]. It involves cleaning the data of any impurities,
such as noise, missing or redundant information, and irrelevant data. The ultimate
goal of data preprocessing is to obtain quality data, also known as Smart Data, for use
in subsequent stages [GGLGH19].

« Data mining: involves extracting patterns, relationships, and/or models from the
processed dataset [WFH'05]. The type of knowledge to be extracted determines the
category of the data mining problem and the group of feasible techniques. Selecting
the best technique for each task is a complex engineering process that requires opti-
mization and validation of the different techniques available.

« Interpretation and evaluation: the extracted knowledge is analyzed and described
to be easily understood and useful. This helps to ensure that the insights obtained
from the data are actionable and provide meaningful value to the organization.

The process of data mining is a critical aspect of the KDD process, as it involves extract-
ing valuable patterns, relationships, or trends hidden within the data. To this end, data
mining algorithms must make use of as much information as possible, trying not to dismiss
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anything available for the task [HKP12, WFH*05]. Data mining is shaped by two major
approaches, which divide it into two distinct areas based on the type of knowledge used to
perform learning [BNO6]:

« Supervised learning: in supervised learning, the goal is to build a classifier or regres-
sor that, trained with a set of examples (or instances) X and their corresponding output
values (or labels) Y, can predict the value of unseen inputs. Classification [DH"06]
and regression [DS98] are examples of classic supervised learning tasks.

+ Unsupervised learning: in unsupervised learning, only the set of examples X is avail-
able, and no output value is provided. Here, the goal is to discover some underlying
structure in the data. For example, in unsupervised clustering the goal is to infer a
mapping from the input to clusters (groups) of similar instances [Mir12]. Association
rules learning [CSP*07] is another example of classic unsupervised learning.

However, these two learning paradigms are very limited with respect to the type of in-
formation they can handle: either all instances are labeled (supervised), or none of them
are (unsupervised). This is very restrictive when it comes to, for example, a subset of la-
beled data, or a different kind of information, such as relational information. The Semi-
Supervised Learning (SSL) area arises to overcome these drawbacks. SSL is the branch of
Machine Learning (ML) that tries to combine the benefits of these two approaches [CSZ10].
To do so, it makes use of both labeled and unlabeled data, or other kinds of expert knowledge.
In classification or regression, for example, unlabeled data may also be available in addition
to the (expected) set of labeled data. Similarly, when considering clustering problems, a
smaller subset of labeled data (or other types of knowledge about the dataset) may be avail-
able. Generally, supplementary data that fits neither in the supervised nor unsupervised
learning paradigm might also be at the disposal of the researchers. Failing to take advan-
tage of this information does not optimally use the available sources of knowledge about the
matter, and thus a need for SSL [VEH20] emerges.

With regards to the applicability of SSL, a natural question arises [CSZ10]: in compar-
ison with supervised and unsupervised learning, can SSL obtain better results? A positive
answer to this question can be readily inferred, as otherwise neither this thesis nor most of
the studies cited in it would exist. However, there is an important condition imposed for the
answer to be affirmative: the distribution of instances in X must be representative of the true
distribution of the data. Formally, the underlying marginal distribution p(X) over the input
space must contain information about the posterior distribution p(Y|X). Then, SSL is capa-
ble of making use of unlabeled data to obtain information about p(X) and, therefore, about
p(Y|X) [VEH20]. Luckily, this condition appears to be fulfilled in most real-world learn-
ing problems, as suggested by the wide variety of fields where SSL is successfully applied.
Nonetheless, the way in which p(X) and p(Y|X) are related is not always the same. This
leads to the SSL assumptions, introduced in [CSZ10] and formalized in [VEH20]. A brief
summary of these assumptions following [VEH20] is presented; please refer to the studies
referenced for more details.
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« Smoothness assumption: two instances that are close in the input space should have
the same label.

+ Low-density assumption: decision boundaries should preferably pass through low-
density spatial regions.

« Manifold assumption: in tasks where data can be represented in Euclidean space, in-
stances in a high-dimensional input space are usually gathered along lower-dimensional
structures known as manifolds: locally Euclidean topological spaces.

+ Cluster assumption: data points which belong to the same cluster also belong to
the same class. This assumption can be seen as a generalization of the previous three
specific assumptions.

As in other ML paradigms, the transduction versus induction dichotomy can be found
in SSL. Usually, semi-supervised classification methods comprise the vast majority of the
SSL field; therefore, the aforementioned dichotomy is explained in terms of classification as
follows:

+ Inductive methods: inductive methods aim to build a classifier capable of outputting
a label for any instance in the input space. Unlabeled data can be used to train the clas-
sifier, but the predictions for unseen instances are independent of each other once the
training phase is completed. An example of inductive method in supervised learning
is linear regression [VEH20].

« Transductive methods: transductive methods do not build a classifier for the en-
tire input space: their predictions are limited to the data used during the training
phase. Transductive methods do no have separated training and testing phases. An
example of transductive method in unsupervised learning is Hierarchical Clustering
(HC) [VEH20].

Figure 2 helps us contextualize semi-supervised learning and its derivatives within the
overall ML landscape. General SSL literature [Zhu05, CSZ10, ZG09] usually divides SSL
methods into two categories: semi-supervised classification and semi-supervised clustering.
Further dichotomies have been made in later literature. In [VEH20, Zho21] semi-supervised
classification methods are taxonomized by taking into account the inductive versus trans-
ductive dichotomy. Some of the categories found in these taxonomies have been further stud-
ied: [ST14] proposes a taxonomy for graph-based semi-supervised methods, and [TGH15]
does the same for the self-labeling field. Concerning semi-supervised clustering, [Bail3]
proposes a high level taxonomy with 4 types of methods, while [DB07, BDWO08] focus on
the specific area of Constrained Clustering (CC). The supervised and unsupervised learning
paradigms are included in Figure 2 for the sake of contextualization only. Consequently,
only classic and widely-known tasks belonging to these areas have been included in the di-
agram.
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Figure 1: Mindmap of the overall ML landscape.

The area of semi-supervised clustering has been widely studied and successtully applied
in many fields since its inception. It can be seen as a generalization of classic clustering
which is able to include background knowledge in the clustering process [CSZ10]. Many
types of background knowledge have been considered in semi-supervised clustering [Bail3],
although the most studied one is the pairwise instance-level must-link and cannot-link con-
straints [BDWO08]. It relates instances indicating if they belong to the same class (must-link)
or to different classes (cannot-link), just like in the example at the beginning of this thesis.
In the literature, the problem of performing clustering in the presence of this type of infor-
mation is referred to as CC (marked in Figure 2 in blue). As Section 2 will show, clustering
under must-link and cannot-link constraints is NP-complete [DR0O5b]. Consequently, it has
to be tackled with approximate methods. The first objective of this thesis is to carry out an
exhaustive study on these methods, with the aim of creating a taxonomy to categorize and
organize them. This will further the knowledge of the area and, subsequently, foster innova-
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tion. To the best of our knowledge, this will be the first attempt to produce such taxonomic
study.

Metaheuristics are a class of optimization algorithms designed to tackle complex, non-
linear optimization problems that are unfeasible to solve in practice using exact methods.
Unlike traditional optimization techniques, such as linear programming or gradient-based
methods, metaheuristics do not rely on explicit problem-specific knowledge, but instead on
heuristics and stochastic search to find high-quality solutions. Within metaheuristics, evo-
lutionary algorithms are a family of optimization algorithms that are inspired by natural
selection. They simulate the process of evolution through genetic operators such as mu-
tation, crossover, and selection to evolve a population of candidate solutions. The idea is
to create a population of potential solutions and allow them to evolve and adapt through
generations, gradually improving their fitness over time to arrive at high-quality solutions.
Memetic evolutionary algorithms are a type of evolutionary algorithm that include exploita-
tion procedures to accelerate the convergence process [GP10].

Metaheuristic evolutionary algorithms are highly flexible and can thus be applied to a
wide range of optimization tasks, such as: crude oil time series [KABA20], COVID-19 dis-
ease recognition through X-ray images [AK20], digital currency forecasting [AKB19] and
control of unmanned aerial vehicles [Alt20], among others. Classic clustering is no excep-
tion to this trend, with many studies presenting excellent results [NP14, HLZC19, JGGF16],
although very little work has been done on CC. The second objective of this thesis is to ap-
proach CC from a metaheuristic point of view, aiming to experiment with multiple existing
optimization models to eventually design a specific one for CC.

Within the field of metaheuristics, Multi-Objective Evolutionary Algorithms (MOEAs)
[CLVV*14] are particularly interesting to approach clustering. Many measures can be used
to guide the clustering process towards a quality solution [SSZL05], although it is often not
straightforward to integrate constraints into a single function that can be optimized by a stan-
dard optimizer. This issue is also found in the CC framework, as even more quality measures
need to be used in order to include constraints. Constraint-related quality measures often
contradict classic clustering quality measures, which complicates their integration into a
single-objective function optimizable by a single-objective evolutionary algorithm. Multi-
objective optimization schemes provide us with a powerful tool to overcome all these draw-
backs. In its second objective, this thesis also aims to address CC with MOEAs. The objective
is to design a new optimization model specifically for CC, including memetic procedures if
deemed necessary.

Metaheuristics are not the only family of approximate methods that represent a promis-
ing approach to CC. Within the classic clustering paradigm, two broad categories can be
found in the literature: partitional clustering and HC. In partitional clustering, a partition
assigning every instance from the dataset to a specific cluster from among a fixed number
of them is built, whereas HC obtains a tree-like hierarchical structure coding a set of par-
titions that allows the user to choose any cluster granularity between one and the number
of instances in the dataset (more details in Section 2.1). Both of them have been applied to
many real-world problems [ESA*20], although when it comes to CC a significant imbalance
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favoring partitional methods can be observed; very little work has been done to integrate
constraints into HC methods [DR05a, BB06, KKMO02, ZL.11] with respect to the number of
existing partitional CC methods. The third objective of this thesis is to dive into the use of
hybrid agglomerative HC methods for CC, which should combine partitional CC methods
and constrained Distance Metric Learning (DML) methods to address CC (see Section 2.6
for more details). In addition, the automatic generation of constraint weights is explored.
Weighted constraints can be leveraged to guide the clustering process towards high qual-
ity solutions more effectively than unweighted constraints, although very little work has
been done on automatic generation of constraint weights and their integration into distance-
based CC methods.

Recently, a new type of background knowledge coming from the supervised learning
paradigm has been integrated into unsupervised learning. Monotonic classification is a par-
ticular case of supervised learning where classes are a set of ordered categories and classi-
fication models must respect monotonicity constraints among instances based on their de-
scriptive features. This means that, if an instance x; has greater feature values than those
of instance x;, its assigned class must also be higher (greater) in the ordering than that of
x; [RDSDD21]. Considering the classic example of house pricing: for two houses in the same
neighborhood, the bigger ones are constrained to have higher prices than smaller houses
when the rest of the features of the houses are similar [GGL*21]. This defines an order rela-
tionship between houses (instances) based on the value of their features, and therefore mod-
els that predict house prices must take this into account to produce accurate results. Mono-
tonicity constraints are a type of background knowledge that can be leveraged to produce
more accurate predictive models [CGK*19], and has been successfully applied in real-world
problems such as fraudulent firm classification [Pan20], real-time dynamic malware detec-
tion [CLSR18], or analysis of learning activities based on student opinion surveys [CAA*17].
Additionally, a recent study from the Alan Turing Institute states that considering underly-
ing data monotonicity in ML models leads to fairer applications [Les19]. In [RDSDD21] a
methodology to perform clustering in the presence of monotonicity information (ordered
clustering) is proposed within the Multi Criteria Decision Aid (MCDA) framework. The
fourth and last objective of this thesis is to approach the combination of monotonicity infor-
mation and pairwise instance-level constraints. This results in a novel clustering paradigm,
which needs to be formalized and tackled with new methods. This new paradigm can be
employed in real-world problems where both types of information are available, such as the
Shanghai Ranking of World Universities (SRWU) dataset, to yield better results than purely
CC and purely monotonic clustering methods.

Finally, to conclude this part we summarize the structure of this thesis, which is com-
posed of two parts: the PhD dissertation, in Chapter I, and the publications that back the
knowledge and conclusions presented in it, in Chapter II. The dissertation is split into 8
sections. Section 2 introduces the technical background of the concepts and terminology
that will appear in subsequent sections. The justification, objectives and methodology that
establish the foundation for this thesis are introduced in Sections 3, 4 and 5, respectively. Af-
terwards, Section 6 contains a summary of the research carried out in this thesis. Finally, in
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Section 8 the conclusions derived from the research are presented along with future research
lines.

The second part (Chapter II) gathers the publications that support the knowledge and
the conclusions discussed in the dissertation. From the 5 publications presented in this
part, three of them are published in international and indexed journals, and two of them are
currently under review. The publications are the following:

+ Semi-Supervised Constrained Clustering: An In-Depth Overview, Ranked Taxonomy
and Future Research Directions.
« DILS: Constrained Clustering Through Dual Iterative Local Search.

+ ME-MOEA/D¢cc: Multiobjective Constrained Clustering Through Decomposition -
based Memetic Elitism.

» 3SHACC: Three Stages Hybrid Agglomerative Constrained Clustering.

« Semi-supervised Clustering with Two Types of Background Knowledge: Fusing Pair-
wise Constraints and Monotonicity Constraints.
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Introduccion

Rogamos al lector que considere la siguiente situacion. Se le entregan dos objetos que desco-
noce. Tiene tiempo para examinarlos y aprender todo lo que pueda sobre ellos, sin ninguna
ayuda. Al cabo de un rato, alguien se le acerca y le pide que los clasifique en una categoria.
Si es libre de dar cualquier respuesta y tiene la suerte de haber reconocido los objetos, les
asignard una categoria precisa. Sin embargo, si no los ha reconocido y no ha podido anali-
zarlos, probablemente se inventard una categoria o los asociaré a la de algo que le resulte
similar. En resumen, podemos estar de acuerdo en que el nimero de respuestas posibles a
la pregunta «;cudles son las categorias de los dos objetos?» es practicamente infinito, solo
limitado por sus conocimientos o su imaginacion. Consideremos ahora otro escenario. En la
misma situacién, con los mismos dos objetos, se le pregunta si pertenecen a la misma cate-
goria o no. Ahora sélo tiene tres respuestas posibles: «si», «<no» 0 «no lo sé». {Genial! Hemos
acotado las posibles respuestas de practicamente infinitas a sélo tres cambiando la pregunta
y eliminando informacién categoérica en favor de informacion relacional. Ademads, el nivel
de conocimiento necesario para categorizar los dos objetos es mucho mayor que el necesario
para saber si pertenecen a categorias similares o no. Esto facilita el acceso al conocimiento
relacional. La siguiente imagen trata de ilustrar los dos escenarios descritos anteriormente.

Il
I

? ?

Esta es la esencia de la investigacion llevada a cabo durante este doctorado y en lo que se
centran todos los estudios presentados en esta tesis. Esta disertacion y los estudios posterio-
res incluidos en el Capitulo II formalizan los conceptos que se presentan en las situaciones
anteriores: los objetos, las preguntas, las categorias, las respuestas, la informacién relacio-
nal, la entidad que responde, etc. Es necesario formalizar todos estos conceptos para que
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este problema pueda ser comprendido por un ordenador, para que sea computable. Nuestro
objetivo es estudiar como la informacién de tipo «si», «no» o «no lo sé» (informacion rela-
cional) puede utilizarse para inferir las categorias finales de los objetos, como una maquina
puede aprender de ellas. Para ello, planteamos este doctorado en el 4rea de investigacion de
la ciencia de datos.

Los recientes avances tecnologicos han dado lugar a la generacion y almacenamiento de
cantidades masivas de datos por parte de diversas organizaciones y entidades, entre ellas
gobiernos, empresas privadas e institutos de investigacion. Estas organizaciones estdn cada
vez mas interesadas en extraer informacién util de los datos, lo que puede proporcionarles
una ventaja competitiva e impulsar la innovacién. Como resultado, la ciencia de los datos
ha surgido como un campo puntero para la investigacion, el desarrollo y la innovacion.

Sin embargo, los estdndares en la ciencia de datos son cada vez mds rigurosos y las aplica-
ciones tienen requisitos mas especificos. Por ello, 1a correcta implementacion del proceso de
extraccion de conocimiento en bases de datos (Knowledge Discovery in Databases - KDD) se
ha vuelto crucial [PF91]. Este proceso implica un conjunto de etapas que permiten la identi-
ficacion de patrones y relaciones. Siguiendo el proceso KDD, los organismos pueden extraer
informacion valiosa de sus datos, lo que conlleva nuevos avances y una significativa ventaja
competitiva [PF91, HKP12]. Las etapas del KDD pueden describirse asi:

+ Especificacion del problema: se identifican los requisitos y objetivos del proceso
KDD. Esto ayuda a establecer una comprension clara de lo que el proceso de extraccion
de datos pretende lograr.

« Extraccion de datos: consiste en seleccionar los datos pertinentes de diversas fuentes
con la ayuda de conocimientos especializados. A continuacion, los datos extraidos se
consolidan en un unico conjunto de datos que se procesara en etapas posteriores.

» Preprocesamiento de datos: tiene como objetivo transformar los datos en un for-
mato que pueda ser utilizado por las técnicas de mineria de datos [GLH15]. Implica
limpiar los datos de cualquier impureza, como ruido, informacioén incompleta o redun-
dante y datos irrelevantes. El objetivo final del preprocesamiento de datos es obtener
datos de calidad, también conocidos como Smart Data, para su uso en etapas posterio-
res [GGLGH19].

« Mineria de datos: consiste en extraer patrones, relaciones o modelos del conjunto de
datos procesados [WFH™'05]. El tipo de conocimiento que debe extraerse determina
la categoria del problema de mineria de datos y el grupo de técnicas viables. La selec-
cion de la mejor técnica para cada problema es un complejo proceso de ingenieria que
requiere la optimizacion y validacion de las técnicas disponibles.

+ Interpretacion y evaluacion: los conocimientos extraidos se analizan y describen
para que sean ficilmente comprensibles y ttiles. Esto ayuda a garantizar que los cono-
cimientos obtenidos a partir de los datos sean procesables y aporten un valor signifi-
cativo a la organizacién que pretenda utilizarlos.
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La mineria de datos es un aspecto critico del KDD, ya que implica la extraccion de pa-
trones, relaciones o tendencias ocultas en los datos. Para ello, los algoritmos de mineria de
datos deben hacer uso de la mayor cantidad de informacion posible, tratando de no descartar
nada de lo disponible para la tarea [HKP12, WFH*05]. La mineria de datos esta conformada
por dos grandes enfoques, que la dividen en dos areas diferenciadas en funcion del tipo de
conocimiento utilizado para realizar el aprendizaje [BNO6]:

» Aprendizaje supervisado: en el aprendizaje supervisado, el objetivo es construir un
clasificador o regresor que, entrenado con un conjunto de ejemplos (o instancias) X
y sus correspondientes valores de salida (o etiquetas) Y, pueda predecir el valor de
entradas no vistas. La clasificacion [DH*06] y la regresion [DS98] son ejemplos de
tareas clasicas de aprendizaje supervisado.

« Aprendizaje no supervisado: en el aprendizaje no supervisado, solo se dispone del
conjunto de ejemplos X y no se proporciona ningun valor de salida. En este caso, el
objetivo es descubrir alguna estructura subyacente en los datos. Por ejemplo, en el
clustering no supervisado, el objetivo es inferir un mapeo de la entrada a clusters (gru-
pos) de instancias similares [Mir12]. El aprendizaje de reglas de asociacion [CSP*07]
es otro ejemplo de aprendizaje clasico no supervisado.

Sin embargo, estos dos paradigmas de aprendizaje estin muy limitados en cuanto al tipo
de informacién que pueden utilizar: o todas las instancias estan etiquetadas (supervisado), o
ninguna lo esta (no supervisado). Esto es muy restrictivo cuando se trata, por ejemplo, de un
subconjunto de datos etiquetados o de otro tipo de informacidn, como la informacién rela-
cional. El aprendizaje semisupervisado (Semi-Supervised Learning - SSL) surge para abordar
estos inconvenientes. E1 SSL es la rama del aprendizaje automatico (Machine Learning - ML)
que intenta combinar las ventajas de los dos enfoques anteriores [CSZ10]. Para ello, hace uso
de datos etiquetados y no etiquetados, o de otros tipos de conocimiento experto. En clasifi-
cacion o regresion, por ejemplo, los datos no etiquetados también pueden estar disponibles
ademads del conjunto (esperado) de datos etiquetados. Del mismo modo, al considerar proble-
mas de clustering, puede estar disponible un subconjunto méas pequefio de datos etiquetados
(u otros tipos de conocimiento sobre el conjunto de datos). Por lo general, los investigadores
también pueden disponer de datos complementarios que no encajan ni en el paradigma del
aprendizaje supervisado ni en el del aprendizaje no supervisado. Si no se aprovecha esta in-
formacion, no se utilizan de forma 6ptima las fuentes de conocimiento disponibles, por lo
que surge la necesidad del SSL [VEH20].

En cuanto a la aplicabilidad del SSL, surge una pregunta evidente [CSZ10]: en compa-
racion con el aprendizaje supervisado y no supervisado, ;puede el SSL obtener mejores re-
sultados? Se puede deducir facilmente una respuesta afirmativa, ya que de lo contrario no
existirian ni esta tesis ni la mayoria de los estudios citados en ella. Sin embargo, se impone
una condicién importante para que la respuesta sea afirmativa: la distribucién de instancias
en X debe ser representativa de la auténtica distribucién de los datos. Formalmente, la dis-
tribucion marginal subyacente p(X) sobre el espacio de entrada debe contener informacion
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sobre la distribucion posterior p(Y|X). Asi, el SSL es capaz de hacer uso de datos no etique-
tados para obtener informacién sobre p(X) y, por tanto, sobre p(Y|X) [VEH20]. Por suerte,
esta condicion parece cumplirse en la mayoria de los problemas reales de aprendizaje, como
sugiere la amplia variedad de campos en los que se aplica con éxito SSL. No obstante, la for-
ma en que p(X)y p(Y|X) se relacionan no siempre es la misma. Esto nos lleva a los supuestos
SSL, presentados en [CSZ10] y formalizados en [VEH20]. A continuacion, se muestra un bre-
ve resumen de estos supuestos, basindose en [VEH20] (consulte las referencias para saber
mas).

+ Hipdtesis de uniformidad: dos instancias cercanas en el espacio de entrada deben
tener la misma etiqueta.

» Hipdtesis de baja densidad: las fronteras de decision deben pasar preferentemente
por regiones del espacio de baja densidad.

« Hipotesis de variedad: en los problemas en los que los datos pueden representarse
en el espacio euclidiano, las instancias de un espacio de entrada de alta dimensiona-
lidad suelen agruparse a lo largo de estructuras de menor dimensioén conocidas como
colectores: espacios topoldgicos localmente euclidianos.

« Hipotesis de agrupamiento: las instancias que pertenecen al mismo grupo también
pertenecen a la misma clase. Este supuesto puede considerarse una generalizacion de
los tres supuestos anteriores.

Aligual que en otros paradigmas de ML, la diferenciacion entre transduccion e induccion
se da en el SSL. Por lo general, los métodos de clasificacion semisupervisada comprenden la
gran mayoria del campo del SSL; por lo tanto, la dicotomia antes mencionada se explica en
términos de clasificacién de la siguiente manera:

+ Métodos inductivos: los métodos inductivos tratan de construir un clasificador ca-
paz de producir una etiqueta para cualquier instancia del espacio de entrada. Se pue-
den utilizar datos no etiquetados para entrenar el clasificador, pero las predicciones
para instancias no vistas son independientes unas de otras una vez completada la fase
de entrenamiento. Un ejemplo de método inductivo en el aprendizaje supervisado es
la regresion lineal [VEH20].

« Métodos transductivos: los métodos transductivos no construyen un clasificador pa-
ra todo el espacio de entrada: sus predicciones se limitan a los datos utilizados durante
la fase de entrenamiento. Los métodos transductivos no tienen fases de entrenamiento
y prueba separadas. Un ejemplo de método transductivo en el aprendizaje no supervi-
sado es el clustering jerarquico (Hierarchical Clustering- HC) [VEH20].

La Figura 2 nos ayuda a contextualizar el aprendizaje semisupervisado y sus derivados
dentro del panorama general del ML. La literatura general sobre el SSL [Zhu05, CSZ10,
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ZG09] suele dividir los métodos de SSL en dos categorias: clasificacién semisupervisada y
clustering semisupervisado. En literatura posterior se han hecho otras dicotomias. En [VEH20,
Zho21]los métodos de clasificacion semisupervisada se taxonomizan teniendo en cuenta las
diferencias entre induccién y transduccién. Algunas de las categorias propuestas en estas ta-
xonomias se han estudiado mas a fondo: [ST14] propone una taxonomia para los métodos
semisupervisados basados en grafos y [TGH15] hace lo mismo para el campo del autoetique-
tado. En cuanto al clustering semisupervisado, [Bail3] propone una taxonomia de alto nivel
con cuatro tipos de métodos, mientras que [DB07, BDW08] se centra en el area especifica
del CC. Los paradigmas de aprendizaje supervisado y no supervisado se incluyen en la figu-
ra 2 inicamente a efectos de contextualizacién. En consecuencia, sélo se han incluido en el
diagrama las tareas cldsicas y ampliamente conocidas pertenecientes a estas areas.
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Figura 2: Mindmap del panorama general en el ML.
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El area del clustering semisupervisado ha sido estudiada en profundidad y aplicada con
éxito en multiples campos desde sus inicios. Puede verse como una generalizacion del pro-
blema clasico de clustering que es capaz de incluir varios tipos de conocimiento en el proceso
de clustering [CSZ10]. Se han considerado muchos tipos de conocimiento en el clustering se-
misupervisado [Bail3], aunque el mas estudiado son las restricciones a nivel de instancia
Must-Link (M-L) y Cannot-Link (C-L) [BDWO0S]. Este relaciona instancias indicando si per-
tenecen a la misma clase (M-L) o a clases diferentes (C-L), tal y como se planteaba en el
ejemplo utilizado para presentar esta tesis. En la literatura, el problema de aplicar clustering
en presencia de este tipo de informacién (informacién parcial) se denomina agrupamiento
restringido o clustering con restricciones (Constrained Clustering - CC) (sefialado en la Figu-
ra 2 en azul). Como se mostrard en la Seccion 2, el CC es un problema NP-completo [DRO5b].
En consecuencia, debe abordarse con métodos aproximados. El primer objetivo de esta tesis
es realizar un estudio exhaustivo sobre estos métodos, con el fin de crear una taxonomia
que los categorice y organice. De este modo, se ampliara el conocimiento en el 4area y, en
consecuencia, se fomentara la innovacién. Hasta donde sabemos, esto supondria el primer
intento de elaborar un estudio taxonémico de este tipo.

