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Abstract

In the golden era of information, vast amounts of data are available to perform analysis on
and extract valuable insight from. The area of science devoted to this problem is known as
Knowledge Discovery in Databases; particularly, it is its branch of Data Science where this
thesis is framed in. Specifically, this thesis focuses on clustering techniques that are capable
of including relational information into the clustering process. This type of information does
not fit into the classic supervised and unsupervised learning paradigms. However, the Semi-
Supervised Learning (SSL) paradigm does provide us with the tools to perform clustering in
the presence of relational information. This task is known as Constrained Clustering (CC).

Four objectives shape this thesis:

1. A comprehensive study in the area of CC, from an SSL standpoint. The goal of this ob-
jective is to produce the first comprehensive analysis of the CC state-of-the-art, includ-
ing a standardization of the experimental procedures and a ranking of all CCmethods
proposed so far.

2. The development of metaheuristic-based proposals for the CC problem, from both
single-objective and multi-objective optimization perspectives. Two metaheuristic-
based methods are designed to achieve this objective. Both are first proposed in this
thesis and have been specifically designed to obtain quality solutions for the CC prob-
lem. An empirical study compares both methods against the state-of-the art in their
specific areas, demonstrating their superiority.

3. The proposal of hybrid models for the CC problem. Motivated by the high quality re-
sults that hybrid methods usually obtain in the field of CC, this thesis introduces a
new hybrid model that combines the two broadest categories in the area: partitional
CC and constrained distance metric learning. This proposal also includes a procedure
to automatically determine the relevance of the pieces that make up the set of rela-
tional information. The empirical study carried out provides evidence of the proposal
being superior to the state-of-the-art.

4. Finally, motivated by the existence of real-world problems where multiple types of
background knowledge are available, this thesis tackles the issue of combining rela-
tional and monotonicity information. This combination gives rise to the monotonic
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constrained clustering paradigm. The suitability of the problem is proved, and a base-
line algorithm is proposed. The experimental study shows the superiority of mono-
tonic constrained clustering algorithm over both purely constrained and purelymono-
tonic clustering algorithms. This finding is backed by positive results in a classic set
of benchmarks and a real-world monotonic constrained clustering problem.

The four objectives have been successfully addressed, and the thesis hasmade significant
contributions to the field of CC from the point of view of SSL. The comprehensive study car-
ried out in the first objective provides a solid basis for understanding the state-of-the-art
in CC and enables the standardization of experimental procedures, which is crucial for a
scientifically sound comparison of different methods. The development of metaheuristic-
based proposals in the second objective provides new and efficient techniques to solve the
CC problem, while the proposed hybridmodels in the third objective demonstrate the poten-
tial of combining different approaches to further improve the quality of the results. Finally,
the proposed monotonic constrained clustering paradigm in the fourth objective addresses
the problem of combining multiple types of background knowledge and achieves superior
results over purely constrained and purely monotonic clustering algorithms.
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Resumen

La edad de oro de la información trae consigo la generación de enormes cantidades de datos,
disponibles para ser analizados con el fin de extraer de ellos información valiosa. El área de
la ciencia que se encarga de esta tarea se conoce como extracción de conocimiento en bases
de datos (Knowledge Discovery in Databases - KDD). En concreto, esta tesis se centra en las
técnicas de clustering que son capaces de considerar información relacional. Este tipo de in-
formación no encaja en los paradigmas supervisado y no supervisado considerados clásicos
en el aprendizaje automático. Sin embargo, el paradigma de aprendizaje semisupervisado
(Semi-Supervised Learning - SSL) nos proporciona las herramientas necesarias para aplicar
técnicas de clustering en presencia de dicha información relacional. Esta tarea se conoce
como agrupamiento restringido o clustering con restricciones (Constrained Clustering - CC).

Esta tesis aborda los siguientes cuatro objetivos:

1. El primero consiste en un estudio exhaustivo en el área del CC desde el punto de vis-
ta del SSL. Su finalidad es realizar el primer análisis exhaustivo del estado del arte
en CC que incluya una estandarización de los procedimientos experimentales y una
clasificación de todos los métodos de CC propuestos hasta ahora.

2. El segundo aborda el desarrollo de propuestas basadas en metaheurísticas para el CC,
incluyendo técnicas de optimización tanto monoobjetivo como multiobjetivo. Para
plantear este objetivo se han diseñado dos métodos. Ambos se proponen por primera
vez en esta tesis y han sido diseñados específicamente para el CC. Un estudio empírico
compara ambos métodos con el estado del arte en sus respectivas áreas y demuestra
su superioridad.

3. El tercer objetivo tiene como finalidad investigar modelos híbridos para el CC. Moti-
vada por la ya demostrada capacidad de dichos modelos para obtener resultados de
calidad en el ámbito del CC, esta tesis incorpora un nuevo modelo híbrido que combi-
na las dos categorías más amplias en el área: el CC particional y el aprendizaje métrico
de distancias con restricciones. Esta propuesta también incluye unprocedimiento para
determinar automáticamente la relevancia de los elementos que conforman el conjun-
to de información relacional. El estudio empírico realizado proporciona evidencia de
que nuestra propuesta es superior al estado del arte.
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4. Por último, motivada por la existencia de problemas para los que están disponibles
múltiples tipos de información incompleta (como la información relacional), esta tesis
plantea cómo combinar información relacional y de monotonicidad. Dicha combina-
ción da lugar al paradigma del clustering monotónico con restricciones. Tras demos-
trar la relevancia del problema que se aborda, se propone un algoritmo básico para
resolver el mismo. El estudio experimental muestra la superioridad de este algoritmo
sobre otros que solo son capaces de considerar información relacional o de monoto-
nicidad por separado. Los hallazgos relacionados con este objetivo están respaldados
por resultados positivos en baterías de pruebas estándar y en un caso de aplicación
específico.

La tesis aborda los cuatro objetivos descritos con éxito. De esta manera, quedan suficien-
temente demostradas sus aportaciones en su campo de estudio. La revisión de la literatura
llevada a cabo en el primer objetivo proporciona una base sólida para comprender el esta-
do del arte en el CC. Permite la estandarización de los procedimientos experimentales, lo
que es crucial para una posterior comparación científicamente fundamentada de diferentes
métodos. El desarrollo de propuestas basadas enmetaheurísticas en el segundo objetivo pro-
porciona nuevas técnicas eficientes para resolver el CC, mientras que los modelos híbridos
propuestos en el tercer objetivo demuestran el potencial de combinar diferentes enfoques
para mejorar aún más la calidad de los resultados. Finalmente, el paradigma del clustering
monotónico restringido, propuesto en el cuarto objetivo, aborda la combinación de múlti-
ples tipos de información incompleta, logrando resultados superiores a los obtenidos con
modelos anteriores.
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Chapter I

PhD Dissertation

«The most exciting phrase to hear in science, the one that heralds the
most discoveries, is not “Eureka!” (I found it!) but “That’s funny...”».

– Isaac Asimov.
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1 Introduction

Wekindly ask the reader to consider the following situation. You are given two, quite bizarre,
objects. You have time to examine them and learn everything you can about them, without
any help. Then, someone comes to you and asks you to place them into a category. If you are
free to give any answer, and you are lucky enough to have recognized the objects, you will
give a precise category for them. However, if you did not recognized them, and you were
not able to learn much about them, you will probably just make up a category, or say the
category of something you know is similar to them. In short, we can agree that the number
of possible answers to the question “What are the categories of the two objects?” is virtually
infinite, only bounded by your knowledge or imagination. Now, let us consider another
scenario. In the same setup, with the same two objects, you are asked whether they belong
to the same category or not. Now you have only three possible answers: “Yes”, “No”, or “I
don’t know”. This is really good news! We have bounded the possible answers from virtually
infinite to just three by changing the question and giving up categorical information in favor
of relational information. Moreover, the level of knowledge required to categorize the two
objects is much higher than the knowledge required to tell if they belong to similar or to
distinct categories. This makes relational knowledge easier to access. The image below tries
to illustrate the two scenarios of our example.

This is the essence of the research carried out during this PhD, and what all the studies
presented in this thesis focus on. This dissertation and the subsequent studies included in
Chapter II formalize the concepts presented in the above situations: the objects, the ques-
tions, the categories, the answers, the relational information, the answering entity, etc. All
of these concepts need to be formalized for this problem to be understood by a computer—
for it to be computable. Our goal is to study how the “Yes”, “No”, or “I don’t know” type of
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information (relational information) can be used to infer the final categories of the objects,
how a machine can learn from them. In order to do so, we frame this PhD within the data
science research area.

Recent technological advancements have led to the generation and storage of massive
amounts of data by various organizations and entities, including governments, private com-
panies, and research institutes. These organizations have become increasingly interested
in extracting useful insights from the data, which can give them a competitive advantage
and drive innovation. As a result, data science has emerged as a leading field for research,
development and innovation.

However, the standards in data science have become more rigorous, and the range of
applications with varying restrictions has increased. Therefore, the correct implementation
of the Knowledge Discovery in Databases (KDD) process has become crucial [PF91]. This
process involves a set of stages that enable the identification of valuable patterns and relation-
ships within the data. By following the KDD process, organizations can extract meaningful
insights from their data, which can lead to new breakthroughs and a significant competitive
advantage [PF91, HKP12]. The stages of KDD can be described as follows:

• Problem specification: the requirements and objectives of the discovery process are
identified. This helps to establish a clear understanding of what the data mining pro-
cess aims to achieve.

• Data extraction: involves selecting relevant data from various sources with the help
of expert knowledge. The extracted data are then consolidated into a single dataset to
be processed in subsequent stages.

• Data preprocessing: aims to transform the data into a format that can be handled
by data mining techniques [GLH15]. It involves cleaning the data of any impurities,
such as noise, missing or redundant information, and irrelevant data. The ultimate
goal of data preprocessing is to obtain quality data, also known as Smart Data, for use
in subsequent stages [GGLGH19].

• Data mining: involves extracting patterns, relationships, and/or models from the
processed dataset [WFH+05]. The type of knowledge to be extracted determines the
category of the data mining problem and the group of feasible techniques. Selecting
the best technique for each task is a complex engineering process that requires opti-
mization and validation of the different techniques available.

• Interpretation and evaluation: the extracted knowledge is analyzed and described
to be easily understood and useful. This helps to ensure that the insights obtained
from the data are actionable and provide meaningful value to the organization.

The process of data mining is a critical aspect of the KDD process, as it involves extract-
ing valuable patterns, relationships, or trends hidden within the data. To this end, data
mining algorithms must make use of as much information as possible, trying not to dismiss
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anything available for the task [HKP12, WFH+05]. Data mining is shaped by two major
approaches, which divide it into two distinct areas based on the type of knowledge used to
perform learning [BN06]:

• Supervised learning: in supervised learning, the goal is to build a classifier or regres-
sor that, trainedwith a set of examples (or instances)𝑋 and their corresponding output
values (or labels) 𝑌 , can predict the value of unseen inputs. Classification [DH+06]
and regression [DS98] are examples of classic supervised learning tasks.

• Unsupervised learning: in unsupervised learning, only the set of examples𝑋 is avail-
able, and no output value is provided. Here, the goal is to discover some underlying
structure in the data. For example, in unsupervised clustering the goal is to infer a
mapping from the input to clusters (groups) of similar instances [Mir12]. Association
rules learning [CSP+07] is another example of classic unsupervised learning.

However, these two learning paradigms are very limited with respect to the type of in-
formation they can handle: either all instances are labeled (supervised), or none of them
are (unsupervised). This is very restrictive when it comes to, for example, a subset of la-
beled data, or a different kind of information, such as relational information. The Semi-
Supervised Learning (SSL) area arises to overcome these drawbacks. SSL is the branch of
Machine Learning (ML) that tries to combine the benefits of these two approaches [CSZ10].
To do so, it makes use of both labeled and unlabeled data, or other kinds of expert knowledge.
In classification or regression, for example, unlabeled data may also be available in addition
to the (expected) set of labeled data. Similarly, when considering clustering problems, a
smaller subset of labeled data (or other types of knowledge about the dataset) may be avail-
able. Generally, supplementary data that fits neither in the supervised nor unsupervised
learning paradigm might also be at the disposal of the researchers. Failing to take advan-
tage of this information does not optimally use the available sources of knowledge about the
matter, and thus a need for SSL [VEH20] emerges.

With regards to the applicability of SSL, a natural question arises [CSZ10]: in compar-
ison with supervised and unsupervised learning, can SSL obtain better results? A positive
answer to this question can be readily inferred, as otherwise neither this thesis nor most of
the studies cited in it would exist. However, there is an important condition imposed for the
answer to be affirmative: the distribution of instances in𝑋 must be representative of the true
distribution of the data. Formally, the underlying marginal distribution 𝑝(𝑋) over the input
space must contain information about the posterior distribution 𝑝(𝑌|𝑋). Then, SSL is capa-
ble of making use of unlabeled data to obtain information about 𝑝(𝑋) and, therefore, about
𝑝(𝑌|𝑋) [VEH20]. Luckily, this condition appears to be fulfilled in most real-world learn-
ing problems, as suggested by the wide variety of fields where SSL is successfully applied.
Nonetheless, the way in which 𝑝(𝑋) and 𝑝(𝑌|𝑋) are related is not always the same. This
leads to the SSL assumptions, introduced in [CSZ10] and formalized in [VEH20]. A brief
summary of these assumptions following [VEH20] is presented; please refer to the studies
referenced for more details.
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• Smoothness assumption: two instances that are close in the input space should have
the same label.

• Low-density assumption: decision boundaries should preferably pass through low-
density spatial regions.

• Manifold assumption: in taskswhere data can be represented inEuclidean space, in-
stances in ahigh-dimensional input space are usually gathered along lower-dimensional
structures known as manifolds: locally Euclidean topological spaces.

• Cluster assumption: data points which belong to the same cluster also belong to
the same class. This assumption can be seen as a generalization of the previous three
specific assumptions.

As in other ML paradigms, the transduction versus induction dichotomy can be found
in SSL. Usually, semi-supervised classification methods comprise the vast majority of the
SSL field; therefore, the aforementioned dichotomy is explained in terms of classification as
follows:

• Inductivemethods: inductivemethods aim to build a classifier capable of outputting
a label for any instance in the input space. Unlabeled data can be used to train the clas-
sifier, but the predictions for unseen instances are independent of each other once the
training phase is completed. An example of inductive method in supervised learning
is linear regression [VEH20].

• Transductive methods: transductive methods do not build a classifier for the en-
tire input space: their predictions are limited to the data used during the training
phase. Transductive methods do no have separated training and testing phases. An
example of transductive method in unsupervised learning is Hierarchical Clustering
(HC) [VEH20].

Figure 2 helps us contextualize semi-supervised learning and its derivatives within the
overall ML landscape. General SSL literature [Zhu05, CSZ10, ZG09] usually divides SSL
methods into two categories: semi-supervised classification and semi-supervised clustering.
Further dichotomies have beenmade in later literature. In [VEH20, Zho21] semi-supervised
classification methods are taxonomized by taking into account the inductive versus trans-
ductive dichotomy. Some of the categories found in these taxonomies have been further stud-
ied: [ST14] proposes a taxonomy for graph-based semi-supervised methods, and [TGH15]
does the same for the self-labeling field. Concerning semi-supervised clustering, [Bai13]
proposes a high level taxonomy with 4 types of methods, while [DB07, BDW08] focus on
the specific area of Constrained Clustering (CC). The supervised and unsupervised learning
paradigms are included in Figure 2 for the sake of contextualization only. Consequently,
only classic and widely-known tasks belonging to these areas have been included in the di-
agram.
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Figure 1: Mindmap of the overall ML landscape.

The area of semi-supervised clustering has been widely studied and successfully applied
in many fields since its inception. It can be seen as a generalization of classic clustering
which is able to include background knowledge in the clustering process [CSZ10]. Many
types of background knowledge have been considered in semi-supervised clustering [Bai13],
although the most studied one is the pairwise instance-level must-link and cannot-link con-
straints [BDW08]. It relates instances indicating if they belong to the same class (must-link)
or to different classes (cannot-link), just like in the example at the beginning of this thesis.
In the literature, the problem of performing clustering in the presence of this type of infor-
mation is referred to as CC (marked in Figure 2 in blue). As Section 2 will show, clustering
under must-link and cannot-link constraints isNP-complete [DR05b]. Consequently, it has
to be tackled with approximate methods. The first objective of this thesis is to carry out an
exhaustive study on these methods, with the aim of creating a taxonomy to categorize and
organize them. This will further the knowledge of the area and, subsequently, foster innova-
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tion. To the best of our knowledge, this will be the first attempt to produce such taxonomic
study.

Metaheuristics are a class of optimization algorithms designed to tackle complex, non-
linear optimization problems that are unfeasible to solve in practice using exact methods.
Unlike traditional optimization techniques, such as linear programming or gradient-based
methods, metaheuristics do not rely on explicit problem-specific knowledge, but instead on
heuristics and stochastic search to find high-quality solutions. Within metaheuristics, evo-
lutionary algorithms are a family of optimization algorithms that are inspired by natural
selection. They simulate the process of evolution through genetic operators such as mu-
tation, crossover, and selection to evolve a population of candidate solutions. The idea is
to create a population of potential solutions and allow them to evolve and adapt through
generations, gradually improving their fitness over time to arrive at high-quality solutions.
Memetic evolutionary algorithms are a type of evolutionary algorithm that include exploita-
tion procedures to accelerate the convergence process [GP10].

Metaheuristic evolutionary algorithms are highly flexible and can thus be applied to a
wide range of optimization tasks, such as: crude oil time series [KABA20], COVID-19 dis-
ease recognition through X-ray images [AK20], digital currency forecasting [AKB19] and
control of unmanned aerial vehicles [Alt20], among others. Classic clustering is no excep-
tion to this trend, with many studies presenting excellent results [NP14, HLZC19, JGGF16],
although very little work has been done on CC. The second objective of this thesis is to ap-
proach CC from a metaheuristic point of view, aiming to experiment with multiple existing
optimization models to eventually design a specific one for CC.

Within the field of metaheuristics, Multi-Objective Evolutionary Algorithms (MOEAs)
[CLVV+14] are particularly interesting to approach clustering. Many measures can be used
to guide the clustering process towards a quality solution [SSZL05], although it is often not
straightforward to integrate constraints into a single function that can be optimized by a stan-
dard optimizer. This issue is also found in the CC framework, as evenmore qualitymeasures
need to be used in order to include constraints. Constraint-related quality measures often
contradict classic clustering quality measures, which complicates their integration into a
single-objective function optimizable by a single-objective evolutionary algorithm. Multi-
objective optimization schemes provide us with a powerful tool to overcome all these draw-
backs. In its second objective, this thesis also aims to address CCwithMOEAs. The objective
is to design a new optimization model specifically for CC, including memetic procedures if
deemed necessary.

Metaheuristics are not the only family of approximate methods that represent a promis-
ing approach to CC. Within the classic clustering paradigm, two broad categories can be
found in the literature: partitional clustering and HC. In partitional clustering, a partition
assigning every instance from the dataset to a specific cluster from among a fixed number
of them is built, whereas HC obtains a tree-like hierarchical structure coding a set of par-
titions that allows the user to choose any cluster granularity between one and the number
of instances in the dataset (more details in Section 2.1). Both of them have been applied to
many real-world problems [ESA+20], althoughwhen it comes to CC a significant imbalance
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favoring partitional methods can be observed; very little work has been done to integrate
constraints into HC methods [DR05a, BB06, KKM02, ZL11] with respect to the number of
existing partitional CC methods. The third objective of this thesis is to dive into the use of
hybrid agglomerative HC methods for CC, which should combine partitional CC methods
and constrained Distance Metric Learning (DML) methods to address CC (see Section 2.6
for more details). In addition, the automatic generation of constraint weights is explored.
Weighted constraints can be leveraged to guide the clustering process towards high qual-
ity solutions more effectively than unweighted constraints, although very little work has
been done on automatic generation of constraint weights and their integration into distance-
based CC methods.

Recently, a new type of background knowledge coming from the supervised learning
paradigm has been integrated into unsupervised learning. Monotonic classification is a par-
ticular case of supervised learning where classes are a set of ordered categories and classi-
fication models must respect monotonicity constraints among instances based on their de-
scriptive features. This means that, if an instance 𝑥𝑖 has greater feature values than those
of instance 𝑥𝑗 , its assigned class must also be higher (greater) in the ordering than that of
𝑥𝑗 [RDSDD21]. Considering the classic example of house pricing: for twohouses in the same
neighborhood, the bigger ones are constrained to have higher prices than smaller houses
when the rest of the features of the houses are similar [GGL+21]. This defines an order rela-
tionship between houses (instances) based on the value of their features, and therefore mod-
els that predict house prices must take this into account to produce accurate results. Mono-
tonicity constraints are a type of background knowledge that can be leveraged to produce
more accurate predictive models [CGK+19], and has been successfully applied in real-world
problems such as fraudulent firm classification [Pan20], real-time dynamic malware detec-
tion [CLSR18], or analysis of learning activities based on student opinion surveys [CAA+17].
Additionally, a recent study from the Alan Turing Institute states that considering underly-
ing data monotonicity in ML models leads to fairer applications [Les19]. In [RDSDD21] a
methodology to perform clustering in the presence of monotonicity information (ordered
clustering) is proposed within the Multi Criteria Decision Aid (MCDA) framework. The
fourth and last objective of this thesis is to approach the combination of monotonicity infor-
mation and pairwise instance-level constraints. This results in a novel clustering paradigm,
which needs to be formalized and tackled with new methods. This new paradigm can be
employed in real-world problems where both types of information are available, such as the
Shanghai Ranking of World Universities (SRWU) dataset, to yield better results than purely
CC and purely monotonic clustering methods.

Finally, to conclude this part we summarize the structure of this thesis, which is com-
posed of two parts: the PhD dissertation, in Chapter I, and the publications that back the
knowledge and conclusions presented in it, in Chapter II. The dissertation is split into 8
sections. Section 2 introduces the technical background of the concepts and terminology
that will appear in subsequent sections. The justification, objectives and methodology that
establish the foundation for this thesis are introduced in Sections 3, 4 and 5, respectively. Af-
terwards, Section 6 contains a summary of the research carried out in this thesis. Finally, in
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Section 8 the conclusions derived from the research are presented alongwith future research
lines.

The second part (Chapter II) gathers the publications that support the knowledge and
the conclusions discussed in the dissertation. From the 5 publications presented in this
part, three of them are published in international and indexed journals, and two of them are
currently under review. The publications are the following:

• Semi-Supervised Constrained Clustering: An In-Depth Overview, Ranked Taxonomy
and Future Research Directions.

• DILS: Constrained Clustering Through Dual Iterative Local Search.

• ME-MOEA/D𝐶𝐶 : Multiobjective Constrained Clustering Through Decomposition -
based Memetic Elitism.

• 3SHACC: Three Stages Hybrid Agglomerative Constrained Clustering.

• Semi-supervised Clustering with Two Types of Background Knowledge: Fusing Pair-
wise Constraints and Monotonicity Constraints.
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Introducción

Rogamos al lector que considere la siguiente situación. Se le entregan dos objetos que desco-
noce. Tiene tiempo para examinarlos y aprender todo lo que pueda sobre ellos, sin ninguna
ayuda. Al cabo de un rato, alguien se le acerca y le pide que los clasifique en una categoría.
Si es libre de dar cualquier respuesta y tiene la suerte de haber reconocido los objetos, les
asignará una categoría precisa. Sin embargo, si no los ha reconocido y no ha podido anali-
zarlos, probablemente se inventará una categoría o los asociará a la de algo que le resulte
similar. En resumen, podemos estar de acuerdo en que el número de respuestas posibles a
la pregunta «¿cuáles son las categorías de los dos objetos?» es prácticamente infinito, solo
limitado por sus conocimientos o su imaginación. Consideremos ahora otro escenario. En la
misma situación, con los mismos dos objetos, se le pregunta si pertenecen a la misma cate-
goría o no. Ahora sólo tiene tres respuestas posibles: «sí», «no» o «no lo sé». ¡Genial! Hemos
acotado las posibles respuestas de prácticamente infinitas a sólo tres cambiando la pregunta
y eliminando información categórica en favor de información relacional. Además, el nivel
de conocimiento necesario para categorizar los dos objetos esmuchomayor que el necesario
para saber si pertenecen a categorías similares o no. Esto facilita el acceso al conocimiento
relacional. La siguiente imagen trata de ilustrar los dos escenarios descritos anteriormente.

Esta es la esencia de la investigación llevada a cabo durante este doctorado y en lo que se
centran todos los estudios presentados en esta tesis. Esta disertación y los estudios posterio-
res incluidos en el Capítulo II formalizan los conceptos que se presentan en las situaciones
anteriores: los objetos, las preguntas, las categorías, las respuestas, la información relacio-
nal, la entidad que responde, etc. Es necesario formalizar todos estos conceptos para que
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este problema pueda ser comprendido por un ordenador, para que sea computable. Nuestro
objetivo es estudiar cómo la información de tipo «sí», «no» o «no lo sé» (información rela-
cional) puede utilizarse para inferir las categorías finales de los objetos, cómo una máquina
puede aprender de ellas. Para ello, planteamos este doctorado en el área de investigación de
la ciencia de datos.

Los recientes avances tecnológicos han dado lugar a la generación y almacenamiento de
cantidades masivas de datos por parte de diversas organizaciones y entidades, entre ellas
gobiernos, empresas privadas e institutos de investigación. Estas organizaciones están cada
vez más interesadas en extraer información útil de los datos, lo que puede proporcionarles
una ventaja competitiva e impulsar la innovación. Como resultado, la ciencia de los datos
ha surgido como un campo puntero para la investigación, el desarrollo y la innovación.

Sin embargo, los estándares en la ciencia de datos son cada vezmás rigurosos y las aplica-
ciones tienen requisitos más específicos. Por ello, la correcta implementación del proceso de
extracción de conocimiento en bases de datos (Knowledge Discovery in Databases - KDD) se
ha vuelto crucial [PF91]. Este proceso implica un conjunto de etapas que permiten la identi-
ficación de patrones y relaciones. Siguiendo el proceso KDD, los organismos pueden extraer
información valiosa de sus datos, lo que conlleva nuevos avances y una significativa ventaja
competitiva [PF91, HKP12]. Las etapas del KDD pueden describirse así:

• Especificación del problema: se identifican los requisitos y objetivos del proceso
KDD. Esto ayuda a establecer una comprensión clara de lo que el proceso de extracción
de datos pretende lograr.

• Extracción de datos: consiste en seleccionar los datos pertinentes de diversas fuentes
con la ayuda de conocimientos especializados. A continuación, los datos extraídos se
consolidan en un único conjunto de datos que se procesará en etapas posteriores.

• Preprocesamiento de datos: tiene como objetivo transformar los datos en un for-
mato que pueda ser utilizado por las técnicas de minería de datos [GLH15]. Implica
limpiar los datos de cualquier impureza, como ruido, información incompleta o redun-
dante y datos irrelevantes. El objetivo final del preprocesamiento de datos es obtener
datos de calidad, también conocidos como Smart Data, para su uso en etapas posterio-
res [GGLGH19].

• Minería de datos: consiste en extraer patrones, relaciones o modelos del conjunto de
datos procesados [WFH+05]. El tipo de conocimiento que debe extraerse determina
la categoría del problema de minería de datos y el grupo de técnicas viables. La selec-
ción de la mejor técnica para cada problema es un complejo proceso de ingeniería que
requiere la optimización y validación de las técnicas disponibles.

• Interpretación y evaluación: los conocimientos extraídos se analizan y describen
para que sean fácilmente comprensibles y útiles. Esto ayuda a garantizar que los cono-
cimientos obtenidos a partir de los datos sean procesables y aporten un valor signifi-
cativo a la organización que pretenda utilizarlos.
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La minería de datos es un aspecto crítico del KDD, ya que implica la extracción de pa-
trones, relaciones o tendencias ocultas en los datos. Para ello, los algoritmos de minería de
datos deben hacer uso de lamayor cantidad de información posible, tratando de no descartar
nada de lo disponible para la tarea [HKP12,WFH+05]. Laminería de datos está conformada
por dos grandes enfoques, que la dividen en dos áreas diferenciadas en función del tipo de
conocimiento utilizado para realizar el aprendizaje [BN06]:

• Aprendizaje supervisado: en el aprendizaje supervisado, el objetivo es construir un
clasificador o regresor que, entrenado con un conjunto de ejemplos (o instancias) 𝑋
y sus correspondientes valores de salida (o etiquetas) 𝑌 , pueda predecir el valor de
entradas no vistas. La clasificación [DH+06] y la regresión [DS98] son ejemplos de
tareas clásicas de aprendizaje supervisado.

• Aprendizaje no supervisado: en el aprendizaje no supervisado, solo se dispone del
conjunto de ejemplos 𝑋 y no se proporciona ningún valor de salida. En este caso, el
objetivo es descubrir alguna estructura subyacente en los datos. Por ejemplo, en el
clustering no supervisado, el objetivo es inferir un mapeo de la entrada a clusters (gru-
pos) de instancias similares [Mir12]. El aprendizaje de reglas de asociación [CSP+07]
es otro ejemplo de aprendizaje clásico no supervisado.

Sin embargo, estos dos paradigmas de aprendizaje están muy limitados en cuanto al tipo
de información que pueden utilizar: o todas las instancias están etiquetadas (supervisado), o
ninguna lo está (no supervisado). Esto es muy restrictivo cuando se trata, por ejemplo, de un
subconjunto de datos etiquetados o de otro tipo de información, como la información rela-
cional. El aprendizaje semisupervisado (Semi-Supervised Learning - SSL) surge para abordar
estos inconvenientes. El SSL es la rama del aprendizaje automático (Machine Learning -ML)
que intenta combinar las ventajas de los dos enfoques anteriores [CSZ10]. Para ello, hace uso
de datos etiquetados y no etiquetados, o de otros tipos de conocimiento experto. En clasifi-
cación o regresión, por ejemplo, los datos no etiquetados también pueden estar disponibles
además del conjunto (esperado) de datos etiquetados. Delmismomodo, al considerar proble-
mas de clustering, puede estar disponible un subconjuntomás pequeño de datos etiquetados
(u otros tipos de conocimiento sobre el conjunto de datos). Por lo general, los investigadores
también pueden disponer de datos complementarios que no encajan ni en el paradigma del
aprendizaje supervisado ni en el del aprendizaje no supervisado. Si no se aprovecha esta in-
formación, no se utilizan de forma óptima las fuentes de conocimiento disponibles, por lo
que surge la necesidad del SSL [VEH20].

En cuanto a la aplicabilidad del SSL, surge una pregunta evidente [CSZ10]: en compa-
ración con el aprendizaje supervisado y no supervisado, ¿puede el SSL obtener mejores re-
sultados? Se puede deducir fácilmente una respuesta afirmativa, ya que de lo contrario no
existirían ni esta tesis ni la mayoría de los estudios citados en ella. Sin embargo, se impone
una condición importante para que la respuesta sea afirmativa: la distribución de instancias
en 𝑋 debe ser representativa de la auténtica distribución de los datos. Formalmente, la dis-
tribución marginal subyacente 𝑝(𝑋) sobre el espacio de entrada debe contener información
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sobre la distribución posterior 𝑝(𝑌|𝑋). Así, el SSL es capaz de hacer uso de datos no etique-
tados para obtener información sobre 𝑝(𝑋) y, por tanto, sobre 𝑝(𝑌|𝑋) [VEH20]. Por suerte,
esta condición parece cumplirse en la mayoría de los problemas reales de aprendizaje, como
sugiere la amplia variedad de campos en los que se aplica con éxito SSL. No obstante, la for-
ma en que𝑝(𝑋) y𝑝(𝑌|𝑋) se relacionan no siempre es lamisma. Esto nos lleva a los supuestos
SSL, presentados en [CSZ10] y formalizados en [VEH20]. A continuación, semuestra un bre-
ve resumen de estos supuestos, basándose en [VEH20] (consulte las referencias para saber
más).

• Hipótesis de uniformidad: dos instancias cercanas en el espacio de entrada deben
tener la misma etiqueta.

• Hipótesis de baja densidad: las fronteras de decisión deben pasar preferentemente
por regiones del espacio de baja densidad.

• Hipótesis de variedad: en los problemas en los que los datos pueden representarse
en el espacio euclidiano, las instancias de un espacio de entrada de alta dimensiona-
lidad suelen agruparse a lo largo de estructuras de menor dimensión conocidas como
colectores: espacios topológicos localmente euclidianos.

• Hipótesis de agrupamiento: las instancias que pertenecen al mismo grupo también
pertenecen a la misma clase. Este supuesto puede considerarse una generalización de
los tres supuestos anteriores.

Al igual que en otros paradigmas deML, la diferenciación entre transducción e inducción
se da en el SSL. Por lo general, los métodos de clasificación semisupervisada comprenden la
gran mayoría del campo del SSL; por lo tanto, la dicotomía antes mencionada se explica en
términos de clasificación de la siguiente manera:

• Métodos inductivos: los métodos inductivos tratan de construir un clasificador ca-
paz de producir una etiqueta para cualquier instancia del espacio de entrada. Se pue-
den utilizar datos no etiquetados para entrenar el clasificador, pero las predicciones
para instancias no vistas son independientes unas de otras una vez completada la fase
de entrenamiento. Un ejemplo de método inductivo en el aprendizaje supervisado es
la regresión lineal [VEH20].

• Métodos transductivos: losmétodos transductivos no construyen un clasificador pa-
ra todo el espacio de entrada: sus predicciones se limitan a los datos utilizados durante
la fase de entrenamiento. Losmétodos transductivos no tienen fases de entrenamiento
y prueba separadas. Un ejemplo de método transductivo en el aprendizaje no supervi-
sado es el clustering jerárquico (Hierarchical Clustering- HC) [VEH20].

La Figura 2 nos ayuda a contextualizar el aprendizaje semisupervisado y sus derivados
dentro del panorama general del ML. La literatura general sobre el SSL [Zhu05, CSZ10,
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ZG09] suele dividir los métodos de SSL en dos categorías: clasificación semisupervisada y
clustering semisupervisado. En literatura posterior se hanhecho otras dicotomías. En [VEH20,
Zho21] losmétodos de clasificación semisupervisada se taxonomizan teniendo en cuenta las
diferencias entre inducción y transducción. Algunas de las categorías propuestas en estas ta-
xonomías se han estudiado más a fondo: [ST14] propone una taxonomía para los métodos
semisupervisados basados en grafos y [TGH15] hace lo mismo para el campo del autoetique-
tado. En cuanto al clustering semisupervisado, [Bai13] propone una taxonomía de alto nivel
con cuatro tipos de métodos, mientras que [DB07, BDW08] se centra en el área específica
del CC. Los paradigmas de aprendizaje supervisado y no supervisado se incluyen en la figu-
ra 2 únicamente a efectos de contextualización. En consecuencia, sólo se han incluido en el
diagrama las tareas clásicas y ampliamente conocidas pertenecientes a estas áreas.
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Figura 2:Mindmap del panorama general en el ML.
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El área del clustering semisupervisado ha sido estudiada en profundidad y aplicada con
éxito en múltiples campos desde sus inicios. Puede verse como una generalización del pro-
blema clásico de clustering que es capaz de incluir varios tipos de conocimiento en el proceso
de clustering [CSZ10]. Se han considerado muchos tipos de conocimiento en el clustering se-
misupervisado [Bai13], aunque el más estudiado son las restricciones a nivel de instancia
Must-Link (M-L) y Cannot-Link (C-L) [BDW08]. Este relaciona instancias indicando si per-
tenecen a la misma clase (M-L) o a clases diferentes (C-L), tal y como se planteaba en el
ejemplo utilizado para presentar esta tesis. En la literatura, el problema de aplicar clustering
en presencia de este tipo de información (información parcial) se denomina agrupamiento
restringido o clustering con restricciones (Constrained Clustering - CC) (señalado en la Figu-
ra 2 en azul). Como semostrará en la Sección 2, el CC es un problemaNP-completo [DR05b].
En consecuencia, debe abordarse con métodos aproximados. El primer objetivo de esta tesis
es realizar un estudio exhaustivo sobre estos métodos, con el fin de crear una taxonomía
que los categorice y organice. De este modo, se ampliará el conocimiento en el área y, en
consecuencia, se fomentará la innovación. Hasta donde sabemos, esto supondría el primer
intento de elaborar un estudio taxonómico de este tipo.

Las metaheurísticas son una clase de algoritmos de optimización diseñados para abor-
dar problemas de optimización complejos no lineales que no se pueden resolver de forma
práctica utilizandométodos exactos. A diferencia de las técnicas de optimización tradiciona-
les, como la programación lineal o los métodos basados en gradientes, las metaheurísticas
no se basan en conocimientos explícitos específicos del problema, sino en la heurística y la
búsqueda estocástica para encontrar soluciones de calidad. Dentro de las metaheurísticas,
los algoritmos evolutivos son una familia de algoritmos de optimización que se inspiran en
la selección natural. Simulan el proceso de evolución mediante operadores genéticos como
la mutación, el cruce y la selección para hacer evolucionar una población de soluciones can-
didatas a un problema. La idea es crear una población de soluciones potenciales y dejar que
evolucionen y se adapten a través de generaciones, mejorando gradualmente su aptitud con
el tiempo para llegar a soluciones de alta calidad. Los algoritmos miméticos son un tipo de
algoritmo evolutivo que incluyen procedimientos de explotación del espacio de soluciones
para acelerar el proceso de convergencia [GP10].

Los algoritmos evolutivos son altamente flexibles, por lo que pueden aplicarse a un am-
plio abanico de problemas de optimización, tales como: tratamiento de crudo mediante se-
ries temporales [KABA20], reconocimiento de COVID-19 a través de imágenes de rayos
X [AK20], predicciones en banca digital [AKB19] y control de vehículos aéreos no tripu-
lados [Alt20], entre otros. El clustering clásico no es una excepción a esta tendencia, puesto
que existenmuchos estudios que presentan excelentes resultados [NP14, HLZC19, JGGF16],
aunque se ha trabajado muy poco en CC. El segundo objetivo de esta tesis es abordar el pro-
blema del CC desde un punto de vista metaheurístico, a través de la experimentación con
modelos de optimización existentes para finalmente diseñar uno específico para elCC.

Dentro del campo de las metaheurísticas, los algoritmos evolutivos multiobjetivo (Multi-
Objective Evolutionary Algorithms - MOEAs) [CLVV+14] son particularmente interesantes
para abordar el clustering. Se pueden utilizar muchas medidas para guiar el proceso de clus-
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tering hacia una solución de calidad [SSZL05], aunque a menudo no es sencillo integrar las
restricciones en una única función que pueda ser optimizada mediante métodos estándar.
Este problema también se plantea en el marco del CC, ya que para incluir las restricciones
es necesario utilizar aún más medidas de adecuación. Las relacionadas con las restricciones
suelen contradecir las relacionadas con el clustering clásico, lo que complica su integración
en una única función objetivo que sea optimizable por un algoritmo de optimización mo-
noobjetivo. Los esquemas de optimización multiobjetivo nos proporcionan una poderosa
herramienta para superar este inconveniente. En su segundo apartado, esta tesis pretende
abordar el problema del CC mediante MOEAs. El objetivo es diseñar un nuevo modelo de
optimización específico para el CC, incluyendo procedimientos meméticos si fuera necesa-
rio.

Las metaheurísticas no son la única familia de métodos aproximados que representan
una aproximación prometedora al problema del CC. Dentro del paradigma clásico de cluste-
ring, la literatura diferencia dos grandes familias: clustering particional yHC. En el clustering
particional, se construye una partición que asigna cada instancia del conjunto de datos a un
cluster específico de entre un número fijo de ellos, mientras que el HC obtiene una estruc-
tura jerárquica en forma de árbol que permite al usuario elegir cualquier nivel para formar
distintas particiones (más información en la Sección 2.1). Ambos se han aplicado amultitud
de problemas reales [ESA+20], aunque cuando se trata del CC se observa un desequilibrio
significativo a favor de los métodos particionales. Se ha trabajado muy poco para integrar
restricciones en los métodos de HC [DR05a, BB06, KKM02, ZL11] respecto al número de
métodos de CC particionales existentes. El tercer objetivo de esta tesis es profundizar en el
uso de métodos aglomerativos híbridos de HC para el CC, que deben combinar métodos de
CC particionales y métodos de aprendizaje métrico de distancias (Distance Metric Learning
- DML) con restricciones (ver Sección 2.6 para más información). Además, se explora la ge-
neración automática de pesos de las restricciones. Las restricciones ponderadas se pueden
utilizar para guiar el proceso de clustering hacia soluciones de alta calidad demaneramás efi-
caz que las restricciones no ponderadas, aunque se ha trabajado muy poco en la generación
automática de dichos pesos y en su integración en métodos de CC basados en la distancia.