Las metaheuristicas son una clase de algoritmos de optimizacion disefiados para abor-
dar problemas de optimizacién complejos no lineales que no se pueden resolver de forma
préactica utilizando métodos exactos. A diferencia de las técnicas de optimizacidon tradiciona-
les, como la programacion lineal o los métodos basados en gradientes, las metaheuristicas
no se basan en conocimientos explicitos especificos del problema, sino en la heuristica y la
busqueda estocastica para encontrar soluciones de calidad. Dentro de las metaheuristicas,
los algoritmos evolutivos son una familia de algoritmos de optimizacidn que se inspiran en
la selecciéon natural. Simulan el proceso de evolucion mediante operadores genéticos como
la mutacion, el cruce y la seleccion para hacer evolucionar una poblacién de soluciones can-
didatas a un problema. La idea es crear una poblacion de soluciones potenciales y dejar que
evolucionen y se adapten a través de generaciones, mejorando gradualmente su aptitud con
el tiempo para llegar a soluciones de alta calidad. Los algoritmos miméticos son un tipo de
algoritmo evolutivo que incluyen procedimientos de explotacion del espacio de soluciones
para acelerar el proceso de convergencia [GP10].

Los algoritmos evolutivos son altamente flexibles, por lo que pueden aplicarse a un am-
plio abanico de problemas de optimizacion, tales como: tratamiento de crudo mediante se-
ries temporales [KABA20], reconocimiento de COVID-19 a través de imagenes de rayos
X [AK20], predicciones en banca digital [AKB19] y control de vehiculos aéreos no tripu-
lados [Alt20], entre otros. El clustering clasico no es una excepcion a esta tendencia, puesto
que existen muchos estudios que presentan excelentes resultados [NP14, HLZC19, JGGF16],
aunque se ha trabajado muy poco en CC. El segundo objetivo de esta tesis es abordar el pro-
blema del CC desde un punto de vista metaheuristico, a través de la experimentacién con
modelos de optimizacién existentes para finalmente disefiar uno especifico para elCC.

Dentro del campo de las metaheuristicas, los algoritmos evolutivos multiobjetivo (Multi-
Objective Evolutionary Algorithms - MOEAs) [CLVV'14] son particularmente interesantes
para abordar el clustering. Se pueden utilizar muchas medidas para guiar el proceso de clus-
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tering hacia una solucion de calidad [SSZLO05], aunque a menudo no es sencillo integrar las
restricciones en una Unica funcién que pueda ser optimizada mediante métodos estdndar.
Este problema también se plantea en el marco del CC, ya que para incluir las restricciones
es necesario utilizar ain mas medidas de adecuacion. Las relacionadas con las restricciones
suelen contradecir las relacionadas con el clustering clasico, lo que complica su integracion
en una unica funcion objetivo que sea optimizable por un algoritmo de optimizacién mo-
noobjetivo. Los esquemas de optimizacion multiobjetivo nos proporcionan una poderosa
herramienta para superar este inconveniente. En su segundo apartado, esta tesis pretende
abordar el problema del CC mediante MOEAs. El objetivo es disefiar un nuevo modelo de
optimizacion especifico para el CC, incluyendo procedimientos meméticos si fuera necesa-
rio.

Las metaheuristicas no son la tinica familia de métodos aproximados que representan
una aproximacion prometedora al problema del CC. Dentro del paradigma clésico de cluste-
ring, laliteratura diferencia dos grandes familias: clustering particional y HC. En el clustering
particional, se construye una particion que asigna cada instancia del conjunto de datos a un
cluster especifico de entre un numero fijo de ellos, mientras que el HC obtiene una estruc-
tura jerarquica en forma de arbol que permite al usuario elegir cualquier nivel para formar
distintas particiones (més informacion en la Seccién 2.1). Ambos se han aplicado a multitud
de problemas reales [ESA*20], aunque cuando se trata del CC se observa un desequilibrio
significativo a favor de los métodos particionales. Se ha trabajado muy poco para integrar
restricciones en los métodos de HC [DR05a, BB06, KKMO02, ZL11] respecto al nimero de
métodos de CC particionales existentes. El tercer objetivo de esta tesis es profundizar en el
uso de métodos aglomerativos hibridos de HC para el CC, que deben combinar métodos de
CC particionales y métodos de aprendizaje métrico de distancias (Distance Metric Learning
- DML) con restricciones (ver Seccién 2.6 para mas informacion). Ademads, se explora la ge-
neracion automatica de pesos de las restricciones. Las restricciones ponderadas se pueden
utilizar para guiar el proceso de clustering hacia soluciones de alta calidad de manera mas efi-
caz que las restricciones no ponderadas, aunque se ha trabajado muy poco en la generacion
automatica de dichos pesos y en su integracion en métodos de CC basados en la distancia.

Un nuevo tipo de informacion parcial procedente del paradigma del aprendizaje supervi-
sado se ha integrado hace poco en el aprendizaje no supervisado. La clasificacion monoto6ni-
ca es un caso particular del aprendizaje supervisado en el que las clases son un conjunto de
categorias ordenadas y los modelos de clasificacion deben respetar restricciones de monoto-
nicidad entre instancias. Esto supone que, si los valores de caracteristicas de una instancia
X; son mayores mayores que los de la instancia x;, su clase asignada también debe ser su-
perior en el ordenamiento que la de x; [RDSDD21]. Consideremos el ejemplo clasico del
precio de las casas: para dos casas en el mismo barrio, las mas grandes deben tener precios
maés altos que las mas pequefias cuando el resto de las caracteristicas de las casas son simi-
lares [GGL*21]. Esto define una relacion de orden entre las casas (instancias) basada en
el valor de sus caracteristicas y, por lo tanto, los modelos que predicen los precios de las
casas deben tenerlo en cuenta para producir resultados precisos. Las restricciones de mo-
notonicidad son un tipo de informacién parcial que puede aprovecharse para producir mo-
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delos predictivos mas precisos [CGK*19], y se ha aplicado con éxito en casuisticas como la
clasificacion de empresas fraudulentas [Pan20], 1a deteccion dindmica de malware en tiem-
po real [CLSR18]o el andlisis de actividades de aprendizaje basado en encuestas [CAAT17].
Ademas, un estudio reciente del Instituto Alan Turing afirma que considerar la monotoni-
cidad de los datos subyacentes en modelos de ML produce aplicaciones mas justas [Les19].
En [RDSDD21] se propone una metodologia para realizar clustering en presencia de infor-
macién de monotonicidad (clustering ordenado) dentro del marco del andlisis de decision
multicriterio (Multi Criteria Decission Aid - MCDA). El cuarto y altimo objetivo de esta te-
sis es abordar la combinacion de informacién de monotonicidad y restricciones a nivel de
instancia (M-L y C-L). Esto da lugar a un nuevo paradigma de clustering que necesita ser
formalizado y abordado con nuevos métodos. Este nuevo paradigma se puede emplear en
problemas en los que se dispone de ambos tipos de informacion, como el conjunto de datos
del ranking mundial de la universidad de Shanghai (Shanghai Ranking World University -
SRWU), para obtener mejores resultados que los métodos de clustering que consideran solo
restricciones a nivel de instancia o solo restricciones de monotonicidad.

En ultimo lugar, para concluir esta introduccién presentamos un resumen de la estruc-
tura de esta tesis, compuesta de dos partes: la disertacién doctoral, en el Capitulo I, y las
publicaciones que avalan los conocimientos y conclusiones expuestos en la misma, en el Ca-
pitulo II. La disertacion se divide en 8 secciones. La seccién 2 profundiza en el trasfondo
técnico de los conceptos y terminologia utilizados en las secciones posteriores. La justifi-
cacion, los objetivos y la metodologia que sientan las bases de esta tesis se indican en las
secciones 3, 4y 5, respectivamente. Posteriormente, en la Seccion 6 se presenta un resumen
de la investigacion llevada a cabo. Finalmente, en la Seccion 8 se exponen las conclusiones
derivadas de la investigacion junto con futuras lineas de investigacion.

La segunda parte (Capitulo IT) recoge las publicaciones que avalan los conocimientos y
las conclusiones discutidas en la disertacidn. De las cinco publicaciones presentadas, tres de
ellas estdn publicadas en revistas indexadas internacionales y dos de ellas estan actualmente
en revision. Las publicaciones son las siguientes:

« Semi-Supervised Constrained Clustering: An In-Depth Overview, Ranked Taxonomy
and Future Research Directions.
+ DILS: Constrained Clustering Through Dual Iterative Local Search.

« ME-MOEA/D¢c: Multiobjective Constrained Clustering Through Decomposition-based
Memetic Elitism.

+ 3SHACC: Three Stages Hybrid Agglomerative Constrained Clustering.

« Semi-supervised Clustering with Two Types of Background Knowledge: Fusing Pair-
wise Constraints and Monotonicity Constraints.
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2 Preliminaries

This section introduces the technical knowledge necessary to understand the remainder of
the dissertation (Chapter I). Firstly, the technical background in classic clustering is given
in Section 2.1. Afterwards, CC is described formally in Sections 2.2 and 2.3. Section 2.4 is
about the experimental setups used in all the studies included in this thesis. It introduces
the concepts related to the common evaluation procedures. The rest of the sections are de-
voted to describing the key aspects of the new methods proposed in this thesis: Section 2.5
introduces multi-objective optimization, Section 2.6 defines and formalizes DML, and Sec-
tion 2.7.1 explains monotonicity constraints and their potential role in MCDA.

2.1 Background on classic clustering

Partitional clustering can be defined as the task of grouping the instances of a dataset into
K clusters. A dataset X consists of n instances, and each instance is described by u features.
More formally, X = {x;,---, x,}, with the ith instance noted as x; = (x[l-,l], ,x[l—’u]). A
typical clustering algorithm assigns a class label [; to each instance x; € X. As a result, we
obtain the list of labels L = [I;, ---, ], with [; € {1, ---, K}, that effectively splits X into K non-
overlapping clusters c; to form a partition called C. The list of labels producing partition C is
referred to as LC. The criterion used to assign an instance to a given cluster is the similarity
to the rest of elements in that cluster, and the dissimilarity to the rest of instances of the
dataset. This value can be obtained with some kind of distance measurement [JMF99].

HC methods produce an informative hierarchical structure of clusters called dendro-
gram. Partitions as described above, with a number of clusters ranging from 1 to n, can
always be obtained from a dendrogram by just selecting a level from its hierarchy and par-
titioning the dataset according to its structure. Typically, agglomerative HC methods start
with a large number of clusters and iteratively merge them according to some affinity crite-
ria until a stopping condition is reached. Every merge produces a new level in the hierarchy
of the dendrogram. Formally, given an initial partition with n. clusters C = {cy,:+, ¢, }
(usually n. = n), a traditional agglomerative CC method selects two clusters to merge by
applying Equation 1.

{ci,c;} = argmax A(c;, ¢)), @
¢i,c;EC,I#]

with A(-, -) being a function used to determine the affinity between the two clusters given as
arguments. This function needs to be carefully chosen for every application, as it greatly af-
fects the result of the clustering process. Some conventional methods to measure affinity be-
tween clusters are worth mentioning, such as single linkage, average linkage and complete
linkage [JMF99]. Nevertheless, different measures are employed in out-of-lab applications,
as the manifold structures usually found in real-world datasets can hardly be captured by the
classic affinity measures mentioned above. Typically, classic partitional clustering methods
are less algorithmically complex than HC methods, with the former featuring O(n) complex-
ity and the latter O(n?) [DB07].
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2.2 Background on pairwise constraints

In most clustering applications, it is common to have some kind of information about the
dataset that will be analyzed. In CC this information is given in the form of pairs of instances
that must, or must not, be assigned to the same cluster. We can now formalize these two
types of constraints:

+ M-L constraints C_(x;, x;): instances x; and x; from X must be placed in the same
cluster. The set of M-L constraints is referred to as C_.

« C-L constraints Cx(x;, x;): instances x; and x; from X cannot be assigned to the same
cluster. The set of C-L constraints is referred to as C.

The goal of CC is to find a partition (or clustering) of K clusters C = {c,, -, ck} of the
dataset X that ideally satisfies all constraints in the union of both constraint sets, called
CS =C_ U Cyz. Asin classic clustering, the sum of instances in each cluster c; is equal to

the number of instances in X, which we have defined as n = |X| = }7._ [c;].

Knowing how a constraint is defined, M-L constraints are an example of an equivalence
relation; therefore, M-L constraints are reflexive, transitive and symmetric. This way, given
constraints C—(x,, xp) and C_(xp, x..), then C_(x,, x..) is verified. In addition to this, if x, €
c¢; and x;, € c; are related by C_(x,, Xp), then C_(x,, x4) is verified for any x, € c¢; and
Xq € Cj [DBO7].

It can also be proven that C-L constraints do not constitute an equivalence relation. How-
ever, analogously, given x, € ¢; and x;, € c;, and the constraint C.(x,, Xp), then it is also
true that C,(x, xq) for any x, € ¢; and x4 € ¢; [DB07].

Regarding the degree to which constraints need to be met in the output partition or den-
drogram of any CC algorithm, a simple dichotomy can be made: hard pairwise constraints
must necessarily be satisfied, while soft pairwise constraints can be violated to a variable
extent. This distinction is introduced in [DB07] and adopted by later studies. The major ad-
vantages in favor of soft over hard constraints are the resiliency to noise in the constraint set,
the flexibility in the design of cost/objective functions, and their optimization procedures.
The ability to consider soft, hard, or both types of constraints is a defining element for CC
methods.

In [DWBO06] two measures designed to characterize the quality of a given constraint set
are proposed: informativeness (or informativity [DB07]) is used to determine the amount
of information in the constraint set that the CC algorithm could determine on its own, and
coherence, which measures the amount of agreement between the constraints themselves.
These two measures were proposed in early stages of the development of the CC area; how-
ever, they have not been used consistently in later studies.
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2.3 The feasibility problem

Given that CC adds a new element to classic clustering, we must consider how it affects its
complexity in both of its forms: partitional and hierarchical. Intuitively, the clustering prob-
lem goes from its classic formulation “find the best partition for a given dataset” to its con-
strained form “find the best partition for a given dataset satisfying all constraints in the con-
straint set”. The formalization of these concepts is tackled in [DR05b, DB07, DR09], where
the feasibility problems for partitional and hierarchical CC are defined as in 2.1 and 2.2 re-
spectively, with CS = Cx U C- (the joint constraint set). Given these two definitions, we say
that a partition C for a dataset X is feasible when all constraints in CS are satisfied by
C. Note that there exist constraint sets for which a feasible partition can never be found. For
example, no feasible partition exists for CS; = {C_(x, X;), C+(x;, X,)} regardless of the value
of K. Similarly, the feasibility of partitions such as CS, = {Cx(x1, X;), Cx#(x3, X3)Cy, (X1 X3)}
depends on the value of K. In this case, the feasibility problem for CS, can be solved for
K = 3 but not for K = 2.

Definition 2.1. Feasibility Problem for Partitional CC : given a dataset X, a constraint
set CS, and the bounds on the number of clusters k; < K < k,, is there a partition C of X with
K clusters that satisfies all constraints in CS? [DRO5b]

In [DRO5b] it is proven that, when k; = 1 and k,, > 3, the feasibility problem for parti-
tional CC is NP-complete, by reducing it from the Graph K-Colorability problem. It is also
proven that it is not harder, so both have the same complexity. Table 1 shows the complexity
of the feasibility for different types of constraints.

Definition 2.2. Feasibility Problem for Hierarchical CC: given a dataset X, the constraint
sets CS, and the symmetric distance measure D(x;, x;) > 0 for each pair of instances, can X be
partitioned into clusters so that all constraints in CS are satisfied? [DR09]

Please note that the definition of the feasibility problem for partitional CC (in Defini-
tion 2.1) is significantly different from the definition of the feasibility problem for hierarchi-
cal CC (in 2.2). Particularly, the formulation of hierarchical CC imposes no restriction on
the number of clusters K, which is equivalent to considering that a partition that satisfies all
constraints can be produced at any level of the dendrogram [DR09]. In [DR05a] a reduction
from the One-in-three 3SAT with positive literals (which is NP-complete) for the problem
in Definition 2.2 is used to prove the complexities presented in Table 1 for hierarchical CC.
It is worth mentioning that, for hierarchical CC, the dead-ends problem arises: a hierar-
chical CC algorithm may find scenarios where no merge/split can be carried out without
violating a constraint. Previous solutions based on the transitive closure of the constraint
sets have been proposed for this special case, although they involve not generating a full
dendrogram [DRO5b].

Overall, complexity results in Table 1 show that the feasibility problem under C-L con-
straints is intractable, and hence CC is intractable too. This leads to Observation 2.1. For
more details on the complexity of CC please see [DRO5b].
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Constraints  Partitional CC  Hierarchical CC  Dead Ends?

M-L P P No
C-L NP-complete NP-complete Yes
M-Land C-L  NP-complete NP-complete Yes

Table 1: Feasibility problem complexities for partitional and hierarchical CC and dead-ends
found in hierarchical CC [DRO5b].

Observation 2.1. Knowing that a feasible solution exists does not help us find it. The
results from Table 1 imply that the mere existence of a feasible solution for a given set of con-
straints does not mean it will be easy to find.

With respect to the dead-ends problem, a full dendrogram considering constraints can be
obtained by switching from a hard interpretation of constraints to a soft one. This means that
every level in the dendrogram tries to satisfy as many constraints as possible, but constraint
violations are allowed in order for the algorithm to never reach a dead-end.

Some interesting results, both positive and negative, about the nature of pairwise con-
straints are proved and discussed in [DBO07], as well as some workarounds for problems
related to the use of constraints in clustering.

2.4 External validity indices

Validity indices are used to objectively evaluate the performance of a given method indepen-
dently of the benchmarks it is tested in. This means that the output value of the validity
indices is independent from the characteristics of the benchmarks datasets, such as their
size or their number of features in the case of classification datasets. In the case of CC, one
of the most popular external validity indices is the Adjusted Rand Index (ARI), which is
an adjusted version of the previous Rand Index (RI). This section introduces both of these
validity indices, as the ARI is the common quality measure in all the experimental studies
presented in this thesis.

The RI measures the degree of agreement between two partitions. It can be used to
measure the quality of a partition obtained by any CC algorithm by giving the ground-truth
partition as one of them. Therefore, the two compared partitions are C and C*. The RI
views C and C* as collections of n(n — 1)/2 pairwise decisions. For each x; and x; in X,
they are assigned to the same cluster or to different clusters by a partition. The number of
pairings where x; is in the same cluster as x; in both C and C* is taken as a; conversely, b
represents the number of pairings where x; and x; are in different clusters. The degree of
similarity between C and C* is computed as in Equation 2 [Ran71], where n is the number
of instances in X. The output value range for the RI is [0, 1], with high values indicating a
high level of agreement between the two partitions, and a low value indicating a low level
of agreement.
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a+b

RI= nn—1)/2

()

The RI can be conveniently formulated in terms of the elements of a confusion matrix as
well [ZDX19]. Equation 3 defines these elements in terms of cluster memberships in a par-
tition, which can be referred to as: True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN). Equation 4 makes use of these elements to give a new defi-
nition for the RI.

TP = {(xi,xj)”ic* — ljc*’ I€ = ljc, i#j}

FP = {(xp,x)If =15, IF #1, i # j}

* * c o 3

TN ={(ox)Ilf #15, IF #1F, i # j} 3
FN = {(x,xpIIf #157, IE =1F, i # j}

- ITP| + |TN] “

" |TP| + |FP| + |TN]| + |FN|

The ARI is the corrected-for-chance version of the RI. This correction is done by tak-
ing into account the expected similarity of all comparisons between partitions specified by
a random model that acts as the baseline. This modifies the output value range of the orig-
inal RI, transforming it into [—1, 1] and slightly changing its interpretation. In ARI, a high
output value still means a high level of agreement between the two partitions, and a low
value means a low level of agreement. However, a value lower than 0 means that the results
obtained are worse than those expected from the average random model. Equation 5 gives
the formalization for the ARI [HAS85].

RI — Expected Index

ARL= Maximum Index — Expected Index’

5)

where Expected Index is the degree of similarity with a random model, Maximum Index is
assumed to be 1, and RI is the RI value computed for partitions C and C*. Both the RI and
the ARI can measure the quality of any given CC method with respect to the ground truth
by simply feeding the true labels into these indices as one of the partitions to be compared.
Please note that CC methods are usually evaluated in classification datasets, as the constraint
set needs to be generated on the basis of some kind of oracle, which is normally the labels
set.
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2.5 Multiobjective optimization

The Multiobjective Optimization Problem (MOP) is formalized as in Equation 6:

minimize F(y) = (f(¥), -, fm(¥))
, (6)
st. yeQ

where Q is the variable space and F : Q — R™ consists of m real-valued functions (objective
functions). R is known as the objective space and {F(y)|y € Q}defines the attainable object
set. If y € R" and Q is defined as in Equation 7, with h; being continuous functions, then
the MOP in Equation 6 is said to be continuous.

Q={yeR'hj(y)<0,j=1,---,m}. (7)

MOP techniques aim to balance all objective functions in Equation 6; this task is not
trivial in the general case due to conflicts among the objective functions. An MOP technique
finds a trade-off which can be defined in terms of Pareto optimality. Let v,w € R™, then,
v dominates w if and only if f;(v) < f;(w)Vi € {1,---,m} and if 3j|f;(v) < f;(w),j €
{1,---, m}. Thisis: v dominates w if and only if v is better than w in at least one objective and
as good as w in the rest, and is denoted as w < v.

A point y* € Q is said to be Pareto optimal if there is no other point y € Q such that y
dominates y*. The set of Pareto optimal points is referred to as the Pareto Set (PS). Pareto
Front (PF) is formed by the objective vectors associated with the points in PS. An MOP tech-
nique aims to find the best possible approximation to the PF for any given optimization task.
An MOP definition for maximization problems can be obtained by reversing all inequalities.

In real-life applications of multiobjective optimization, a PF needs to be obtained so that
a decision maker can later select the preferred solution. Being the MOP defined as above,
there are no restrictions in the size of the PF so, in theory, very large or even infinite Pareto
optimal vectors could be found in some cases. This is why obtaining the full PF is usually
not feasible, or at least very time-consuming. Moreover, if the Pareto approximation to the
PF is too large, the decision maker would have trouble choosing a solution from it due to
the sheer amount of information. Most multiobjective optimization methods struggle to
find a set of well-distributed Pareto optimal vectors with a reasonable size that constitutes a
good approximation to the entire PF. Evolutionary algorithms have proven to be excellent at
finding this approximation to the PF [Miel2], resulting in a whole new family of algorithms
called MOEA [CLVV*t14].
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2.6 Distance metric learning

The vast majority of methods making up the data science algorithms and techniques cor-
pus use distance measures. They are used to determine similarities between instances in
the dataset from which we want to extract information. Clustering can be found among
these techniques, with the assignation rule from the k-means algorithm being the founda-
tion of the automatic clustering concept [M*67]. However, there is an infinite number of
distance measures that can be employed for this task, and finding the one that better suits
our dataset is crucial to obtain high quality results in any application. DML arises to meet
this need, with algorithms capable of finding distance metrics that capture hidden features
or relations in our datasets that standard measures like the Euclidean distance might miss.
Combining DML algorithms and distance-based learning algorithms results in more com-
plete and adaptive approaches to a wide variety of problems [SGH21].

One of the techniques that has helped developing DML is known as Learning from Side
Information (LSI), sometimes also referred to as Mahalanobis Metric for Clustering [ XJRNO3].
It directly connects with the SSL paradigm, particularly with the constraint-based SSL area,
as it incorporates side information referring to similar and dissimilar pairs of instances in
the dataset, which can be easily compared with the must-link and cannot-link constraint
sets. Given a pair of examples x; and x;, LSI can be viewed as a method to bring these in-
stances closer if they are similar ((x;, x;) € C-) or space them out if they are dissimilar
((xi, x;) € C4). Formally, LSI searches for a positive semidefinite matrix M € Sq(R)¢ opti-
mizing Equation 8.

: 2
minys Z(xi’xj)ec= ||xl - x]”M
St Dgapecy X = Xjllw 217

®)

where ||x; — Xjllpr = 4/ (x; — x;)TM(x; — x;). However, Equation 8 is hard to optimize with
traditional methods, so its authors propose an equivalent form in Equation 9, which can be
optimized using the projected gradient ascent method.

maxpy Z(xi,xj)ec;é 12 = xjllae
. 2 .
s.t.: Z(xi,xj)ec= lx; — xjllar <1

C)

2.7 Monotonicity constraints in classification

Monotonicity constraints were originally integrated into the supervised learning classifica-
tion task, leading to monotonic classification. It can be viewed as a special case of standard
classification where the classes constitute a set of ordered categories. Monotonic classifi-
cation models must respect monotonicity constraints between the feature values of the in-
stances and their class labels [CGK*19].
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Formally, monotonic classification aims to predict the class label y; from an instance x;
withy € Y ={l;, -+, ,,}. The categories in Y are arranged in an order relation < in the form
l, <1, <.+ <1,. Indoing so, features and class labels are monotonically constrained by the
background knowledge, i.e., x; > x; — f(x;) > f(x;), where x; > x; implies that all features
in x; compare to features in x; with operator >, this is: x; , > x; 4 Vq € {1,---,u} [KS12].
This relationship between instances is referred to as dominance. In this case x; dominates
x,. The goal of monotonic classification is to build a classifier that does not violate mono-
tonicity constraints (pairwise dominance relationships). The result is a monotonic classi-
fier [CGK*19].

Much in the same way as it is done with CC methods, a distinction can be made in mono-
tonic classifiers: soft monotonic models try to minimize the number of monotonic constraint
violations, while hard monotonic models always produce monotonic predictions (never vio-
late monotonic constraints) [GGL*21].