Un nuevo tipo de información parcial procedente del paradigma del aprendizaje supervi-
sado se ha integrado hace poco en el aprendizaje no supervisado. La clasificación monotóni-
ca es un caso particular del aprendizaje supervisado en el que las clases son un conjunto de
categorías ordenadas y los modelos de clasificación deben respetar restricciones de monoto-
nicidad entre instancias. Esto supone que, si los valores de características de una instancia
𝑥𝑖 son mayores mayores que los de la instancia 𝑥𝑗 , su clase asignada también debe ser su-
perior en el ordenamiento que la de 𝑥𝑗 [RDSDD21]. Consideremos el ejemplo clásico del
precio de las casas: para dos casas en el mismo barrio, las más grandes deben tener precios
más altos que las más pequeñas cuando el resto de las características de las casas son simi-
lares [GGL+21]. Esto define una relación de orden entre las casas (instancias) basada en
el valor de sus características y, por lo tanto, los modelos que predicen los precios de las
casas deben tenerlo en cuenta para producir resultados precisos. Las restricciones de mo-
notonicidad son un tipo de información parcial que puede aprovecharse para producir mo-
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delos predictivos más precisos [CGK+19], y se ha aplicado con éxito en casuísticas como la
clasificación de empresas fraudulentas [Pan20], la detección dinámica demalware en tiem-
po real [CLSR18]o el análisis de actividades de aprendizaje basado en encuestas [CAA+17].
Además, un estudio reciente del Instituto Alan Turing afirma que considerar la monotoni-
cidad de los datos subyacentes en modelos de ML produce aplicaciones más justas [Les19].
En [RDSDD21] se propone una metodología para realizar clustering en presencia de infor-
mación de monotonicidad (clustering ordenado) dentro del marco del análisis de decisión
multicriterio (Multi Criteria Decission Aid - MCDA). El cuarto y último objetivo de esta te-
sis es abordar la combinación de información de monotonicidad y restricciones a nivel de
instancia (M-L y C-L). Esto da lugar a un nuevo paradigma de clustering que necesita ser
formalizado y abordado con nuevos métodos. Este nuevo paradigma se puede emplear en
problemas en los que se dispone de ambos tipos de información, como el conjunto de datos
del ranking mundial de la universidad de Shanghai (Shanghai Ranking World University -
SRWU), para obtener mejores resultados que los métodos de clustering que consideran solo
restricciones a nivel de instancia o solo restricciones de monotonicidad.

En último lugar, para concluir esta introducción presentamos un resumen de la estruc-
tura de esta tesis, compuesta de dos partes: la disertación doctoral, en el Capítulo I, y las
publicaciones que avalan los conocimientos y conclusiones expuestos en la misma, en el Ca-
pítulo II. La disertación se divide en 8 secciones. La sección 2 profundiza en el trasfondo
técnico de los conceptos y terminología utilizados en las secciones posteriores. La justifi-
cación, los objetivos y la metodología que sientan las bases de esta tesis se indican en las
secciones 3, 4 y 5, respectivamente. Posteriormente, en la Sección 6 se presenta un resumen
de la investigación llevada a cabo. Finalmente, en la Sección 8 se exponen las conclusiones
derivadas de la investigación junto con futuras líneas de investigación.

La segunda parte (Capítulo II) recoge las publicaciones que avalan los conocimientos y
las conclusiones discutidas en la disertación. De las cinco publicaciones presentadas, tres de
ellas están publicadas en revistas indexadas internacionales y dos de ellas están actualmente
en revisión. Las publicaciones son las siguientes:

• Semi-Supervised Constrained Clustering: An In-Depth Overview, Ranked Taxonomy
and Future Research Directions.

• DILS: Constrained Clustering Through Dual Iterative Local Search.

• ME-MOEA/D𝐶𝐶 :MultiobjectiveConstrainedClusteringThroughDecomposition-based
Memetic Elitism.

• 3SHACC: Three Stages Hybrid Agglomerative Constrained Clustering.

• Semi-supervised Clustering with Two Types of Background Knowledge: Fusing Pair-
wise Constraints and Monotonicity Constraints.
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2 Preliminaries

This section introduces the technical knowledge necessary to understand the remainder of
the dissertation (Chapter I). Firstly, the technical background in classic clustering is given
in Section 2.1. Afterwards, CC is described formally in Sections 2.2 and 2.3. Section 2.4 is
about the experimental setups used in all the studies included in this thesis. It introduces
the concepts related to the common evaluation procedures. The rest of the sections are de-
voted to describing the key aspects of the new methods proposed in this thesis: Section 2.5
introduces multi-objective optimization, Section 2.6 defines and formalizes DML, and Sec-
tion 2.7.1 explains monotonicity constraints and their potential role in MCDA.

2.1 Background on classic clustering

Partitional clustering can be defined as the task of grouping the instances of a dataset into
𝐾 clusters. A dataset 𝑋 consists of 𝑛 instances, and each instance is described by 𝑢 features.
More formally, 𝑋 = {𝑥1,⋯ , 𝑥𝑛}, with the 𝑖th instance noted as 𝑥𝑖 = (𝑥[𝑖,1],⋯ , 𝑥[𝑖,𝑢]). A
typical clustering algorithm assigns a class label 𝑙𝑖 to each instance 𝑥𝑖 ∈ 𝑋 . As a result, we
obtain the list of labels 𝐿 = [𝑙1,⋯ , 𝑙𝑛], with 𝑙𝑖 ∈ {1,⋯ ,𝐾}, that effectively splits𝑋 into𝐾 non-
overlapping clusters 𝑐𝑖 to form a partition called𝐶. The list of labels producing partition𝐶 is
referred to as 𝐿𝐶 . The criterion used to assign an instance to a given cluster is the similarity
to the rest of elements in that cluster, and the dissimilarity to the rest of instances of the
dataset. This value can be obtained with some kind of distance measurement [JMF99].

HC methods produce an informative hierarchical structure of clusters called dendro-
gram. Partitions as described above, with a number of clusters ranging from 1 to 𝑛, can
always be obtained from a dendrogram by just selecting a level from its hierarchy and par-
titioning the dataset according to its structure. Typically, agglomerative HC methods start
with a large number of clusters and iteratively merge them according to some affinity crite-
ria until a stopping condition is reached. Every merge produces a new level in the hierarchy
of the dendrogram. Formally, given an initial partition with 𝑛𝑐 clusters 𝐶 = {𝑐1,⋯ , 𝑐𝑛𝑐}
(usually 𝑛𝑐 = 𝑛), a traditional agglomerative CC method selects two clusters to merge by
applying Equation 1.

{𝑐𝑖, 𝑐𝑗} = argmax
𝑐𝑖 ,𝑐𝑗∈𝐶,𝑖≠𝑗

𝐴(𝑐𝑖, 𝑐𝑗), (1)

with 𝐴(⋅, ⋅) being a function used to determine the affinity between the two clusters given as
arguments. This function needs to be carefully chosen for every application, as it greatly af-
fects the result of the clustering process. Some conventional methods to measure affinity be-
tween clusters are worth mentioning, such as single linkage, average linkage and complete
linkage [JMF99]. Nevertheless, different measures are employed in out-of-lab applications,
as themanifold structures usually found in real-world datasets can hardly be captured by the
classic affinity measures mentioned above. Typically, classic partitional clustering methods
are less algorithmically complex thanHCmethods, with the former featuring𝒪(𝑛) complex-
ity and the latter 𝒪(𝑛2) [DB07].
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2.2 Background on pairwise constraints

In most clustering applications, it is common to have some kind of information about the
dataset that will be analyzed. In CC this information is given in the form of pairs of instances
that must, or must not, be assigned to the same cluster. We can now formalize these two
types of constraints:

• M-L constraints 𝐶=(𝑥𝑖, 𝑥𝑗): instances 𝑥𝑖 and 𝑥𝑗 from 𝑋 must be placed in the same
cluster. The set of M-L constraints is referred to as 𝐶=.

• C-L constraints 𝐶≠(𝑥𝑖, 𝑥𝑗): instances 𝑥𝑖 and 𝑥𝑗 from 𝑋 cannot be assigned to the same
cluster. The set of C-L constraints is referred to as 𝐶≠.

The goal of CC is to find a partition (or clustering) of 𝐾 clusters 𝐶 = {𝑐1,⋯ , 𝑐𝐾} of the
dataset 𝑋 that ideally satisfies all constraints in the union of both constraint sets, called
𝐶𝑆 = 𝐶=⋃𝐶≠. As in classic clustering, the sum of instances in each cluster 𝑐𝑖 is equal to
the number of instances in 𝑋 , which we have defined as 𝑛 = |𝑋| = ∑𝐾

𝑖=1 |𝑐𝑖|.
Knowing how a constraint is defined, M-L constraints are an example of an equivalence

relation; therefore, M-L constraints are reflexive, transitive and symmetric. This way, given
constraints 𝐶=(𝑥𝑎, 𝑥𝑏) and 𝐶=(𝑥𝑏, 𝑥𝑐), then 𝐶=(𝑥𝑎, 𝑥𝑐) is verified. In addition to this, if 𝑥𝑎 ∈
𝑐𝑖 and 𝑥𝑏 ∈ 𝑐𝑗 are related by 𝐶=(𝑥𝑎, 𝑥𝑏), then 𝐶=(𝑥𝑐, 𝑥𝑑) is verified for any 𝑥𝑐 ∈ 𝑐𝑖 and
𝑥𝑑 ∈ 𝑐𝑗 [DB07].

It can also be proven that C-L constraints do not constitute an equivalence relation. How-
ever, analogously, given 𝑥𝑎 ∈ 𝑐𝑖 and 𝑥𝑏 ∈ 𝑐𝑗 , and the constraint 𝐶≠(𝑥𝑎, 𝑥𝑏), then it is also
true that 𝐶≠(𝑥𝑐, 𝑥𝑑) for any 𝑥𝑐 ∈ 𝑐𝑖 and 𝑥𝑑 ∈ 𝑐𝑗 [DB07].

Regarding the degree to which constraints need to be met in the output partition or den-
drogram of any CC algorithm, a simple dichotomy can be made: hard pairwise constraints
must necessarily be satisfied, while soft pairwise constraints can be violated to a variable
extent. This distinction is introduced in [DB07] and adopted by later studies. The major ad-
vantages in favor of soft over hard constraints are the resiliency to noise in the constraint set,
the flexibility in the design of cost/objective functions, and their optimization procedures.
The ability to consider soft, hard, or both types of constraints is a defining element for CC
methods.

In [DWB06] two measures designed to characterize the quality of a given constraint set
are proposed: informativeness (or informativity [DB07]) is used to determine the amount
of information in the constraint set that the CC algorithm could determine on its own, and
coherence, which measures the amount of agreement between the constraints themselves.
These two measures were proposed in early stages of the development of the CC area; how-
ever, they have not been used consistently in later studies.
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2.3 The feasibility problem

Given that CC adds a new element to classic clustering, we must consider how it affects its
complexity in both of its forms: partitional and hierarchical. Intuitively, the clustering prob-
lem goes from its classic formulation “find the best partition for a given dataset” to its con-
strained form “find the best partition for a given dataset satisfying all constraints in the con-
straint set”. The formalization of these concepts is tackled in [DR05b, DB07, DR09], where
the feasibility problems for partitional and hierarchical CC are defined as in 2.1 and 2.2 re-
spectively, with 𝐶𝑆 = 𝐶≠ ∪𝐶= (the joint constraint set). Given these two definitions, we say
that a partition𝐶 for a dataset𝑋 is feasiblewhen all constraints in𝐶𝑆 are satisfied by
𝐶. Note that there exist constraint sets for which a feasible partition can never be found. For
example, no feasible partition exists for𝐶𝑆1 = {𝐶=(𝑥1, 𝑥2), 𝐶≠(𝑥1, 𝑥2)} regardless of the value
of𝐾. Similarly, the feasibility of partitions such as𝐶𝑆2 = {𝐶≠(𝑥1, 𝑥2), 𝐶≠≠(𝑥2, 𝑥3)𝐶≠, (𝑥1𝑥3)}
depends on the value of 𝐾. In this case, the feasibility problem for 𝐶𝑆2 can be solved for
𝐾 = 3 but not for 𝐾 = 2.

Definition 2.1. Feasibility Problem for Partitional CC : given a dataset 𝑋 , a constraint
set 𝐶𝑆, and the bounds on the number of clusters 𝑘𝑙 ≤ 𝐾 ≤ 𝑘𝑢, is there a partition 𝐶 of 𝑋 with
𝐾 clusters that satisfies all constraints in 𝐶𝑆? [DR05b]

In [DR05b] it is proven that, when 𝑘𝑙 = 1 and 𝑘𝑢 ≥ 3, the feasibility problem for parti-
tional CC is NP-complete, by reducing it from the Graph K-Colorability problem. It is also
proven that it is not harder, so both have the same complexity. Table 1 shows the complexity
of the feasibility for different types of constraints.

Definition 2.2. Feasibility Problem forHierarchical CC: given a dataset𝑋 , the constraint
sets 𝐶𝑆, and the symmetric distance measure𝐷(𝑥𝑖, 𝑥𝑗) ≥ 0 for each pair of instances, can 𝑋 be
partitioned into clusters so that all constraints in 𝐶𝑆 are satisfied? [DR09]

Please note that the definition of the feasibility problem for partitional CC (in Defini-
tion 2.1) is significantly different from the definition of the feasibility problem for hierarchi-
cal CC (in 2.2). Particularly, the formulation of hierarchical CC imposes no restriction on
the number of clusters 𝐾, which is equivalent to considering that a partition that satisfies all
constraints can be produced at any level of the dendrogram [DR09]. In [DR05a] a reduction
from the One-in-three 3SAT with positive literals (which is NP-complete) for the problem
in Definition 2.2 is used to prove the complexities presented in Table 1 for hierarchical CC.
It is worth mentioning that, for hierarchical CC, the dead-ends problem arises: a hierar-
chical CC algorithm may find scenarios where no merge/split can be carried out without
violating a constraint. Previous solutions based on the transitive closure of the constraint
sets have been proposed for this special case, although they involve not generating a full
dendrogram [DR05b].

Overall, complexity results in Table 1 show that the feasibility problem under C-L con-
straints is intractable, and hence CC is intractable too. This leads to Observation 2.1. For
more details on the complexity of CC please see [DR05b].
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Constraints Partitional CC Hierarchical CC Dead Ends?

M-L P P No

C-L NP-complete NP-complete Yes

M-L and C-L NP-complete NP-complete Yes

Table 1: Feasibility problem complexities for partitional and hierarchical CC and dead-ends
found in hierarchical CC [DR05b].

Observation 2.1. Knowing that a feasible solution exists does not help us find it. The
results from Table 1 imply that the mere existence of a feasible solution for a given set of con-
straints does not mean it will be easy to find.

With respect to the dead-ends problem, a full dendrogram considering constraints can be
obtained by switching fromahard interpretation of constraints to a soft one. Thismeans that
every level in the dendrogram tries to satisfy as many constraints as possible, but constraint
violations are allowed in order for the algorithm to never reach a dead-end.

Some interesting results, both positive and negative, about the nature of pairwise con-
straints are proved and discussed in [DB07], as well as some workarounds for problems
related to the use of constraints in clustering.

2.4 External validity indices

Validity indices are used to objectively evaluate the performance of a givenmethod indepen-
dently of the benchmarks it is tested in. This means that the output value of the validity
indices is independent from the characteristics of the benchmarks datasets, such as their
size or their number of features in the case of classification datasets. In the case of CC, one
of the most popular external validity indices is the Adjusted Rand Index (ARI), which is
an adjusted version of the previous Rand Index (RI). This section introduces both of these
validity indices, as the ARI is the common quality measure in all the experimental studies
presented in this thesis.

The RI measures the degree of agreement between two partitions. It can be used to
measure the quality of a partition obtained by any CC algorithm by giving the ground-truth
partition as one of them. Therefore, the two compared partitions are 𝐶 and 𝐶∗. The RI
views 𝐶 and 𝐶∗ as collections of 𝑛(𝑛 − 1)/2 pairwise decisions. For each 𝑥𝑖 and 𝑥𝑗 in 𝑋 ,
they are assigned to the same cluster or to different clusters by a partition. The number of
pairings where 𝑥𝑖 is in the same cluster as 𝑥𝑗 in both 𝐶 and 𝐶∗ is taken as 𝑎; conversely, 𝑏
represents the number of pairings where 𝑥𝑖 and 𝑥𝑗 are in different clusters. The degree of
similarity between 𝐶 and 𝐶∗ is computed as in Equation 2 [Ran71], where 𝑛 is the number
of instances in 𝑋 . The output value range for the RI is [0, 1], with high values indicating a
high level of agreement between the two partitions, and a low value indicating a low level
of agreement.
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RI = 𝑎 + 𝑏
𝑛(𝑛 − 1)/2 (2)

The RI can be conveniently formulated in terms of the elements of a confusion matrix as
well [ZDX19]. Equation 3 defines these elements in terms of cluster memberships in a par-
tition, which can be referred to as: True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN). Equation 4 makes use of these elements to give a new defi-
nition for the RI.

TP = {(𝑥𝑖, 𝑥𝑗)|𝑙𝐶
∗

𝑖 = 𝑙𝐶∗
𝑗 , 𝑙𝐶𝑖 = 𝑙𝐶𝑗 , 𝑖 ≠ 𝑗}

FP = {(𝑥𝑖, 𝑥𝑗)|𝑙𝐶
∗

𝑖 = 𝑙𝐶∗
𝑗 , 𝑙𝐶𝑖 ≠ 𝑙𝐶𝑗 , 𝑖 ≠ 𝑗}

TN = {(𝑥𝑖, 𝑥𝑗)|𝑙𝐶
∗

𝑖 ≠ 𝑙𝐶∗
𝑗 , 𝑙𝐶𝑖 ≠ 𝑙𝐶𝑗 , 𝑖 ≠ 𝑗}

FN = {(𝑥𝑖, 𝑥𝑗)|𝑙𝐶
∗

𝑖 ≠ 𝑙𝐶∗
𝑗 , 𝑙𝐶𝑖 = 𝑙𝐶𝑗 , 𝑖 ≠ 𝑗}

. (3)

RI = |TP| + |TN|
|TP| + |FP| + |TN| + |FN| (4)

The ARI is the corrected-for-chance version of the RI. This correction is done by tak-
ing into account the expected similarity of all comparisons between partitions specified by
a random model that acts as the baseline. This modifies the output value range of the orig-
inal RI, transforming it into [−1, 1] and slightly changing its interpretation. In ARI, a high
output value still means a high level of agreement between the two partitions, and a low
value means a low level of agreement. However, a value lower than 0means that the results
obtained are worse than those expected from the average random model. Equation 5 gives
the formalization for the ARI [HA85].

ARI = RI − Expected Index
Maximum Index − Expected Index , (5)

where Expected Index is the degree of similarity with a random model, Maximum Index is
assumed to be 1, and RI is the RI value computed for partitions 𝐶 and 𝐶∗. Both the RI and
the ARI can measure the quality of any given CC method with respect to the ground truth
by simply feeding the true labels into these indices as one of the partitions to be compared.
Please note thatCCmethods are usually evaluated in classification datasets, as the constraint
set needs to be generated on the basis of some kind of oracle, which is normally the labels
set.
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2.5 Multiobjective optimization

The Multiobjective Optimization Problem (MOP) is formalized as in Equation 6:

minimize 𝐹(𝑦) = (𝑓1(𝑦),⋯ , 𝑓𝑚(𝑦))

s.t. 𝑦 ∈ Ω
, (6)

whereΩ is the variable space and 𝐹 ∶ Ω → 𝑅𝑚 consists of𝑚 real-valued functions (objective
functions). 𝑅𝑚 is known as the objective space and {𝐹(𝑦)|𝑦 ∈ Ω} defines the attainable object
set. If 𝑦 ∈ 𝑅𝑛 and Ω is defined as in Equation 7, with ℎ𝑗 being continuous functions, then
the MOP in Equation 6 is said to be continuous.

Ω = {𝑦 ∈ 𝑅𝑛|ℎ𝑗(𝑦) ≤ 0, 𝑗 = 1,⋯ ,𝑚}. (7)

MOP techniques aim to balance all objective functions in Equation 6; this task is not
trivial in the general case due to conflicts among the objective functions. AnMOP technique
finds a trade-off which can be defined in terms of Pareto optimality. Let 𝑣, 𝑤 ∈ 𝑅𝑚, then,
𝑣 dominates 𝑤 if and only if 𝑓𝑖(𝑣) ≤ 𝑓𝑖(𝑤)∀𝑖 ∈ {1,⋯ ,𝑚} and if ∃𝑗|𝑓𝑗(𝑣) < 𝑓𝑗(𝑤), 𝑗 ∈
{1,⋯ ,𝑚}. This is: 𝑣 dominates𝑤 if and only if 𝑣 is better than𝑤 in at least one objective and
as good as 𝑤 in the rest, and is denoted as 𝑤 ≺ 𝑣.

A point 𝑦∗ ∈ Ω is said to be Pareto optimal if there is no other point 𝑦 ∈ Ω such that 𝑦
dominates 𝑦∗. The set of Pareto optimal points is referred to as the Pareto Set (PS). Pareto
Front (PF) is formed by the objective vectors associated with the points in PS. AnMOP tech-
nique aims to find the best possible approximation to the PF for any given optimization task.
AnMOP definition for maximization problems can be obtained by reversing all inequalities.

In real-life applications of multiobjective optimization, a PF needs to be obtained so that
a decision maker can later select the preferred solution. Being the MOP defined as above,
there are no restrictions in the size of the PF so, in theory, very large or even infinite Pareto
optimal vectors could be found in some cases. This is why obtaining the full PF is usually
not feasible, or at least very time-consuming. Moreover, if the Pareto approximation to the
PF is too large, the decision maker would have trouble choosing a solution from it due to
the sheer amount of information. Most multiobjective optimization methods struggle to
find a set of well-distributed Pareto optimal vectors with a reasonable size that constitutes a
good approximation to the entire PF. Evolutionary algorithms have proven to be excellent at
finding this approximation to the PF [Mie12], resulting in a whole new family of algorithms
called MOEA [CLVV+14].
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2.6 Distance metric learning

The vast majority of methods making up the data science algorithms and techniques cor-
pus use distance measures. They are used to determine similarities between instances in
the dataset from which we want to extract information. Clustering can be found among
these techniques, with the assignation rule from the k-means algorithm being the founda-
tion of the automatic clustering concept [M+67]. However, there is an infinite number of
distance measures that can be employed for this task, and finding the one that better suits
our dataset is crucial to obtain high quality results in any application. DML arises to meet
this need, with algorithms capable of finding distance metrics that capture hidden features
or relations in our datasets that standard measures like the Euclidean distance might miss.
Combining DML algorithms and distance-based learning algorithms results in more com-
plete and adaptive approaches to a wide variety of problems [SGH21].

One of the techniques that has helped developing DML is known as Learning from Side
Information (LSI), sometimes also referred to asMahalanobisMetric forClustering [XJRN03].
It directly connects with the SSL paradigm, particularly with the constraint-based SSL area,
as it incorporates side information referring to similar and dissimilar pairs of instances in
the dataset, which can be easily compared with the must-link and cannot-link constraint
sets. Given a pair of examples 𝑥𝑖 and 𝑥𝑗 , LSI can be viewed as a method to bring these in-
stances closer if they are similar ((𝑥𝑖, 𝑥𝑗) ∈ 𝐶=) or space them out if they are dissimilar
((𝑥𝑖, 𝑥𝑗) ∈ 𝐶≠). Formally, LSI searches for a positive semidefinite matrix𝑀 ∈ 𝑆𝑑(ℝ)+0 opti-
mizing Equation 8.

min𝑀 ∑(𝑥𝑖 ,𝑥𝑗)∈𝐶=
‖𝑥𝑖 − 𝑥𝑗‖2𝑀

𝑠.𝑡. ∶ ∑(𝑥𝑖 ,𝑥𝑗)∈𝐶≠
‖𝑥𝑖 − 𝑥𝑗‖𝑀 ≥ 1 . (8)

where ‖𝑥𝑖 − 𝑥𝑗‖𝑀 = √(𝑥𝑖 − 𝑥𝑗)𝑇𝑀(𝑥𝑖 − 𝑥𝑗). However, Equation 8 is hard to optimize with
traditional methods, so its authors propose an equivalent form in Equation 9, which can be
optimized using the projected gradient ascent method.

max𝑀 ∑(𝑥𝑖 ,𝑥𝑗)∈𝐶≠
‖𝑥𝑖 − 𝑥𝑗‖𝑀

𝑠.𝑡. ∶ ∑(𝑥𝑖 ,𝑥𝑗)∈𝐶=
‖𝑥𝑖 − 𝑥𝑗‖2𝑀 ≤ 1 . (9)

2.7 Monotonicity constraints in classification

Monotonicity constraints were originally integrated into the supervised learning classifica-
tion task, leading to monotonic classification. It can be viewed as a special case of standard
classification where the classes constitute a set of ordered categories. Monotonic classifi-
cation models must respect monotonicity constraints between the feature values of the in-
stances and their class labels [CGK+19].
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Formally, monotonic classification aims to predict the class label 𝑦𝑖 from an instance 𝑥𝑖
with 𝑦 ∈ 𝒴 = {𝑙1,⋯ , 𝑙𝑚}. The categories in 𝒴 are arranged in an order relation≺ in the form
𝑙1 ≺ 𝑙2 ≺ ⋯ ≺ 𝑙𝑚. In doing so, features and class labels aremonotonically constrained by the
background knowledge, i.e., 𝑥𝑖 ⪰ 𝑥𝑗 → 𝑓(𝑥𝑖) ≥ 𝑓(𝑥𝑗), where𝑥𝑖 ⪰ 𝑥𝑗 implies that all features
in 𝑥𝑖 compare to features in 𝑥𝑗 with operator ≥, this is: 𝑥𝑖,𝑞 ≥ 𝑥𝑗,𝑞 ∀𝑞 ∈ {1,⋯ , 𝑢} [KS12].
This relationship between instances is referred to as dominance. In this case 𝑥1 dominates
𝑥2. The goal of monotonic classification is to build a classifier that does not violate mono-
tonicity constraints (pairwise dominance relationships). The result is a monotonic classi-
fier [CGK+19].

Much in the sameway as it is done with CCmethods, a distinction can bemade inmono-
tonic classifiers: softmonotonicmodels try tominimize the number ofmonotonic constraint
violations, while hard monotonic models always produce monotonic predictions (never vio-
late monotonic constraints) [GGL+21].

2.7.1 Partially ordered data clustering in MCDA

In [RDSDD21] the monotonicity constraints are integrated into unsupervised learning to
produce the ordered clustering framework. Particularly, they are integrated into the MCDA
paradigm, which is a subfield of operational research that concerns the structuring and res-
olution of decision problems including multiple criteria [Roy96]. To do so, the classic sym-
metrical notion of distance in pattern recognition is replaced with the asymmetrical notion
of preference from the MCDA paradigm. The preference of an instance over another evalu-
ates the global advantages of the former over the latter according to some preference criteria.
The notion of preference can be seen as a decomposition of a distancemeasure by taking into
account the sign of the differences. To cluster instances in an MCDA context, the similar-
ity between every pair of instances is evaluated in terms of preferences taking all the other
alternatives into account. With this in mind, two instances are similar if they both rank
either higher or lower in preference with respect to the same set of instances. To formal-
ize these concepts, let us consider the weighted 𝐿1 distance (for the maximization case and
without loss of generality) as in Equation 10, which can be simplified as in Equation 11, with
𝑤𝑑 ∈ [0, 1] being the weight assigned to the 𝑑th feature.

𝐿1(𝑥𝑖, 𝑥𝑗) =
𝑢
∑
𝑑=1

𝑤𝑑|𝑥[𝑖,𝑑] − 𝑥[𝑗,𝑑]|. (10)

𝐿1(𝑥𝑖, 𝑥𝑗) =
𝑢
∑

𝑑∶𝑥[𝑖,𝑑]>𝑥[𝑗,𝑑]
𝑤𝑑𝑥[𝑖,𝑑] − 𝑤𝑑𝑥[𝑗,𝑑] +

𝑢
∑

𝑑∶𝑥[𝑗,𝑑]>𝑥[𝑖,𝑑]
𝑤𝑑𝑥[𝑗,𝑑] − 𝑤𝑑𝑥[𝑖,𝑑]. (11)

Consequently, let us define the preference of 𝑥𝑖 over 𝑥𝑗 as in Equation 12. To put this
into words, 𝑟(𝑥𝑖, 𝑥𝑗) quantifies the sum of differences between 𝑥𝑖 and 𝑥𝑗 limited to the fea-
tures in which 𝑥𝑖 has higher (lower) values than 𝑥𝑗 for the maximization (minimization)
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case. Intuitively, the preference 𝑟(𝑥𝑖, 𝑥𝑗) indicates the cumulative quantified value of the
advantage of 𝑥𝑖 over 𝑥𝑗 . Please note that, as it has already been mentioned, the preference
is not symmetrical: 𝑟(𝑥𝑖, 𝑥𝑗) ≠ 𝑟(𝑥𝑗 , 𝑥𝑖) in most cases.

𝑟(𝑥𝑖, 𝑥𝑗) =
𝑢
∑

𝑑∶𝑥[𝑖,𝑑]>𝑥[𝑗,𝑑]
𝑤𝑑𝑥[𝑖,𝑑] − 𝑤𝑑𝑥[𝑗,𝑑]. (12)

Finally, note that the weighted 𝐿1 distance between two instances can always be ex-
pressed as in Equation 13. This decomposition can be done the same way for any 𝐿𝑝 dis-
tance.

𝐿1(𝑥𝑖, 𝑥𝑗) = 𝑟(𝑥𝑖, 𝑥𝑗) + 𝑟(𝑥𝑗 , 𝑥𝑖). (13)
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3 Justification

SSL has become an important area of research in the field of ML, especially in applications
where labeled data is scarce or expensive to obtain. CC is a specific form of SSL where
constraints are imposed on the clustering process to guide the formation of clusters. These
constraints can be in the form of pairwise instance relationships, class labels, or other forms
of domain knowledge. The incorporation of such constraints can significantly enhance the
quality of clustering and make it more useful in practice. As such, a thesis focused on CC in
the context of SSL can make significant contributions to both the theory and practice of ML.
The specific reasons that motivate this thesis are listed below.

• Firstly, CC is an important and challenging problem in the field of ML, and it has a
wide range of practical applications in various fields such as bioinformatics, image
and video analysis, and natural language processing, among others. Therefore, the
development of new and improved techniques for CC is highly desirable, and it has
the potential to make a significant impact on many areas of research and industry.

• Secondly, the current state-of-the-art in CC is limited, and there is a significant gap
between the existing techniques and the desired outcomes. This gap is an opportunity
for innovative research to address the limitations of current methods and raise the
standards of solution quality in CC.

• Thirdly, the proposed thesis project aims to contribute to the development of a uni-
fied framework and formal taxonomy for CC. This is a necessary step towards a better
understanding of the field and the development of more efficient and effective tech-
niques.

• Fourthly, the project proposes the application of evolutionary metaheuristics to CC,
which is a promising line of research that has not been fully explored yet. This presents
an opportunity to develop novel algorithms that considerably boost the performance
of CC methods.

• Finally, the project encourages the exploration of the links between CC and other non-
standard learning paradigms, which can lead to further innovation in information
combination techniques.

In summary, a thesis focused on CC is justified due to the relevance and the challenging
nature of the problem, the shortcomings of current techniques, the need for a unified frame-
work and formal taxonomy, the potential for the application of evolutionary metaheuristics,
and the opportunity to explore the relationshipwith other non-standard learning paradigms.
The results of this research can have a substantial impact on various fields and can pave the
way for further research and innovation in CC.
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4 Objectives

Once the main concepts of the state-of-the-art have been introduced, the objectives that
have driven this thesis can be elaborated on. In the first place, they include the creation of
a previously nonexistent general reference in the CC area, which serves as a comprehensive
survey of the state-of-the-art in the area. Afterwards, and with the knowledge gathered in
the mentioned study as a foundation, CC is tackled from different points of view, including
metaheuristic and classic clustering-based approaches. Finally, the relationship betweenCC
and other non-standard learning paradigms is addressed. These objectives can be broken
down as follows:

Creation of a taxonomy and a ranking of CCmethods. To fulfill this first objective, it
is necessary to carry out an analysis of existing CC methods, focusing on their similarities
and differences to produce a consistent taxonomy. This taxonomy may contain categories
that are present in classic clustering surveys, existing categories in the area of CC and, ideally,
newly identified CC categories. An interesting byproduct of this study will be a statistical
analysis of the most frequent experimental setup when testing the capabilities of any given
CC method. It can be obtained by carefully gathering information from the experimental
section of the papers in the analyzed corpus. We aim to produce a ranking of all CCmethods
analyzed that can later be used to identify the most promising ones.

Study of CC from the point of view of metaheuristics. As mentioned in previous sec-
tions, CC is intractable in practice; hence, metaheuristics represent a promising approach.
In this second objective, CC is addressed from the single-objective and multi-objective op-
timization paradigms. Firstly, a single-objective metaheuristic approach must be consid-
ered to tackle CC. This can be done by designing a suitable representation scheme and a
proper objective function, which ideally will combine classic clustering and CC indicators.
Secondly, multi-objective approaches are considered to address CC. Metaheuristics have
proven to be excellent optimization algorithms in this area, and therefore the combination
of bothmust be taken into account. To this end, the creation of a new representation scheme
is needed, and the set of objective functions to be optimized must be chosen.

Hybrid models for CC. How to integrate constraints into the clustering process remains
one of the major challenges within the CC area. Usually, the combination of multiple in-
tegration models results in higher performance when the constraint set is free of noise and
other imperfections. Two categories shape the landscape of CC methods: constrained par-
titional methods and constrained DML methods. As these two paradigms are compatible
with each other, the combination of both, with the redundant subsequent inclusions of con-
straints, is promising in scenarios with reliable constraint sets. To fulfill this third objective,
the combination of CC models which belong to the two major CC categories must be stud-
ied. Ideally, this would result in a new hybrid CC model with the inclusion of redundant
constraints.
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Combining multiple types of background knowledge. Constraints are not the only
type of background knowledge that has drawn attention from the scientific community. In
fact, there are many variations of classic ML problems whose existence is derived from the
modification of the initial conditions or the information given to a classic one. Real-world ap-
plications are not limited to a single type of background knowledge. In fact, there is no limit
in this regard. With this inmind, the combination of instance-level pairwise constraints and
other types of background knowledge is studied in this fourth objective.
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5 Methodology

The research conducted throughout this thesis has been carried out following the scientific
method. In this particular case, it requires both practical and theoretical methodologies.
The general guidelines applied in all studies included in this thesis are summarized here:

• Observation: through the study of the SSL task, and focusing on CC. The goal of
this stage is to identify research opportunities, which could result in new, successful
models to address CC and extend its applicability.

• Formulation of hypotheses: design of new CC algorithms, with an emphasis on
their scalability with respect to the amount of constraint-based information available.
The models designed and developed must fulfill the objectives described in previous
sections.

• Experimental data collection: the designed models are tested on diverse scenarios
to obtain results as representative of their capabilities as possible. These results are
later analyzed using external quality indices.

• Contrasting the hypotheses: the results obtained are compared with representative
models from the existing literature, with the aim of analyzing their quality in terms of
efficiency and effectiveness. To this end, a set of representative models is chosen on
the basis of a comprehensive literature review. These methods are implemented and
published, for the sake of reproducibility of results.

• Validation of hypotheses: hypotheses formulated in the experiments are proven or
disproven following objective quality indicators and statistical testing. If any given
hypothesis is rejected, it must be modified and the previous steps repeated from that
point on.

• Scientific thesis: relevant conclusions are extracted in view of the outcomes of the
research process. All the results and conclusions obtained must be gathered and syn-
thesized into a documentary report of the thesis.
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6 Summary

The body of knowledge compiled in this thesis is found in 5 different studies, published in
scientific journals and conferences. The aim of this section is to summarize and introduce
these studies, whose results will be discussed later (in Section 7). The publications are listed
below:

• González-Almagro, G., Peralta, D., DePoorter, E., Cano, J. R., &García, S. (2023). Semi-
Supervised Constrained Clustering: An In-Depth Overview, Ranked Taxonomy and
Future Research Directions. arXiv preprint arXiv:2303.00522.

• González-Almagro, G., Luengo, J., Cano, J. R., & García, S. (2020). DILS: constrained
clustering through dual iterative local search. Computers &Operations Research, 121,
104979. DOI: https://doi.org/10.1016/j.cor.2020.104979.

• Gonzalez-Almagro, G., Rosales-Perez, A., Luengo, J., Cano, J. R., & Garcia, S. (2021).
ME-MEOA/Dcc: Multiobjective constrained clustering through decomposition-based
memetic elitism. Swarm and Evolutionary Computation, 66, 100939. DOI: https:
//doi.org/10.1016/j.swevo.2021.100939.

• Gonzalez-Almagro, G., Suárez, J. L., Luengo, J., Cano, J. R., & García, S. (2022). Three
Stages Hybrid Agglomerative Constrained Clustering (3SHACC): Three stages hybrid
agglomerative constrained clustering. Neurocomputing, 490, 441-461. DOI: https:
//doi.org/10.1016/j.neucom.2021.12.018.

• González-Almagro, G., Suárez, J. L., Sánchez-Bermejo, P., Cano, J. R., & García, S.
(2023). Semi-supervised Clustering with Two Types of Background Knowledge: Fus-
ing Pairwise Constraints and Monotonicity Constraints. arXiv:2302.14060.

The remainder of this section is organized according to the publications listed above
and the objectives described in Section 4. Firstly, Section 6.1 presents a summary of the
newly-created taxonomy. The knowledge gained through the study of the scientific corpus
analyzed to create the taxonomy is leveraged in subsequent studies to design a suitable ex-
perimental setup. In Section 6.2, this experimental setup is used to apply twometaheuristic-
based methods to CC. One of them implements a single-objective optimization procedure,
while the other is designed to handle multi-objective problems. Afterwards, Section 6.3 in-
troduces a new hybrid optimization method for CC which combines DML and classic HC
techniques. Additionally, it proposes a completely unsupervised and automatic constraint
weighting procedure. Finally, Section 6.4 studies the combination of two types of back-
ground knowledge: instance-level pairwise constraints, and monotonicity constraints. The
resulting method is applied in a real-world scenario which had never been addressed from
such point of view.
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6.1 Creation of a taxonomy and a ranking of CCmethods

The last published survey of the state-of-the-art in the field of CC dates back to the year 2007.
Since then, a plethora of new types of background knowledge and CC methods have been
discovered. The goal of this study is two-fold. Firstly, it serves as the general reference the
CC area has been lacking for years. Secondly, it helped us to learn about the intricacies of
SSL and CC, such as the differences between approaches, the experimental procedures used
to prove their capabilities, and the research opportunities.

Overall, the study provides the readerwith everything needed to understand theCCprob-
lem, from basic to advanced concepts. It starts with a taxonomy of types of background
knowledge, which were found during the process of building the corpus of CCmethods that
had to be reviewed; overall, 33 different types of background knowledge were found which
could be organized into 5 families. Next, it introduces all the necessary background related
to classic clustering and CC, focusing on CC and diving into the relevant advanced concepts
and structures. This includes its early history and a review of its applications. Afterwards,
a statistical study on the experimental elements used to demonstrate the capabilities of CC
methods is presented, which later constitutes the foundation of an objective scoring system.
We believe that this scoring system is one of the most valuable contributions of this study. It
can be employed to evaluate and rank the studies belonging to any scientific corpus; in this
particular case, it gives the reader an objective toolkit with which to navigate the literature
in a more effective way. Finally, a taxonomy of 307 CC methods is proposed. A total of 29
CC categories are identified: some of them are classic clustering categories, others are CC
categories found in previous studies, and the remaining ones are novel categories first iden-
tified in this study. A statistical analysis of this taxonomy is also carried out. The publication
associated with this study is:

González-Almagro, G., Peralta, D., De Poorter, E., Cano, J. R., & García, S. (2023).
Semi-Supervised Constrained Clustering: An In-Depth Overview, Ranked Taxonomy
and Future Research Directions. arXiv preprint arXiv:2303.00522.

6.2 Study of CC from the point of view of metaheuristics

CC can also be expressed as an optimization problem, which allows for the application of
many optimization techniques, although the resolution itself is no trivial task. In this con-
text, metaheuristic algorithms are becoming increasingly popular for finding approximate
solutions of sufficient quality. These algorithms work by exploring the solution space using
a fitness function and balancing exploration and exploitation. While metaheuristics have
been successfully applied to classic clustering, little work has been done on their suitability
for CC, particularly in highly-constrained environments. To fulfill the objectives associated
with this section, the CC problem is addressed from a metaheuristics point of view, and in
two completely different setups: the single-objective optimization paradigm, and the multi-
objective optimization paradigm.
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6.2.1 CC through single-objective optimization metaheuristics

Awidely-knownmetaheuristic algorithm is the Iterative Local Search (ILS), which is a vari-
ant of Local Search (LS) that periodically introduces perturbations to escape local optima.
ILS has been successfully applied in a wide range of applications, including the traveling
salesman, the quadraticmultiple knapsack, and the vehicle routing problem. It is often used
in combination with other techniques to achieve good exploration-exploitation trade-offs.
In the first study associated with this section, we propose a new variant of ILS called Dual
Iterative Local Search (DILS) that combines the exploitation capability of ILS with classic
diversity-introducing techniques from genetic algorithms such as recombination and muta-
tion operators. DILS also includes a restarting mechanism to escape from local optima and
can optimize two individuals at the same time to manage the exploration of the solution
space.

We have developed an application of DILS for CC called DILS𝐶𝐶 which uses an integer-
based representation scheme and a penalty-style fitness function. We have demonstrated
that DILS is a competitive approach for obtaining high-quality solutions to the CC problem,
particularly in highly-constrained environments. This is due to the exploitation capability
of DILS, which allows for the quality of the results to scale with the amount of constraints.
The publication associated with this study is:

González-Almagro, G., Luengo, J., Cano, J. R., & García, S. (2020). DILS: constrained
clustering through dual iterative local search. Computers & Operations Research,
121, 104979. DOI: https://doi.org/10.1016/j.cor.2020.104979.

6.2.2 CC through multi-objective optimization metaheuristics

MOEAs are effective at optimizing objective functions that may have conflicting goals, such
as CC where traditional clustering objectives create spherical clusters, while CC objectives
deviate from this trend.