2.7.1 Partially ordered data clustering in MCDA

In [RDSDD21] the monotonicity constraints are integrated into unsupervised learning to
produce the ordered clustering framework. Particularly, they are integrated into the MCDA
paradigm, which is a subfield of operational research that concerns the structuring and res-
olution of decision problems including multiple criteria [Roy96]. To do so, the classic sym-
metrical notion of distance in pattern recognition is replaced with the asymmetrical notion
of preference from the MCDA paradigm. The preference of an instance over another evalu-
ates the global advantages of the former over the latter according to some preference criteria.
The notion of preference can be seen as a decomposition of a distance measure by taking into
account the sign of the differences. To cluster instances in an MCDA context, the similar-
ity between every pair of instances is evaluated in terms of preferences taking all the other
alternatives into account. With this in mind, two instances are similar if they both rank
either higher or lower in preference with respect to the same set of instances. To formal-
ize these concepts, let us consider the weighted L, distance (for the maximization case and
without loss of generality) as in Equation 10, which can be simplified as in Equation 11, with
wy € [0, 1] being the weight assigned to the dth feature.

u
Li(x1, X)) = D walX[i4) — X[j,4]- (10)
d=1
u u
Ly(x;, xj) = D WaX[ia)— WaX[ja + D,  WaX[jd] — WaX[a. (1)
d:x[i,d] >x[j,d] d:x[j,d] >x[i,d]

Consequently, let us define the preference of x; over x; as in Equation 12. To put this
into words, r(x;, x;) quantifies the sum of differences between x; and x; limited to the fea-
tures in which x; has higher (lower) values than x; for the maximization (minimization)
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case. Intuitively, the preference r(x;, x;) indicates the cumulative quantified value of the
advantage of x; over x;. Please note that, as it has already been mentioned, the preference
is not symmetrical: r(x;, x;) # r(x;j, x;) in most cases.

u

r(x;, xj) = Z WaX[iq] — WaX[jd]- (12)
d:x[i,d] >x[j,d]

Finally, note that the weighted L; distance between two instances can always be ex-
pressed as in Equation 13. This decomposition can be done the same way for any L, dis-
tance.

Ly(xi, xj) = r(x;, xj) + r(xj, X;). (13)
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3 Justification

SSL has become an important area of research in the field of ML, especially in applications
where labeled data is scarce or expensive to obtain. CC is a specific form of SSL where
constraints are imposed on the clustering process to guide the formation of clusters. These
constraints can be in the form of pairwise instance relationships, class labels, or other forms
of domain knowledge. The incorporation of such constraints can significantly enhance the
quality of clustering and make it more useful in practice. As such, a thesis focused on CC in
the context of SSL can make significant contributions to both the theory and practice of ML.
The specific reasons that motivate this thesis are listed below.

« Firstly, CC is an important and challenging problem in the field of ML, and it has a
wide range of practical applications in various fields such as bioinformatics, image
and video analysis, and natural language processing, among others. Therefore, the
development of new and improved techniques for CC is highly desirable, and it has
the potential to make a significant impact on many areas of research and industry.

« Secondly, the current state-of-the-art in CC is limited, and there is a significant gap
between the existing techniques and the desired outcomes. This gap is an opportunity
for innovative research to address the limitations of current methods and raise the
standards of solution quality in CC.

« Thirdly, the proposed thesis project aims to contribute to the development of a uni-
fied framework and formal taxonomy for CC. This is a necessary step towards a better
understanding of the field and the development of more efficient and effective tech-
niques.

« Fourthly, the project proposes the application of evolutionary metaheuristics to CC,
which is a promising line of research that has not been fully explored yet. This presents
an opportunity to develop novel algorithms that considerably boost the performance
of CC methods.

« Finally, the project encourages the exploration of the links between CC and other non-
standard learning paradigms, which can lead to further innovation in information
combination techniques.

In summary, a thesis focused on CC is justified due to the relevance and the challenging
nature of the problem, the shortcomings of current techniques, the need for a unified frame-
work and formal taxonomy, the potential for the application of evolutionary metaheuristics,
and the opportunity to explore the relationship with other non-standard learning paradigms.
The results of this research can have a substantial impact on various fields and can pave the
way for further research and innovation in CC.
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4 Objectives

Once the main concepts of the state-of-the-art have been introduced, the objectives that
have driven this thesis can be elaborated on. In the first place, they include the creation of
a previously nonexistent general reference in the CC area, which serves as a comprehensive
survey of the state-of-the-art in the area. Afterwards, and with the knowledge gathered in
the mentioned study as a foundation, CC is tackled from different points of view, including
metaheuristic and classic clustering-based approaches. Finally, the relationship between CC
and other non-standard learning paradigms is addressed. These objectives can be broken
down as follows:

Creation of a taxonomy and a ranking of CC methods. To fulfill this first objective, it
is necessary to carry out an analysis of existing CC methods, focusing on their similarities
and differences to produce a consistent taxonomy. This taxonomy may contain categories
that are present in classic clustering surveys, existing categories in the area of CC and, ideally,
newly identified CC categories. An interesting byproduct of this study will be a statistical
analysis of the most frequent experimental setup when testing the capabilities of any given
CC method. It can be obtained by carefully gathering information from the experimental
section of the papers in the analyzed corpus. We aim to produce a ranking of all CC methods
analyzed that can later be used to identify the most promising ones.

Study of CC from the point of view of metaheuristics. As mentioned in previous sec-
tions, CC is intractable in practice; hence, metaheuristics represent a promising approach.
In this second objective, CC is addressed from the single-objective and multi-objective op-
timization paradigms. Firstly, a single-objective metaheuristic approach must be consid-
ered to tackle CC. This can be done by designing a suitable representation scheme and a
proper objective function, which ideally will combine classic clustering and CC indicators.
Secondly, multi-objective approaches are considered to address CC. Metaheuristics have
proven to be excellent optimization algorithms in this area, and therefore the combination
of both must be taken into account. To this end, the creation of a new representation scheme
is needed, and the set of objective functions to be optimized must be chosen.

Hybrid models for CC. How to integrate constraints into the clustering process remains
one of the major challenges within the CC area. Usually, the combination of multiple in-
tegration models results in higher performance when the constraint set is free of noise and
other imperfections. Two categories shape the landscape of CC methods: constrained par-
titional methods and constrained DML methods. As these two paradigms are compatible
with each other, the combination of both, with the redundant subsequent inclusions of con-
straints, is promising in scenarios with reliable constraint sets. To fulfill this third objective,
the combination of CC models which belong to the two major CC categories must be stud-
ied. Ideally, this would result in a new hybrid CC model with the inclusion of redundant
constraints.
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Combining multiple types of background knowledge. Constraints are not the only
type of background knowledge that has drawn attention from the scientific community. In
fact, there are many variations of classic ML problems whose existence is derived from the
modification of the initial conditions or the information given to a classic one. Real-world ap-
plications are not limited to a single type of background knowledge. In fact, there is no limit
in this regard. With this in mind, the combination of instance-level pairwise constraints and
other types of background knowledge is studied in this fourth objective.
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5 Methodology

The research conducted throughout this thesis has been carried out following the scientific
method. In this particular case, it requires both practical and theoretical methodologies.
The general guidelines applied in all studies included in this thesis are summarized here:

« Observation: through the study of the SSL task, and focusing on CC. The goal of
this stage is to identify research opportunities, which could result in new, successful
models to address CC and extend its applicability.

« Formulation of hypotheses: design of new CC algorithms, with an emphasis on
their scalability with respect to the amount of constraint-based information available.
The models designed and developed must fulfill the objectives described in previous
sections.

« Experimental data collection: the designed models are tested on diverse scenarios
to obtain results as representative of their capabilities as possible. These results are
later analyzed using external quality indices.

« Contrasting the hypotheses: the results obtained are compared with representative
models from the existing literature, with the aim of analyzing their quality in terms of
efficiency and effectiveness. To this end, a set of representative models is chosen on
the basis of a comprehensive literature review. These methods are implemented and
published, for the sake of reproducibility of results.

« Validation of hypotheses: hypotheses formulated in the experiments are proven or
disproven following objective quality indicators and statistical testing. If any given
hypothesis is rejected, it must be modified and the previous steps repeated from that
point on.

+ Scientific thesis: relevant conclusions are extracted in view of the outcomes of the
research process. All the results and conclusions obtained must be gathered and syn-
thesized into a documentary report of the thesis.
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6 Summary

The body of knowledge compiled in this thesis is found in 5 different studies, published in
scientific journals and conferences. The aim of this section is to summarize and introduce
these studies, whose results will be discussed later (in Section 7). The publications are listed
below:

« Gonzalez-Almagro, G., Peralta, D., De Poorter, E., Cano, J. R., & Garcia, S. (2023). Semi-
Supervised Constrained Clustering: An In-Depth Overview, Ranked Taxonomy and
Future Research Directions. arXiv preprint arXiv:2303.00522.

« Gonzalez-Almagro, G., Luengo, J., Cano, J. R., & Garcia, S. (2020). DILS: constrained
clustering through dual iterative local search. Computers & Operations Research, 121,
104979. DOI: https://doi.org/10.1016/j.cor.2020.104979.

« Gonzalez-Almagro, G., Rosales-Perez, A., Luengo, J., Cano, J. R., & Garcia, S. (2021).
ME-MEOA/Dcc: Multiobjective constrained clustering through decomposition-based
memetic elitism. Swarm and Evolutionary Computation, 66, 100939. DOI: https:
//doi.org/10.1016/j.swevo.2021.100939.

« Gonzalez-Almagro, G., Suarez, J. L., Luengo, J., Cano, J. R., & Garcia, S. (2022). Three
Stages Hybrid Agglomerative Constrained Clustering (3SHACC): Three stages hybrid
agglomerative constrained clustering. Neurocomputing, 490, 441-461. DOL: https:
//doi.org/10.1016/j .neucom.2021.12.018.

« Gonzdalez-Almagro, G., Sudrez, J. L., Sdnchez-Bermejo, P., Cano, J. R., & Garcia, S.
(2023). Semi-supervised Clustering with Two Types of Background Knowledge: Fus-
ing Pairwise Constraints and Monotonicity Constraints. arXiv:2302.14060.

The remainder of this section is organized according to the publications listed above
and the objectives described in Section 4. Firstly, Section 6.1 presents a summary of the
newly-created taxonomy. The knowledge gained through the study of the scientific corpus
analyzed to create the taxonomy is leveraged in subsequent studies to design a suitable ex-
perimental setup. In Section 6.2, this experimental setup is used to apply two metaheuristic-
based methods to CC. One of them implements a single-objective optimization procedure,
while the other is designed to handle multi-objective problems. Afterwards, Section 6.3 in-
troduces a new hybrid optimization method for CC which combines DML and classic HC
techniques. Additionally, it proposes a completely unsupervised and automatic constraint
weighting procedure. Finally, Section 6.4 studies the combination of two types of back-
ground knowledge: instance-level pairwise constraints, and monotonicity constraints. The
resulting method is applied in a real-world scenario which had never been addressed from
such point of view.
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6.1 Creation of a taxonomy and a ranking of CC methods

The last published survey of the state-of-the-art in the field of CC dates back to the year 2007.
Since then, a plethora of new types of background knowledge and CC methods have been
discovered. The goal of this study is two-fold. Firstly, it serves as the general reference the
CC area has been lacking for years. Secondly, it helped us to learn about the intricacies of
SSL and CC, such as the differences between approaches, the experimental procedures used
to prove their capabilities, and the research opportunities.

Overall, the study provides the reader with everything needed to understand the CC prob-
lem, from basic to advanced concepts. It starts with a taxonomy of types of background
knowledge, which were found during the process of building the corpus of CC methods that
had to be reviewed; overall, 33 different types of background knowledge were found which
could be organized into 5 families. Next, it introduces all the necessary background related
to classic clustering and CC, focusing on CC and diving into the relevant advanced concepts
and structures. This includes its early history and a review of its applications. Afterwards,
a statistical study on the experimental elements used to demonstrate the capabilities of CC
methods is presented, which later constitutes the foundation of an objective scoring system.
We believe that this scoring system is one of the most valuable contributions of this study. It
can be employed to evaluate and rank the studies belonging to any scientific corpus; in this
particular case, it gives the reader an objective toolkit with which to navigate the literature
in a more effective way. Finally, a taxonomy of 307 CC methods is proposed. A total of 29
CC categories are identified: some of them are classic clustering categories, others are CC
categories found in previous studies, and the remaining ones are novel categories first iden-
tified in this study. A statistical analysis of this taxonomy is also carried out. The publication
associated with this study is:

Gonzalez-Almagro, G., Peralta, D., De Poorter, E., Cano, J. R., & Garcia, S. (2023).
Semi-Supervised Constrained Clustering: An In-Depth Overview, Ranked Taxonomy
and Future Research Directions. arXiv preprint arXiv:2303.00522.

6.2 Study of CC from the point of view of metaheuristics

CC can also be expressed as an optimization problem, which allows for the application of
many optimization techniques, although the resolution itself is no trivial task. In this con-
text, metaheuristic algorithms are becoming increasingly popular for finding approximate
solutions of sufficient quality. These algorithms work by exploring the solution space using
a fitness function and balancing exploration and exploitation. While metaheuristics have
been successfully applied to classic clustering, little work has been done on their suitability
for CC, particularly in highly-constrained environments. To fulfill the objectives associated
with this section, the CC problem is addressed from a metaheuristics point of view, and in
two completely different setups: the single-objective optimization paradigm, and the multi-
objective optimization paradigm.
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6.2.1 CC through single-objective optimization metaheuristics

A widely-known metaheuristic algorithm is the Iterative Local Search (ILS), which is a vari-
ant of Local Search (LS) that periodically introduces perturbations to escape local optima.
ILS has been successfully applied in a wide range of applications, including the traveling
salesman, the quadratic multiple knapsack, and the vehicle routing problem. It is often used
in combination with other techniques to achieve good exploration-exploitation trade-offs.
In the first study associated with this section, we propose a new variant of ILS called Dual
Iterative Local Search (DILS) that combines the exploitation capability of ILS with classic
diversity-introducing techniques from genetic algorithms such as recombination and muta-
tion operators. DILS also includes a restarting mechanism to escape from local optima and
can optimize two individuals at the same time to manage the exploration of the solution
space.

We have developed an application of DILS for CC called DILS-c which uses an integer-
based representation scheme and a penalty-style fitness function. We have demonstrated
that DILS is a competitive approach for obtaining high-quality solutions to the CC problem,
particularly in highly-constrained environments. This is due to the exploitation capability
of DILS, which allows for the quality of the results to scale with the amount of constraints.
The publication associated with this study is:

Gonzalez-Almagro, G., Luengo, J., Cano, J. R., & Garcia, S. (2020). DILS: constrained
clustering through dual iterative local search. Computers & Operations Research,
121, 104979. DOI: https://doi.org/10.1016/j.cor.2020.104979.

6.2.2 CC through multi-objective optimization metaheuristics

MOEAs are effective at optimizing objective functions that may have conflicting goals, such
as CC where traditional clustering objectives create spherical clusters, while CC objectives
deviate from this trend.

In the study associated with this section, we propose a memetic elitist version of Multi-
Objective Evolutionary Algorithm based on Decomposition (MOEA/D) called Memetic Eli-
tist - MOEA/D (ME-MOEA/D) for CC. Memetic algorithms are a class of optimization al-
gorithms that incorporate both global search strategies and local search procedures in order
to improve the quality of solutions found and accelerate the convergence of the underlying
genetic algorithm. Unlike MOEA/D, our proposal implements memetic elitism by applying
any single-objective optimization procedure to select elite individuals using a dominance-
guided sorting mechanism. ME-MOEA/D can also adaptively select the single-objective
function to optimize for each individual at any stage of the optimization process, while al-
lowing for user control through parameter settings.

ME-MOEA/D fuses classic multiobjective optimization methods with single-objective
procedures such as LS, allowing it to produce high-quality results for the CC problem. We
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improve its application to CC by introducing a new initialization method, a biased crossover
operator, and an external population limiting method. These genetic components, com-
bined with a memetic elitist version of MOEA/D, have not been studied previously. The
publication associated with this study is:

Gonzalez-Almagro, G., Rosales-Perez, A., Luengo, J., Cano, J. R., & Garcia, S. (2021).
ME-MEOA/Dcc: Multiobjective constrained clustering through decomposition-
based memetic elitism. Swarm and Evolutionary Computation, 66, 100939. DOI:
https://doi.org/10.1016/j.swevo.2021.100939.

6.3 Hybrid models for CC

The aim of the study associated with this objective is to explore the use of hybrid models in
CC. Most notably, it focuses on the combination of constrained agglomerative HC methods
and constrained DML methods. Methods from this paradigm will combine distance-based
techniques with clustering-engine adapting techniques to effectively address CC. In addi-
tion, we propose the use of weighted constraints to guide the clustering process towards
higher-quality solutions. Nonetheless, there is currently limited research on the automatic
generation of constraint weights and their integration into distance-based CC methods. Our
study aims to fill these gaps by introducing the 3SHACC method. This method can obtain
a full dendrogram that captures the intricate manifold structures present in a dataset and
incorporates constraints into the process. It accomplishes this through three well-defined
stages: (1) the relevance of every constraint is determined and a new metric is built on the
basis of the newly weighted constraint set by using a new DML method; (2) the similarities
among instances in the dataset are calculated according to the newly computed distance
metric and the pairwise reconstruction coefficient; and (3) a dendrogram is obtained by
running a classic Agglomerative Hierarchical Clustering (AHC) method with a constraint-
biased stepped affinity function integrating the computed similarities and the information
contained in the constraint set. Note that, even if these three stages are designed to be ap-
plied together, they are independent from each other, and can be incorporated into other
CC methods as intermediate steps. The publication associated with this study is:

Gonzalez-Almagro, G., Suérez, J. L., Luengo, J., Cano, J. R., & Garcia, S. (2022).
3SHACC: Three stages hybrid agglomerative constrained clustering. Neurocomput-
ing, 490, 441-461. DOI: https://doi.org/10.1016/j .neucom.2021.12.018.

6.4 Combining multiple types of background knowledge

As stated in Section 6.1, many types of background knowledge can be found in the literature.
To fulfill the objective associated with this section, we assume CC methods are not limited
to one of them, and that there are applications where more than one type of background
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knowledge can be available. Consequently, methods which are capable of handling various
type of background knowledge have to be developed. We aim to find an application where
pairwise instance-level constraints and other types of constraints are both available, and
thus where a model that combines both of them is necessary.

Inrecentyears, unsupervised learning has incorporated a new type of background knowl-
edge from the supervised learning paradigm. Monotonic classification is a type of supervised
learning where classification models must follow monotonicity constraints among instances
based on their descriptive features. This means that the classes, which are ordered cate-
gories, must respect the ordering relationship between instances based on their feature val-
ues. For instance, in the context of house pricing, bigger houses are expected to have higher
prices than smaller ones in the same neighborhood when other features are similar. This or-
der relationship between instances based on their feature values can be leveraged to produce
more accurate predictive models. Monotonicity constraints have been successfully applied
in various real-world problems such as fraudulent firm classification, real-time dynamic
malware detection, and analysis of learning activities based on student opinion surveys. A
methodology to perform clustering in the presence of monotonicity information, known as
ordered clustering, has also been introduced within the MCDA framework. This methodol-
ogy involves defining a distance measure grounded on the concept of preference. The gist of
it lies in comparing instances in the dataset by examining the comparative relationships of
their features, resulting in a distance measure that produces ordered labeling which follow
monotonicity. This approach is similar to the monotonic classification models discussed
earlier.

The study associated with this objective aims to combine two types of background knowl-
edge —pairwise constraints and monotonicity constraints—to address real-world problems
like the Shanghai Ranking of World Universities (SRWU) dataset partitioning. While pre-
vious studies have combined monotonicity constraints with other types of constraints like
cluster-size constraints, the combination of monotonicity and pairwise constraints remains
unexplored. This study proposes the Monotonic Constrained Clustering (MCC) paradigm,
which includes pairwise constraints into the ordered clustering process. To optimize the
MCC objective function, an Expectation-Minimization (EM) scheme called Pairwise Con-
strained K-Means - Monotonic (PCKM-Mono) is proposed. This is the first study to ac-
knowledge and tackle the logical relationship between monotonic classification and ordered
clustering, and the hybrid objective function proposed here combines a monotonic distance
metric and a penalty term for pairwise constraint violations. The publication associated with
this study is:

Gonzilez-Almagro, G., Sudrez, J. L., Sdnchez-Bermejo, P., Cano, J. R., & Gar-
cia, S. (2023). Semi-supervised Clustering with Two Types of Background Knowl-
edge: Fusing Pairwise Constraints and Monotonicity Constraints. arXiv preprint
arXiv:2302.14060.
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7 Discussion of Results

With the exception of the first objective, the rest of them involve experimental procedures
aimed at proving the capabilities of the proposed methods. A consistent experimental method-
ology ensures that the research findings are reliable and valid and produce robust evidence
to support the research hypotheses. Homogeneity in the experimental procedures guaran-
tees that the same process is followed consistently throughout the research, minimizing the
effects of extraneous variables and ensuring that the results are comparable. Statistical val-
idation procedures safeguard against the effects of mere chance and help to ascertain the
statistical significance of any patterns or relationships observed in the data. In general, sta-
tistical techniques help to ensure that the findings are robust and can be generalized to the
wider population. Justifying homogeneity in experimental procedures and statistical valida-
tion procedures demonstrates rigor and validity in the research and builds confidence in the
findings among peers and the wider academic community.

With these guidelines in mind, all the experimental studies carried out to fulfill the ob-
jectives of this thesis follow the same structure and use shared external validity indices and
statistical testing procedures. The findings derived from the study that meets the first objec-
tive (the survey of the state-of-the-art) are used to particularize experimental studies. The
set of benchmarks, external validity indices, and statistical testing procedures are decided ac-
cording to that study. Particularly, the set of benchmarks found in every experimental study
consist of a series of classification datasets, which is as similar to the rest as the characteris-
tics of each proposal reasonably allow. No preprocessing other than standard normalization
is applied to these datasets in any case. In all cases, the capabilities of the methods under
comparison are tested in three different levels of constraint-based information, and conclu-
sions are always supported with Bayesian statistical testing procedures. Regarding the ex-
ternal quality measures, different studies need to test different capabilities of the compared
methods, so the set of measures varies from one to another. However, the ARI is used in all
the studies and that can serve as a unifying thread between them, making comparisons pos-
sible. Regarding the methods used in the experimental comparisons, the baseline methods
found in our survey of the state-of-the-art, such as COPKM and LCVQE, are always present.
Nevertheless, given the differences that exist among our proposals, other state-of-the-art
methods in the particular area to which each method belongs have to be considered.

This section summarizes the analysis of results obtained to fulfill the objectives of this
thesis. It also briefly discusses the particularities related to the experimental setups in each
study. Similarly to Section 6, the remainder of this section is organized according to the pub-
lications and the objectives introduced in Section 4. Section 7.1 provides the conclusions
drawn from the creation of the taxonomy and its statistical analysis. Section 7.2 summa-
rizes the results obtained with the metaheuristic approaches DILS and ME-MOEA/D. The
results obtained by our hybrid model 3SHACC are shown in Section 7.3. Finally, Section 7.4
contains the results obtained by PCKM-Mono.
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7.1 Creation of a taxonomy and a ranking of CC methods

The study related to this objective produced a systematic review of the field of CC, whichisa
type of SSL that incorporates background knowledge into the clustering process. It provides
an introduction to SSL and discusses the area of semi-supervised clustering, highlighting the
types of background knowledge that can be included as constraints. It argues that instance-
level pairwise Must-Link (ML) and Cannot-Link (CL) constraints are the most successful
types of constraints in CC. It formalizes CC and gives examples of practical applications.
Then, advanced CC concepts and structures are described, analyzing the advantages and
disadvantages of different approaches. A statistical analysis of the experimental elements
present in studies proposing new CC methods serves as the basis to create an objective scor-
ing system to evaluate each approach. This is the system through which 307 CC methods
are ranked and split into two major families—constrained partitional and constrained DML.
The methods in each family are further divided into more specific categories, and their fea-
tures and elements are described in detail.

The proposed taxonomy can be used to:

+ Decide which type of approach and model is best suited for a new CC problem.

« Compare newly proposed techniques to those in the same family in this taxonomy, so
that it can be determined whether the new method represents an improvement over
the current state-of-the-art.

« Identify the proposals which best support their conclusions and propose more robust
methods, thanks to the scoring system.

As a result of this research, the main flaws and criticism related to the CC area can be
identified. Having reviewed 270 studies (proposing 307 methods), we have identified 5 se-
rious shortcomings which affect the vast majority of them. These drawbacks can be sum-
marized as follows: an absence of a unified, general reference; low amount of application
studies; a lack of extensive experimental comparisons; unavailability of dedicated, standard-
ized CC-oriented datasets and constraint sets; and statistically unsupported experimental
conclusions.

7.2 Study of CC from the point of view of metaheuristics

The two studies related to this objective prove that both single-objective and multi-objective
metaheuristics can produce high-quality results in the CC problems. In particular, DILS and
ME-MOEA/D have been proven to outperform the state-of-the-art in their respective fields.
Sections 7.2.1 and 7.2.2 discuss the particularities and the results obtained with these two
methods, respectively.
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7.2.1 CC through single-objective optimization metaheuristics

Our single-objective metaheuristic proposal to address CC is called DILS. It is tested on
25 different (unpreprocessed) datasets with three different constraint sets that contain in-
creasing levels of constraint-based information for each one. The comparison includes 6
existing approaches to CC. One of the is the state-of-the-art in single-objective metaheuris-
tics applied to CC (BRKGA+LS) and the rest are baseline CC algorithms (COPKM, LCVQE,
RDPM, TVClust and CECM). The external quality measure used to compare results is ARI
in this case.

The Bayesian signed rank test provides evidence in favor of DILS when handling highly
constrained problems. Nonetheless, it is worth acknowledging that, in some cases, the re-
sults obtained by the DILS are not superior in certain datasets to those from a random model.
Concerning this caveat, it should be noted that no parameter optimization was performed
in this study. Hence, it is possible that different parameter choices could lead to better out-
comes in these datasets.