In the study associated with this section, we propose a memetic elitist version of Multi-
Objective Evolutionary Algorithm based on Decomposition (MOEA/D) called Memetic Eli-
tist - MOEA/D (ME-MOEA/D) for CC. Memetic algorithms are a class of optimization al-
gorithms that incorporate both global search strategies and local search procedures in order
to improve the quality of solutions found and accelerate the convergence of the underlying
genetic algorithm. Unlike MOEA/D, our proposal implements memetic elitism by applying
any single-objective optimization procedure to select elite individuals using a dominance-
guided sorting mechanism. ME-MOEA/D can also adaptively select the single-objective
function to optimize for each individual at any stage of the optimization process, while al-
lowing for user control through parameter settings.

ME-MOEA/D fuses classic multiobjective optimization methods with single-objective
procedures such as LS, allowing it to produce high-quality results for the CC problem. We
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improve its application to CC by introducing a new initializationmethod, a biased crossover
operator, and an external population limiting method. These genetic components, com-
bined with a memetic elitist version of MOEA/D, have not been studied previously. The
publication associated with this study is:

Gonzalez-Almagro, G., Rosales-Perez, A., Luengo, J., Cano, J. R., & Garcia, S. (2021).
ME-MEOA/Dcc: Multiobjective constrained clustering through decomposition-
based memetic elitism. Swarm and Evolutionary Computation, 66, 100939. DOI:
https://doi.org/10.1016/j.swevo.2021.100939.

6.3 Hybrid models for CC

The aim of the study associated with this objective is to explore the use of hybrid models in
CC. Most notably, it focuses on the combination of constrained agglomerative HC methods
and constrained DML methods. Methods from this paradigm will combine distance-based
techniques with clustering-engine adapting techniques to effectively address CC. In addi-
tion, we propose the use of weighted constraints to guide the clustering process towards
higher-quality solutions. Nonetheless, there is currently limited research on the automatic
generation of constraint weights and their integration into distance-based CCmethods. Our
study aims to fill these gaps by introducing the 3SHACC method. This method can obtain
a full dendrogram that captures the intricate manifold structures present in a dataset and
incorporates constraints into the process. It accomplishes this through three well-defined
stages: (1) the relevance of every constraint is determined and a new metric is built on the
basis of the newly weighted constraint set by using a new DML method; (2) the similarities
among instances in the dataset are calculated according to the newly computed distance
metric and the pairwise reconstruction coefficient; and (3) a dendrogram is obtained by
running a classic Agglomerative Hierarchical Clustering (AHC) method with a constraint-
biased stepped affinity function integrating the computed similarities and the information
contained in the constraint set. Note that, even if these three stages are designed to be ap-
plied together, they are independent from each other, and can be incorporated into other
CC methods as intermediate steps. The publication associated with this study is:

Gonzalez-Almagro, G., Suárez, J. L., Luengo, J., Cano, J. R., & García, S. (2022).
3SHACC: Three stages hybrid agglomerative constrained clustering. Neurocomput-
ing, 490, 441-461. DOI: https://doi.org/10.1016/j.neucom.2021.12.018.

6.4 Combining multiple types of background knowledge

As stated in Section 6.1, many types of background knowledge can be found in the literature.
To fulfill the objective associated with this section, we assume CC methods are not limited
to one of them, and that there are applications where more than one type of background
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knowledge can be available. Consequently, methods which are capable of handling various
type of background knowledge have to be developed. We aim to find an application where
pairwise instance-level constraints and other types of constraints are both available, and
thus where a model that combines both of them is necessary.

In recent years, unsupervised learning has incorporated a new type of backgroundknowl-
edge from the supervised learning paradigm. Monotonic classification is a type of supervised
learningwhere classificationmodelsmust followmonotonicity constraints among instances
based on their descriptive features. This means that the classes, which are ordered cate-
gories, must respect the ordering relationship between instances based on their feature val-
ues. For instance, in the context of house pricing, bigger houses are expected to have higher
prices than smaller ones in the same neighborhood when other features are similar. This or-
der relationship between instances based on their feature values can be leveraged to produce
more accurate predictive models. Monotonicity constraints have been successfully applied
in various real-world problems such as fraudulent firm classification, real-time dynamic
malware detection, and analysis of learning activities based on student opinion surveys. A
methodology to perform clustering in the presence of monotonicity information, known as
ordered clustering, has also been introduced within the MCDA framework. This methodol-
ogy involves defining a distance measure grounded on the concept of preference. The gist of
it lies in comparing instances in the dataset by examining the comparative relationships of
their features, resulting in a distance measure that produces ordered labeling which follow
monotonicity. This approach is similar to the monotonic classification models discussed
earlier.

The study associatedwith this objective aims to combine two types of background knowl-
edge —pairwise constraints and monotonicity constraints—to address real-world problems
like the Shanghai Ranking of World Universities (SRWU) dataset partitioning. While pre-
vious studies have combined monotonicity constraints with other types of constraints like
cluster-size constraints, the combination of monotonicity and pairwise constraints remains
unexplored. This study proposes the Monotonic Constrained Clustering (MCC) paradigm,
which includes pairwise constraints into the ordered clustering process. To optimize the
MCC objective function, an Expectation-Minimization (EM) scheme called Pairwise Con-
strained K-Means - Monotonic (PCKM-Mono) is proposed. This is the first study to ac-
knowledge and tackle the logical relationship betweenmonotonic classification and ordered
clustering, and the hybrid objective function proposed here combines a monotonic distance
metric and a penalty term for pairwise constraint violations. The publication associatedwith
this study is:

González-Almagro, G., Suárez, J. L., Sánchez-Bermejo, P., Cano, J. R., & Gar-
cía, S. (2023). Semi-supervised Clustering with Two Types of Background Knowl-
edge: Fusing Pairwise Constraints and Monotonicity Constraints. arXiv preprint
arXiv:2302.14060.
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7 Discussion of Results

With the exception of the first objective, the rest of them involve experimental procedures
aimed at proving the capabilities of the proposedmethods. A consistent experimentalmethod-
ology ensures that the research findings are reliable and valid and produce robust evidence
to support the research hypotheses. Homogeneity in the experimental procedures guaran-
tees that the same process is followed consistently throughout the research, minimizing the
effects of extraneous variables and ensuring that the results are comparable. Statistical val-
idation procedures safeguard against the effects of mere chance and help to ascertain the
statistical significance of any patterns or relationships observed in the data. In general, sta-
tistical techniques help to ensure that the findings are robust and can be generalized to the
wider population. Justifying homogeneity in experimental procedures and statistical valida-
tion procedures demonstrates rigor and validity in the research and builds confidence in the
findings among peers and the wider academic community.

With these guidelines in mind, all the experimental studies carried out to fulfill the ob-
jectives of this thesis follow the same structure and use shared external validity indices and
statistical testing procedures. The findings derived from the study that meets the first objec-
tive (the survey of the state-of-the-art) are used to particularize experimental studies. The
set of benchmarks, external validity indices, and statistical testing procedures are decided ac-
cording to that study. Particularly, the set of benchmarks found in every experimental study
consist of a series of classification datasets, which is as similar to the rest as the characteris-
tics of each proposal reasonably allow. No preprocessing other than standard normalization
is applied to these datasets in any case. In all cases, the capabilities of the methods under
comparison are tested in three different levels of constraint-based information, and conclu-
sions are always supported with Bayesian statistical testing procedures. Regarding the ex-
ternal quality measures, different studies need to test different capabilities of the compared
methods, so the set of measures varies from one to another. However, the ARI is used in all
the studies and that can serve as a unifying thread between them, making comparisons pos-
sible. Regarding the methods used in the experimental comparisons, the baseline methods
found in our survey of the state-of-the-art, such as COPKM and LCVQE, are always present.
Nevertheless, given the differences that exist among our proposals, other state-of-the-art
methods in the particular area to which each method belongs have to be considered.

This section summarizes the analysis of results obtained to fulfill the objectives of this
thesis. It also briefly discusses the particularities related to the experimental setups in each
study. Similarly to Section 6, the remainder of this section is organized according to the pub-
lications and the objectives introduced in Section 4. Section 7.1 provides the conclusions
drawn from the creation of the taxonomy and its statistical analysis. Section 7.2 summa-
rizes the results obtained with the metaheuristic approaches DILS and ME-MOEA/D. The
results obtained by our hybrid model 3SHACC are shown in Section 7.3. Finally, Section 7.4
contains the results obtained by PCKM-Mono.
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7.1 Creation of a taxonomy and a ranking of CCmethods

The study related to this objective produced a systematic review of the field of CC, which is a
type of SSL that incorporates background knowledge into the clustering process. It provides
an introduction to SSL and discusses the area of semi-supervised clustering, highlighting the
types of background knowledge that can be included as constraints. It argues that instance-
level pairwise Must-Link (ML) and Cannot-Link (CL) constraints are the most successful
types of constraints in CC. It formalizes CC and gives examples of practical applications.
Then, advanced CC concepts and structures are described, analyzing the advantages and
disadvantages of different approaches. A statistical analysis of the experimental elements
present in studies proposing new CCmethods serves as the basis to create an objective scor-
ing system to evaluate each approach. This is the system through which 307 CC methods
are ranked and split into twomajor families—constrained partitional and constrained DML.
The methods in each family are further divided into more specific categories, and their fea-
tures and elements are described in detail.

The proposed taxonomy can be used to:

• Decide which type of approach and model is best suited for a new CC problem.

• Compare newly proposed techniques to those in the same family in this taxonomy, so
that it can be determined whether the new method represents an improvement over
the current state-of-the-art.

• Identify the proposals which best support their conclusions and propose more robust
methods, thanks to the scoring system.

As a result of this research, the main flaws and criticism related to the CC area can be
identified. Having reviewed 270 studies (proposing 307 methods), we have identified 5 se-
rious shortcomings which affect the vast majority of them. These drawbacks can be sum-
marized as follows: an absence of a unified, general reference; low amount of application
studies; a lack of extensive experimental comparisons; unavailability of dedicated, standard-
ized CC-oriented datasets and constraint sets; and statistically unsupported experimental
conclusions.

7.2 Study of CC from the point of view of metaheuristics

The two studies related to this objective prove that both single-objective andmulti-objective
metaheuristics can produce high-quality results in the CC problems. In particular, DILS and
ME-MOEA/D have been proven to outperform the state-of-the-art in their respective fields.
Sections 7.2.1 and 7.2.2 discuss the particularities and the results obtained with these two
methods, respectively.
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7.2.1 CC through single-objective optimization metaheuristics

Our single-objective metaheuristic proposal to address CC is called DILS. It is tested on
25 different (unpreprocessed) datasets with three different constraint sets that contain in-
creasing levels of constraint-based information for each one. The comparison includes 6
existing approaches to CC. One of the is the state-of-the-art in single-objective metaheuris-
tics applied to CC (BRKGA+LS) and the rest are baseline CC algorithms (COPKM, LCVQE,
RDPM, TVClust and CECM). The external quality measure used to compare results is ARI
in this case.

The Bayesian signed rank test provides evidence in favor of DILS when handling highly
constrained problems. Nonetheless, it is worth acknowledging that, in some cases, the re-
sults obtained by the DILS are not superior in certain datasets to those from a randommodel.
Concerning this caveat, it should be noted that no parameter optimization was performed
in this study. Hence, it is possible that different parameter choices could lead to better out-
comes in these datasets.

7.2.2 CC through multi-objective optimization metaheuristics

Ourmulti-objectivemetaheuristic proposal to addressCC is calledME-MOEA/D. The exper-
imental study carried out to test its capabilities is, by far, themost extensive one presented in
this thesis. This is because ME-MOEA/D has to be tested in many different environments
and from different points of view. First, as it is a CC method, it must be compared with
baseline CC methods. Secondly, since it optimizes a single objective function, it must also
be compared with the state-of-the-art in single-objective metaheuristics applied to CC. Fi-
nally, it is an MOEA, so it must be compared with the state-of-the-art in MOEAs applied
to CC. In view of this, ME-MOEA/D is tested on 20 different (unpreprocessed) datasets,
again, with three different constraint sets that contain increasing levels of constraint-based
information. Regarding the competingmethods, 8 existing approaches to CC are considered:
four baseline CC algorithms (COPKM, LCVQE, RDPM, and TVClust); one algorithm from
the state-of-the-art in single-objective metaheuristics applied to CC (SHADE𝐶𝐶); two algo-
rithms from the state-of-the-art in MOEAs applied to CC (MOCK and PESA-II); and lastly
the classic MOEA/D, which was the foundation of ME-MOEA/D.

Regarding the external quality measures, two sets of them are employed. Firstly, ARI
and Unsat are used to assess the capabilities of the various methods with according to the
quality of the partition they obtain and the ability to integrate constraints. Secondly, the
Pareto approximations obtained by the MOEAs are compared by means of three classic,
well-established, Pareto-related measures: the Pareto size, the Hypervolume, and the 𝜖+-
indicator.

The Bayesian signed rank test provides evidence in favor of ME-MOEA/D𝐶𝐶 consis-
tently outperforming all other compared methods. ME-MOEA/D𝐶𝐶 also produced Pareto
approximations with better individual solutions compared to previous approaches, even if
it produced more compact Pareto approximations.
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7.3 Hybrid models for CC

Our hybrid CCmodel is called 3SHACC. It has been tested on 25 (unpreprocessed) datasets
and 3 constraint sets with increasing levels of constraint-based information for every one of
the datasets. It is compared with 6 previous approaches to CC: one of them is its predeces-
sor 2SHACC, and the rest are CC baseline algorithms (COPKM, LCVQE, RDPM, TVClust
and PCSKM). An assessment about the influence of the hyperparameters of 3SHACC on its
results is also made in the study related to this objective. The ARI and the Unsat quality
indicators are used to compare the results obtained by all these methods. The total number
of optimal results is also taken into account to draw conclusions.

Our experimental results demonstrate that 3SHACC consistently outperforms classic ap-
proaches to CC and its predecessor 2SHACC in bothARI andUnsatmeasures. Furthermore,
our findings suggest that 3SHACC is capable of scaling the quality of the results with the
amount of constraint-based information available to a greater extent than classic approaches.
These conclusions are supported by the Bayesian signed-rank test, which assigns a signifi-
cantly higher probability to our proposal being better on average than any other method
studied.

7.4 Combining multiple types of background knowledge

Our method PCKM-Mono combines pairwise instance-level constraints and monotonicity
constraints. In this case, the study related to this objective needs to prove not only the capa-
bilities of our proposal, but also the practical relevance of the matter it addresses. For this
reason, the experimental setup found in the study differs from the previous ones in some
aspects. Firstly, the set of benchmarks is different from the one found in previous studies,
as it has to include monotonic datasets to demonstrate the ability of PCKM-Mono to inte-
grate monotonic constraints into the clustering process. Secondly, the set of external quality
indicators is extended to include monotonicity-related measures. Unfortunately, there is no
standard measure that can take both pairwise instance-level constraints and monotonicity
constraints into account, and hence these two aspects have to be analyzed separately. The
ARI measure is used to evaluate results from a clustering quality point of view, the Unsat
is used to evaluate the ability of the different methods to integrate pairwise instance-level
constraints, and the Non-Monotonic Index (NMI) is used to evaluate monotonicity-related
capabilities (not to be mistaken with the Normalized Mutual Information).

The set of comparedmethodsmust include classic clusteringmethods (to prove the prac-
tical relevance of the problem and the need for novel approaches to tackle it), CC baseline
methods, and monotonic clustering methods. To this end, 5 methods are compared: the
classic Kmeans, the P2Clust monotonic clustering method, and the COPKM and PCSKM
CC methods. All of them use an EM scheme similar to the one employed by PCKM-Mono.

In addition to the traditional set of benchmarks, the dataset of the problem that moti-
vated the creation of PCKM-Mono is considered in the study. A detailed analysis of the
Shanghai Ranking of World Universities (SRWU) dataset and the results obtained by all



7 Discussion of Results 45

compared methods has been conducted.
The statistical analysis of the results (through Bayesian statistical testing) confirms the

advantage of PCKM-Monoover purelymonotonic andpurely pairwiseCC techniques. While
PCKM-Mono achieves similar results to previous methods for specific monotonicity and
pairwise constraint satisfaction, it is statistically superior in terms of general clustering qual-
ity measures. Additionally, when it comes to a specific problem such as the partitioning
of the SRWU dataset, the experimental results continue to provide evidence in favor of
PCKM-Mono, as purely CC methods cannot take monotonicity constraints into account,
and purely monotonic clustering methods cannot deviate from perfect monotonicity, which
SRWU does not feature.
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8 Conclusions and Future Work

This section concludes the thesis (Section 8.1), gathers all the relevant studies we have pub-
lished (Section 8.2), and provides notes on future research lines (Section 8.3).

8.1 Conclusions

This thesis presents an extensive study of CC that provides both a comprehensive view on
the work already done in the area and innovation in the form of four new CC methods.
The overarching goal of this thesis is to broaden the current knowledge about CC and to
address the problem from new perspectives. In order to do so, the most systematic literature
review ever produced in the area was carried out, and comprehensive experimental studies
were conducted to prove the potential of our proposals to achieve higher standards than the
previously published alternatives.

To accomplish the first objective, the most extensive CC literature corpus has been gath-
ered and analyzed, resulting in a new taxonomy of the types of constraints, and in a taxon-
omy of CC methods which includes newly discovered categories. A statistical analysis of
both the experimental setups used to prove the capabilities of the methods gathered in the
taxonomy, and the taxonomy itself, provide the necessary knowledge to develop subsequent
studies, including the four new proposals described in this thesis. As a conclusion to this
objective, we encourage research on the CC area to observe the research guidelines provided
in the study associated with it. Through them, researchers can easily identify the unsolved
challenges in the area, and focus their efforts on them.

The second objective is the broadest one, since its completion has involved two extensive
experimental studies. This objective focuses on CC from ametaheuristics point of view, and
aims to approach its resolution through both a single-objective and a multi-objective opti-
mization algorithm. The two methods—DILS and ME-MOEA/D—are designed to realize
these two approaches. DILS is a single-objective metaheuristic algorithm based on ILS, and
ME-MOEA/D is an MOEA which introduces single-objective-based memetic elitism proce-
dures into the classic MOEA/Dmethod. As a conclusion to this objective, it is reasonable to
think that both DILS and ME-MOEA/D overcome the drawbacks that the previous propos-
als in their respective areas suffered from. DILS constitutes a remarkable improvement over
previous single-objective metaheuristic approaches to CC with respect to clustering quality.
The same can be said about ME-MOEA/D, which also produces better results than previous
proposals in multi-objective-related quality measures.

Hybridizations in the CC area are addressed as part of the third objective of this thesis.
The research carried out for this objective proposes the three-staged algorithm 3SHACC. In
its three stages it implements an automatic constraint weighting procedure, a constrained
DML algorithm capable of handling constraint weights, and an affinity-based hierarchical
CC method which produces the output partition. It is clear that 3SHACC is a hybrid CC
model, as it combines techniques from the two broadest families of CC methods, namely:
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partitional CC, and constrainedDML. As a conclusion to this objective, we can highlight the
outstanding performance of 3SHACC when compared to CC baseline algorithms. 3SHACC
is capable of achieving optimum results much more frequently than any other of its alterna-
tives, and itsmodularity allows researchers to reuse parts that can benefit their own research.

The fourth and last objective concerns the task of combining multiple types of back-
ground knowledge, under the assumption that, in real-world problems, many types of back-
ground knowledge can be available to perform learning. The study we proposed to fulfill
this objective tackles the combination of pairwise instance-level constraints andmonotonic-
ity constraints. To do so, a simple EM style algorithm is designed, called PCKM-Mono.
It uses a constraint-based penalty term to include constraints in the monotonic clustering
paradigm, thus producing a solution to monotonic CC. The practical relevance of this prob-
lem is proved by the existence of datasets such as the SRWU. As a conclusion to this objec-
tive, the experimental results in both standard benchmarks and specifically in the SRWU
dataset show the superiority of our proposal over classic, purely constrained and purely
monotonic clusteringmethods. These conclusions are supported by Bayesian statistical test-
ing performed on quality measures regarding clustering quality, constraint violations, and
monotonicity satisfaction.

Conclusiones

Esta tesis presenta un amplio estudio en CC que proporciona tanto una visión global de los
trabajos ya realizados en el área como un enfoque innovador a través de cuatro nuevos mé-
todos de CC. El objetivo general de esta tesis es ampliar el conocimiento actual sobre el CC
y estudiarlo desde nuevas perspectivas. Para ello, se ha llevado a cabo la revisión bibliográ-
fica más extensa hasta la fecha y se han hecho estudios experimentales exhaustivos para
demostrar el potencial de nuestras propuestas y superar los resultados de las alternativas
existentes.

Para lograr el primer objetivo, se ha recopilado y analizado un extenso corpus bibliográ-
fico del CC, que ha conllevado la creación de una nueva taxonomía de tipos de restricciones,
así como una taxonomía de métodos de CC que incluye nuevas categorías. Un análisis es-
tadístico tanto de los procedimientos experimentales utilizados para probar las capacidades
de los métodos recogidos en la taxonomía como de la propia taxonomía proporciona el co-
nocimiento necesario para desarrollar estudios posteriores, incluyendo las cuatro nuevas
propuestas descritas en esta tesis. En las conclusiones del estudio asociado a este apartado,
se insta a los investigadores en el área a observar las pautas de investigación que proporcio-
na el estudio. A través de dichas pautas, podrán identificar fácilmente los problemas en las
fronteras del área y centrar sus esfuerzos en ellos.

El segundo objetivo es el más amplio, ya que su realización ha implicado dos extensos
estudios experimentales. Este objetivo se centra en el CC desde un punto de vista metaheu-
rístico y pretende resolverlo a través de un algoritmo de optimización monoobjetivo y otro
multiobjetivo. Los dosmétodos—DILS yME-MOEA/D—están diseñados para implementar
estos dos enfoques. DILS es un algoritmometaheurísticomonoobjetivo basado en ILS,mien-
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tras que ME-MOEA/D es un MOEA que introduce elitismo memético monoobjetivo en el
método clásico MOEA/D. De este objetivo se extrae que es razonable pensar que tanto DILS
como ME-MOEA/D superan los inconvenientes de las propuestas anteriores en sus respec-
tivas áreas. DILS constituye una notable mejora respecto a las anteriores aproximaciones
metaheurísticas de monoobjetivo al problema CC en lo que se refiere a la calidad del clus-
tering. Lo mismo puede decirse de ME-MOEA/D, que también produce mejores resultados
que las propuestas anteriores en medidas de calidad multiobjetivo.

Las hibridaciones en el área del CC conforman el tercer objetivo de esta tesis. La inves-
tigación llevada a cabo para este objetivo propone el algoritmo 3SHACC. En sus tres etapas,
implementa ponderación automática de restricciones, un algoritmo DML con restricciones
(capaz de utilizar restricciones ponderadas) y un método de CC jerárquico basado en afini-
dades que produce la partición de salida. Es evidente que 3SHACC es un modelo CC híbri-
do, ya que combina técnicas de las dos familias más amplias de métodos CC conocidas: CC
particional y DML con restricciones. En cuanto a las conclusiones de este objetivo, destaca-
mos el excelente rendimiento de 3SHACC en comparación con los algoritmos de referencia.
3SHACC es capaz de obtener resultados óptimos con mucha más frecuencia que cualquier
alternativa. Además, su modularidad permite a los investigadores seleccionar las partes del
mismo que beneficien a su propia investigación.

El cuarto y último objetivo aborda la tarea de combinar múltiples tipos de restricciones
bajo el supuesto de que, en problemas reales, se dan dichas combinaciones. El estudio que
proponemos para cumplir este objetivo aborda la combinación de restricciones M-L y C-L y
restricciones de monotonicidad. Para ello, proponemos un sencillo algoritmo de estilo EM,
denominado PCKM-Mono. Este utiliza un término de penalización basado en restricciones
para incluirlas en el paradigma de clustering monotónico, produciendo así una solución al
CC monotónico. La necesidad de este tipo de aproximaciones queda demostrada por la exis-
tencia de conjuntos de datos como el SRWU. Este apartado concluye con los resultados ex-
perimentales tanto en benchmarks estandarizados como en el dataset SRWU. Los resultados
muestran la superioridad de nuestra propuesta sobre los métodos de clustering clásico, clus-
tering puramente restringido y clustering puramente monotónico. Estas conclusiones están
respaldadas por tests estadísticos bayesianos realizados sobre medidas relativas a la calidad
de las particiones, las restricciones incumplidas y el grado de satisfacción de la monotonici-
dad.

8.2 Publications

This section lists journal, conference and preprint papers published during the PhD study pe-
riod, ordered by publishing date. The DOI and the number of citations indicated by Google
Scholar are given for journal and conference papers.
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• Journal papers:

1. González-Almagro, G., Luengo, J., Cano, J. R., & García, S. (2020). DILS: con-
strained clustering through dual iterative local search. Computers & Operations
Research, 121, 104979. DOI: https://doi.org/10.1016/j.cor.2020.104979.
CITED BY: 16

2. González-Almagro, G., Luengo, J., Cano, J. R., & García, S. (2021). Enhanc-
ing instance-level constrained clustering through differential evolution. Applied
Soft Computing, 108, 107435. DOI: https://doi.org/10.1016/j.asoc.2021.
107435. CITED BY: 8

3. Gonzalez-Almagro, G., Rosales-Perez, A., Luengo, J., Cano, J. R., & Garcia, S.
(2021). ME-MEOA/Dcc: Multiobjective constrained clustering through decom-
position based memetic elitism. Swarm and Evolutionary Computation, 66,
100939. DOI: https://doi.org/10.1016/j.swevo.2021.100939. CITED BY:
6

4. Gonzalez-Almagro, G., Suárez, J. L., Luengo, J., Cano, J. R., & García, S. (2022).
3SHACC: Three stages hybrid agglomerative constrained clustering. Neurocom-
puting, 490, 441-461. DOI: https://doi.org/10.1016/j.neucom.2021.12.018.
CITED BY: 1

• Preprints:

1. González-Almagro, G., Peralta, D., De Poorter, E., Cano, J. R., & García, S. (2023).
Semi-Supervised Constrained Clustering: An In-Depth Overview, Ranked Tax-
onomy and Future Research Directions. arXiv preprint arXiv:2303.00522. Sub-
mitted to ACM Computing Surveys. CITED BY: 0

2. González-Almagro, G., Suárez, J. L., Sánchez-Bermejo, P., Cano, J. R., & García,
S. (2023). Semi-supervised Clustering with Two Types of Background Knowl-
edge: Fusing Pairwise Constraints andMonotonicity Constraints. arXiv preprint
arXiv:2302.14060. Submitted to Information Fusion. CITED BY: 0

• Conference papers:

1. González-Almagro, G., Rosales-Pérez, A., Luengo, J., Cano, J. R., & García, S.
(2020, June). Improving constrained clustering via decomposition-based mul-
tiobjective optimization with memetic elitism. In Proceedings of the 2020 Ge-
netic and Evolutionary Computation Conference (pp. 333-341). DOI: https:
//doi.org/10.1145/3377930.3390187. CITED BY: 5

2. González-Almagro, G., Suarez, J. L., Luengo, J., Cano, J. R., & García, S. (2020).
Agglomerative constrained clustering through similarity and distance recalcu-
lation. In Hybrid Artificial Intelligent Systems: 15th International Conference,
HAIS 2020, Gijón, Spain, November 11-13, 2020, Proceedings 15 (pp. 424-436).
Springer International Publishing. DOI: https://doi.org/10.1007/978-3-
030-61705-9_35. CITED BY: 2
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3. Wojciechowski, S., González-Almagro, G., García, S., &Woźniak,M. (2022, Septem-
ber). Adapting K-Means Algorithm for Pair-Wise Constrained Clustering of Im-
balanced Data Streams. In Hybrid Artificial Intelligent Systems: 17th Interna-
tional Conference, HAIS 2022, Salamanca, Spain, September 5–7, 2022, Proceed-
ings (pp. 153-163). Cham: Springer International Publishing. DOI: https://
doi.org/10.1007/978-3-031-15471-3_14. CITED BY: 0

4. González-Almagro, G., Bermejo, P. S., Suarez, J. L., Cano, J. R., & García, S. (2022,
August). Monotonic Constrained Clustering: A First Approach. In Advances
and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelli-
gence: 35th International Conference on Industrial, Engineering and Other Ap-
plications of Applied Intelligent Systems, IEA/AIE 2022, Kitakyushu, Japan, July
19–22, 2022, Proceedings (pp. 725-736). Cham: Springer International Publish-
ing. DOI: https://doi.org/10.1007/978-3-031-08530-7_61. CITED BY: 2

8.3 Future work

The results of this PhD thesis open up new research lines and contribute to the identification
of new challenges in CC. This section presents future work and promising research lines
derived from the studies and conclusions gathered in this thesis:

• Creation of a CC library: The availability of software is paramount to data science
as it directly impacts the efficiency, efficacy, and reproducibility of the research. With
the rapid growth of data science, a vast array of software tools have been developed to
perform various tasks, ranging from data cleaning and manipulation to ML and sta-
tistical analysis. Access to these tools enables researchers to carry out complex data
analyses and gain meaningful insights from large and complex datasets. Additionally,
the availability of open-source software, such as R and Python libraries, has facilitated
collaboration, information sharing and reproducibility of previous work, which is cru-
cial for the advancement of the field. Therefore, the availability of software is an es-
sential factor in enabling the outreach of data science and positive impacts on various
fields.
Unfortunately, very few CC studies make public the software used to produce their
results [KWH22]. The creation of an open-access library specialized in CC methods
would greatly stimulate research in the area, as it would enable fair and reproducible
comparisons for new proposals and grant easy access to working implementations of
standard methods for use in new applications.

• Constraint-based preprocessing: data preprocessing is a vital part in any data sci-
ence application [GLH15]. In supervised environments, preprocessing methods in-
volving labels, in addition to the predictors, produce generally better results than com-
pletely unsupervised preprocessing methods. However, there is very little work fo-
cusing on preprocessing within the SSL paradigm. We argue that constraints, when
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available, can prove advantageous in preprocessing procedures, as opposed to the cur-
rent trend which is to simply dismiss any information that does not fit the mold of
classic supervised and unsupervised learning paradigms.

• Preprocessing the constraint set: following the same train of thought that moti-
vated the future research linementioned above, the constraint set can be considered as
a dataset itself. Thismeans that it can suffer from the same imperfections as traditional
datasets, namely: missing values, noise, redundancies, etc. No methods other than
the artificial transitive closure augmentation and our automatic constraint weighting
procedures have been proposed to preprocess constraint sets. We argue that general
preprocessing methods could increase the quality of the results obtained by CC meth-
ods, and therefore their usability and applicability. We consider this to be one of the
more promising future research lines concerning CC.

• Parallelization: parallelization is highly relevant in genetic algorithms because it can
enormously increase the efficiency and speed of the optimization process [DSOM+19,
AT+99]. It can drastically reduce the computation time required to find an optimal
solution, particularly for scenarios that involve large datasets or complex fitness func-
tions, such as CC. Additionally, parallelization can help overcome issues with local
optima, which can trap the optimization process into a suboptimal solution. By explor-
ing multiple regions of the search space simultaneously, parallelization can help the
algorithm discover potentially better solutions. Studying the effects of parallelization
in the results of genetic algorithms applied to CC remains unaddressed.

• New combinations of types of background knowledge: in the future, more re-
search can be conducted to explore the potential of combining multiple types of back-
ground knowledge to developmore robust and accuratemodels. In this study, we have
investigated the combination of pairwise instance-level constraints and monotonicity
constraints. However, given the plethora of types of background knowledge that has
been found during the elaboration of the taxonomy of CC methods, there is evidence
in favor of intensifying research in their combination. One possible direction is to
investigate how to integrate multiple types of constraints in a seamless and more effi-
cient way. For example, developing new algorithms or optimization techniques that
can handlemultiple types of constraints simultaneously can lead tomore accurate and
robust models. Another potential research direction is to investigate how to identify
the best combination of background knowledge for a given problem automatically,
thereby keeping human effort and cost low. This can involve developing algorithms
or techniques that can identify (1) which types of background knowledge are themost
relevant and effective for a given problem, and (2) how to combine them to achieve
the best possible outcomes.
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tionally unsupervised, it has received renewed attention recently as it has
shown to produce better results when provided with new types of informa-
tion, thus leading to a new kind of semi-supervised learning: constrained
clustering. This technique is a generalization of traditional clustering that
considers additional information encoded by constraints. Constraints can
be given in the form of instance-level must-link and cannot-link constraints,
which is the focus of this paper. We propose a newmetaheuristic algorithm,
the Dual Iterative Local Search, and prove its ability to produce quality re-
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1 Introduction

Two major approaches characterize machine learning: supervised learning and unsuper-
vised learning [1]. In supervised learning, the goal is to build a classifier or regressor that,
trained with a set of examples (or instances) 𝑋 and their corresponding output value 𝑌 , can
predict the value of unseen inputs. In unsupervised learning, only the set of examples 𝑋 is
available, and no output value is provided. In the latter, the goal is to discover some under-
lying structure in 𝑋 . For example, in unsupervised clustering the goal is to infer a mapping
from the input to clusters (groups) of similar instances. Generally, the set of examples 𝑋 is
known as the dataset, and the set of output values 𝑌 is known as the labels set.
Semi-Supervised Learning (SSL) [2] is the branch of machine learning that tries to combine
the benefits of these two approaches. To do so, it makes use of both unlabeled data and la-
beled data, or other kinds expert knowledge. For example, when considering classification
or regression, in addition to a set of labeled data, an additional set of unlabeled data may be
available, which can contain valuable information. Similarly, when considering clustering
problems, a smaller subset of labeled data (or other types of knowledge about the dataset)
may be available. Generally, some kind of information that does not fit within the supervised
or unsupervised learning paradigmmay be available to perform machine learning tasks. Ig-
noring or excluding this information does not optimally use all available information, thus
the need of SSL [3].

1.1 On the feasibility of semi-supervised learning

With regards to the applicability of SSL, a natural question arises [2]: in comparison with
supervised and unsupervised learning, can SSL obtain better results? It could be easily in-
ferred that the answer to this question is “yes”, otherwise neither this study nor all the cited
before would exist. However, there is an important condition imposed for the answer to be
affirmative: the distribution of instances in 𝑋 must be representative of the true distribution
of the data. Formally, the underlying marginal distribution 𝑝(𝑋) over the input space must
contain information about the posterior distribution 𝑝(𝑌|𝑋). Then, SSL is capable of mak-
ing use of unlabeled data to obtain information about 𝑝(𝑋) and, therefore, about 𝑝(𝑌|𝑋) [3].
Luckily, this condition appears to be fulfilled in most real-world learning problems, as sug-
gested by the wide variety of fields in which SSL is successfully applied. Nonetheless, the
way in which 𝑝(𝑋) and 𝑝(𝑌|𝑋) are related is not always the same. This gives place to the SSL
assumptions, introduced in [2] and formalized in [3]. A brief summary of these assumptions
following [3] is presented, please refer to the cited studies for more details.

• Smoothness assumption: two instances that are close in the input space should
have the same label.

• Low-density assumption: decision boundaries should preferably pass through
low-density regions in space.
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• Manifold assumption: in problems in which data can be represented in Euclidean
space, instances in the high-dimensional input space are usually gathered along
lower-dimensional structures, known as manifolds: locally Euclidean topological
spaces.

• Cluster assumption: data points which belong to the same cluster also belong to
the same class. This assumption can be seen as a generalization of the other three
specific assumptions.

As in other machine learning paradigms, the transduction versus induction dichotomy can
be made within SSL. Usually, semi-supervised classification methods cope the SSL field,
therefore the aforementioned dichotomy is explained in terms of classification as follows:

• Inductive methods: inductive methods aim to build a classifier capable of out-
putting a label for any instance in the input space. Unlabeled data can be used to
train the classifier, but the predictions for unseen instances are independent of each
other once the training phase is completed. An example of inductive method in
supervised learning is linear regression [3].

• Transductive methods: transductive methods do not build a classifier for the en-
tire input space. Their predictions are limited to the data used during the training
phase. Transductive methods do no have separated training and testing phases. An
example of transductive method in unsupervised learning is hierarchical cluster-
ing [3].

Classification methods within SSL can be clearly separated following the definitions above.
However, when it comes to clustering, this distinction becomes unclear. Clusteringmethods
within the SSL learning paradigm are usually considered to be transductive, as their output
is still a set of labels partitioning the dataset and not a classification rule [2]. On the other
hand, some authors claim that partitional clusteringmethods can be considered as inductive
methods, because their assignation rule can be used to predict the cluster membership of
unseen instances. Hierarchical clustering methods would belong the transductive learning
category, as no assignation rule can be derived from them [4]. The differences between
partitional and hierarchical clustering will be formalized later in Section 3.
Figure 1 helps us contextualize semi-supervised learning and its derivatives within the over-
all machine learning landscape. General SSL literature [5, 2, 6] usually divides SSL meth-
ods into two categories: semi-supervised classification and semi-supervised clustering. Fur-
ther dichotomies have been made in later literature. In [3, 7] semi-supervised classification
methods are taxonomized taking into account the inductive versus transductive dichotomy.
Some of the categories found in these taxonomies have been further studied: [8] proposes
a taxonomy for graph-based semi-supervised methods, and [9] does the same for the self-
labeling field. Concerning semi-supervised clustering, [10] proposes a high level taxonomy
with 4 types of methods, while [11, 12] focus on the specific area of constrained clustering.
The supervised and unsupervised learning paradigms are included in Figure 1 for the sake
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of contextualization only. Consequently only classic and widely-known tasks belonging to
these areas have been included in the diagram.
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Figure 1: Mindmap of the machine learning overall landscape.

1.2 Related work

The semi-supervised clustering area has been widely studied and successfully applied in
many fields since its inception. It can be seen as a generalization of the classic clustering
problem which is able to include background knowledge into the clustering process [2].
Many types of background knowledge have been considered in semi-supervised cluster-
ing [10], although the most studied one is the instance-level pairwise must-link and cannot-
link constraints [12]. This type of background knowledge relates instances indicating if they
belong to the same class (must-link) or to different classes (cannot-link). The problem of
performing clustering in the presence of this type of background knowledge is referred to in
literature as Constrained Clustering (CC) (marked in Figure 1 in blue).
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This study carries out a comprehensive review of constrained clustering methods. It also
proposes an objective scoring system, which addresses the potential and popularity of exist-
ing methods, and can be used to produce a sorted ranking for all of them. To the best of our
knowledge, no similar study has been published before. Existing literature is either limited
to the theoretical background on the topic, very limited in the number of methods reviewed,
or outdated due to the rapid advance of the field. The earliest survey including constrained
clustering in the reviewed studies can be found in [13], although it is very limited in con-
tent. In [11], the first survey focusing specifically on constrained clustering is proposed. It
introduces many of the foundational concepts of subsequent studies and provides the first
comprehensive reference on the area. However, this study was published in 2007, and even
then it was limited to very few methods. The first book fully devoted to constrained cluster-
ing was published in [12] (2008). It provides unified formal background within the area and
detailed studies on state-of-the-art methods.

1.3 Remainder of this paper

The rest of this study is organized as follows. Section 2 presents a taxonomy of types of
background knowledge with which semi-supervised clustering can work, including equiv-
alencies between them in Subsection 2.8. Section 3 formalizes afterwards the constrained
clustering problem, startingwith basic background on classic clustering (Subsection 3.1) and
pairwise constraints (Subsections 3.2 and 3.3), which is followed by a quick note on the his-
tory of constrained clustering (Subsection 3.4), and a comprehensive review on the applica-
tions of constrained clustering (Subsection 3.5). Subsequently, advanced concepts regarding
constrained clustering are introduced in Section 4. A statistical study on the experimental
elements used to demonstrate the capabilities of CC methods is proposed in Section 5. This
statistical study is used as the basis of the scoring system, which is presented in Section 6 and
used in subsequent sections to produce a ranking for all reviewed methods. Section 7 pro-
poses a ranked taxonomic review of constrained clustering methods. A statistical analysis
of the taxonomy is presented in Section 8. Finally, Section 9 presents conclusions, criticisms
and future research guidelines.

2 Clustering with Background Knowledge

In this section, a comprehensive literature review on the types of background knowledge
that have been used by semi-supervised clustering algorithm is carried out. In general
terms, 5 families of background knowledge have been identified: partition-level constraints,
instance-level constraints, cluster-level constraints, feature-level constraints, and distance
constraints. Background information which does not belong to any of the mentioned cate-
gories has been placed together in a miscellaneous category. Figure 2 shows a visual repre-
sentation of this taxonomy. All 5 families are composed by smaller, more specific categories
which are detailed below.
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Figure 2: Taxonomy of types of background knowledge
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2.1 Partition-level Constraints

Partition-level constraints refer to restrictions imposed on the partition generated by the
semi-supervised clustering algorithm [14, 15, 16, 17]. Their most common form is a subset
of labeled data, which is often referred simply as “partition-level constraints”, although other
categories within this type of background knowledge can be found:

• Subset of labels: they consist of a subset of instances from the dataset for which
labels are available. The resulting partition must be consistent with the given la-
bels [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].

• Subset of fuzzy labeled data: used in fuzzy semi-supervised clustering algorithms.
It consists of a subset of instances for which fuzzy labels are provided [32, 33, 34, 35,
36, 37].

• Non-redundant clusters constraints: they constraint the output partition so that
clusters in it must be orthogonal to each other, therefore maximizing their condi-
tional mutual information and producing non-redundant clusters [38].

2.2 Instance-level Constraints

Instance-level constraints can refer to single instances, pairs of instances or groups of multi-
ple instances. In the case of single instance constraints, they are used to describe particular
features of said instances or to restrict the features of the cluster they can belong to:

• Membership degree constraints: used in fuzzy semi-supervised clustering algo-
rithm to provide prior membership degrees for some instances [39, 40, 41].

• Neighborhood constraints: they link instances to their neighborhood, with the
latter being defined differently for every problem [42].