7.2.2 CC through multi-objective optimization metaheuristics

Our multi-objective metaheuristic proposal to address CC is called ME-MOEA/D. The exper-
imental study carried out to test its capabilities is, by far, the most extensive one presented in
this thesis. This is because ME-MOEA/D has to be tested in many different environments
and from different points of view. First, as it is a CC method, it must be compared with
baseline CC methods. Secondly, since it optimizes a single objective function, it must also
be compared with the state-of-the-art in single-objective metaheuristics applied to CC. Fi-
nally, it is an MOEA, so it must be compared with the state-of-the-art in MOEAs applied
to CC. In view of this, ME-MOEA/D is tested on 20 different (unpreprocessed) datasets,
again, with three different constraint sets that contain increasing levels of constraint-based
information. Regarding the competing methods, 8 existing approaches to CC are considered:
four baseline CC algorithms (COPKM, LCVQE, RDPM, and TVClust); one algorithm from
the state-of-the-art in single-objective metaheuristics applied to CC (SHADE¢); two algo-
rithms from the state-of-the-art in MOEAs applied to CC (MOCK and PESA-II); and lastly
the classic MOEA/D, which was the foundation of ME-MOEA/D.

Regarding the external quality measures, two sets of them are employed. Firstly, ARI
and Unsat are used to assess the capabilities of the various methods with according to the
quality of the partition they obtain and the ability to integrate constraints. Secondly, the
Pareto approximations obtained by the MOEAs are compared by means of three classic,
well-established, Pareto-related measures: the Pareto size, the Hypervolume, and the ¢*-
indicator.

The Bayesian signed rank test provides evidence in favor of ME-MOEA/DCC consis-
tently outperforming all other compared methods. ME-MOEA/DCC also produced Pareto
approximations with better individual solutions compared to previous approaches, even if
it produced more compact Pareto approximations.
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7.3 Hybrid models for CC

Our hybrid CC model is called 3SHACC. It has been tested on 25 (unpreprocessed) datasets
and 3 constraint sets with increasing levels of constraint-based information for every one of
the datasets. It is compared with 6 previous approaches to CC: one of them is its predeces-
sor 2SHACC, and the rest are CC baseline algorithms (COPKM, LCVQE, RDPM, TVClust
and PCSKM). An assessment about the influence of the hyperparameters of 3SHACC on its
results is also made in the study related to this objective. The ARI and the Unsat quality
indicators are used to compare the results obtained by all these methods. The total number
of optimal results is also taken into account to draw conclusions.

Our experimental results demonstrate that 3SHACC consistently outperforms classic ap-
proaches to CC and its predecessor 2SHACC in both ARI and Unsat measures. Furthermore,
our findings suggest that 3SHACC is capable of scaling the quality of the results with the
amount of constraint-based information available to a greater extent than classic approaches.
These conclusions are supported by the Bayesian signed-rank test, which assigns a signifi-
cantly higher probability to our proposal being better on average than any other method
studied.

7.4 Combining multiple types of background knowledge

Our method PCKM-Mono combines pairwise instance-level constraints and monotonicity
constraints. In this case, the study related to this objective needs to prove not only the capa-
bilities of our proposal, but also the practical relevance of the matter it addresses. For this
reason, the experimental setup found in the study differs from the previous ones in some
aspects. Firstly, the set of benchmarks is different from the one found in previous studies,
as it has to include monotonic datasets to demonstrate the ability of PCKM-Mono to inte-
grate monotonic constraints into the clustering process. Secondly, the set of external quality
indicators is extended to include monotonicity-related measures. Unfortunately, there is no
standard measure that can take both pairwise instance-level constraints and monotonicity
constraints into account, and hence these two aspects have to be analyzed separately. The
ARI measure is used to evaluate results from a clustering quality point of view, the Unsat
is used to evaluate the ability of the different methods to integrate pairwise instance-level
constraints, and the Non-Monotonic Index (NMI) is used to evaluate monotonicity-related
capabilities (not to be mistaken with the Normalized Mutual Information).

The set of compared methods must include classic clustering methods (to prove the prac-
tical relevance of the problem and the need for novel approaches to tackle it), CC baseline
methods, and monotonic clustering methods. To this end, 5 methods are compared: the
classic Kmeans, the P2Clust monotonic clustering method, and the COPKM and PCSKM
CC methods. All of them use an EM scheme similar to the one employed by PCKM-Mono.

In addition to the traditional set of benchmarks, the dataset of the problem that moti-
vated the creation of PCKM-Mono is considered in the study. A detailed analysis of the
Shanghai Ranking of World Universities (SRWU) dataset and the results obtained by all
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compared methods has been conducted.

The statistical analysis of the results (through Bayesian statistical testing) confirms the
advantage of PCKM-Mono over purely monotonic and purely pairwise CC techniques. While
PCKM-Mono achieves similar results to previous methods for specific monotonicity and
pairwise constraint satisfaction, it is statistically superior in terms of general clustering qual-
ity measures. Additionally, when it comes to a specific problem such as the partitioning
of the SRWU dataset, the experimental results continue to provide evidence in favor of
PCKM-Mono, as purely CC methods cannot take monotonicity constraints into account,
and purely monotonic clustering methods cannot deviate from perfect monotonicity, which
SRWU does not feature.






8 Conclusions and Future Work 47

8 Conclusions and Future Work

This section concludes the thesis (Section 8.1), gathers all the relevant studies we have pub-
lished (Section 8.2), and provides notes on future research lines (Section 8.3).

8.1 Conclusions

This thesis presents an extensive study of CC that provides both a comprehensive view on
the work already done in the area and innovation in the form of four new CC methods.
The overarching goal of this thesis is to broaden the current knowledge about CC and to
address the problem from new perspectives. In order to do so, the most systematic literature
review ever produced in the area was carried out, and comprehensive experimental studies
were conducted to prove the potential of our proposals to achieve higher standards than the
previously published alternatives.

To accomplish the first objective, the most extensive CC literature corpus has been gath-
ered and analyzed, resulting in a new taxonomy of the types of constraints, and in a taxon-
omy of CC methods which includes newly discovered categories. A statistical analysis of
both the experimental setups used to prove the capabilities of the methods gathered in the
taxonomy, and the taxonomy itself, provide the necessary knowledge to develop subsequent
studies, including the four new proposals described in this thesis. As a conclusion to this
objective, we encourage research on the CC area to observe the research guidelines provided
in the study associated with it. Through them, researchers can easily identify the unsolved
challenges in the area, and focus their efforts on them.

The second objective is the broadest one, since its completion has involved two extensive
experimental studies. This objective focuses on CC from a metaheuristics point of view, and
aims to approach its resolution through both a single-objective and a multi-objective opti-
mization algorithm. The two methods—DILS and ME-MOEA/D—are designed to realize
these two approaches. DILS is a single-objective metaheuristic algorithm based on ILS, and
ME-MOEA/D is an MOEA which introduces single-objective-based memetic elitism proce-
dures into the classic MOEA/D method. As a conclusion to this objective, it is reasonable to
think that both DILS and ME-MOEA/D overcome the drawbacks that the previous propos-
als in their respective areas suffered from. DILS constitutes a remarkable improvement over
previous single-objective metaheuristic approaches to CC with respect to clustering quality.
The same can be said about ME-MOEA/D, which also produces better results than previous
proposals in multi-objective-related quality measures.

Hybridizations in the CC area are addressed as part of the third objective of this thesis.
The research carried out for this objective proposes the three-staged algorithm 3SHACC. In
its three stages it implements an automatic constraint weighting procedure, a constrained
DML algorithm capable of handling constraint weights, and an affinity-based hierarchical
CC method which produces the output partition. It is clear that 3SHACC is a hybrid CC
model, as it combines techniques from the two broadest families of CC methods, namely:
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partitional CC, and constrained DML. As a conclusion to this objective, we can highlight the
outstanding performance of 3SHACC when compared to CC baseline algorithms. 3SHACC
is capable of achieving optimum results much more frequently than any other of its alterna-
tives, and its modularity allows researchers to reuse parts that can benefit their own research.

The fourth and last objective concerns the task of combining multiple types of back-
ground knowledge, under the assumption that, in real-world problems, many types of back-
ground knowledge can be available to perform learning. The study we proposed to fulfill
this objective tackles the combination of pairwise instance-level constraints and monotonic-
ity constraints. To do so, a simple EM style algorithm is designed, called PCKM-Mono.
It uses a constraint-based penalty term to include constraints in the monotonic clustering
paradigm, thus producing a solution to monotonic CC. The practical relevance of this prob-
lem is proved by the existence of datasets such as the SRWU. As a conclusion to this objec-
tive, the experimental results in both standard benchmarks and specifically in the SRWU
dataset show the superiority of our proposal over classic, purely constrained and purely
monotonic clustering methods. These conclusions are supported by Bayesian statistical test-
ing performed on quality measures regarding clustering quality, constraint violations, and
monotonicity satisfaction.

Conclusiones

Esta tesis presenta un amplio estudio en CC que proporciona tanto una visiéon global de los
trabajos ya realizados en el 4&rea como un enfoque innovador a través de cuatro nuevos mé-
todos de CC. El objetivo general de esta tesis es ampliar el conocimiento actual sobre el CC
y estudiarlo desde nuevas perspectivas. Para ello, se ha llevado a cabo la revision bibliogra-
fica més extensa hasta la fecha y se han hecho estudios experimentales exhaustivos para
demostrar el potencial de nuestras propuestas y superar los resultados de las alternativas
existentes.

Para lograr el primer objetivo, se ha recopilado y analizado un extenso corpus bibliogra-
fico del CC, que ha conllevado la creacion de una nueva taxonomia de tipos de restricciones,
asi como una taxonomia de métodos de CC que incluye nuevas categorias. Un andlisis es-
tadistico tanto de los procedimientos experimentales utilizados para probar las capacidades
de los métodos recogidos en la taxonomia como de la propia taxonomia proporciona el co-
nocimiento necesario para desarrollar estudios posteriores, incluyendo las cuatro nuevas
propuestas descritas en esta tesis. En las conclusiones del estudio asociado a este apartado,
se insta a los investigadores en el drea a observar las pautas de investigacion que proporcio-
na el estudio. A través de dichas pautas, podran identificar faicilmente los problemas en las
fronteras del area y centrar sus esfuerzos en ellos.

El segundo objetivo es el mas amplio, ya que su realizacién ha implicado dos extensos
estudios experimentales. Este objetivo se centra en el CC desde un punto de vista metaheu-
ristico y pretende resolverlo a través de un algoritmo de optimizacién monoobjetivo y otro
multiobjetivo. Los dos métodos—DILS y ME-MOEA/D—esté4n disefiados para implementar
estos dos enfoques. DILS es un algoritmo metaheuristico monoobjetivo basado en ILS, mien-
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tras que ME-MOEA/D es un MOEA que introduce elitismo memético monoobjetivo en el
método clasico MOEA/D. De este objetivo se extrae que es razonable pensar que tanto DILS
como ME-MOEA/D superan los inconvenientes de las propuestas anteriores en sus respec-
tivas dreas. DILS constituye una notable mejora respecto a las anteriores aproximaciones
metaheuristicas de monoobjetivo al problema CC en lo que se refiere a la calidad del clus-
tering. Lo mismo puede decirse de ME-MOEA/D, que también produce mejores resultados
que las propuestas anteriores en medidas de calidad multiobjetivo.

Las hibridaciones en el area del CC conforman el tercer objetivo de esta tesis. La inves-
tigacién llevada a cabo para este objetivo propone el algoritmo 3SHACC. En sus tres etapas,
implementa ponderacion automatica de restricciones, un algoritmo DML con restricciones
(capaz de utilizar restricciones ponderadas) y un método de CC jerarquico basado en afini-
dades que produce la particion de salida. Es evidente que 3SHACC es un modelo CC hibri-
do, ya que combina técnicas de las dos familias mas amplias de métodos CC conocidas: CC
particional y DML con restricciones. En cuanto a las conclusiones de este objetivo, destaca-
mos el excelente rendimiento de 3SHACC en comparacion con los algoritmos de referencia.
3SHACC es capaz de obtener resultados 6ptimos con mucha mas frecuencia que cualquier
alternativa. Ademads, su modularidad permite a los investigadores seleccionar las partes del
mismo que beneficien a su propia investigacion.

El cuarto y ultimo objetivo aborda la tarea de combinar multiples tipos de restricciones
bajo el supuesto de que, en problemas reales, se dan dichas combinaciones. El estudio que
proponemos para cumplir este objetivo aborda la combinacion de restricciones M-Ly C-Ly
restricciones de monotonicidad. Para ello, proponemos un sencillo algoritmo de estilo EM,
denominado PCKM-Mono. Este utiliza un término de penalizaciéon basado en restricciones
para incluirlas en el paradigma de clustering monotdnico, produciendo asi una solucion al
CC monotonico. La necesidad de este tipo de aproximaciones queda demostrada por la exis-
tencia de conjuntos de datos como el SRWU. Este apartado concluye con los resultados ex-
perimentales tanto en benchmarks estandarizados como en el dataset SRWU. Los resultados
muestran la superioridad de nuestra propuesta sobre los métodos de clustering clésico, clus-
tering puramente restringido y clustering puramente monotonico. Estas conclusiones estdn
respaldadas por tests estadisticos bayesianos realizados sobre medidas relativas a la calidad
de las particiones, las restricciones incumplidas y el grado de satisfaccion de la monotonici-
dad.

8.2 Publications

This section lists journal, conference and preprint papers published during the PhD study pe-
riod, ordered by publishing date. The DOI and the number of citations indicated by Google
Scholar are given for journal and conference papers.
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+ Journal papers:

1. Gonzélez-Almagro, G., Luengo, J., Cano, J. R., & Garcia, S. (2020). DILS: con-
strained clustering through dual iterative local search. Computers & Operations
Research, 121,104979. DOI:https://doi.org/10.1016/j.cor.2020.104979.
CITED BY: 16

2. Gonzélez-Almagro, G., Luengo, J., Cano, J. R., & Garcia, S. (2021). Enhanc-
ing instance-level constrained clustering through differential evolution. Applied
Soft Computing, 108, 107435. DOI: https://doi.org/10.1016/j.asoc.2021.
107435. CITED BY: 8

3. Gonzalez-Almagro, G., Rosales-Perez, A., Luengo, J., Cano, J. R., & Garcia, S.
(2021). ME-MEOA/Dcc: Multiobjective constrained clustering through decom-
position based memetic elitism. Swarm and Evolutionary Computation, 66,
100939. DOI: https://doi.org/10.1016/j.swevo.2021.100939. CITED BY:
6

4. Gonzalez-Almagro, G., Sudrez, J. L., Luengo, J., Cano, J. R., & Garcia, S. (2022).
3SHACC: Three stages hybrid agglomerative constrained clustering. Neurocom-
puting, 490, 441-461. DOL: https://doi.org/10.1016/j.neucom.2021.12.018.
CITED BY: 1

+ Preprints:

1. Gonzélez-Almagro, G., Peralta, D., De Poorter, E., Cano, J. R., & Garcia, S. (2023).
Semi-Supervised Constrained Clustering: An In-Depth Overview, Ranked Tax-
onomy and Future Research Directions. arXiv preprint arXiv:2303.00522. Sub-
mitted to ACM Computing Surveys. CITED BY: 0

2. Gonzélez-Almagro, G., Sudrez, J. L., Sdnchez-Bermejo, P., Cano, J. R., & Garcia,
S. (2023). Semi-supervised Clustering with Two Types of Background Knowl-
edge: Fusing Pairwise Constraints and Monotonicity Constraints. arXiv preprint
arXiv:2302.14060. Submitted to Information Fusion. CITED BY: 0

+ Conference papers:

1. Gonzilez-Almagro, G., Rosales-Pérez, A., Luengo, J., Cano, J. R., & Garcia, S.
(2020, June). Improving constrained clustering via decomposition-based mul-
tiobjective optimization with memetic elitism. In Proceedings of the 2020 Ge-
netic and Evolutionary Computation Conference (pp. 333-341). DOI: https:
//doi.org/10.1145/3377930.3390187. CITED BY: 5

2. Gonzalez-Almagro, G., Suarez, J. L., Luengo, J., Cano, J. R., & Garcia, S. (2020).
Agglomerative constrained clustering through similarity and distance recalcu-
lation. In Hybrid Artificial Intelligent Systems: 15th International Conference,
HALIS 2020, Gijon, Spain, November 11-13, 2020, Proceedings 15 (pp. 424-436).
Springer International Publishing. DOI: https://doi.org/10.1007/978-3-
030-61705-9_35. CITED BY: 2
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3. Wojciechowski, S., Gonzalez-Almagro, G., Garcia, S., & Wozniak, M. (2022, Septem-
ber). Adapting K-Means Algorithm for Pair-Wise Constrained Clustering of Im-
balanced Data Streams. In Hybrid Artificial Intelligent Systems: 17th Interna-
tional Conference, HAIS 2022, Salamanca, Spain, September 5-7, 2022, Proceed-
ings (pp. 153-163). Cham: Springer International Publishing. DOI: https://
doi.org/10.1007/978-3-031-15471-3_14. CITED BY: 0

4. Gonzalez-Almagro, G., Bermejo, P.S., Suarez, J. L., Cano, J. R., & Garcia, S. (2022,
August). Monotonic Constrained Clustering: A First Approach. In Advances
and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelli-
gence: 35th International Conference on Industrial, Engineering and Other Ap-
plications of Applied Intelligent Systems, IEA/AIE 2022, Kitakyushu, Japan, July
19-22, 2022, Proceedings (pp. 725-736). Cham: Springer International Publish-
ing. DOI: https://doi.org/10.1007/978-3-031-08530-7_61. CITED BY: 2

8.3 Future work

The results of this PhD thesis open up new research lines and contribute to the identification
of new challenges in CC. This section presents future work and promising research lines
derived from the studies and conclusions gathered in this thesis:

+ Creation of a CC library: The availability of software is paramount to data science
as it directly impacts the efficiency, efficacy, and reproducibility of the research. With
the rapid growth of data science, a vast array of software tools have been developed to
perform various tasks, ranging from data cleaning and manipulation to ML and sta-
tistical analysis. Access to these tools enables researchers to carry out complex data
analyses and gain meaningful insights from large and complex datasets. Additionally,
the availability of open-source software, such as R and Python libraries, has facilitated
collaboration, information sharing and reproducibility of previous work, which is cru-
cial for the advancement of the field. Therefore, the availability of software is an es-
sential factor in enabling the outreach of data science and positive impacts on various
fields.

Unfortunately, very few CC studies make public the software used to produce their
results [KWH22]. The creation of an open-access library specialized in CC methods
would greatly stimulate research in the area, as it would enable fair and reproducible
comparisons for new proposals and grant easy access to working implementations of
standard methods for use in new applications.

« Constraint-based preprocessing: data preprocessing is a vital part in any data sci-
ence application [GLH15]. In supervised environments, preprocessing methods in-
volving labels, in addition to the predictors, produce generally better results than com-
pletely unsupervised preprocessing methods. However, there is very little work fo-
cusing on preprocessing within the SSL paradigm. We argue that constraints, when
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available, can prove advantageous in preprocessing procedures, as opposed to the cur-
rent trend which is to simply dismiss any information that does not fit the mold of
classic supervised and unsupervised learning paradigms.

Preprocessing the constraint set: following the same train of thought that moti-
vated the future research line mentioned above, the constraint set can be considered as
adataset itself. This means that it can suffer from the same imperfections as traditional
datasets, namely: missing values, noise, redundancies, etc. No methods other than
the artificial transitive closure augmentation and our automatic constraint weighting
procedures have been proposed to preprocess constraint sets. We argue that general
preprocessing methods could increase the quality of the results obtained by CC meth-
ods, and therefore their usability and applicability. We consider this to be one of the
more promising future research lines concerning CC.

Parallelization: parallelization is highly relevant in genetic algorithms because it can
enormously increase the efficiency and speed of the optimization process [DSOM™*19,
AT*99]. It can drastically reduce the computation time required to find an optimal
solution, particularly for scenarios that involve large datasets or complex fitness func-
tions, such as CC. Additionally, parallelization can help overcome issues with local
optima, which can trap the optimization process into a suboptimal solution. By explor-
ing multiple regions of the search space simultaneously, parallelization can help the
algorithm discover potentially better solutions. Studying the effects of parallelization
in the results of genetic algorithms applied to CC remains unaddressed.

New combinations of types of background knowledge: in the future, more re-
search can be conducted to explore the potential of combining multiple types of back-
ground knowledge to develop more robust and accurate models. In this study, we have
investigated the combination of pairwise instance-level constraints and monotonicity
constraints. However, given the plethora of types of background knowledge that has
been found during the elaboration of the taxonomy of CC methods, there is evidence
in favor of intensifying research in their combination. One possible direction is to
investigate how to integrate multiple types of constraints in a seamless and more effi-
cient way. For example, developing new algorithms or optimization techniques that
can handle multiple types of constraints simultaneously can lead to more accurate and
robust models. Another potential research direction is to investigate how to identify
the best combination of background knowledge for a given problem automatically,
thereby keeping human effort and cost low. This can involve developing algorithms
or techniques that can identify (1) which types of background knowledge are the most
relevant and effective for a given problem, and (2) how to combine them to achieve
the best possible outcomes.
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1 Introduction

Two major approaches characterize machine learning: supervised learning and unsuper-
vised learning [1]. In supervised learning, the goal is to build a classifier or regressor that,
trained with a set of examples (or instances) X and their corresponding output value Y, can
predict the value of unseen inputs. In unsupervised learning, only the set of examples X is
available, and no output value is provided. In the latter, the goal is to discover some under-
lying structure in X. For example, in unsupervised clustering the goal is to infer a mapping
from the input to clusters (groups) of similar instances. Generally, the set of examples X is
known as the dataset, and the set of output values Y is known as the labels set.

Semi-Supervised Learning (SSL) [2] is the branch of machine learning that tries to combine
the benefits of these two approaches. To do so, it makes use of both unlabeled data and la-
beled data, or other kinds expert knowledge. For example, when considering classification
or regression, in addition to a set of labeled data, an additional set of unlabeled data may be
available, which can contain valuable information. Similarly, when considering clustering
problems, a smaller subset of labeled data (or other types of knowledge about the dataset)
may be available. Generally, some kind of information that does not fit within the supervised
or unsupervised learning paradigm may be available to perform machine learning tasks. Ig-
noring or excluding this information does not optimally use all available information, thus
the need of SSL [3].

1.1 On the feasibility of semi-supervised learning

With regards to the applicability of SSL, a natural question arises [2]: in comparison with
supervised and unsupervised learning, can SSL obtain better results? It could be easily in-
ferred that the answer to this question is “yes”, otherwise neither this study nor all the cited
before would exist. However, there is an important condition imposed for the answer to be
affirmative: the distribution of instances in X must be representative of the true distribution
of the data. Formally, the underlying marginal distribution p(X) over the input space must
contain information about the posterior distribution p(Y|X). Then, SSL is capable of mak-
ing use of unlabeled data to obtain information about p(X) and, therefore, about p(Y|X) [3].
Luckily, this condition appears to be fulfilled in most real-world learning problems, as sug-
gested by the wide variety of fields in which SSL is successfully applied. Nonetheless, the
way in which p(X) and p(Y|X) are related is not always the same. This gives place to the SSL
assumptions, introduced in [2] and formalized in [3]. A brief summary of these assumptions
following [3] is presented, please refer to the cited studies for more details.

« Smoothness assumption: two instances that are close in the input space should
have the same label.

« Low-density assumption: decision boundaries should preferably pass through
low-density regions in space.
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« Manifold assumption: in problems in which data can be represented in Euclidean
space, instances in the high-dimensional input space are usually gathered along
lower-dimensional structures, known as manifolds: locally Euclidean topological
spaces.

« Cluster assumption: data points which belong to the same cluster also belong to
the same class. This assumption can be seen as a generalization of the other three
specific assumptions.

As in other machine learning paradigms, the transduction versus induction dichotomy can
be made within SSL. Usually, semi-supervised classification methods cope the SSL field,
therefore the aforementioned dichotomy is explained in terms of classification as follows:

« Inductive methods: inductive methods aim to build a classifier capable of out-
putting a label for any instance in the input space. Unlabeled data can be used to
train the classifier, but the predictions for unseen instances are independent of each
other once the training phase is completed. An example of inductive method in
supervised learning is linear regression [3].

« Transductive methods: transductive methods do not build a classifier for the en-
tire input space. Their predictions are limited to the data used during the training
phase. Transductive methods do no have separated training and testing phases. An
example of transductive method in unsupervised learning is hierarchical cluster-

ing [3].

Classification methods within SSL can be clearly separated following the definitions above.
However, when it comes to clustering, this distinction becomes unclear. Clustering methods
within the SSL learning paradigm are usually considered to be transductive, as their output
is still a set of labels partitioning the dataset and not a classification rule [2]. On the other
hand, some authors claim that partitional clustering methods can be considered as inductive
methods, because their assignation rule can be used to predict the cluster membership of
unseen instances. Hierarchical clustering methods would belong the transductive learning
category, as no assignation rule can be derived from them [4]. The differences between
partitional and hierarchical clustering will be formalized later in Section 3.

Figure 1 helps us contextualize semi-supervised learning and its derivatives within the over-
all machine learning landscape. General SSL literature [5, 2, 6] usually divides SSL meth-
ods into two categories: semi-supervised classification and semi-supervised clustering. Fur-
ther dichotomies have been made in later literature. In [3, 7] semi-supervised classification
methods are taxonomized taking into account the inductive versus transductive dichotomy.
Some of the categories found in these taxonomies have been further studied: [8] proposes
a taxonomy for graph-based semi-supervised methods, and [9] does the same for the self-
labeling field. Concerning semi-supervised clustering, [10] proposes a high level taxonomy
with 4 types of methods, while [11, 12] focus on the specific area of constrained clustering.
The supervised and unsupervised learning paradigms are included in Figure 1 for the sake
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of contextualization only. Consequently only classic and widely-known tasks belonging to
these areas have been included in the diagram.
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Figure 1: Mindmap of the machine learning overall landscape.

1.2 Related work

The semi-supervised clustering area has been widely studied and successfully applied in
many fields since its inception. It can be seen as a generalization of the classic clustering
problem which is able to include background knowledge into the clustering process [2].
Many types of background knowledge have been considered in semi-supervised cluster-
ing [10], although the most studied one is the instance-level pairwise must-link and cannot-
link constraints [12]. This type of background knowledge relates instances indicating if they
belong to the same class (must-link) or to different classes (cannot-link). The problem of
performing clustering in the presence of this type of background knowledge is referred to in
literature as Constrained Clustering (CC) (marked in Figure 1 in blue).

4
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This study carries out a comprehensive review of constrained clustering methods. It also
proposes an objective scoring system, which addresses the potential and popularity of exist-
ing methods, and can be used to produce a sorted ranking for all of them. To the best of our
knowledge, no similar study has been published before. Existing literature is either limited
to the theoretical background on the topic, very limited in the number of methods reviewed,
or outdated due to the rapid advance of the field. The earliest survey including constrained
clustering in the reviewed studies can be found in [13], although it is very limited in con-
tent. In [11], the first survey focusing specifically on constrained clustering is proposed. It
introduces many of the foundational concepts of subsequent studies and provides the first
comprehensive reference on the area. However, this study was published in 2007, and even
then it was limited to very few methods. The first book fully devoted to constrained cluster-
ing was published in [12] (2008). It provides unified formal background within the area and
detailed studies on state-of-the-art methods.

1.3 Remainder of this paper

The rest of this study is organized as follows. Section 2 presents a taxonomy of types of
background knowledge with which semi-supervised clustering can work, including equiv-
alencies between them in Subsection 2.8. Section 3 formalizes afterwards the constrained
clustering problem, starting with basic background on classic clustering (Subsection 3.1) and
pairwise constraints (Subsections 3.2 and 3.3), which is followed by a quick note on the his-
tory of constrained clustering (Subsection 3.4), and a comprehensive review on the applica-
tions of constrained clustering (Subsection 3.5). Subsequently, advanced concepts regarding
constrained clustering are introduced in Section 4. A statistical study on the experimental
elements used to demonstrate the capabilities of CC methods is proposed in Section 5. This
statistical study is used as the basis of the scoring system, which is presented in Section 6 and
used in subsequent sections to produce a ranking for all reviewed methods. Section 7 pro-
poses a ranked taxonomic review of constrained clustering methods. A statistical analysis
of the taxonomy is presented in Section 8. Finally, Section 9 presents conclusions, criticisms
and future research guidelines.

2 Clustering with Background Knowledge

In this section, a comprehensive literature review on the types of background knowledge
that have been used by semi-supervised clustering algorithm is carried out. In general
terms, 5 families of background knowledge have been identified: partition-level constraints,
instance-level constraints, cluster-level constraints, feature-level constraints, and distance
constraints. Background information which does not belong to any of the mentioned cate-
gories has been placed together in a miscellaneous category. Figure 2 shows a visual repre-
sentation of this taxonomy. All 5 families are composed by smaller, more specific categories
which are detailed below.
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2.1 Partition-level Constraints

Partition-level constraints refer to restrictions imposed on the partition generated by the
semi-supervised clustering algorithm [14, 15, 16, 17]. Their most common form is a subset
of labeled data, which is often referred simply as “partition-level constraints”, although other
categories within this type of background knowledge can be found:

« Subset of labels: they consist of a subset of instances from the dataset for which
labels are available. The resulting partition must be consistent with the given la-
bels [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

« Subset of fuzzy labeled data: used in fuzzy semi-supervised clustering algorithms.
It consists of a subset of instances for which fuzzy labels are provided [32, 33, 34, 35,
36, 37].

« Non-redundant clusters constraints: they constraint the output partition so that
clusters in it must be orthogonal to each other, therefore maximizing their condi-
tional mutual information and producing non-redundant clusters [38].

2.2 Instance-level Constraints

Instance-level constraints can refer to single instances, pairs of instances or groups of multi-
ple instances. In the case of single instance constraints, they are used to describe particular
features of said instances or to restrict the features of the cluster they can belong to:

« Membership degree constraints: used in fuzzy semi-supervised clustering algo-
rithm to provide prior membership degrees for some instances [39, 40, 41].

« Neighborhood constraints: they link instances to their neighborhood, with the
latter being defined differently for every problem [42].

+ Instance difficulty constraints: they are referred to single instances and spec-
ify how hard it is to determine the cluster an instance belongs to, so that the semi-
supervised clustering algorithm can focus on easy instances first [43].

« Coverage constraints: for clustering algorithms which allow instances to belong
to multiple clusters at the same time, this type of constraint limits the number of
times an instance can be covered by different clusters [44].

Instance-level pairwise constraints involve pairs of instances and are used to indicate posi-
tive or negative relationships. The former refers to features that instances have in common,
such as class or relevance, while the latter refers to the opposite case. Even if instance-level
must-link and cannot-link are the most common form of instance-level constraints, the lat-
ter can be given in multiple ways:



64

Chapter II. Publications

Must-link/Cannot-link constraints: must-links involve pairs of instances that
are known to belong to the same class. Therefore they must belong to the same
cluster in the output partition. Cannot-link are used to indicate the opposite (the
two instances involved in them are known to belong to different classes an thus they
need to be placed in different clusters) [11].

May-link/May-not-link constraints: they represent soft must-link and cannot-
link constraints respectively. This means that they can be violated in the output
partition to some extent. They can be used in combination with the hard must-link
and cannot-link constraints [45].

Fuzzy Must-link/Cannot-link constraints: pairwise positive/negative relation-
ships with and associated degree of belief [46].

Elite Must-link/Cannot-link constraints: refined ML and CL constraints. They
have the property of being unarguably satisfied in every optimal partition of the
dataset [47].

Ranking constraints: in contexts in which output class labels (clusters) can be
ordered, ranking constraints are used to indicate whether an instance should be as-
signed a class label (cluster) higher that the class label of another instance [48].

The last form of instance-level constraints are group constraints, which are used to gather

group of instances that are known to share features or to be different to each other in some
aspect of their nature. They can also be used to set relative comparisons between a fixed
number of constraints. Overall, they can be classified as follows:

Group constraints: also referred to as grouping information [49, 50]. They spec-
ify the certainty of each or several instances belonging to the same cluster. Note that
group constraint cannot be used to specify groups of instances that must not belong
to the same cluster [51].

Triplet constraints: also known as relative constraints [52, 53, 54]. They involve
three instances: an anchor instance a, a positive instance b, and a negative instance
c. A triplet constraint indicates that a is more similar to b than c [43, 55].

Must-link-before: these are ML constraints specifically designed to be applied in
hierarchical clustering setups. They involve triplets of constraints and their basic
idea is to link instances positively not only in the output partition, but also in the
hierarchy (dendrogram) produced by hierarchical clustering methods [56].

Mutual relationships: they establish a relation in groups of instances that is not
known in advance and is determined during the clustering process. For example, a
group of instances in the same mutual relation may be determined to belong to the
same cluster during the cluster process, or contrarily they may be determined to not
belong to the same cluster. Contrary to ML and CL constraints, mutual relations do
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not specify whether the nature of the relation they describe is positive or negative as
part of the prior knowledge [57].

2.3 Cluster-level Constraints

Cluster-level constraints are used to restrict a wide variety of features related to clusters
without specifying which instances must belong to these clusters. They are considered to be
one of the most useful types of background knowledge, as they can convey large amounts of
information compared to the amount of expert knowledge available. Size constraints are one
of the forms in which cluster-level constraints can be found. They constraint the number of
instances that clusters can have in the output partition and can be divided in three categories:

+ Cluster-size constraints: also called cardinality constraints [58]. They specify
the number of instances each cluster must have in the output partition. The number
of instances in a cluster may vary from a cluster to another [59, 60].

+ Maximum/minimum cluster-size constraints: they specify the maxi-
mum/minimum size a cluster can have in the output partition without specifying
the exact size of each cluster [61, 62, 63, 64, 65]. They may also be referred to as
significance constraints [66].

« Balance constraints: also known as global size constraints [43] applied in the
cluster-level, they try to even the number of instances in every cluster (all cluster
should be approximately the same size) [67, 68, 59, 69].

Apart from the size of the cluster, cluster-level constraints can restrict a wide variety of clus-
ter features, ranging from their shape or separation, to the kind of instances they may con-
tain:

« Cluster-overlap constraints: they constraint the amount of overlap between clus-
ters [42, 44].

« Property-cardinality constraints: they constraint the amount of a specific type
of instance a cluster can contain [42].

» Soft cannot-link inside cluster constraints: they require that the number of
pairs of instances in a cluster which have a cannot-link constraint among them to
be bounded [61].

« Minimum difference constraints: applied to pair of clusters, they require clusters
to be similar or different to some degree [61].

« Variance constraints: they impose maximum or minimum values for the variance
clusters must feature in the output partition [66].

« Maximum diameter constraints: they specify an upper/lower bound on the di-
ameter of the clusters [62].
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« Encompassing constraints: they determine whether clusters are allowed to en-
compass each other, i.e., they are allowed to form a hierarchy [44].

2.4 Feature-level Constraints

Feature-level constraints constraint instances by their feature values or directly relate pairs
of feature to each other to indicate degrees of importance. Two types of feature-level con-
straints can be found:

+ Attribute-level constraints: they constraint the number of possible assignations
for instances with specific values for specific features [42].

» Feature order constraints: also called feature order preferences. They involve
pairs of features and determine which one of them is more important. This is, what
features need to be paid more attention to when performing comparisons to decide
cluster memberships [70].

2.5 Distance Constraints

Distance constraints represent a very particular case of constraint-based information, as they
relate pair of instances indirectly and in a global way. That means distance constraints can
always be translated to instance-level must-link constraints [11]. Two types of distance con-
straints are defined in literature:

+ y-constraints: also called minimum margin [62] or minimum separation [71].
They require the distance between two points of different clusters to be superior to
a given threshold called y [11, 62, 72].

+ ¢-constraints: they require for each instance to have in its neighborhood of radius
¢ at least another point of the same cluster [11, 62, 72].

2.6 Other Types of Constraints

Finally, authors have proposed forms of background knowledge that do not fit into any of
the previous categories:

« Bag constraints: specific to the multi-instance multi-label framework, where
datasets are given in the form of bags, with each bag containing multiple instances
and labels, which provided only at the bag-level. Bag constraints specify similarities
between bags [73].

« Example clusters: predefined clusters in the dataset given to the clustering al-
gorithm, which is required to output a partition which is consistent with exam-
ple clusters. This information can be converted to instance-level pairwise con-
straints [74, 75].

10
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« Hierarchical cluster-level constraints: sometimes also referred to as ranking
constraints [76, 77]. These constraints are designed to be applied only in semi-
supervised hierarchical clustering methods. Given pairs of clusters, they specify
which action (merge, split, remove, etc.) must be taken over them in successive
steps of the clustering process that builds the output dendrogram [78].

2.7 Constraints Usability

After analyzing the wide variety of forms in which constraints can be given, it is reasonable
to ask which type of constraint is more effective for general purposes. There is not in fact a
unique answer to this question, as it highly depends on the problem or applications and the
type of information available to solve it. In [52] an empirical setup that tries to answer this
question in a reduced semi-supervised environment is proposed. It only considers instance-
level pairwise must-link and cannot-link constraints and subsets of labeled data as available
sources of background knowledge. Three questions tried to be answered in the mentioned
study, which can be reformulated to include a broader scope as follows:

« Given the same amount of oracle effort, which type of background knowledge is
more effective at aiding clustering?

« Which type of constraint is easier to obtain from the oracle?

« Which type of constraint is more reliable?

Whatitis meant here with an oracle is always understood as the source of background knowl-
edge. This oracle can be a human, an automatic classifier, a crowdsourcing setup to gather
information from distributed sources, etc. It is essential for any real-world or in-lab applica-
tion of semi-supervised clustering to address these three questions.

2.8 Equivalencies Between Types of Background Knowledge

It is well known that some categories of background knowledge are neither isolated nor her-
metic. Some types of constraints can be converted to another in a direct manner. Distance
constraints can be translated to must-link constraints [11], or a subset of labeled data can
always be transformed in a set of must-link and cannot-link constraints [49]. The aim of this
section is to provide intuition on all possible transformations without the need of a formal
definition/notation for them, as this would require the length of a monography. Previous
work on this line has been carried out in [49], although within a much limited scope regard-
ing the types of background knowledge considered. Figure 3 depicts equivalences found
between the types of background knowledge introduced in Section 2.

In Figure 3, only conversions without loss of information are considered, e.g.: fuzzy must-
link/cannot-link constraints could be converted to must-link/cannot-link constraints by con-
sidering only those whose degree of belief is over 50%, although this would involve losing
not only constraints, but also the degree of belief information. Even if these kind of trans-
formations are possible, they are not considered here, as they imply losing information.

11
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Figure 3: Graphical representation of direct equivalences between types of background
knowledge.

3 Instance-Level Pairwise Constrained Clustering

Among all types of background knowledge reviewed in Section 2, pairwise constraints are
undoubtedly one of the most studied topics, particularly basic must-link and cannot-link
constraints, as it is shown later in this study. From now on, and for the sake of readability,
must-link and cannot-link constraints will be referred to simply as pairwise con-
straints. In this section, the basic concepts of classic clustering and semi-supervised parti-
tional and hierarchical clustering under pairwise constraints are introduced. This problem
is known in literature simply as Constrained Clustering (CC) [11].

3.1 Background on Classic Clustering

Partitional clustering can be defined as the task of grouping the instances of a dataset into
K clusters. A dataset X consists of n instances, and each instance is described by u features.
More formally, X = {x;,-:-,X,}, with the ith instance noted as x; = (x[;,1],***» X[1,u])- A
typical clustering algorithm assigns a class label [; to each instance x; € X. As a result, we
obtain the list of labels L = [I;, ---, ], with [; € {1, ---, K}, that effectively splits X into K non-
overlapping clusters c; to form a partition called C. The list of labels producing partition C is
referred to as LC. The criterion used to assign an instance to a given cluster is the similarity
to the rest of elements in that cluster, and the dissimilarity to the rest of instances of the
dataset. This value can be obtained with some kind of distance measurement [79].

Hierarchical clustering methods produce an informative hierarchical structure of clusters
called dendrogram. Partitions as described above, with a number of clusters ranging from 1
to n, can always be obtained from a dendrogram by just selecting a level from its hierarchy
and partitioning the dataset according to its structure. Typically, agglomerative hierarchical

12
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clustering methods start with a large number of clusters and iteratively merge them accord-
ing to some affinity criteria until a stopping condition is reached. Every merge produces a
new level in the hierarchy of the dendrogram. Formally, given an initial partition with n,
clusters C = {cy, -+, ¢, } (usually n, = n), a traditional agglomerative constrained clustering
method selects two clusters to merge by applying Equation 1.

{cicj} = argmax ‘A(Ci, ¢j)s @
Ci,CEC,I#]

with A(-, -) being a function used to determine the affinity between the two clusters given
as arguments. This function needs to be carefully chosen for every problem, as it greatly
affects the result of the clustering process. Some conventional methods to measure affinity
between clusters are worth mentioning, such as single linkage, average linkage and com-
plete linkage [79]. Nevertheless, different measures are used in out-of-lab applications, as
the manifold structures usually found in real-world datasets can be hardly captured by the
classic affinity measures mentioned above. Typically, classic partitional clustering methods
are algorithmically less complex than hierarchical clustering methods, with the former fea-
turing O(n) complexity and the latter O(n?) [11].

3.2 Background on Pairwise Constraints

In most clustering applications, it is common to have some kind of information about the
dataset that will be analyzed. In CC this information is given in the form of pairs of instances
that must, or must not, be assigned to the same cluster. We can now formalize these two
types of constraints:

+ Must-link (ML) constraints C_(x;, x;): instances x; and x; from X must be placed in
the same cluster. The set of ML constraints is referred to as C_.

« Cannot-link (CL) constraints Cx(x;, x;): instances x; and x; from X cannot be as-
signed to the same cluster. The set of CL constraints is referred to as Cx.

The goal of constrained clustering is to find a partition (or clustering) of K clusters C =
{cq, -+, cx}of the dataset X that ideally satisfies all constraints in the union of both constraint
sets, called CS = C_ [J C4. As in the original clustering problem, the sum of instances in
each cluster c; is equal to the number of instances in X, which we have defined as n = |X| =

K
Zizl |Ci|'
Knowing how a constraint is defined, ML constraints are an example of an equivalence re-
lation; therefore, ML constraints are reflexive, transitive and symmetric. This way, given
constraints C_(xg,, xp) and C—(xp, x.), then C_(x,,x.) is verified. In addition to this, if
X, € ¢;and xp € c; are related by C_(x4, xp), then C_(x,, x4) is verified for any x. € ¢;
and x4 € c; [11].

13
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It can also be proven that CL constraints do not constitute an equivalence relation. However,
analogously, given x, € ¢; and x;, € cj, and the constraint Cy4(x,, Xp), then it is also true
that Cx(x., x4) for any x. € ¢; and x4 € c; [11].

Regarding the degree in which constraints need to be met in the output parti-
tion/dendrogram of any CC algorithm, a simple dichotomy can be made: hard pairwise
constraints must necessarily be satisfied, while soft pairwise constraints can be violated to
a variable extent. This distinction is introduced in [11] and adopted by later studies, even-
tually producing the “may constraints” (may-link/may-not link constraints mentioned in
Section 2), which can be seen as the formalization of soft constraints. However, the scien-
tific community still refers to “may constraints” as soft constraints in the majority of the
cases and the terms may-link and may-not link are used only in cases in which both soft and
hard constraints are mixed and can be considered by the same CC algorithm. The major
advantages in favor of soft over hard constraints are found in the resiliency to noise in the
constraint set, the flexibility on the design of cost/objective functions, and their optimiza-
tion procedures. The ability to consider soft, hard, or both types of constraints is a defining
element for CC methods.

In [80] two measures designed to characterize the quality of a given constraint set are pro-
posed: informativeness (or informativity [11]) is used to determine the amount of informa-
tion in the constraint set that the CC algorithm could determine on its own, and coherence,
which measures the amount of agreement between the constraints themselves. These two
measures were proposed in early stages of the development of the CC area; however, they
have not been used consistently in later studies.

3.3 The Feasibility Problem

Given that CC adds a new element to the clustering problem, we must consider how
it affects the complexity of the problem in both of its forms: partitional and hierarchi-
cal. Intuitively, the clustering problem goes from its classic formulation “find the best
partition for a given dataset” to its constrained form “find the best partition for a given
dataset satisfying all constraints in the constraint set”. The formalization of this problem
is tackled in [81, 11, 82], where the feasibility problems for partitional and hierarchical
CC are defined as in 3.1 and 3.2 respectively, where CS = C. U C_ (the joint constraint
set). Given these two definitions, we say that a partition C for a dataset X is feasi-
ble when all constraints in CS are satisfied by C. Note that there exist constraint
sets for which a feasible partition can never be found, e.g., no feasible partition exist for
CS; = {C(x1, X3), Cx(xy, X,)} regardless of the value of K. Similarly, the feasibility of parti-
tions such as CS, = {Cx(x;, x3), Cx#(X3, X3)Cx, (X1 X3)} depends on the value of K. In this
case, the feasibility problem for CS, can be solved for K = 3 but not for K = 2.

Definition 3.1 Feasibility Problem for Partitional CC: given a dataset X, a constraint set
CS, and the bounds on the number of clusters k; < K < k,, is there a partition C of X with K
clusters that satisfies all constraints in CS? [81]

14
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In [81] it is proven that, when k; = 1 and k,, > 3, the feasibility problem for partitional
CC is NP-complete, by reducing it from the Graph K-Colorability problem. It is also proven
that it is not harder, so both have the same complexity. Table 1 shows the complexity of the
feasibility for different types of constraints.

Definition 3.2 Feasibility Problem for Hierarchical CC: given a dataset X, the constraint
sets CS, and the symmetric distance measure D(x;, xj) > 0 for each pair of instances: Can X
be partitioned into clusters so that all constraints in CS are satisfied? [82]

Please note that the definition of the feasibility problem for partitional CC (in Definition 3.1)
is significantly different from the definition of the feasibility problem for hierarchical CC
(in 3.2). Particularly, the formulation for the hierarchical CC does not include any restric-
tion on the number of clusters K, which is equivalent to considering that any level of the
dendrogram can be used to produce the partition that satisfies all constraints [82]. In [72] a
reduction from the One-in-three 3SAT with positive literals problem (which is NP-complete)
for the problem in Definition 3.2 is used to prove the complexities presented in Table 1 for
the hierarchical CC problem. It is worth mentioning that, for the hierarchical CC problem,
the dead-ends problem arises: a hierarchical CC algorithm may find scenarios where no
merge/split can be carried out without violating a constraint. Previous solutions based on
the transitive closure of the constraint sets have been proposed to this problem, although
they imply not generating a full dendrogram [81].

Constraints  Partitional CC  Hierarchical CC Dead Ends?

ML | P No
CL NP-complete NP-complete Yes
ML and CL. NP-complete NP-complete Yes

Table 1: Feasibility problem complexities for partitional and hierarchical CC and dead-ends
found in hierarchical CC [81].

Overall, complexity results in Table 1 show that the feasibility problem under CL constraints
is intractable, hence constrained clustering is intractable too. This leads to Observation 3.1.
For more details on the complexity of constrained clustering please see [81].

Observation 3.1 Knowing that a feasible solution exists does not help us find it. The re-
sults from Table 1 imply that the fact that there is a feasible solution for a given set of constraints
does not mean it will be easy to find.

With respect to the dead-ends problem, a full dendrogram considering constraints can be
obtained by switching from a hard interpretation of constraints to a soft one. This means that
every level in the dendrogram tries to satisfy as many constraints as possible, but constraint
violations are allowed in order for the algorithm to never reach a dead-end.
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Some interesting results, both positive and negative, about the nature of pairwise constraints
are proved and discussed in [11], as well as some workarounds for problems related to the
use of constraints in clustering.

3.4 Early History of Constrained Clustering

The Constrained Clustering problem has been rediscovered and renamed throughout years
of evolution, firstly in mathematical science, secondly in Computer Science. The first refer-
ence to the CC problem was proposed by Harary in [83] as early as in the year 1953. Harary
introduced the signed graph, which is an undirected graph with +1 or -1 labels on its edges,
respectively indicating similarity of dissimilarity between the vertices they connect. This
can be directly translated to the ML and CL constraints that shape the CC problem. Besides,
Harary introduced the concept of imbalance for a 2-way partitioning of such signed graph,
which referred to the number of vertices violated by the partitioning. The aim of Harary was
to find highly related groups of vertices within a psychological interpretation of the problem:
positive edges correspond to pairs of people who like one another, and negative edges to pairs
who dislike one another.

It was not until year 2000 that the name Constrained Clustering made its first appearance
by the work of K. Wagstaff and C. Cardie in [84], which is a brief paper that introduces
later work by the same authors in which the first two CC algorithms in the history of Com-
puter Science are proposed: COP-COBWEB [85] and COP-K-Means [86] in 2000 and 2001
respectively. These two papers set the precedent for a new area in semi-supervised learn-
ing known as Constrained Clustering, providing experimental procedures and baselines to
compare with.

On the one hand, and following the trend set by K. Wagstaff and C. Cardie, although in
separate studies, S. Basu proposes in 2003 the first two soft constrained approaches to CC
in [87]: the PCK-Means and MPCK-Means algorithms. Later, in the year 2005, I. Davidson
and S.S. Ravi would propose the first hierarchical approaches to the CC problem [72]. On the
other hand, E. Xing et al. propose the first distance metric learning based approach to CC
with their CSI algorithm [88], also known in literature simply as Xing’s algorithm. Finally,
in 2008, S. Basu, I. Davidson and K. Wagstaff joined forces to produce the first book fully
dedicated to constrained clustering in [12].

Research in CC has followed the general trend in Computer Science ever since. Ranging
from well-studied classic clustering approaches, such as fuzzy clustering [89], spectral clus-
tering [90] or non-negative matrix factorization [91], to modern and general optimization
models like classic [92] or deep [93] neural networks and evolutive [94] or non-evolutive [95]
metaheuristic algorithms.

3.5 Applications of Constrained Clustering

CC has been applied in many fields since its inception. The first applications are gathered
in [11], which include clustering of image data, video and sound data, biological data, text
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data, web data, and the first application of CC found in [86], which is lane finding for vehicles
in GPS data. Figure 4 shows a summary of the overall CC application field.

Proportion of proposals by
field of application

Text data analysis Others
(30 proposals, 31.6%) (30 proposals, 31.6%)

Video data analysis
(6 proposals, 6.3%)

Biological data analysis
(12 proposals, 12.6%)

Image data analysis
(17 proposals, 17.9%)

Figure 4: Piechart showing a summary of the overall CC application field.

Table 2 gathers CC applications, sorting them by application field and indicating the specific
purpose of every application. The field with the largest number of publications is text data
analysis; within it, document clustering has attracted the most publications. Text data clus-
tering is followed by three other wide application fields, which are biological data analysis,
image data analysis and video data analysis.

However, some CC applications are very specific and cannot be grouped into wider applica-
tion fields. Studies which bring forward this kind of applications are listed in Table 3.

4 Constrained Clustering Concepts and Structures

Within the CC research field, some concepts and data structures are repeatedly mentioned
and used by researchers. The goal of this section is to provide a formal definition of these
concepts, as they will be mentioned later and are necessary for the reader to have a good
understanding of the methods described later in Section 7. From now on, and for the sake of
readability and ease of writing, we refer to instances involved in a constraint simply as
constrained instances, and to ML constraints and CL constraints as simply ML and
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Field of application No. of studies Specific application No. of studies References
[96][97][98][99]
[100][101][102][103]
Document clustering 19 [104][105][106][107]
[108][109][110][98]
[111][112][113]
Text data analysis 30 Text Clustering 4 [45][114][115][116]
Verb clustering 1 [117]
Word disambiguation 1 [118]
Microblog clustering 3 [119][120][121]
Document filtering 1 [122]
Clustering in online forums 1 [123]
Gene Expression 7 [ 2[71]2[‘;]2[;]2[51]2[;]2[61]29]
Gene Clustering 1 [130]
Biological data analysis 12 RNA-seq Data Clustering 1 [131]
Regulatory Module Discovery 1 [132]
Fiber Segmentation 1 [133]
Biomolecular Data 1 [134]
Medical image 2 [135][136]
Image segmentation 3 [137][138][139]
Image clustering 3 [140][141][142]
Image categorization 2 [143][144]
Image data analysis 17 Image annotation 2 [145][146]
Image indexing 1 [147]
Point of interest mining 1 [148]
Multi-target detection 1 [149]
Face recognition 1 [150]
Satellite Image Time Series 1 [151]
Extracting moving people 1 [152]
Video data analysis 6 Web Video Categorization 1 [153]
Face Clustering 2 [154][155]
Face Tracking 2 [156][155]

Table 2: Comprehensive listing of applications of CC in wide application fields.