• Instance difficulty constraints: they are referred to single instances and spec-
ify how hard it is to determine the cluster an instance belongs to, so that the semi-
supervised clustering algorithm can focus on easy instances first [43].

• Coverage constraints: for clustering algorithms which allow instances to belong
to multiple clusters at the same time, this type of constraint limits the number of
times an instance can be covered by different clusters [44].

Instance-level pairwise constraints involve pairs of instances and are used to indicate posi-
tive or negative relationships. The former refers to features that instances have in common,
such as class or relevance, while the latter refers to the opposite case. Even if instance-level
must-link and cannot-link are the most common form of instance-level constraints, the lat-
ter can be given in multiple ways:
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• Must-link/Cannot-link constraints: must-links involve pairs of instances that
are known to belong to the same class. Therefore they must belong to the same
cluster in the output partition. Cannot-link are used to indicate the opposite (the
two instances involved in them are known to belong to different classes an thus they
need to be placed in different clusters) [11].

• May-link/May-not-link constraints: they represent soft must-link and cannot-
link constraints respectively. This means that they can be violated in the output
partition to some extent. They can be used in combination with the hard must-link
and cannot-link constraints [45].

• Fuzzy Must-link/Cannot-link constraints: pairwise positive/negative relation-
ships with and associated degree of belief [46].

• Elite Must-link/Cannot-link constraints: refined ML and CL constraints. They
have the property of being unarguably satisfied in every optimal partition of the
dataset [47].

• Ranking constraints: in contexts in which output class labels (clusters) can be
ordered, ranking constraints are used to indicate whether an instance should be as-
signed a class label (cluster) higher that the class label of another instance [48].

The last form of instance-level constraints are group constraints, which are used to gather
group of instances that are known to share features or to be different to each other in some
aspect of their nature. They can also be used to set relative comparisons between a fixed
number of constraints. Overall, they can be classified as follows:

• Group constraints: also referred to as grouping information [49, 50]. They spec-
ify the certainty of each or several instances belonging to the same cluster. Note that
group constraint cannot be used to specify groups of instances that must not belong
to the same cluster [51].

• Triplet constraints: also known as relative constraints [52, 53, 54]. They involve
three instances: an anchor instance 𝑎, a positive instance 𝑏, and a negative instance
𝑐. A triplet constraint indicates that 𝑎 is more similar to 𝑏 than 𝑐 [43, 55].

• Must-link-before: these are ML constraints specifically designed to be applied in
hierarchical clustering setups. They involve triplets of constraints and their basic
idea is to link instances positively not only in the output partition, but also in the
hierarchy (dendrogram) produced by hierarchical clustering methods [56].

• Mutual relationships: they establish a relation in groups of instances that is not
known in advance and is determined during the clustering process. For example, a
group of instances in the same mutual relation may be determined to belong to the
same cluster during the cluster process, or contrarily they may be determined to not
belong to the same cluster. Contrary to ML and CL constraints, mutual relations do
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not specify whether the nature of the relation they describe is positive or negative as
part of the prior knowledge [57].

2.3 Cluster-level Constraints

Cluster-level constraints are used to restrict a wide variety of features related to clusters
without specifying which instances must belong to these clusters. They are considered to be
one of the most useful types of background knowledge, as they can convey large amounts of
information compared to the amount of expert knowledge available. Size constraints are one
of the forms in which cluster-level constraints can be found. They constraint the number of
instances that clusters can have in the output partition and can be divided in three categories:

• Cluster-size constraints: also called cardinality constraints [58]. They specify
the number of instances each cluster must have in the output partition. The number
of instances in a cluster may vary from a cluster to another [59, 60].

• Maximum/minimum cluster-size constraints: they specify the maxi-
mum/minimum size a cluster can have in the output partition without specifying
the exact size of each cluster [61, 62, 63, 64, 65]. They may also be referred to as
significance constraints [66].

• Balance constraints: also known as global size constraints [43] applied in the
cluster-level, they try to even the number of instances in every cluster (all cluster
should be approximately the same size) [67, 68, 59, 69].

Apart from the size of the cluster, cluster-level constraints can restrict a wide variety of clus-
ter features, ranging from their shape or separation, to the kind of instances they may con-
tain:

• Cluster-overlap constraints: they constraint the amount of overlap between clus-
ters [42, 44].

• Property-cardinality constraints: they constraint the amount of a specific type
of instance a cluster can contain [42].

• Soft cannot-link inside cluster constraints: they require that the number of
pairs of instances in a cluster which have a cannot-link constraint among them to
be bounded [61].

• Minimumdifference constraints: applied to pair of clusters, they require clusters
to be similar or different to some degree [61].

• Variance constraints: they imposemaximum orminimum values for the variance
clusters must feature in the output partition [66].

• Maximum diameter constraints: they specify an upper/lower bound on the di-
ameter of the clusters [62].

9



66 Chapter II. Publications

• Encompassing constraints: they determine whether clusters are allowed to en-
compass each other, i.e., they are allowed to form a hierarchy [44].

2.4 Feature-level Constraints

Feature-level constraints constraint instances by their feature values or directly relate pairs
of feature to each other to indicate degrees of importance. Two types of feature-level con-
straints can be found:

• Attribute-level constraints: they constraint the number of possible assignations
for instances with specific values for specific features [42].

• Feature order constraints: also called feature order preferences. They involve
pairs of features and determine which one of them is more important. This is, what
features need to be paid more attention to when performing comparisons to decide
cluster memberships [70].

2.5 Distance Constraints

Distance constraints represent a very particular case of constraint-based information, as they
relate pair of instances indirectly and in a global way. That means distance constraints can
always be translated to instance-level must-link constraints [11]. Two types of distance con-
straints are defined in literature:

• 𝛾-constraints: also calledminimummargin [62] orminimum separation [71].
They require the distance between two points of different clusters to be superior to
a given threshold called 𝛾 [11, 62, 72].

• 𝜖-constraints: they require for each instance to have in its neighborhood of radius
𝜖 at least another point of the same cluster [11, 62, 72].

2.6 Other Types of Constraints

Finally, authors have proposed forms of background knowledge that do not fit into any of
the previous categories:

• Bag constraints: specific to the multi-instance multi-label framework, where
datasets are given in the form of bags, with each bag containing multiple instances
and labels, which provided only at the bag-level. Bag constraints specify similarities
between bags [73].

• Example clusters: predefined clusters in the dataset given to the clustering al-
gorithm, which is required to output a partition which is consistent with exam-
ple clusters. This information can be converted to instance-level pairwise con-
straints [74, 75].
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• Hierarchical cluster-level constraints: sometimes also referred to as ranking
constraints [76, 77]. These constraints are designed to be applied only in semi-
supervised hierarchical clustering methods. Given pairs of clusters, they specify
which action (merge, split, remove, etc.) must be taken over them in successive
steps of the clustering process that builds the output dendrogram [78].

2.7 Constraints Usability

After analyzing the wide variety of forms in which constraints can be given, it is reasonable
to ask which type of constraint is more effective for general purposes. There is not in fact a
unique answer to this question, as it highly depends on the problem or applications and the
type of information available to solve it. In [52] an empirical setup that tries to answer this
question in a reduced semi-supervised environment is proposed. It only considers instance-
level pairwise must-link and cannot-link constraints and subsets of labeled data as available
sources of background knowledge. Three questions tried to be answered in the mentioned
study, which can be reformulated to include a broader scope as follows:

• Given the same amount of oracle effort, which type of background knowledge is
more effective at aiding clustering?

• Which type of constraint is easier to obtain from the oracle?

• Which type of constraint is more reliable?

What it ismeant herewith an oracle is always understood as the source of backgroundknowl-
edge. This oracle can be a human, an automatic classifier, a crowdsourcing setup to gather
information from distributed sources, etc. It is essential for any real-world or in-lab applica-
tion of semi-supervised clustering to address these three questions.

2.8 Equivalencies Between Types of Background Knowledge

It is well known that some categories of background knowledge are neither isolated nor her-
metic. Some types of constraints can be converted to another in a direct manner. Distance
constraints can be translated to must-link constraints [11], or a subset of labeled data can
always be transformed in a set of must-link and cannot-link constraints [49]. The aim of this
section is to provide intuition on all possible transformations without the need of a formal
definition/notation for them, as this would require the length of a monography. Previous
work on this line has been carried out in [49], although within a much limited scope regard-
ing the types of background knowledge considered. Figure 3 depicts equivalences found
between the types of background knowledge introduced in Section 2.
In Figure 3, only conversions without loss of information are considered, e.g.: fuzzy must-
link/cannot-link constraints could be converted tomust-link/cannot-link constraints by con-
sidering only those whose degree of belief is over 50%, although this would involve losing
not only constraints, but also the degree of belief information. Even if these kind of trans-
formations are possible, they are not considered here, as they imply losing information.

11



68 Chapter II. Publications

Fuzzy
Must-link/

Cannot-link
constraints

Subset of
labels

Must-link/
Cannot-link
constraints

Group
constraints

Subset of
fuzzy labels

Membership
degree

constraints

Neighborhood
constraints

May-link/
May-not-link
constraints

Ranking
constraints

Balance
constraints

Cluster-size
constraints

-constraints

-constraints
Maximum
diameter

constraints

Figure 3: Graphical representation of direct equivalences between types of background
knowledge.

3 Instance-Level Pairwise Constrained Clustering

Among all types of background knowledge reviewed in Section 2, pairwise constraints are
undoubtedly one of the most studied topics, particularly basic must-link and cannot-link
constraints, as it is shown later in this study. From now on, and for the sake of readability,
must-link and cannot-link constraints will be referred to simply as pairwise con-
straints. In this section, the basic concepts of classic clustering and semi-supervised parti-
tional and hierarchical clustering under pairwise constraints are introduced. This problem
is known in literature simply as Constrained Clustering (CC) [11].

3.1 Background on Classic Clustering

Partitional clustering can be defined as the task of grouping the instances of a dataset into
𝐾 clusters. A dataset 𝑋 consists of 𝑛 instances, and each instance is described by 𝑢 features.
More formally, 𝑋 = {𝑥1,⋯ , 𝑥𝑛}, with the 𝑖th instance noted as 𝑥𝑖 = (𝑥[𝑖,1],⋯ , 𝑥[𝑖,𝑢]). A
typical clustering algorithm assigns a class label 𝑙𝑖 to each instance 𝑥𝑖 ∈ 𝑋 . As a result, we
obtain the list of labels 𝐿 = [𝑙1,⋯ , 𝑙𝑛], with 𝑙𝑖 ∈ {1,⋯ ,𝐾}, that effectively splits𝑋 into𝐾 non-
overlapping clusters 𝑐𝑖 to form a partition called𝐶. The list of labels producing partition𝐶 is
referred to as 𝐿𝐶 . The criterion used to assign an instance to a given cluster is the similarity
to the rest of elements in that cluster, and the dissimilarity to the rest of instances of the
dataset. This value can be obtained with some kind of distance measurement [79].
Hierarchical clustering methods produce an informative hierarchical structure of clusters
called dendrogram. Partitions as described above, with a number of clusters ranging from 1
to 𝑛, can always be obtained from a dendrogram by just selecting a level from its hierarchy
and partitioning the dataset according to its structure. Typically, agglomerative hierarchical

12
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clustering methods start with a large number of clusters and iteratively merge them accord-
ing to some affinity criteria until a stopping condition is reached. Every merge produces a
new level in the hierarchy of the dendrogram. Formally, given an initial partition with 𝑛𝑐
clusters𝐶 = {𝑐1,⋯ , 𝑐𝑛𝑐} (usually 𝑛𝑐 = 𝑛), a traditional agglomerative constrained clustering
method selects two clusters to merge by applying Equation 1.

{𝑐𝑖, 𝑐𝑗} = argmax
𝑐𝑖 ,𝑐𝑗∈𝐶,𝑖≠𝑗

𝐴(𝑐𝑖, 𝑐𝑗), (1)

with 𝐴(⋅, ⋅) being a function used to determine the affinity between the two clusters given
as arguments. This function needs to be carefully chosen for every problem, as it greatly
affects the result of the clustering process. Some conventional methods to measure affinity
between clusters are worth mentioning, such as single linkage, average linkage and com-
plete linkage [79]. Nevertheless, different measures are used in out-of-lab applications, as
the manifold structures usually found in real-world datasets can be hardly captured by the
classic affinity measures mentioned above. Typically, classic partitional clustering methods
are algorithmically less complex than hierarchical clustering methods, with the former fea-
turing 𝒪(𝑛) complexity and the latter 𝒪(𝑛2) [11].

3.2 Background on Pairwise Constraints

In most clustering applications, it is common to have some kind of information about the
dataset that will be analyzed. In CC this information is given in the form of pairs of instances
that must, or must not, be assigned to the same cluster. We can now formalize these two
types of constraints:

• Must-link (ML) constraints 𝐶=(𝑥𝑖, 𝑥𝑗): instances 𝑥𝑖 and 𝑥𝑗 from 𝑋 must be placed in
the same cluster. The set of ML constraints is referred to as 𝐶=.

• Cannot-link (CL) constraints 𝐶≠(𝑥𝑖, 𝑥𝑗): instances 𝑥𝑖 and 𝑥𝑗 from 𝑋 cannot be as-
signed to the same cluster. The set of CL constraints is referred to as 𝐶≠.

The goal of constrained clustering is to find a partition (or clustering) of 𝐾 clusters 𝐶 =
{𝑐1,⋯ , 𝑐𝐾} of the dataset𝑋 that ideally satisfies all constraints in the union of both constraint
sets, called 𝐶𝑆 = 𝐶=⋃𝐶≠. As in the original clustering problem, the sum of instances in
each cluster 𝑐𝑖 is equal to the number of instances in 𝑋 , which we have defined as 𝑛 = |𝑋| =
∑𝐾

𝑖=1 |𝑐𝑖|.
Knowing how a constraint is defined, ML constraints are an example of an equivalence re-
lation; therefore, ML constraints are reflexive, transitive and symmetric. This way, given
constraints 𝐶=(𝑥𝑎, 𝑥𝑏) and 𝐶=(𝑥𝑏, 𝑥𝑐), then 𝐶=(𝑥𝑎, 𝑥𝑐) is verified. In addition to this, if
𝑥𝑎 ∈ 𝑐𝑖 and 𝑥𝑏 ∈ 𝑐𝑗 are related by 𝐶=(𝑥𝑎, 𝑥𝑏), then 𝐶=(𝑥𝑐, 𝑥𝑑) is verified for any 𝑥𝑐 ∈ 𝑐𝑖
and 𝑥𝑑 ∈ 𝑐𝑗 [11].
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It can also be proven that CL constraints do not constitute an equivalence relation. However,
analogously, given 𝑥𝑎 ∈ 𝑐𝑖 and 𝑥𝑏 ∈ 𝑐𝑗 , and the constraint 𝐶≠(𝑥𝑎, 𝑥𝑏), then it is also true
that 𝐶≠(𝑥𝑐, 𝑥𝑑) for any 𝑥𝑐 ∈ 𝑐𝑖 and 𝑥𝑑 ∈ 𝑐𝑗 [11].
Regarding the degree in which constraints need to be met in the output parti-
tion/dendrogram of any CC algorithm, a simple dichotomy can be made: hard pairwise
constraints must necessarily be satisfied, while soft pairwise constraints can be violated to
a variable extent. This distinction is introduced in [11] and adopted by later studies, even-
tually producing the “may constraints” (may-link/may-not link constraints mentioned in
Section 2), which can be seen as the formalization of soft constraints. However, the scien-
tific community still refers to “may constraints” as soft constraints in the majority of the
cases and the termsmay-link andmay-not link are used only in cases in which both soft and
hard constraints are mixed and can be considered by the same CC algorithm. The major
advantages in favor of soft over hard constraints are found in the resiliency to noise in the
constraint set, the flexibility on the design of cost/objective functions, and their optimiza-
tion procedures. The ability to consider soft, hard, or both types of constraints is a defining
element for CC methods.
In [80] two measures designed to characterize the quality of a given constraint set are pro-
posed: informativeness (or informativity [11]) is used to determine the amount of informa-
tion in the constraint set that the CC algorithm could determine on its own, and coherence,
which measures the amount of agreement between the constraints themselves. These two
measures were proposed in early stages of the development of the CC area; however, they
have not been used consistently in later studies.

3.3 The Feasibility Problem

Given that CC adds a new element to the clustering problem, we must consider how
it affects the complexity of the problem in both of its forms: partitional and hierarchi-
cal. Intuitively, the clustering problem goes from its classic formulation “find the best
partition for a given dataset” to its constrained form “find the best partition for a given
dataset satisfying all constraints in the constraint set”. The formalization of this problem
is tackled in [81, 11, 82], where the feasibility problems for partitional and hierarchical
CC are defined as in 3.1 and 3.2 respectively, where 𝐶𝑆 = 𝐶≠ ∪ 𝐶= (the joint constraint
set). Given these two definitions, we say that a partition 𝐶 for a dataset 𝑋 is feasi-
ble when all constraints in 𝐶𝑆 are satisfied by 𝐶. Note that there exist constraint
sets for which a feasible partition can never be found, e.g., no feasible partition exist for
𝐶𝑆1 = {𝐶=(𝑥1, 𝑥2), 𝐶≠(𝑥1, 𝑥2)} regardless of the value of 𝐾. Similarly, the feasibility of parti-
tions such as 𝐶𝑆2 = {𝐶≠(𝑥1, 𝑥2), 𝐶≠≠(𝑥2, 𝑥3)𝐶≠, (𝑥1𝑥3)} depends on the value of 𝐾. In this
case, the feasibility problem for 𝐶𝑆2 can be solved for 𝐾 = 3 but not for 𝐾 = 2.

Definition 3.1 Feasibility Problem for Partitional CC: given a dataset 𝑋 , a constraint set
𝐶𝑆, and the bounds on the number of clusters 𝑘𝑙 ≤ 𝐾 ≤ 𝑘𝑢, is there a partition 𝐶 of 𝑋 with 𝐾
clusters that satisfies all constraints in 𝐶𝑆? [81]

14



Pub. 1 - Overview 71

In [81] it is proven that, when 𝑘𝑙 = 1 and 𝑘𝑢 ≥ 3, the feasibility problem for partitional
CC isNP-complete, by reducing it from the Graph K-Colorability problem. It is also proven
that it is not harder, so both have the same complexity. Table 1 shows the complexity of the
feasibility for different types of constraints.

Definition 3.2 Feasibility Problem for Hierarchical CC: given a dataset 𝑋 , the constraint
sets 𝐶𝑆, and the symmetric distance measure 𝐷(𝑥𝑖, 𝑥𝑗) ≥ 0 for each pair of instances: Can 𝑋
be partitioned into clusters so that all constraints in 𝐶𝑆 are satisfied? [82]

Please note that the definition of the feasibility problem for partitional CC (in Definition 3.1)
is significantly different from the definition of the feasibility problem for hierarchical CC
(in 3.2). Particularly, the formulation for the hierarchical CC does not include any restric-
tion on the number of clusters 𝐾, which is equivalent to considering that any level of the
dendrogram can be used to produce the partition that satisfies all constraints [82]. In [72] a
reduction from theOne-in-three 3SATwith positive literals problem (which isNP-complete)
for the problem in Definition 3.2 is used to prove the complexities presented in Table 1 for
the hierarchical CC problem. It is worth mentioning that, for the hierarchical CC problem,
the dead-ends problem arises: a hierarchical CC algorithm may find scenarios where no
merge/split can be carried out without violating a constraint. Previous solutions based on
the transitive closure of the constraint sets have been proposed to this problem, although
they imply not generating a full dendrogram [81].

Constraints Partitional CC Hierarchical CC Dead Ends?
ML P P No
CL NP-complete NP-complete Yes

ML and CL NP-complete NP-complete Yes

Table 1: Feasibility problem complexities for partitional and hierarchical CC and dead-ends
found in hierarchical CC [81].

Overall, complexity results in Table 1 show that the feasibility problem under CL constraints
is intractable, hence constrained clustering is intractable too. This leads to Observation 3.1.
For more details on the complexity of constrained clustering please see [81].

Observation 3.1 Knowing that a feasible solution exists does not help us find it. The re-
sults fromTable 1 imply that the fact that there is a feasible solution for a given set of constraints
does not mean it will be easy to find.

With respect to the dead-ends problem, a full dendrogram considering constraints can be
obtained by switching fromahard interpretation of constraints to a soft one. Thismeans that
every level in the dendrogram tries to satisfy as many constraints as possible, but constraint
violations are allowed in order for the algorithm to never reach a dead-end.
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Some interesting results, both positive and negative, about the nature of pairwise constraints
are proved and discussed in [11], as well as some workarounds for problems related to the
use of constraints in clustering.