CL, respectively. Instances involved in ML are referred to as ML-constrained instances

and instances involved in CL are referred to as CL-constrained instances.

The Constraint Matrix This is one of the most, if not the most, basic and most frequently
used data structures to store the information contained in the constraint set. It is a symmet-
ric matrix, with as many rows and columns as instances in the dataset, filled with three
values: 0 to indicate no constraint between the instances associated with the row and col-
umn in which it is stored, 1 is used for ML and -1 is used for CL. Formally, the Constraint
Matrix is a matrix CM,,y,, filled as in Equation 2.
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Field of Application References
Identifying speakers in a conversation through audio data [157]
Clustering of software requirements [158]
Machinery fault diagnosis [159]

Patient Segmentation from medical data [160][161]
Direct marketing applications [162] [163] [164] [165]
Group extraction from professional social network [166]
Clustering of cognitive radio sensor networks [167]
District design [168][169]
Sentiment analysis [170][171]
Sketch symbol recognition [172]
Robot navigation systems [173]
Terrorist community detection [174]
Lane finding for vehicles in GPS data [86]
Optimization of rural ecological endowment industry [175]
Job-shopping scheduling [176]
Trace-clustering [177]
Discovering educational-based life patterns [178]
Oil price prediction [179]
Traffic analysis [180][181]
Vocabulary maintenance policy for CBR systems [182]
Obstructive sleep apnea analysis [183]
Internet traffic classification [184]
Social event detection [102]

Table 3: Comprehensive listing of particular applications of CC.
1 if Co(x;,xj) €CS
CMj) = CM[j; =1 —1 if Cy(x;,x;) €CS (2)

0 otherwise

Please note that, following this definition for the constraint matrix, its diagonal may be as-
signed to all 1 or all 0. That possibility depends on whether ML with the form C_(x;, x;) are
included or not in CS, respectively. The inclusion of such constraints may be convenient in
some cases. Variants of this matrix are also commonly used. In some cases, the constraint
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matrix can store any value in the range [—1, 1], with negative values indicating the weight
or degree of belief for CL and positive values doing so for ML.

The Constraint List It is a list, with length equal to the number of constraints, that stores
triplets with two values used to specify two instances and a third value used to indicate the
type of constraint between them (1 for ML and -1 for CL). Formally, the Constraint List CL
contains |C_| triplets with the form [i, j, 1] for ML such that C_(x;, x;) and |C4| triplets with
the form [i, j, —1] for CL such that Cx(x;, x;).

The Constraint List is used in methods in which the number of violated constraints needs
to be repeatedly computed over fully formed partitions that are not built incrementally. In
these cases, the only option is to iterate over the full constraint set and check individually for
every constraint whether it is violated by the partition. This task is performed efficiently iter-
ating over CL, which is O(|CS)), in contrast with CM, which requires an O(n?) computation
of the number of violated constraints. However, checking for specific constraint violations
in iterative partition building processes can be done in O(1) with CM, as the indexes of the
constrained instances are known and matrices support random access. The same task can
be performed over CL, but with the much higher computation cost of O(|CS)).

The Constraint Graph It is a weighted, undirected graph with a one vertex per instance
in the dataset and one edge per constraint. An edge connects two instances if they are in-
volved in a constraint, with the weight of the edge indicating the type of constraints, using
1 for ML and -1 for CL. Formally, let an undirected weighted graph G(V,E, W) be a finite
set of vertices V, a set of edges E over V X V and a set of weights W for every edge in E. In
the constraint graph CG(V, E, W), V is the set of instances in X, and edges e(x;, xj) from E
are equivalent to constraints in CS, using the weight of the edge wy; ;) as indicator for the
type of constraint, i.e., for edge e(xi,xj), if C:(xi,xj) € CS (ML) then wiij] = 1, and if
Cx(x;, x;) € CS (CL) then wy; j; = —1 [185].

The Transitive Closure of the constraint set It is an augmented set of constraints
which can be obtained on the basis of the information contained in the original constraint
set, by applying two of its properties which have been introduced in Section 3.2, and are for-
mally defined here on the basis of the constraint graph as in Properties 4.1 and 4.2. Graphical
examples of these two properties are given in Figure 5 and Figure 6, respectively. These two
properties can be applied over CG to obtain the transitive closure of the constraint set, which
cannot be further augmented without new information.

Property 4.1 Transitive inference of ML: Let cc, and cc, be two connected components in
CG with only positive edges in it (only ML constraints). Then, if there is a constraint C_(x;, x;)
with x; € cc; and X; € cc,, then the new constraints C_(a, b) can be inferred for all a € cc;
and b € cc, [12].

Property 4.2 Transitive inference of CL: Let cc, and cc, be two connected components in
CG with only positive edges in it (only ML constraints). Then, if there is a constraint C4(x;, x;)
with x; € cc; and X;j € cc,, then the new constraints Cy(a, b) can be inferred for all a € cc;
andb € cc, [12].
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Original Constraints Inferred Constraints
Must-Link
----- Cannot-Link

Figure 5: Example of transitive inference of ML constraints.

Original Constraints Inferred Constraints

-
-
-
-
-
-

Must-Link
----- Cannot-Link

Figure 6: Example of transitive inference of CL constraints.

The Chunklet Graph This graph structure can be derived from the definition of the con-
straint graph and the concept of chunklet. Chunklets are defined in [186, 187] as “subsets of
points that are known to belong to the same, although unknown, class”. With this definition,
it is clear that ML connected components can be compared to chunklets, thus the chunklet
graph can be obtained on the basis of the constraint graph. This is done by replacing ML
connected components in CG by a single vertex which is adjacent to all former neighbors of
the connected components [188]. In the case that vertices in CG also store position-related
information (as in CC), the position of the new vertex is computed as the average of the
nodes in the connected component [185].

The Cluster Skeleton It is a reduced constraint set which defines the true basic cluster-
ing structure of the data. It is obtained by applying the farthest-first scheme to query an
oracle about the constraint relating selected instances from the dataset. This is done within
an iterative scheme in which membership neighborhoods are created and the farthest ins-
tance from all of them is always selected to be queried against at least one instance from
every existing neighborhood. If it is constrained to any of those instances by ML, then it is
added to that neighborhood and a new ML is created, whereas if it is constrained by CL to
all of them, then a new neighborhood is created and related to the other one by CL. The
goal of this procedure is to build a constraint set which defines as many disjoint clusters as
possible, aiding later CC algorithms determine the number of clusters a feasible partition
must have [189].
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The Infeasibility The concept of infeasibility refers to the number of constraints violated
by a given partition. It is one of the most used concepts in CC, as many objective/fitness
functions include penalty terms that are directly proportional to the number of violated con-
straints. Given a partition C (an its associated list of labels L) and a constraint set CS, the
infeasibility can be defined as in Equation 3, with 1[-] being the indicator function (returns
1 if the input is true and 0 otherwise) [190].

Infs(C, CS) = >, AIF#EI+ D 1[I =1f] (3)
Cz(xi,Xj)ECS C¢(xi,Xj)ECS

The k-NN Graph Also called k-NNG. It is not an exclusive concept from CC. It has been
widely used in classic clustering literature and k-NN based classification. However, it is
a very useful tool for CC research, therefore many CC approaches are built based on its
definition. The k-NNG is a weighted undirected graph in which vertices represent instances
from the dataset and every vertex is adjacent to at most k vertices. An edge is created between
vertices u and v if and only if instances associated to u and v have each other in their k-nearest
neighbors set. The weight w(v, u) for the edge connecting u and v is defined as the number
of common neighbors shared by u and v: w(v,u) = [INN(u) U NN(v)|, with NN(-) denoting
the set of neighbors of the vertex given as argument [191].

5 Statistical Analysis of Experimental Elements

In this section, a general view on how CC methods are evaluated and compared is presented.
Most studies in CC present one or various new methods that need to be evaluated and proved
to be competitive with respect to the state-of-the-art at the time they were proposed. In this
section, the three experimental elements used to do so are analyzed: the datasets, the va-
lidity indices, and the competing methods. Table 4 introduces the 15 most frequently used
instances of these elements among all the papers analyzed in this study. All statistics pre-
sented in this section have been obtained by analyzing 270 studies, which propose a total of
307 methods. Some studies propose more than one method, and some methods are proposed
in more than one study, hence the discordance between the number of papers analyzed and
the number of proposed methods. Special cases of the experimental elements have not been
taken into consideration to obtain the statistics presented in this section. In other words, if
a paper uses the Iris dataset for its experiments but removes one of the three classes in the
dataset, it is then considered as a single use of the classic Iris dataset, and not listed as a sep-
arate dataset. The same can be said for the other two experimental elements. For example,
uses of the Pairwise F-measure (PF-measure) are included in the count of the F-measure,
and variations on the initialization methods of COP-K-Means are included in the count of
the basic COP-K-Means. This is done to obtain more representative and general statistics.

Sections 5.1, 5.2 and 5.3 dive into the statistics of the frequently used experimental setups re-
garding datasets, validity indices and competing methods, respectively. Section 5.4 presents
the most used procedure to artificially generate constraints for benchmarking purposes, and
Section 5.5 gives a quick note on the use of statistical testing to support conclusions in CC
literature.
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Datasets Competing Methods Validity Indices
Name No. of Uses Name No. of Uses Name No. of Uses
Iris 134 COP-K-Means 64 NMI 89
Wine 105 K-Means 57 CE 60
Ionosphere 72 MPCK-Means 34 RI 55
Synthetic 69 SSKK 26 ARI 48
Glass 58 PCK-Means 22 F-measure 38
Breast 51 KKM 21 Time 25
Soybean 47 FFQS 17 Purity 11
Balance 43 Random 14 Unsat 11
Sonar 41 RCA 14 Non Standard (NS) 10
Heart 39 E°CP 13 (¢ 8
Digits 35 NCuts 13 Visual 7
Ecoli 28 CSI 13 V-measure 4
MNIST 28 CCSR 12 Precision 4
Protein 28 Constrained EM 12 FMI 3
20Newsgroup 27 HMRF-K-Means 11 CRI 3

Table 4: Most frequently used dataset in CC experimental setups.

5.1 Analysis of Datasets

A total of 389 different datasets can be identified in the experimental sections of the literature
in CC. Figure 7 displays three different statistical measures about the use of these datasets.
Figure 7a depicts the same information contained in Table 4, presenting it visually for the
sake of ease of understanding. Figure 7b gives a histogram of the number of datasets used in
experiments. Lastly, Figure 7c introduces boxplots featuring the variability on the number
of datasets used in different years.

From 7a, it is clear that classification datasets are used as benchmarks for CC methods. The
reason for this lies in the lack of specific benchmarks, as very few have been proposed since
the inception of the research topic. Classic classification datasets have to be used in order to
generate the constraint sets needed by CC methods (see Section 5.4). In these cases, labels
are never provided to the CC method, but used as the oracle to generate the constraint sets.

Looking at Figure 7b, it can be concluded that the most frequent number of datasets used in
experiment is 6, and the study which uses the most datasets, analyzes up to 30 of them. Most
papers use between 1 and 9 datasets. Note how some papers do not use any datasets, there-
fore they don’t carry out any experiments to prove the efficacy of their proposal. Figure 7¢
shows a consistent increase over the years in the number of datasets used in experiments,
probably due to the general growth in computing power, and to the increasing availability
of datasets. It also shows how, except for the first few years, there is no consensus on the
number of datasets to be used to demonstrate the capabilities of a new method, as boxplots
show high variability within each year.
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(c) Variability of the number of datasets used in every year (the dashed line represents the overall
average)

Figure 7: Statistics about the datasets used in the experimental setups of all papers reviewed.
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5.2 Analysis of Competing Methods

Any new CC method has to be proven to be competitive with the methods belonging to the
state-of-the-art. Methods belonging to this category change over the years. Nonetheless, Fig-
ure 8a presents a set of methods which are used very frequently, and can be subsequently
understood as baseline methods. In fact, most of them correspond to the first proposals
in different CC categories, e.g.: COP-K-Means is the first CC method ever proposed, PCK-
Means is the first penalty-based CC method, KKM is the first constrained spectral clustering
method, FFQS is the first active constrained clustering method, etc. Section 7 presents all
these methods within the context of their specific CC category. Algorithms such as K-means
or NCuts stand out as well, as they are not CC algorithms but classic clustering algorithms.
When the experiments carried out aim to prove not only the capabilities of a new CC method,
but also the viability of CC itself (as in the first proposals) or the viability of any new con-
straint generation method, then comparing with classic clustering algorithm is justified.

Figure 8b shows the distribution of the amount of methods used in experimental setups
in CC literature. The most frequent comparison uses only two methods, which is a very
low number taking into account the plethora of methods available to compare with (307
particularly). However, comparisons using between 4 and 6 methods are also reasonably
frequent, with said frequency decaying from 6 methods to 9, which are used only in a sin-
gle study. There is a particular fact that may catch our attention: 25 studies chose not to
compare against any previous proposals. Given how well established baselines methods are,
this should never be allowed in new CC studies. An increasing tendency can be observed
in the number of methods used over the years. Likewise with the number of datasets (see
Figure 7c). Accordingly, this can be caused by an increase in computing power over the year
and by the increase in the number of available methods to compare against.

Piecharts in Figure 9 show further statistics about the proportions of methods used in exper-
iments in CC studies. For example, it may be interesting to answer the following question:
from all methods used in experiments to compare with, how many of them are CC methods?
Figure 9b answers this question. From all methods compared with (386), only 38.8% (147)
are CC methods. The rest of the methods are not necessarily classic clustering methods, they
can belong to other fields of SSL or use different types of constraints. This may seem contra-
dictory with respect to what Figure 7a shows. However, this is not the case. In conjunction,
Figures 9 and 7a evidence that the most frequently used methods are CC methods, even if
the number of different classic clustering methods used to compare against is higher than
the number of different CC methods.

Another interesting question is: from all CC methods proposed over the years, how many of
them are used to compare with in later studies? Figure 9a provides now the answer to this
question. From all CC methods proposed (307) in the reviewed studies, 48.5% of them (149)
are used in the experimental section of other studies. This indicates that more than half of
the proposed methods have never been considered to be compared with by other authors.
Of course, this statistic does not take into account the number of years any given method
has been available to be used, only the absolute number of uses. However, this should not
have a great impact in the proportions.
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(c) Variability of the number of methods used in every year (the dashed line represents the overall
average)

Figure 8: Statistics about the methods used in the experimental setups of all papers reviewed.
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Proportion of CC methods Type of methods used
used in experiments in experiments
CC
Not used Used (149 ~ 38.6%)
(158 ~ 51.5%) (149 ~48.5%) Others

(237 ~ 61.4%)

(a) Proportion of CC methods that are used in (b) Proportion of methods used in experiments
later studies to compare with. which are CC or other type of clustering methods.

Figure 9: Piecharts depicting the usability of all CC methods reviewed in experimental se-
tups.

5.3 Analysis of Validity Indices

Validity indices are used to objectively evaluate the performance of a given method indepen-
dently of the benchmarks it is tested in. This means that the output value of the validity
indices is independent from the features of the benchmarks datasets, such as their size of
their number of features in the case of classification datasets. The same analysis performed
over the datasets (Section 5.1) is performed over the validity indices. Figure 10 shows the
statistical summary on the usage of validity indices in CC literature (as it was performed for
the datasets). From Figure 10a it is clear that the most used validity index is the Normalized
Mutual Information (NMI), followed by the Clustering Error (EC), the Rand Index (RI), the
Adjusted Rand Index (ARI) and the F-measure. Time is used to compare methods a total
of 25 times, which represents a very low percentage over the total number of comparisons.
Note how Visual validation makes it to the top 15, despite not being an objective and reliable
comparison method. Non Standard (NS) measures are used in 10 studies, meaning that the
used measure is proposed specifically in the same paper for that specific case or that it is
never referred to again in CC literature. Among the 15 most used measures, there is only
one specifically designed to compare CC methods: the Unsat. Unsat measures the propor-
tion of constraints violated by the output partition of any given method, and therefore can be
used to measure scalability with respect to the number of constraints. In this study, authors
want to draw two validity indices to the attention of the reader: the Constrained Rand Index
(CRI), proposed in [85], and the Constrained F-measure (CF-measure), proposed in [192].
These two validity indices are versions of RI and F-measure, respectively, corrected by the
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number of constraints available. They assume that the higher the number of constraints
available, the easier it is to score a high value in classic clustering validity indices, therefore
they correct (lower) those values with the size of the constraint set. These two measures are
used in very few cases, while they are specifically designed to benchmark CC methods. This
fact is particularly remarkable in the case of the CRI, as it was proposed along with the first
CC study ever in [85].

Figure 10b shows that the most common number of validity indices used in CC literature is 1.
Using more than one validity index is a healthy practice in any study, as demonstrating the
capabilities of a new method in more than one dimension reinforces positive conclusions
about it. With respect to Figure 10c, the variability observed in the other cases (Figures 7c
and 8c) is not present here, as the number of validity indices used is not related to the com-
putation power, and most of them were proposed before the inception of CC.

Some of the validity indices in Table 4 do not need to be specifically defined, as it is the
case of the Time or the Visual indices, which are self-explanatory. Others are incidentally
defined, such as the Precision, which is a by-product of the F-measure. Lastly, no general
definition can be given for the Non Standard indices. For the rest of them, both a formal and
intuitive definition can be found here. From now on, in this section, C refers to the partition
generated by any given CC method, and C* refers to the ground-truth partition. Please note
the influence of the use of classification datasets in the selection of validity indices used
to evaluate CC methods. All of the validity indices take two partitions as their input, and
produce a measure according to their similarity or dissimilarity. Therefore, these validity
indices can be used to evaluate the performance of a clustering algorithm only when one of
the partitions given as input is the ground-truth partition, which can be obtained for labeled
datasets only.

Normalized Mutual Information (NMI) The NMI is an external validity index that es-
timates the quality of a partition with respect to a given underlying labeling of the data. In
other words, NMI measures how closely a clustering algorithm could reconstruct the under-
lying label distribution. Taking C as the random variable denoting the cluster assignments of
instances (the partition), and C* as the random variable denoting the underlying class labels,
the NMI can be formulated in terms of information theory as in Equation 4 [193, 194, 189].

. *
NMI =2 1€ C)

= *H©) + A @

where I(X;Y) = H(X) — H(X|Y) is the mutual information between the random variables X
and Y, H(X) is the Shannon entropy of X and H(X|Y) is the conditional entropy of X given
Y. For more details on NMI please see [195]. The output value range for the NMI is [0, 1],
with high values indicating a high level of similarity between the two partitions, and a low
value indicating a low level of similarity.
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(c) Variability of the number of validity indices used in every year (the dashed line represents the
overall average)

Figure 10: Statistics about the validity indices used in the experimental setups of all papers
reviewed.
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The Clustering Error (CE) The CE is the negative, unsupervised version of the classic
classification accuracy. It measures the proportion of correctly clustered instances by best
matching the cluster labels to the ground-truth labels. Given the permutation mapping func-
tion map(-) over the cluster labels, the CE with respect to map(-) can be computed as in
Equation 5 [196, 197, 198]. The best mapping function that permutes clustering labels to
match the ground truth labels can be computed by the Kuhn-Munkres algorithm (the Hun-
garian method) [196, 199]. Please note that the CE validity index is sometimes used in its
positive form, which is the clustering accuracy. It can be computed by just changing the
condition in the indicator function 1[-] to be negative (replace = by #). The output value
range for the CE is [0, 1], with high values indicating a low level of accuracy, and a low value
indicating a high level of accuracy.

CE=1- %Eﬂﬂmapaﬁ = 1] 5)

The Rand Index (RI) The RI measures the degree of agreement between two partitions.
It can be used to measure the quality of a partition obtained by any CC algorithm by giving
the ground-truth partition as one of them. Therefore, the two compared partitions are C
and C*. The RI views C and C* as collections of n(n — 1)/2 pairwise decisions. For each
x; and x; in X, they are assigned to the same cluster or to different clusters by a partition.
The number of pairings where x; is in the same cluster as x; in both C and C* is taken as
a; conversely, b represents the number of pairings where x; and x; are in different clusters.
The degree of similarity between C and C* is computed as in Equation 6 [200], where n is
the number of instances in X. The output value range for the RI is [0, 1], with high values
indicating a high level of agreement between the two partitions, and a low value indicating
a low level of agreement.

a+b

RI= n(n—1)/2

(6)

The RI can be conveniently formulated in terms of the elements of a confusion matrix as
well [201]. Equation 7 defines these elements in terms of cluster memberships in a partition,
which can be referred to as: True Positives (TP), False Positives (FP), True Negatives (TN),
and False Negatives (FN). Equation 8 makes use of these elements to give a new definition
for the RI.

TP ={Coxpllf =15, IF =1F, i# j}
FP = {0, x)If =15, IF #15, i # j}
TN = {0, x)IE #1657, 1€ #1016, i # j}
FN = {(o, x)lIE" #1716 = 1€, i # j}

(7)
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|TP| + |TN]|
RI= |TP| + |FP| + [TN| + |FN| ®
The Adjusted Rand Index (ARI) The ARI is the corrected-for-chance version of the RI.
This correction is done by taking into account the expected similarity of all comparisons
between partitions specified by the random model to establish a baseline. This modifies the
output value range of the original RI, transforming it into [—1, 1] and slightly changing its
interpretation. In ARI, a high output value still means a high level of agreement between the
two partitions, and a low value means a low level of agreement. However, a value lower than
0 means that the results obtained are worse than those expected from the average random
model. Equation 9 gives the formalization for the ARI [202].

RI — Expected Index

ARL= Maximum Index — Expected Index’

9)

where Expected Index is the degree of similarity with a random model, Maximum Index is
assumed to be 1, and RI is the RI value computed for partitions C and C*.

Pairwise F-measure (PF-measure) The PF-measure is defined as the harmonic mean
of pairwise precision and recall, which are classic validity indices adapted to evaluate pairs
of instances. For every pair of instances, the decision to cluster this pair into the same or
different clusters is considered to be correct if it matches with the underlying class labeling.
In other words, the PF-measure gives the matching degree between the obtained partition
C and the ground-truth class labels C*. It can be formalized as in Equation 11 [189, 193],
where Precision and Recall are defined as in Equation 10, following the notation introduced
in Equation 7 [201]. For more details on the PF-measure please see [203]. The output value
range for the PF-measure is [0, 1], with high values indicating a high level of agreement
between the two partitions, and a low value indicating a low level of agreement.

. |TP| |TP|
Precision = —————, Recall= ————. 10
|TP| + |FP| |TP| + |FN]| (10)
isi 2|TP
PF-meastre — 2Precmon X Recall |TP| (1)

Precision + Recall ~ 2|TP| + |FP| + |[FN|’

The Constrained Pairwise F-measure (CPF-measure) The CPF-measure is a version
of the classic PF-measures that takes constraints into account. It does so by including the
number of ML constraints in the computation of the Precision and Recall terms as in Equa-
tion 12. This way, the number of correctly clustered instances is penalized by the number of
ML constraints. Subsequently, the higher the number of ML constraints available to perform
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clustering, the less credit the term TP is given. The final CPF-measure can be computed as
in Equation 13. The output value range for the CPF-measure is [0, 1], and the value is inter-
preted as in the PF-measure.

|TP| — |C=| Recall' — |TP| B |C=|

Precision’ = , .
|TP| + [FP| — |C_]| |TP| + [FN| — [C_|

(12)

P P ! R 11l
CPF-measure = 200 X Reca (13)

Precision’ + Recall

The Purity This is a classic validity index used to evaluate the performance of clustering
methods. It measures the homogeneity of the generated partition, i.e.: the extent to which
clusters contain a single class [204, 205, 206]. It can be computed by determining the most
common class of each cluster ¢; (with respect to the true labels C*), which can be done my
determining the greatest intersection with respect to the ground-truth partition. The sum
of all intersection is then divided by the total number of instances n in the partition C to
obtain the Purity value of said partition. Equation 14 formalizes this concept. The output
value range for the Purity is [0, 1], with high values indicating high level of resemblance
between the two partitions, and a low value indicating a low level of resemblance.

1
Purity = = »° max |¢; N ¢} (14)
CiECCi cx

The Unsat The Unsat measures the ability of any given CC method to produce partitions
satisfying as many constraints as possible. It is computed as the ratio of satisfied constraints
asin Equation 15 [81, 95]. It produces a value in the range [0, 1], with a high value indicating
a high number of violated constraint, and a low value indicating the contrary.

_ Infs(C,CS)

Unsat = iCS] (15)

The Jaccard Index (JC) The JC measures similarity between finite sample sets. It is
defined as the size of the intersection divided by the size of the union of the sample sets.
However, this definition is inconvenient when JC is applied to measure the quality of a par-
tition. Subsequently, a more useful definition can be given in terms of Equation 7 as in
Equation 16 [207, 208, 209]. Please note that a high value of the CJ in the range [0, 1] indi-
cates high dissimilarity between the two compared partitions, while a low value indicates
high similarity.

TP

JC =
|TP| + |FP| + |FN|

(16)
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The V-measure . This measure is closely related to the NMI, as it can be viewed as a
version of it that computes the normalization of the denominator in Equation 4 with an
arithmetic mean instead of a geometric mean. The V-measure is defined as the harmonic
mean of Homogeneity and Completeness, which evaluate a partition in a complementary
way [210, 211]. Homogeneity measures the degree to which each cluster contains instances
from a single class of C*. This value can be computed as in Equation 17, where H(X|Y) is
the conditional entropy of the class distribution of partition X with respect to partition Y,
and H(X) is the Shannon entropy of X. Following the same notation, the Completeness can
be defined as in Equation 18. This can be intuitively interpreted as the degree to which each
class is contained in a single cluster. Subsequently, the V-measure is computed as in 19 [210].
Please note that another aspect to which the V-measure and the NMI are closely related is
that the mutual information between two random variables I(X; Y)) can always be expressed
in terms of the conditional distribution of said variables H(X|Y") as follows: I(X;Y) = H(X)—
H(X|Y). The output value range for the V-measure is [0, 1], with high values indicating a
high level of similarity between the two partitions, and a low value indicating a low level of
similarity.

H(C*|C
Homogeneity = 1 — % 17)
H(C|C*
Completeness = 1 — % (18)
V-measure — 2Homogeneity X Completeness (19)

Homogeneity + Completeness’

The Folkes-Mallows Index (FMI) The FMI is another classic external validity index
used to measure the similarity between two partitions. It is defined as the geometric mean of
the Precision and the Recall [209]. It can be formulated as in Equation 20. The output value
range for the FMI is [0, 1], with high values indicating a high level of agreement between
the two partitions, and a low value indicating a low level of agreement.

|TP| |TP|
|TP| + |FP| = |TP| + |FN|

FMI = = /Precision x Recall (20)

The Constrained Rand Index (CRI) The CRI is a revised version of the RI which in-
cludes constraints specifically in its definition. It introduces the concept of free decisions,
which are defined as decisions not influenced by constraints. The CRI subtracts the number
of available constraints from the numerator and the denominator of the classic RI [85, 212].
As aresult, it only evaluates the performance of the CC methods in the free decisions. Equa-
tion 21 formalizes CRI, following the same notation as Equation 6 (RI). Its results are inter-
preted as those of RI, but taking into account that the difficulty to obtain values close to 1
increases with the size of the constraint set |CS]|.
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a+b—|CS|
CRI =
n(n—1)/2 —|CS|

(21)

5.4 Constraint Generation Methods

The most frequently used procedure to generate constraints is the one proposed in [86]. It is
a simple yet effective method to generate a set of constraints based on a set of labels, hence
the generalized use of classification datasets as benchmarks in CC literature. It consists of
randomly choosing pairs of instances and setting a constraint between them depending on
whether their labels are the same (ML constraint) or different (CL constraint).

The way pairs of instances are chosen from the dataset may differ from one study to another.
However, two common trends are observed. One first decides the percentage of labeled
data the oracle has access to and then generates the complete constraints graph based on
those labels. The other one first decides the size of the constraint set, and then extracts
random pairs of instances from the complete dataset. On the one hand, the first method is
more realistic in the sense that it has limited access to labeled data, although it may bias the
solution towards poor local optima if the selected labeled instances are not representative
enough of the whole dataset. On the other hand, the second constraint generation method
has virtual access to the complete set of labels, as pairs of instances are randomly chosen, and
the constraint set may end up involving all instances in the dataset in at least one constraint,
which might not be a realistic scenario. Nevertheless, it is less likely to bias the solution
towards local optima.

There is no consensus on how many constraints need to be generated in order to evaluate the
capabilities of a given CC method. However, some general guidelines can be given. Based
on Observation 5.1, it is clear that proper empiric evaluation of CC methods must include
an averaging process on the results obtained for different constraint sets, in order to reduce
the effects of specific adverse constraint sets.

Observation 5.1 Specific constraint sets can have adverse effects. Even if constraint sets
are generated on the basis of the true labels, some constraint sets may decrease accuracy when
predicting those very labels [11].

Given Observation 5.2, testing CC methods should include different levels of constraint-
based information. This must be done in order to study the scaling capabilities of the pro-
posed method. If a method does not scale the quality of the solutions with the size of the
constraint set, any improvement over the solutions obtained with an empty constraint set
may be due to random effects.

Observation 5.2 The accuracy of the predictions scales with the amount of constraint-

based information. The quality of the solution should scale with the size of the constraint set:
the more constraint are available, the better the results obtained are [11].
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5.5 On the Use of Statistical Tests

Statistical testing is a settled practice in Computer Science. It provides objective evidence of
the results of a study, supporting its conclusions, either if the used tests are Null Hypothesis
Statistical Tests (NHST) [213] or the more recent Bayesian Tests [214]. However, this does
not seem to be the case in the CC area. As shown in Figure 11, only 5,6% of the studies
(16 out of 270) analyzed in this review use statistical testing to support their conclusions.
Authors consider this to be one of the major criticisms of the area of CC. Studies supporting
their conclusions on mere average results values for any validity index/indices (as it is the
case for most of them) should be encouraged to use statistical testing to further objectively
prove their hypotheses.

Proportion of CC studies
using statistical tests

Use tests
(16 studies, 5.9%)

Do not use tests
(254 studies, 94.1%)

Figure 11: Piechart featuring the proportion of CC studies which use statistical tests.

6 Scoring System

The aim of this study is not only to give a taxonomy of constrained clustering methods, but
also to provide researchers with tools to decide which methods to use. This section proposes
an scoring system that is designed to indicate the potential and popularity of every reviewed
method. This system assigns a numerical value to every CC method, which will be later
used to rank all 307 of them. This value can be interpreted as a measure for the quality of
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the method. Three semantically different aspects of every method .A are analyzed to decide
its score: the quality of the experimental setup they are tested in (EQ 4), the confidence in
the results obtained in the experiments (VQ 4), and the influence of the method in later
studies (I4). As for the formalization of these concepts, it is necessary to define the basic
quantifiable elements that can be obtained from a method, which are shown in Table 5. All
of them are lists that contain a value or a set of values associated to every method. Therefore,
the length of these lists is always equal to the number of methods reviewed in this study.
These lists can be accessed in a more precise way, by method or by year. For example: D 4
is a single value which refers to the number of datasets used to test method A, and DY is a
list of values referring to the number of datasets used to test methods from year Y. Note that
M 4 is the list of methods used to compare .4, therefore MY is a list of lists.

Function Meaning

Y The list of publication years for all methods.

M The lists of sets of methods used in comparisons.

C The list of number of times a method is used to be compared with in later studies.
T The list of indicators for the use of statistical tests for every method

D The list of number of datasets used to test every method.

14 The list of number of validity indices used to evaluate every method.

Table 5: Functions to get basic features of methods.

In this study, authors have decided to evaluate each method within its time context, i.e. the
year of publication of the method is taken into account to compute its score. This is done
to remove the computational capacity component from the scoring system, as the number
of datasets or the number of methods used to test new proposal is highly dependent of said
parameter (see Figure 7 and Figure 8). Moreover, publication requirements and standards
change over the years, and tend to become more rigid. Not taking the year of publication
into account would greatly benefit recent methods, as their studies have to meet harder
publication requirements which are usually related to their novelty and their experimental
quality.

6.1 Scoring of the Experimental Quality

The quality of the experimental setup EQ used to test a method A can be computed with
information that is fully contained in the study which proposes it. Two of the experimental
elements introduced in Section 5 take part in this procedure: the number of datasets used
to test the scoring method A (in list D), and the methods that are used to compare it (in list
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M). Equation 22 gathers these two basic measures and gives the expression to compute the
experimental quality of a scoring method EQ 4.

Y Y
alﬂDlﬂ + aZAMSIA

EQA =
Y Y
at +ay”

) (22)

where the MS ;4 term is computed on the basis of M 4, but taking the publication year of both
the scoring method A and the compared method m into account, as shown in Formula 23.
As a result, every compared method m contributes in an inversely proportional way to MS
with respect to the difference between the years of publication of the two methods !. This
way, methods published in years close to the year of publication of A contribute more to
MS 4 that methods published long time before .A. In other words: the contribution of every
method is proportional to its novelty in the year it is used to make comparisons. Please note
that non CC methods are always considered to be published one year before the first CC was
published (1999). Subsequently, the contribution of non CC methods to MS 4, decays invari-
ably with the years. By doing this, the first CC methods comparing with classic clustering
methods are given credit by the comparison, as no CC baseline methods could have been
established by that time. However, this is not the case for modern CC methods, which must
be compared to other CC methods for said comparison to be meaningful.

1 1
MS,; = —— - (23)
IM_4] me%ﬂ Yqi—Yn

Both the values of D and MS are normalized within each year following the normalization
procedure described in Equation 24 (min-max normalization), which results in D" and M S’.
This is done to lessen the effects that the computation capability context can have in EQ 4.
Please note that, only with respect to the year grouping aspects, methods published in years
2000-2003 are considered to belong to the same time context, hence they are treated as if they
were published in the same year. With this in mind, neither Equation 23 nor Equation 28 are
affected. This is done to enable withing-groups normalization and comparisons, as only 1
method was published in 2000 and 2001, and only 3 were published in 2002 and 2003. These
were the years in which the CC research topic was conceived and it was starting to grow in
interest (see Section 3.4). Subsequently, authors consider this exception to be justified.

Dy —min(D¥4)
" max(DY4) — min(DY4)’

_ MS,—min(MS¥4)
" max(MSY4) — min(MSY4)’

!/

D'y

!

A

(24)

The last elements to be introduced from Equation 23 are the ) and a,” values, which
are different for every year. These values are used to determine the influence of the datasets
score and the compared methods score in the computation of the experimental quality score.
They are computed as in Equation 25, where o(-) and u(-) are functions which return the

This difference is considered to be 1 for methods published in the same year, in order to avoid divisions by
0.
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standard deviation and the mean of the list of values given as argument, respectively. Sub-
sequently, oc}/ “ and ocg “ are directly proportional to the standard deviation of the datasets
scores and the compared methods scores, respectively. In other words, ocfﬂ and ocgf““ are
used to give more importance to disperse measures, which are usually good discriminators,
and therefore are better suited to be used in a scoring system.

Y Y
D/ A M 1A
f./l — U( ) aYA — O'( S ) (25)

SO sy
6.2 Scoring of the Validation Procedure Quality

Once again, the information needed to determine the quality of the validation procedures
VQ used to evaluate the results obtained with a method A is fully contained in the study
which proposes it. The two experimental elements (introduced in Section 5) that take part
in this procedure are: the number of validity indices used to quantify the results obtained by
the scoring method A (in list V'), and the indicator of the use of statistical testing procedures
(in list T). The list T indicates which methods use statistical tests by giving them a value
of 1, whereas the 0 value is assigned to method that do not support their conclusions with
statistical tests. Equation 26 shows the expression to compute the validation procedures
quality of a scoring method VQ 4.

where V is the normalized value of V, which is computed following formula 27. Please
note that in this case the min-max normalization does not take the publication year into
account (in contrast to Equation 24), as the number of validity indices used to quantify the
results of the proposed methods does not show any tendency with respect to the publica-
tion year (see Figure 10). Authors consider studies which use statistical tests to have a sig-
nificantly higher confidence rate in their results, hence the strength of the second term in
Equation 26.

., V,4—min(V)
A7 max(V) — min(V)’

(27)

6.3 Scoring of the Influence

The influence I of a given method .A cannot be computed with just the information con-
tained in the study which proposes the method. This aspect of the method refers to how in-
fluential it has been in later literature, i.e. how many times method A has been used to make
experimental comparisons. This number differs from the total number of times it has been
cited, as a citation does not guarantee that the method is being used to make comparisons.
In fact, this is one of the hardest aspects to evaluate, and requires experimental comparisons
carried out in a corpus of papers to be self-contained. This means that no method referred

38



PUB. 1 - OVERVIEW 95

in the experimental section of any paper is left out of the corpus. As will be explained in
Section 7, authors have made sure that this is the case for the taxonomy presented in this
study. However, once this information has been obtained, an index for the influence of any
given method can be computed as simply as in Equation 28, where CY refers to the current
year, therefore CY = 2022. This is, the number of times a method is used in experimental
comparisons divided by the number of years it has been available.

__C4

6.4 Final Scoring

The final scoring S of any given method A can be computed by normalizing and adding
up the three partial scores presented in previous sections, and scaling the output range to
[0,100]. Equation 29 gives the expression to compute S 4. Please note that none of the partial
scores are bounded, hence the need of the min-max normalization step in Equation 30.

Sa 3 (29)
5o = _EQa— min(EQ)
Qu= max(EQ) — min(EQ)
Q4= max(VQ) — min(VQ) (30)
., I;—min(l)
4=

max(I) — min(I)

Finally, authors want to remark that no hand-tuned parameter is needed to compute S 4.
Consequently, the probability of introducing any human bias in the scoring system is re-
duced.

7 Taxonomic Review of Constrained Clustering Methods

In this section, a ranked taxonomic classification for a total of 307 CC methods is presented.
The starting point to obtain the corpus of CC studies to be reviewed was to run Query 7.1 in
the Scopus scientific database.

Query 7.1 Scopus Query: ( TITLE-ABS-KEY ( “constrained clustering” ) OR TITLE-ABS-
KEY ( “semi-supervised clustering” ) AND TITLE-ABS-KEY ( “constraint” OR “constraints”
OR “constrained” ) )
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This is a very general and wide query, which was conceived to make sure that the most of the
CC research area was contained in its output. This search outputted 1162 indexed scientific
papers in 24/3/2022. Authors briefly reviewed and evaluated all of these papers to remove
those which did not belong to the CC research area. Afterwards, a recursive procedure was
used to obtain the final corpus to be reviewed: if a study compares its proposal with a CC
proposal not included in the corpus, then the newly identified study is included and applied
this procedure over. This is done with the aim of producing a self-contained comparison.

Figure 12 presents a taxonomic tree, organizing the categories in which the CC landscape
may be divided. Particular methods are introduced and discussed in Sections 7.1 to 7.17,
where tables detailing the features of every method can be found.

As Figure 12 shows, a high-level dichotomy can be made within the CC area: constrained
partitional methods versus constrained distance metric learning (DML) methods [11, 12].
The main difference lies in their approach to CC and in their output. In constrained parti-
tional methods, constraints are included into a procedure that progressively builds a parti-
tion for the dataset. This is typically done by designing a clustering engine which can deal
with constraints or by including constraints in the objective function of a given method, for
example, by means of a penalty term. Generally, constrained partitional methods produce a
partition of the dataset, which may be accompanied by other by-products of the CC method,
such as new constraints or feature weights. On the other hand, constrained DML methods
aim to learn a distance metric that reflects the information contained in the constraint set.
In general, the learned distances will try to bring ML instances together in the output space,
while trying to maximize the distance between CL instances. Generally, constrained DML
method do not produce a partition of the dataset, but a new metric, data space or distance
matrix. This output can be used to later produce a partition by means of classic clustering
algorithms, or even by constrained clustering algorithms. Please note that the difference
found between the tree classes of constrained DML methods is merely conceptual, as the
results of all the three of them (new metric/data space/distance matrix) can always be de-
rived from each other using classic DML methods. However, the distinction between the
three classes is useful from the point of view of CC, as their approach to the problem is dif-
ferent. The vast majority of CC methods are constrained partitional methods. There are
hybrid methods, which combine features inherited from both approaches.

Feature tables in Sections 7.1 to 7.17 generally include 8 columns:

« The S, column gives the quality score assigned to each method. It is computed
following the scoring system introduced in Section 6.

« The Acronym column provides the acronym of the method. Bearing in mind that
some authors do not name their methods, we have decided to refer to these methods
by the initials of their authors’ names. However, there are exceptions for this rule,
such as methods that are not named by their author but are consistently referred by
later literature with a given name. In cases in which two methods have the same
name, the year it was proposed in is added at the end of the name to differentiate
them.
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Figure 12: Taxonomic tree for the CC landscape.
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« The ID column assigns a numeric identifier to each method. This number can be
used to find the method in Appendix A, where the full name of all methods are listed,
along with its identifier and its acronym. Full names are listed only in said appendix
for the sake of readability and visualization.

« The Penalty column takes two values: “v” or “X”. This indicates whether con-
straints are included in the method by means of a penalty term in its objective func-
tion (“v”) or by other means (“X”).
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« The ML and CL columns refer to the type of constraints the method can handle.
Soft is used for soft constraints, Hard is used for hard constraints, Hybrid is used
for method that can use both hard and soft constraints. If a method cannot handle
ML or CL constraints it is indicated with “-”.

« The Hybrid column indicates if the method belongs to more than one class, specify-
ing the classes it belongs to. The “-” character is used if the method belongs to only
one class.

« The Year and Ref columns provide the year of publication and the reference of the
method respectively.

7.1 Constrained K-Means

The Constrained K-Means (CKM) category gathers methods that can be considered modifi-
cations over the classic K-Means algorithm to include constraints. Their common feature is
that all of them use an expectation-minimization (EM) optimization scheme. In the expecta-
tion step of an EM scheme, instances are assigned to clusters minimizing the error according
to an objective function. In the minimization step, centroids are reestimated according to
the assignations made in the expectation step. A plethora of objective functions and cen-
troid update rules has emerged to approach the CC problem, although methods belonging
to these category can be divided into two main categories.

7.1.1 Cluster Engine-adapting Methods

Cluster engine-adapting methods modify one of the two steps (or both) from the EM scheme
in order to include constraints. Methods belonging to this category are presented in Table 6.
The first and most basic method performing CC this way is COP-K-Means. It modifies the
instance to clusters assignation rule from the expectation step (the clustering engine) so that
an instance is assigned to the cluster associated to its closer centroid whose assignation does
not violate any constraint. Another popular technique in this category consists of perform-
ing clustering over the previously computed chunklet graph (which enforces ML), consider-
ing only CL in the expectation step. This is how methods like CLAC, CLWC, PCCK-Means,
PCBK-Means or SSKMP perform CC. All of them consider hard ML. They differ from each
other in the way in which they build their particular chunklet graph, which may contain
weighted chunklets (as in CLAC and CLWC), or may rank chunklets in order for them to be
examined more efficiently (as in PCCK-Means). Other methods use basic chunklet graph
(like PCBK-Means and SSKMP). Some methods include constraints in EM scheme that are
not basic K-Means, like SSKMP, which is a constrained version of the K-Medoids algorithm.
Based on the COP-K-Means, methods like CLC-K-Means or ICOP-K-Means are designed to
solve the dead-ends problem found in the basic algorithm.

7.1.2 Penalty-based Methods

Penalty-based methods include constraints by means of a penalty term in the objective func-
tion of an EM scheme. These methods are presented in Table 7. Some of them simply modify
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S4  Acronym ID  Penalty ML CL Hybrid Year  Ref.
33.33 COP-K-Means 2 X Hard Hard — 2001 [86]
16.94 PCSK-Means 42 X Hard Soft — 2007  [215]
7.62 CLAC 55 X Hard Hard Graph-based 2008 [216]
7.56  MLC-K-Means 57 X Soft Soft — 2008 [217]
12.54 CLWC 66 X Hard Soft — 2008 [188]
790 COPGB-K-Means 71 X Soft Soft Graph-based 2008 [218]
9.14 PCCK-Means 72 X Hard Soft — 2008 [219]
3.79  SCK-Means 76 X Hybrid Hybrid — 2009  [45]
516 CMSC 90 x Soft Soft — 2009  [220]
6.51 SCKMM 101 X Soft Soft Constrained Distance Transformation 2010  [221]
6.04 PCBK-Means 102 X Hard Soft — 2010 [221]
5.82 ICOP-K-Means 104 X Hard Hard — 2010 [222]
10.24 CLC-K-Means 115 X Hard Hard — 2011 [223]
524 SKMS 190 X Soft Soft — 2014 [224]
4.94  BCK-Means 255 X Hard Hard — 2019  [225]
8.73  SSKMP 256 X Hard  Hard — 2019  [226]

Table 6: Feature table for CKM - Cluster Engine-adapting Methods.

previous CC or classic clustering algorithms to include a plain penalty term, such as SCOP-
K-Means, PCK-Means, S-SCAD. Other methods, like MPCK-Means, also include a metric
learning step in the EM scheme, which estimates a cluster-local distance measure for every
cluster, and allows them to find clusters with arbitrary shapes. Besides, there are methods
which use variable penalty terms, such as HMRF-K-Means, CVQE, LCVQE or CVQE+ that
include the distance between constrained instances in it. This is, more relevance is assigned
to ML relating distant instances and CL relating close instances. Methods which combine
pairwise constraints and other types of constraints have also emerged, like PCS, which in-
cludes cluster-size constraints in its EM scheme too. Other methods like GPK-Means use a
Gaussian function and the current cluster centroids to infer new constraints in the neigh-
borhood of the original constraints. These new constraints are added to the constraint set
and used in subsequent iterations of the EM scheme.

7.2 Latent Space CC

Latent space clustering performs clustering in a space which is different from the input space
and which is computed on the basis of the dataset, and also the constraint set in Latent Space
CC (LSCC). The input to these algorithms is an adjacency matrix defining the topology of
the network (or graph) over which clustering needs to be performed. Each row or column
may be regarded as the feature or property representation of the corresponding node. La-
tent space clustering methods first obtain new property representations in a latent space for
each node by optimizing different objective functions, and then clusters nodes in that latent
space [240].
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S4  Acronym ID Penalty ML CL Hybrid Year Ref.
0.00 SCOP-K-Means 3 v Soft  Soft — 2002 [227]
16.18 PCK-Means 9 v Soft  Soft — 2003  [87,189]
20.61 MPCK-Means 11 v Soft  Soft Constrained Distance Transformation 2003  [87,228]
8.97 HMRF-K-Means 12 v Soft  Soft Constrained Distance Transformation 2004 [194]
13.99 GPK-Means 18 v Soft  Soft — 2005 [229]
8.79 CVQE 19 v Soft  Soft — 2005 [81]
8.92 LCVQE 44 v/ Soft  Soft — 2007 [230]
6.16 S-SCAD 52 v/ Soft  Soft — 2007 [231]
437  SemiStream 127 v Soft  Soft Online CC 2012 [205]
17.64 PC-HCM-NM 176 v Soft  Soft — 2014 [232]
2.51 AC-CF-tree 185 v Soft  Soft Active Clustering with Constraints 2014 [147]
4.68 PCS 191 v Soft  Soft — 2014 [233]
4.34 TDCK-Means 193 v Soft  Soft Online CC 2014 [234]
12.47 HSCE 207 v Soft Soft Non Graph-based & Constrained Pool Generation 2015 [235, 236]
247 CVQE+ 242 v Soft  Soft Active Clustering with Constraints 2018 [237]
3.00 PCSK-Means(21) 276 v Soft  Soft — 2021 [238]
16.80 fssK-Means 279 v Soft  Soft Time Series 2021 [239]

Table 7: Feature table for CKM - Penalty-based Methods.

7.2.1 Spectral CC

Classic spectral clustering algorithms try to obtain the latent space by finding the most mean-
ingful eigenvectors of the adjacency matrix, which are used to define the embedding in
which clusters are eventually obtained [240]. A dichotomy can be made within this cate-
gory: in graph-based methods the input data is always given in the form of a graph, while in
non-graph based the input is an adjacency matrix or a regular dataset, which can be trans-
formed into an adjacency matrix. Please note that this distinction only affects the conceptual
level of the spectral CC category, as a graph can always be converted to and adjacency ma-
trix and vice versa, all methods from one category may also be applied in the other category.
However, the authors have decided to make this distinction, since the terminology and con-
cepts used in the studies referring to each of them differ greatly and can be misleading if
interpreted together.

Graph-based spectral clustering In graph-based spectral clustering, the input is as-
sumed to be a graph. The goal is to partition the set of vertices of the graph, taking into
account the information contained in the vertices themselves and in the edges of the graph.
Edges may carry similarity or dissimilarity information regarding the vertices they connect.
Some common strategies to perform graph clustering try to maximize the similarity of ver-
tices within a cluster, normalizing the contribution of each to the objective by the size of the
cluster in order to balance the size of the clusters. Other methods try to minimize the total
cost of the edges crossing the cluster boundaries [241]. Graph-based methods are particu-
larly suitable to perform CC, as constraints can be naturally represented in their graph form,
which is the constraint graph and the chunklet graph (introduced in Section 4).
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Table 8 gathers graph-based spectral clustering methods. COP-b-coloring and CLAC exem-
plify the use of chunklets to enforce ML, while including CL by other means. Other meth-
ods modify the input graph to include the information contained in the constraint set. For
example, PCOG modifies affinities so that ML instances are always placed in the same con-
nected components and removes edges which connect CL instances. CCHAMELEON mod-
ifies affinities between constrained instances, making them larger if instances are related by
ML and lower in the case of CL. The all-pairs-shortest-path algorithm is used to propagate
changes. PAST-Toss uses a spanning tree based technique to perform CC directly over the
constraint graph. SCRAWL is the only non-spectral graph-based CC algorithm, as it does not
need pairwise similarity/dissimilarity information to perform CC, but graph-related mea-
sures instead.

S4  Acronym ID Penalty ML CL Hybrid Year Ref.
435 COP-b-coloring 38 X Hard Hard — 2007 [242]
3.56  PAST-Toss 54 X Soft Soft Single Individual 2008 [243]
7.62 CLAC 55 X Hard Hard Cluster Engine-adapting Methods 2008 [216]
790 COPGB-K-Means 71 X Soft  Soft  Cluster Engine-adapting Methods 2008 [218]
8.29 GBSSC 98 X Hard  Soft Dimensionality Reduction 2010 [185, 244,245, 246]
4.54 CCHAMELEON 112 X Soft Soft — 2011 [247]
11.27 SCRAWL 184 X Soft Soft — 2014 [192]
537 PCOG 269 X Hard Hard Non Graph-based 2020 [90]

Table 8: Feature table for the LSCC - Spectral CC - Graph-based methods.

Non graph-based spectral clustering In these methods, the input is given in the form
of an adjacency matrix, or a dataset whose adjacency matrix can be easily obtained. Two
techniques are commonly used to include pairwise constraints in these methods. (1) Mod-
ifying similarities/dissimilarities in the original adjacency matrix, computing eigenvectors
and eigenvalues to obtain the spectral embedding. (2) Using the constraints to directly mod-
ify the embedding, obtained on the basis of the original adjacency matrix. Any classic clus-
tering method can be used to obtain the final partition in the new embedding, which can
always be mapped to the original data [240].

Table 9 shows a list of non-graph-based spectral CC methods. The first spectral CC method
is found in KKM/SL, known in the literature by these two acronyms (respectively obtained
from the name of its authors and the title of the study which proposes it). It is based on
HMREF, performing CC by modifying the transition probabilities of the field based on the
constraints. KKM/SL and AHMRF constitute the only two HMRF-based approaches to spec-
tral CC. Another common technique in spectral CC is learning a kernel matrix based on the
dataset over which spectral clustering is later conducted, as in RSCPC, CCSR, CCSKL, LSE
or SSCA. This kernel matrix is usually built taking both pairwise distances and constraints
into account. With respect to the methods which modify the original adjacency matrix, two
strategies are the most used ones: some methods, such as ACCESS or CSC, simply set en-
tries which relate constrained instances to specific fixed values, while other methods, such
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as NSDR-NCuts or LCPN, use constraint propagation techniques to propagate changes in
the affinity matrix once it has been modified.

S4  Acronym ID  Penalty ML CL Hybrid Year Ref.
1440 KKM 6 X Soft Soft — 2003 [248]
1111 TBISBM 7 X Hybrid Hybrid — 2004 [249]
12.73 ACCESS 16 X Soft Soft Active Constraint Acquisition 2005 [250]
6.88 CSC 20 X Soft Soft — 2005 [251]
1247 LCPN 61 X Soft Soft Constraint Propagation 2008 [252]
8.40  S3-K-Means 63 v Soft Soft — 2008 [109]

3.68 RSCPC 86 X Soft Soft — 2009 [253]
1539 CCSR 87 v Soft Soft — 2009 [197]
6.82 SCLC 88 X Soft Soft — 2009 [254]
15.81 CCSKL 89 X Soft Soft Kernel CC 2009 [198]
8.76  CSP 105 X Hybrid Hybrid — 2010 [255]
13.47 ASC 110 X Any Any Active Clustering with Constraints 2010 [256]
8.57 SSC-ESE 152 v Soft Soft — 2012 [257]

390 IU-Red 144 X Soft Soft Active Clustering with Constraints 2012 [258]

5.65 LSE 148 X Soft Soft — 2012 [259]
7.73  NSDR-NCuts 135 X Soft Soft — 2012 [260]
13.38 COSC 138 X Hybrid Hybrid — 2012 [261]
3.62 SSCA 181 X Soft Soft — 2014 [262]
6.78 FHCSC 183 X Hybrid Hybrid — 2014 [263]
6.93 CNP-K-Means 187 X Soft Soft Dimensionality Reduction 2014 [264]
446  STSC 188 X Soft Soft Matrix Completion 2014 [265]
598 LXDXD 200 X Soft Soft Non-negative Matrix Factorization CC 2015 [240]
12.47 HSCE 207 X Soft Soft Constrained Pool Generation & Penalty-based Methods 2015  [235, 236]
8.82 FAST-GE 218 X Soft Soft — 2016 [266]
6.65 URASC 227 X Soft Soft Active Clustering with Constraints 2017 [267]
16.54 FAST-GE2.0 231 X Soft Soft — 2017 [268]
12.11 TI-APJCF 233 v Soft Soft — 2017 [49]
12.11 TII-APJCF 234 v Soft Soft —_ 2017 [49]
1.89 AHMRF 246 X Soft Soft — 2018 [212]
18.17 MVCSC 261 X Soft Soft Intra-View Constrained 2019 [269]
15.04 SFS’EC 257 X Soft Soft Full Constrained 2019 [270]
537 PCOG 269 X Hard Hard Graph-based 2020 [90]

Table 9: Feature table for the LSCC - Spectral CC - Non Graph-based methods.

7.2.2 Non-negative Matrix Factorization CC

Non-negative Matrix Factorization (NMF) clustering algorithms obtain the new represen-
tation of the data by factorizing the adjacency matrix into two non-negative matrices [240].
These two matrices can be interpreted as the centroids of the partition and the membership
degree of each instances to each cluster. By doing this, all instances can be obtained as a lin-
ear combination of each column of the centroids matrix, parameterized by its corresponding
membership, found in its associated row from the membership matrix. It can be proven that
minimizing the difference between the original dataset matrix and the product matrix (com-
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puted usually as the Frobenius norm) is equivalent to performing K-Means clustering over
the dataset [271].

Table 10 presents a list of NMF-based CC methods. One of the most common strategies
to include constraints into the classic NMF-based methods is to modify its objective func-
tion. This can be done by means of a penalty term accounting for the number of violated
constraints, as in PNMF, SSCsNMF and SS-NMF(08), or by more complex techniques, as in
CPSNMF or NMFS. Another popular strategy is forcing affinities between ML instances to
be 0 and affinities between CL instances to be 1, as in NMFCC and SymNMFCC.

Sa Acronym ID Penalty ML CL Hybrid Year Ref.
5.68 NMFS 45 X Soft  Soft — 2007 [272]
16.28 SS-NMF(08) 73 X Soft  Soft — 2008 [273]
4.74  OSS-NMF 96 X Soft  Soft Co-Clustering 2010 [98]
11.88 SS-NMF 109 X Soft  Soft Co-Clustering 2010 [274]
4.51 PNMF 123 v Soft  Soft — 2011 [116]
6.47  SSCsNMF 129 X Soft  Soft — 2012 [275]
598 LXDXD 200 X Soft  Soft Non Graph-based 2015 [240]
445 CPSNMF 211 X Soft  Soft Constraint Propagation 2016 [276]
820 NMFCC 219 X Soft  Soft — 2016 [277]
11.94 SymNMFCC 220 X Soft  Soft — 2016 [277]
5.02 PCPSNMF 251 X Soft  Soft — 2018 [278]
2.85 CMVNMF 254 X Soft  Soft Inter-View Constrained & Active Clustering with Constraints 2018  [91, 271]

Table 10: Feature table for the LSCC - Non-negative Matrix Factorization CC methods.

7.3 Active CC

Active learning is a subfield of machine learning in which algorithms are allowed to choose
the data from which they learn. The goal of active learning is to reduce the amount of super-
visory information needed to learn, an therefore reduce the human effort and implication
in machine learning. In the active learning paradigm, learning methods are provided with
an oracle, which is capable of answering a limited number of an specific type of query. For
example, in traditional classification, active learning is used to select the best instances to be
labeled from a dataset, so the oracle provides the label of the specific queried instance [279].
In Active CC (ACC), the oracle is queried about the type of constraint relating pairs of in-
stances. The key aspect in any active learning algorithm is how to choose the queries to be
presented to the oracle.

Active learning is specially useful in CC. In order to have an explanation for this, we compare
the complexity of the answers given by oracles involved in active classification and ACC. In
active classification, the oracle is queried about the class of a given instance. This query
has a virtually infinite number of answers, as the number of classes in the dataset may be
unknown. On the other hand, an oracle involved in CC is queried with two instances and
asked about the constraint between them (ML or CL), which is the same as asking whether
they belong to the same class. There are only three possible answers to this question: “yes”,
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“no” or “unknown”. It is clear that the oracle in CC carries out a far simpler job than the one
in classification. Let us remember that the oracle is just an abstraction of a knowledge source,
which is generally a human user. Querying a human about the relation between instances
instead of about their class requires less effort from them and leads to less variability and
noise in the queries, as the extensive literature in active CC shows.

Two subcategories can be found in Active CC. In active constraint acquisition, constraints
are actively generated before performing constrained clustering, while in active clustering
with constraints, both clustering and active constraint generation are performed iteratively
at the same time. This way, in active constraint acquisition queries are generated on the
basis of the dataset and the current state of the constraint set, while in active clustering with
constraints information about the current partition can also be used.

7.3.1 Active Constraint Acquisition

The immediate result of active constraint acquisition methods is a set of constraints, rather
than a partition of the dataset. However, the partition can be obtained using any other CC
method by just feeding the generated constraints into it, along with the dataset used to gen-
erate the constraints. Only the dataset, the constraint set generated so far, and an initial
unconstrained partition are available to perform active constraint learning in the active con-
straint acquisition paradigm. No CC algorithm is involved in the constraint acquisition step.
Table 11 shows a list of active constraint acquisition methods. Columns indicating the type
of constraint these methods can handle have been removed, as they are not relevant here.
Column “CC Method” has been added, indicating the CC method used to produce a parti-
tion based on the constraint generated by every active constraint acquisition method in the
experimental section of the studies that propose them.

Many strategies to select the best pair of instances to query to the oracle have been pro-
posed. Some methods start by dividing the dataset into preliminary groups and then use the
oracle to query constraints which consolidate that information, such as FFQS, MMFFQS,
SSL-EC or LCML. Other methods focus on finding the boundaries in the dataset to select
pairs of instances from them, such as ACCESS, ASC(10) or SACS. Besides, there are meth-
ods that use classic clustering to obtain preliminary information from the dataset, such as
the co-association of instances or the compactness of clusters. DGPC, JDFD, WAKL, MICS,
AAA(19), ATPC, ALPCS or ASCENT are some of the methods which use this strategy. Other
methods focus on specific features from the constraint themselves in order to evaluate them
and select the more informative ones, such as AAVV or KAKB. More complex approaches
can be found in AAA(18), which solves the active constraint acquisition problem as an ins-
tance of the uncapacited k-facility location problem, or RWACS, which uses the commute
time from graph theory to select queries.
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S4  Acronym D CC Methods Hybrid Year Ref.
16.24 FFQS 10 — — 2004 [189]
12.73 ACCESS 16 — Non Graph-based 2005 [250]
7.00 DGPC 289 PCK-Means — 2007 [280]
13.19 MMFFQS 69 MPCK-Means — 2008 [281]
9.42  ASC(10) 106 AHCC, MPCK-Means — 2010 [282,191, 283]
7.24 KAKB 290 S30M — 2011 [284]
4.63 SSL-EC 131 — Constraint Propagation 2012 [285]
5.74  Cons-DBSCAN 137 — Hierarchical CC & Density-based CC 2012 [111]
8.62 JDFD 292 —_ — 2013 [286]
8.64 SACS 186 Xiang’s, RCA, MPCK-Means — 2014 [287]
6.34  WAKL 293 MPCK-Means — 2014 [288]
427 MICS 294 RCA+K-Means — 2015 [289]
11.85 CCCPYL 203 DBSCAN, COP-K-Means, KKM, CSI, MPCK-Means — 2015 [290]
6.63 LCML 300 MPCK-Means — 2016 [291]
712 AAA(18) 296 MPCK-Means, RCA — 2018 [292]
5.88 RWACS 297 MPCK-Means, RCA — 2018 [293]
991 AAA(19) 298 MPCK-Means, RCA — 2019 [294]
18.34 AIPC 301 PCK-Means — 2019 [201]
5.65 AAVV 302 MPCK-Means, RCA — 2020 [295]
7.36  ALPCS 299 — — 2020 [296]
393 ASCENT 307 MPCK-Means — 2020 [193]

Table 11: Feature table for the ACC - Active Constraint Acquisition methods.

7.3.2 Active Clustering with Constraints

In active clustering with constraints, a CC procedure and a constraint generation method
are applied alternately. The immediate result of these methods are both a partition of the
dataset and a constraint set. These methods usually start by computing an unconstrained
partition of the dataset. After this, some criteria are applied to select pairs of instances to
query the oracle on the basis of the obtained partition. The answers to these queries are used
to generate and save new constraints, which are later used to generate a new partition of the
dataset by means of a CC method. Active clustering with constraints methods iterate these
steps to produce the final constraint set and the partition. The active constraint generation
method can be dependent of the CC method used to produce partitions, in which case they
cannot be used separately. On the other hand, some active constraint generation methods
are designed to be paired with any CC algorithm.

Table 12 gathers a list of active clustering with constraints methods. A major trend in this
category is found in the use of the uncertainty of instances to rank and pair them to select
the more uncertain ones and query them to the oracle. The uncertainty is always computed
based in the current partition and is usually defined as the probability of an instance belong-
ing to different known clusters. Some methods in this category are: RHWL, IU-Red, ALC-
SSC, CMKIPCM, AAA, URASC, A-COBS, ADP and ADPE. There are as well other criteria
to select pairs of instances to query, such as the utility maximization (SRBR), the maximum
expected error reduction (ASC), the partition change maximization (Active-HACC), the en-
semble consensus (PT), or the classic informativeness and coherence (A-ITML-K-Means).
Cluster-related criteria can also be used to select queries, such as the size and distance
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between the clusters (CAC, COBRA) or how well defined the frontiers are between them
(AFCC, CVQE+). Paradigm-specific criteria are used by some methods, such as CMVNMF,
which performs multi-view clustering and selects pairs of instances to query, based on intra-
view and inter-view criteria, or AC-CF-tree and COBRAS, which use queries to determine
the best cluster merge to perform in hierarchical CC. Similarly, the family of active FIECE-
EM use concepts related to the population of individuals it maintains to select the best in-
stances to query.

S4  Acronym ID  Penalty ML CL Hybrid Year Ref.
714 RHWL 43 X Soft  Soft Probabilistic Clustering 2007 [96]
7.62 PT 56 X Soft Soft Constrained Pool Generation 2008 [216]
9.50 AFCC 59 X Soft Soft Fuzzy CC 2008 [297]
13.47 ASC 110 — Any  Any Non Graph-based 2010 [256]
4.17 CAC1 113 — Hard  Soft Hierarchical CC 2011 [140]
3.90 IU-Red 144 X Soft  Soft Non Graph-based 2012 [258]
7.86 SRBR 155 X Soft Soft — 2013 [298]
562 A-ITML-K-Means 156 X Soft  Soft Constraint Propagation 2013 [299]
9.09 ALCSSC 180 X Soft Soft — 2014 [300]
2.51  AC-CF-tree 185 v Soft Soft Penalty-based Methods 2014 [147]
3.57  Active-HACC 189 X Soft Soft Hierarchical CC 2014 [142]
16.77 CMKIPCM 202 X Soft Soft Fuzzy CC 2015 [301]
21.19 AAA 221 X Soft Soft Fuzzy CC 2016 [302]
420 COBRA 225 X Soft  Soft Hierarchical CC 2017 [108]
6.65 URASC 227 X Soft  Soft Non Graph-based 2017 [267]
8.76  A-COBS 241 X Soft Soft Constrained Consensus 2017 [303]
247 CVQE+ 242 X Soft  Soft Penalty-based Methods 2018 [237]
19.57 COBRAS 244 X Soft Soft Hierarchical CC 2018 [304]
2.85 CMVNMF 254 X Soft  Soft  Non-negative Matrix Factorization CC & Inter-View Constrained 2018  [91, 271]
15.56 FIECE-EM+BFCU 303 X Hard Hard Genetic Algorithm & Mixture Model-based CC 2020 [305, 306]
15.56 FIECE-EM+FCU 304 X Hard Hard Genetic Algorithm & Mixture Model-based CC 2020 [305, 306]
15.56 FIECE-EM+DVO 305 X Hard Hard Genetic Algorithm & Mixture Model-based CC 2020 [305,306]
15.56 FIECE-EM+LUC 306 X Hard Hard Genetic Algorithm & Mixture Model-based CC 2020 [305, 306]
17.22 ADPE 281 X Soft  Soft Density-based CC & Constrained Pool Generation 2021 [307]
17.84 ADP 282 X Soft Soft Density-based CC 2021 [307]

Table 12: Feature table for the ACC - Active Clustering with Constraints methods.

7.4 Neural Network-based CC

Neural Networks (NN) are universal approximators which have been applied in many ma-
chine learning tasks, and CC is not an exception. Neural Network-based CC (NNbCC) tack-
les the CC from the NN perspective in three different ways: through self organizing maps,
through deep-embeded clustering and through classic neural networks architectures.

7.4.1 Self Organizing Maps-based CC

Self organizing maps are NN (usually with fixed topology) whose neurons modify their posi-
tion in the solution space to organize themselves according to the shape of the clusters. The
result is a net whose neurons are grouped in clusters, which can be used to determine the
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cluster every instance belongs to. Constraints can be included into this process in different
ways, as Table 13 shows. Some on them, like SS-FKCN, simply use a penalty term account-
ing for violated constraints in a classic SOM variant. Others such as PrTM and SSGSOM,
reformulate the classic SOM problem and use multiple neuron layers, forcing instances to
flow through these to layers to be ultimately assigned to the appropiate cluster. In order to
do so, Pr'TM uses constraint-influenced probabilities to decide how the position of the neu-
rons changes, while SSGSOM adjusts the between-layer weights and the number of nodes
of the first layer to dynamically correct the violation of constraints. Simpler methods like
the S30M, modify classic SOM for it to carry out only assignations without violating any
constraints, similarly to COP-K-Means.

Sz Acronym ID  Penalty ML CL Hybrid Year  Ref.

574 SS-FKCN 36 v Soft  Soft — 2006 [127]
10.13 PrTM 77 X Soft  Soft — 2009  [308]
7.70 S30M 111 X Hard Hard — 2011  [284]
10.74 CS2GS 201 X Soft  Soft Online CC 2015 [309]

Table 13: Feature table for the NNbCC - Self Organizing Maps-based CC methods.

The main difference between SOM-based approaches to CC and the other two approaches
(deep embedded clustering and classic neural networks) is that the primary goal of the for-
mer is to produce a partition of the dataset, while the latter’s is to cast predictions over unseen
instances regarding the cluster they belong to. Please note that a partition can be obtained
with deep embedded clustering and classic neural networks by feeding the training instances
to the trained model.

7.4.2 Deep Embedded Clustering-based CC

In deep embeded clustering-based CC constraints are included into the classic Deep Em-
beded Clustering (DEC) model. Table 14 gathers methods which use this approach. SDEC
includes constraints into the classic DEC model by using constraints to influence its distance
learning step, DCC does so by simply modifying the loss function of DEC with a penalty term.
CDEC uses DEC to initialize its encoder, which is finally retrained to finally assign instances
to clusters and satisfy the constraints.

7.4.3 Classic Neural Network-based CC

Lastly, classic neural network-based CC methods are presented in Table 15. Some of them,
such as S3C? and CDC, use the siamese neural networks, as they are known, to solve the
CC problems in two steps. In the case of S>C2, the siamese neural network is used to solve
the two steps in which the CC is decomposed into simpler binary problems, while CDC uses
the siamese neural network to perform unsupervised clustering and a triple NN to perform
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S4 Acronym ID Penalty ML CL Hybrid Year Ref.

8.32 SDEC 260 X Soft Soft — 2019  [310]
10.31 DCC 265 X Soft Soft  — 2020 [43,311]
244 CDEC 275 X Soft Soft  — 2021  [93]

Table 14: Feature table for the NNbCC - Deep Embeded Clustering-based CC methods.

CC. NN-EVCLUS simply implements EVCLUS in an NN setup and uses a penalty term in
its loss function to include constraints.

SNNs consist of a NN model designed to learn non-linear similarity measures from pairwise
constraints and to generalize the learned criterion to new data pairs. A SNN is a feedforward
multi-layer perceptron whose learning set is defined as triplets composed of two instances
and the constraint set between them, using 1 for ML and 0 for CL. In other words, ML in-
stances have an associated target equal to 1, while CL instances have an associated target
equal to 0. From the architectural point of view, the SNN has an input layer which accepts
pairs of instances, a single hidden layer which contains an even number of units, and an out-
put neuron with sigmoidal activation. The training of the SNN can be performed using the
standard backpropagation scheme. Since the metric learned by an SNN cannot be straight-
forwardly used by a K-Means style algorithm, as the centroids do not necessarily have to be
found in the dataset, centroids computation can be embedded in the SNN by using a classic
K-Means minimization scheme based on backpropagation. This scheme keeps the weights
and biases of the trained SNN fixed and varies the centroid coordinates (seen as free param-
eters). This is equivalent to redefining the original SNN model by adding a new layer to the
network structure whose neuron activation functions correspond to the identity mapping.

S Acronym ID Penalty ML CL Hybrid Year  Ref.
7.01 SNN 136 X Soft Soft Constrained Distance Transformation 2012 [312]
15.54 S3C? 268 X Soft  Soft — 2020 [313]
10.09 CDC 274 X Soft  Soft — 2021 [314]
3.56 NN-EVCLUS 284 v Soft  Soft — 2021  [92]

Table 15: Feature table for the NNbCC - Classic Neural Network-based CC methods.

7.5 Ensemble CC

Ensemble clustering methods usually perform clustering in two steps. (1) generating a pool
of solutions, whose diversity depends on the method (or methods) used for the generation.
(2) taking the pool of solutions as input and producing a single final solution by merging or
selecting solutions from the pool. The function in charge of this procedure is called the con-
sensus function. The application of ensemble-based clustering methods on the constrained
clustering problem gives place to a new distinction within this category, which classifies
Ensemble CC (ECC) methods depending on the step (or steps) in which they consider con-
straints. 52
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7.5.1 Constrained Pool Generation

These ensemble methods use constraints in the pool generation step (the first step), i.e.: the
partitions in the pool of solutions are generated with CC methods. Table 16 presents the list
of methods belonging to this category. The consensus functions used by these methods do
not take constraints into account. Therefore they are not considered in any distinction made
within this category. The most commonly used consensus functions are majority voting,
NCuts and CSPA.

Many methods use the subspace technique, which consists of performing clustering in a new
space with a lower number of dimensions than the original space. The technique used to
produce different subspaces introduces variability on the pool of solutions. The most com-
mon procedure used to generate the subspaces is simply a random sampling of the original
features, such as in SCSC, ISSCE, RSSCE, CESCP, DCECP or ADPE. However, there are
subspace generation methods specifically designed for certain algorithms. An example of
this is SMCE, which uses the CSI method to project instances and constraints into multiple
low-dimensional subspaces and then learning positive semi-definite matrices therein.

Other methods simply use any previous CC algorithm to produce the pool. The most com-
mon way to introduce diversity in the pool is by applying different CC methods to produce
different partitions. Methods that use this strategy are SCEV, MVSCE, E2CPE, HSCE or
FQH. Another (and less used) method to generate diversity is varying the hyperparameters
of a single CC method, as in Samarah.

Sz Acronym ID Penalty ML CL Hybrid Year Ref.
533 SMCE 37 X Soft  Soft — 2006 [315]
7.62 PT 56 X Soft  Soft Active Clustering with Constraints 2008 [216]
10.81 Samarah 99 X Soft  Soft — 2010 [316]
0.00 SCEV 146 X Soft  Soft — 2012 [317]
11.05 MVSCE 164 X Soft  Soft — 2013 [318]
1.25 E2CPE 170 X Soft  Soft — 2013 [319]
548  SCSC 206 X Soft  Soft Online CC 2015 [320]
1247 HSCE 207 X Soft  Soft Non Graph-based & Penalty-based Methods 2015 [235,236]
23.05 ISSCE 214 X Soft  Soft Constraint Propagation 2016 [321]
20.25 RSSCE 215 X Soft  Soft Constraint Propagation 2016 [321]
6.09 FQH 232 X Soft  Soft — 2017 [322]
7.83  CESCP 252 X Soft  Soft Constraint Propagation 2018 [323]
10.64 DCECP 253 X Soft  Soft Constraint Propagation 2018 [323]
17.22 ADPE 281 X Soft Soft Density-based CC & Active Clustering with Constraints 2021 [307]

Table 16: Feature table for the ECC - Constrained Pool Generation methods.

7.5.2 Constrained Consensus

In constrained consensus ensemble methods, constraints are used only in the consensus
function to produce a final partition meeting as much constraints as possible. Table 17
gathers the four methods which belong to this category. All of these methods generate the
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partitions in the pool by means of classic clustering algorithms. This is why the consensus
functions used by these methods usually measure the quality of the generated solutions with
respect to the constraints by means of a quality index and select the best ones to be finally
merged. For example COBS and A-COBS use the infeasibility to select the best partition in
the pool, which is generated by any classic clustering method. WECR K-Means runs classic
K-Means multiple times with different hyperparameters to generate the pool, then a weight-
ing procedure is used to automatically assign a weight to every partition depending on their
local and global quality, which includes the infeasibility. A weighted co-association ma-
trix based consensus approach is then applied to achieve a final partition. Semi-MultiCons
builds a tree-like pool or partitions and then applies a normalized score which measures
constraint satisfaction if any given merge or split operation between clusters is performed
in the tree.

S,4  Acronym ID Penalty ML CL Hybrid Year  Ref.
7.00 COBS 240 X Soft  Soft — 2017  [303]
8.76 A-COBS 241 X Soft  Soft Active Clustering with Constraints 2017  [303]
6.68 WECR K-Means 278 X Soft  Soft — 2021  [324]
5.39 Semi-MultiCons 288 X Soft  Soft — 2022 [325]

Table 17: Feature table for the ECC - Constrained Consensus methods.

7.5.3 Full Constrained

These methods (in Table 18) include constraints in both the pool generation and the con-
sensus steps. They make use of the formulas described before and combine them. On the
one hand, SFS3EC, ARSCE and RSEMICE make use of the subspace technique, although
they differ in the consensus function. SFS*EC merges partitions in the pool by building a
hypergraph which takes partitions and constraints into account and running METIS over
this graph to get the final partition. ARSCE computes the affinity graph for every solution
in the pool, and uses regularized ensemble diffusion to fuse the similarity information. Fi-
nally, RSEMICE assigns a confidence factor to each solution in the pool to build a consensus
matrix, which can be interpreted as a graph over which the NCut algorithm is applied (used
as the consensus function). On the other hand, COP-SOM-E and Cop-EAC-SL use previous
CC methods (ICOP-K-Means and COP-K-Means, respectively) to generate their pool. COP-
SOM-E uses a hard constrained version of SOM as the consensus matrix, and Cop-EAC-SL
runs the constrained single-link algorithm over a co-association matrix which counts how
many times pairs of instances are placed in the same cluster in different partitions.

7.6 Metaheuristics-based CC

Metaheuristics-based CC (MbCC) use metaheuristic algorithms to approach the CC prob-
lem. Many distinctions can be made within the metaheuristic algorithms field, in this study
the trajectory-based methods versus population-based methods is used to produce to subcat-
egories of CC approaches, as it is the one which results in the more consistent dichotomy.
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S4  Acronym ID Penalty ML CL Hybrid Year  Ref.
6.36 Cop-EAC-SL 75 X Soft  Soft — 2009  [326]
3.00 En-Ant 133 X Soft Soft  Swarm Optimization 2012 [327]
7.54 COP-SOM-E 143 X Hard Hard — 2012 [328]
10.77 RSEMICE 237 v Soft Soft — 2017  [329]
15.04 SFS3EC 257 X Soft  Soft Non Graph-based 2019 [270]
6.86 ARSCE 263 X Soft  Soft — 2020 [330]

Table 18: Feature table for the ECC - Full Constrained methods.

7.6.1 Population-based

A plethora of metaheuristic methods has been applied to the CC problem. Particularly,
population-based methods have shown remarkable success, with evolutive algorithms be-
ing the most used ones. A further distinction can be made within these methods: swarm
optimization algorithms and genetic algorithms. In swarm optimization algorithms, a pop-
ulation of individuals is used to mimic the behavior of a colony of insects in its natural en-
vironment,