3.4 Early History of Constrained Clustering

The Constrained Clustering problem has been rediscovered and renamed throughout years
of evolution, firstly in mathematical science, secondly in Computer Science. The first refer-
ence to the CC problem was proposed by Harary in [83] as early as in the year 1953. Harary
introduced the signed graph, which is an undirected graph with +1 or -1 labels on its edges,
respectively indicating similarity of dissimilarity between the vertices they connect. This
can be directly translated to the ML and CL constraints that shape the CC problem. Besides,
Harary introduced the concept of imbalance for a 2-way partitioning of such signed graph,
which referred to the number of vertices violated by the partitioning. The aim of Harary was
to find highly related groups of vertices within a psychological interpretation of the problem:
positive edges correspond to pairs of peoplewho like one another, and negative edges to pairs
who dislike one another.
It was not until year 2000 that the name Constrained Clustering made its first appearance
by the work of K. Wagstaff and C. Cardie in [84], which is a brief paper that introduces
later work by the same authors in which the first two CC algorithms in the history of Com-
puter Science are proposed: COP-COBWEB [85] and COP-K-Means [86] in 2000 and 2001
respectively. These two papers set the precedent for a new area in semi-supervised learn-
ing known as Constrained Clustering, providing experimental procedures and baselines to
compare with.
On the one hand, and following the trend set by K. Wagstaff and C. Cardie, although in
separate studies, S. Basu proposes in 2003 the first two soft constrained approaches to CC
in [87]: the PCK-Means and MPCK-Means algorithms. Later, in the year 2005, I. Davidson
and S.S. Raviwould propose the first hierarchical approaches to theCCproblem [72]. On the
other hand, E. Xing et al. propose the first distance metric learning based approach to CC
with their CSI algorithm [88], also known in literature simply as Xing’s algorithm. Finally,
in 2008, S. Basu, I. Davidson and K. Wagstaff joined forces to produce the first book fully
dedicated to constrained clustering in [12].
Research in CC has followed the general trend in Computer Science ever since. Ranging
from well-studied classic clustering approaches, such as fuzzy clustering [89], spectral clus-
tering [90] or non-negative matrix factorization [91], to modern and general optimization
models like classic [92] or deep [93] neural networks and evolutive [94] or non-evolutive [95]
metaheuristic algorithms.

3.5 Applications of Constrained Clustering

CC has been applied in many fields since its inception. The first applications are gathered
in [11], which include clustering of image data, video and sound data, biological data, text
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data, web data, and the first application ofCC found in [86], which is lane finding for vehicles
in GPS data. Figure 4 shows a summary of the overall CC application field.

Text data analysis

(30 proposals, 31.6%)

Biological data analysis

(12 proposals, 12.6%)

Image data analysis

(17 proposals, 17.9%)

Video data analysis

(6 proposals, 6.3%)

Others

(30 proposals, 31.6%)

Proportion of proposals by 
 field of application

Figure 4: Piechart showing a summary of the overall CC application field.

Table 2 gathers CC applications, sorting them by application field and indicating the specific
purpose of every application. The field with the largest number of publications is text data
analysis; within it, document clustering has attracted the most publications. Text data clus-
tering is followed by three other wide application fields, which are biological data analysis,
image data analysis and video data analysis.
However, some CC applications are very specific and cannot be grouped into wider applica-
tion fields. Studies which bring forward this kind of applications are listed in Table 3.

4 Constrained Clustering Concepts and Structures

Within the CC research field, some concepts and data structures are repeatedly mentioned
and used by researchers. The goal of this section is to provide a formal definition of these
concepts, as they will be mentioned later and are necessary for the reader to have a good
understanding of themethods described later in Section 7. From now on, and for the sake of
readability and ease of writing,we refer to instances involved in a constraint simply as
constrained instances, and to ML constraints and CL constraints as simply ML and
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Field of application No. of studies Specific application No. of studies References

Text data analysis 30

Document clustering 19

[96][97][98][99]
[100][101][102][103]
[104][105][106][107]
[108][109][110][98]
[111][112][113]

Text Clustering 4 [45][114][115][116]
Verb clustering 1 [117]
Word disambiguation 1 [118]
Microblog clustering 3 [119][120][121]
Document filtering 1 [122]
Clustering in online forums 1 [123]

Biological data analysis 12

Gene Expression 7 [124][125][126]
[127][125][128][129]

Gene Clustering 1 [130]
RNA-seq Data Clustering 1 [131]
Regulatory Module Discovery 1 [132]
Fiber Segmentation 1 [133]
Biomolecular Data 1 [134]

Image data analysis 17

Medical image 2 [135][136]
Image segmentation 3 [137][138][139]
Image clustering 3 [140][141][142]
Image categorization 2 [143][144]
Image annotation 2 [145][146]
Image indexing 1 [147]
Point of interest mining 1 [148]
Multi-target detection 1 [149]
Face recognition 1 [150]
Satellite Image Time Series 1 [151]

Video data analysis 6

Extracting moving people 1 [152]
Web Video Categorization 1 [153]
Face Clustering 2 [154][155]
Face Tracking 2 [156][155]

Table 2: Comprehensive listing of applications of CC in wide application fields.

CL, respectively. Instances involved in ML are referred to as ML-constrained instances
and instances involved in CL are referred to as CL-constrained instances.

TheConstraintMatrix This is one of themost, if not themost, basic andmost frequently
used data structures to store the information contained in the constraint set. It is a symmet-
ric matrix, with as many rows and columns as instances in the dataset, filled with three
values: 0 to indicate no constraint between the instances associated with the row and col-
umn in which it is stored, 1 is used for ML and -1 is used for CL. Formally, the Constraint
Matrix is a matrix 𝐶𝑀𝑛×𝑛 filled as in Equation 2.
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Field of Application References
Identifying speakers in a conversation through audio data [157]
Clustering of software requirements [158]
Machinery fault diagnosis [159]
Patient Segmentation from medical data [160][161]
Direct marketing applications [162] [163] [164] [165]
Group extraction from professional social network [166]
Clustering of cognitive radio sensor networks [167]
District design [168][169]
Sentiment analysis [170][171]
Sketch symbol recognition [172]
Robot navigation systems [173]
Terrorist community detection [174]
Lane finding for vehicles in GPS data [86]
Optimization of rural ecological endowment industry [175]
Job-shopping scheduling [176]
Trace-clustering [177]
Discovering educational-based life patterns [178]
Oil price prediction [179]
Traffic analysis [180][181]
Vocabulary maintenance policy for CBR systems [182]
Obstructive sleep apnea analysis [183]
Internet traffic classification [184]
Social event detection [102]

Table 3: Comprehensive listing of particular applications of CC.

𝐶𝑀[𝑖,𝑗] = 𝐶𝑀[𝑗,𝑖] = {
1 if 𝐶=(𝑥𝑖, 𝑥𝑗) ∈ 𝐶𝑆
−1 if 𝐶≠(𝑥𝑖, 𝑥𝑗) ∈ 𝐶𝑆
0 otherwise

(2)

Please note that, following this definition for the constraint matrix, its diagonal may be as-
signed to all 1 or all 0. That possibility depends on whether ML with the form 𝐶=(𝑥𝑖, 𝑥𝑖) are
included or not in 𝐶𝑆, respectively. The inclusion of such constraints may be convenient in
some cases. Variants of this matrix are also commonly used. In some cases, the constraint
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matrix can store any value in the range [−1, 1], with negative values indicating the weight
or degree of belief for CL and positive values doing so for ML.

TheConstraint List It is a list, with length equal to the number of constraints, that stores
triplets with two values used to specify two instances and a third value used to indicate the
type of constraint between them (1 for ML and -1 for CL). Formally, the Constraint List 𝐶𝐿
contains |𝐶=| triplets with the form [𝑖, 𝑗, 1] for ML such that 𝐶=(𝑥𝑖, 𝑥𝑗) and |𝐶≠| triplets with
the form [𝑖, 𝑗, −1] for CL such that 𝐶≠(𝑥𝑖, 𝑥𝑗).
The Constraint List is used in methods in which the number of violated constraints needs
to be repeatedly computed over fully formed partitions that are not built incrementally. In
these cases, the only option is to iterate over the full constraint set and check individually for
every constraint whether it is violated by the partition. This task is performed efficiently iter-
ating over 𝐶𝐿, which is𝒪(|𝐶𝑆|), in contrast with 𝐶𝑀, which requires an𝒪(𝑛2) computation
of the number of violated constraints. However, checking for specific constraint violations
in iterative partition building processes can be done in 𝒪(1) with 𝐶𝑀, as the indexes of the
constrained instances are known and matrices support random access. The same task can
be performed over 𝐶𝐿, but with the much higher computation cost of 𝒪(|𝐶𝑆|).

The Constraint Graph It is a weighted, undirected graph with a one vertex per instance
in the dataset and one edge per constraint. An edge connects two instances if they are in-
volved in a constraint, with the weight of the edge indicating the type of constraints, using
1 for ML and -1 for CL. Formally, let an undirected weighted graph 𝐺(𝑉, 𝐸,𝑊) be a finite
set of vertices 𝑉 , a set of edges 𝐸 over 𝑉 × 𝑉 and a set of weights𝑊 for every edge in 𝐸. In
the constraint graph 𝐶𝐺(𝑉, 𝐸,𝑊), 𝑉 is the set of instances in 𝑋 , and edges 𝑒(𝑥𝑖, 𝑥𝑗) from 𝐸
are equivalent to constraints in 𝐶𝑆, using the weight of the edge 𝑤[𝑖,𝑗] as indicator for the
type of constraint, i.e., for edge 𝑒(𝑥𝑖, 𝑥𝑗), if 𝐶=(𝑥𝑖, 𝑥𝑗) ∈ 𝐶𝑆 (ML) then 𝑤[𝑖,𝑗] = 1, and if
𝐶≠(𝑥𝑖, 𝑥𝑗) ∈ 𝐶𝑆 (CL) then 𝑤[𝑖,𝑗] = −1 [185].

The Transitive Closure of the constraint set It is an augmented set of constraints
which can be obtained on the basis of the information contained in the original constraint
set, by applying two of its properties which have been introduced in Section 3.2, and are for-
mally defined here on the basis of the constraint graph as in Properties 4.1 and 4.2. Graphical
examples of these two properties are given in Figure 5 and Figure 6, respectively. These two
properties can be applied over𝐶𝐺 to obtain the transitive closure of the constraint set, which
cannot be further augmented without new information.

Property 4.1 Transitive inference of ML: Let 𝑐𝑐1 and 𝑐𝑐2 be two connected components in
𝐶𝐺 with only positive edges in it (only ML constraints). Then, if there is a constraint 𝐶=(𝑥𝑖, 𝑥𝑗)
with 𝑥𝑖 ∈ 𝑐𝑐1 and 𝑥𝑗 ∈ 𝑐𝑐2, then the new constraints 𝐶=(𝑎, 𝑏) can be inferred for all 𝑎 ∈ 𝑐𝑐1
and 𝑏 ∈ 𝑐𝑐2 [12].

Property 4.2 Transitive inference of CL: Let 𝑐𝑐1 and 𝑐𝑐2 be two connected components in
𝐶𝐺 with only positive edges in it (only ML constraints). Then, if there is a constraint 𝐶≠(𝑥𝑖, 𝑥𝑗)
with 𝑥𝑖 ∈ 𝑐𝑐1 and 𝑥𝑗 ∈ 𝑐𝑐2, then the new constraints 𝐶≠(𝑎, 𝑏) can be inferred for all 𝑎 ∈ 𝑐𝑐1
and 𝑏 ∈ 𝑐𝑐2 [12].
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Original Constraints Inferred Constraints

Must-Link
Cannot-Link

Figure 5: Example of transitive inference of ML constraints.

Must-Link
Cannot-Link

Original Constraints Inferred Constraints

Figure 6: Example of transitive inference of CL constraints.

The Chunklet Graph This graph structure can be derived from the definition of the con-
straint graph and the concept of chunklet. Chunklets are defined in [186, 187] as “subsets of
points that are known to belong to the same, although unknown, class”. With this definition,
it is clear that ML connected components can be compared to chunklets, thus the chunklet
graph can be obtained on the basis of the constraint graph. This is done by replacing ML
connected components in 𝐶𝐺 by a single vertex which is adjacent to all former neighbors of
the connected components [188]. In the case that vertices in 𝐶𝐺 also store position-related
information (as in CC), the position of the new vertex is computed as the average of the
nodes in the connected component [185].

The Cluster Skeleton It is a reduced constraint set which defines the true basic cluster-
ing structure of the data. It is obtained by applying the farthest-first scheme to query an
oracle about the constraint relating selected instances from the dataset. This is done within
an iterative scheme in which membership neighborhoods are created and the farthest ins-
tance from all of them is always selected to be queried against at least one instance from
every existing neighborhood. If it is constrained to any of those instances by ML, then it is
added to that neighborhood and a new ML is created, whereas if it is constrained by CL to
all of them, then a new neighborhood is created and related to the other one by CL. The
goal of this procedure is to build a constraint set which defines as many disjoint clusters as
possible, aiding later CC algorithms determine the number of clusters a feasible partition
must have [189].
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The Infeasibility The concept of infeasibility refers to the number of constraints violated
by a given partition. It is one of the most used concepts in CC, as many objective/fitness
functions include penalty terms that are directly proportional to the number of violated con-
straints. Given a partition 𝐶 (an its associated list of labels 𝐿𝐶) and a constraint set 𝐶𝑆, the
infeasibility can be defined as in Equation 3, with 1J⋅K being the indicator function (returns
1 if the input is true and 0 otherwise) [190].

Infs(𝐶, 𝐶𝑆) = ∑
𝐶=(𝑥𝑖 ,𝑥𝑗)∈𝐶𝑆

1J𝑙𝐶𝑖 ≠ 𝑙𝐶𝑗 K + ∑
𝐶≠(𝑥𝑖 ,𝑥𝑗)∈𝐶𝑆

1J𝑙𝐶𝑖 = 𝑙𝐶𝑗 K (3)

The k-NN Graph Also called k-NNG. It is not an exclusive concept from CC. It has been
widely used in classic clustering literature and k-NN based classification. However, it is
a very useful tool for CC research, therefore many CC approaches are built based on its
definition. The k-NNG is a weighted undirected graph in which vertices represent instances
from the dataset and every vertex is adjacent to atmost 𝑘 vertices. An edge is created between
vertices𝑢 and 𝑣 if and only if instances associated to𝑢 and 𝑣have each other in their k-nearest
neighbors set. The weight 𝑤(𝑣, 𝑢) for the edge connecting 𝑢 and 𝑣 is defined as the number
of common neighbors shared by 𝑢 and 𝑣: 𝑤(𝑣, 𝑢) = |𝑁𝑁(𝑢) ∪ 𝑁𝑁(𝑣)|, with 𝑁𝑁(⋅) denoting
the set of neighbors of the vertex given as argument [191].

5 Statistical Analysis of Experimental Elements

In this section, a general view on howCCmethods are evaluated and compared is presented.
Most studies in CCpresent one or various newmethods that need to be evaluated and proved
to be competitive with respect to the state-of-the-art at the time they were proposed. In this
section, the three experimental elements used to do so are analyzed: the datasets, the va-
lidity indices, and the competing methods. Table 4 introduces the 15 most frequently used
instances of these elements among all the papers analyzed in this study. All statistics pre-
sented in this section have been obtained by analyzing 270 studies, which propose a total of
307methods. Some studies proposemore than onemethod, and somemethods are proposed
in more than one study, hence the discordance between the number of papers analyzed and
the number of proposedmethods. Special cases of the experimental elements have not been
taken into consideration to obtain the statistics presented in this section. In other words, if
a paper uses the Iris dataset for its experiments but removes one of the three classes in the
dataset, it is then considered as a single use of the classic Iris dataset, and not listed as a sep-
arate dataset. The same can be said for the other two experimental elements. For example,
uses of the Pairwise F-measure (PF-measure) are included in the count of the F-measure,
and variations on the initialization methods of COP-K-Means are included in the count of
the basic COP-K-Means. This is done to obtain more representative and general statistics.
Sections 5.1, 5.2 and 5.3 dive into the statistics of the frequently used experimental setups re-
garding datasets, validity indices and competing methods, respectively. Section 5.4 presents
themost used procedure to artificially generate constraints for benchmarking purposes, and
Section 5.5 gives a quick note on the use of statistical testing to support conclusions in CC
literature.
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Datasets Competing Methods Validity Indices
Name No. of Uses Name No. of Uses Name No. of Uses
Iris 134 COP-K-Means 64 NMI 89
Wine 105 K-Means 57 CE 60
Ionosphere 72 MPCK-Means 34 RI 55
Synthetic 69 SSKK 26 ARI 48
Glass 58 PCK-Means 22 F-measure 38
Breast 51 KKM 21 Time 25
Soybean 47 FFQS 17 Purity 11
Balance 43 Random 14 Unsat 11
Sonar 41 RCA 14 Non Standard (NS) 10
Heart 39 E2CP 13 JC 8
Digits 35 NCuts 13 Visual 7
Ecoli 28 CSI 13 V-measure 4
MNIST 28 CCSR 12 Precision 4
Protein 28 Constrained EM 12 FMI 3
20Newsgroup 27 HMRF-K-Means 11 CRI 3

Table 4: Most frequently used dataset in CC experimental setups.

5.1 Analysis of Datasets

A total of 389 different datasets can be identified in the experimental sections of the literature
in CC. Figure 7 displays three different statistical measures about the use of these datasets.
Figure 7a depicts the same information contained in Table 4, presenting it visually for the
sake of ease of understanding. Figure 7b gives a histogram of the number of datasets used in
experiments. Lastly, Figure 7c introduces boxplots featuring the variability on the number
of datasets used in different years.
From 7a, it is clear that classification datasets are used as benchmarks for CCmethods. The
reason for this lies in the lack of specific benchmarks, as very few have been proposed since
the inception of the research topic. Classic classification datasets have to be used in order to
generate the constraint sets needed by CC methods (see Section 5.4). In these cases, labels
are never provided to the CC method, but used as the oracle to generate the constraint sets.
Looking at Figure 7b, it can be concluded that the most frequent number of datasets used in
experiment is 6, and the studywhich uses themost datasets, analyzes up to 30 of them. Most
papers use between 1 and 9 datasets. Note how some papers do not use any datasets, there-
fore they don’t carry out any experiments to prove the efficacy of their proposal. Figure 7c
shows a consistent increase over the years in the number of datasets used in experiments,
probably due to the general growth in computing power, and to the increasing availability
of datasets. It also shows how, except for the first few years, there is no consensus on the
number of datasets to be used to demonstrate the capabilities of a new method, as boxplots
show high variability within each year.
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Figure 7: Statistics about the datasets used in the experimental setups of all papers reviewed.
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5.2 Analysis of Competing Methods

Any new CC method has to be proven to be competitive with the methods belonging to the
state-of-the-art. Methods belonging to this category change over the years. Nonetheless, Fig-
ure 8a presents a set of methods which are used very frequently, and can be subsequently
understood as baseline methods. In fact, most of them correspond to the first proposals
in different CC categories, e.g.: COP-K-Means is the first CC method ever proposed, PCK-
Means is the first penalty-based CCmethod, KKM is the first constrained spectral clustering
method, FFQS is the first active constrained clustering method, etc. Section 7 presents all
thesemethods within the context of their specific CC category. Algorithms such as K-means
or NCuts stand out as well, as they are not CC algorithms but classic clustering algorithms.
When the experiments carried out aim to prove not only the capabilities of a newCCmethod,
but also the viability of CC itself (as in the first proposals) or the viability of any new con-
straint generation method, then comparing with classic clustering algorithm is justified.
Figure 8b shows the distribution of the amount of methods used in experimental setups
in CC literature. The most frequent comparison uses only two methods, which is a very
low number taking into account the plethora of methods available to compare with (307
particularly). However, comparisons using between 4 and 6 methods are also reasonably
frequent, with said frequency decaying from 6 methods to 9, which are used only in a sin-
gle study. There is a particular fact that may catch our attention: 25 studies chose not to
compare against any previous proposals. Given howwell established baselines methods are,
this should never be allowed in new CC studies. An increasing tendency can be observed
in the number of methods used over the years. Likewise with the number of datasets (see
Figure 7c). Accordingly, this can be caused by an increase in computing power over the year
and by the increase in the number of available methods to compare against.
Piecharts in Figure 9 show further statistics about the proportions of methods used in exper-
iments in CC studies. For example, it may be interesting to answer the following question:
from all methods used in experiments to compare with, howmany of them are CCmethods?
Figure 9b answers this question. From all methods compared with (386), only 38.8% (147)
are CCmethods. The rest of themethods are not necessarily classic clusteringmethods, they
can belong to other fields of SSL or use different types of constraints. This may seem contra-
dictory with respect to what Figure 7a shows. However, this is not the case. In conjunction,
Figures 9 and 7a evidence that the most frequently used methods are CC methods, even if
the number of different classic clustering methods used to compare against is higher than
the number of different CC methods.
Another interesting question is: from all CCmethods proposed over the years, howmany of
them are used to compare with in later studies? Figure 9a provides now the answer to this
question. From all CC methods proposed (307) in the reviewed studies, 48.5% of them (149)
are used in the experimental section of other studies. This indicates that more than half of
the proposed methods have never been considered to be compared with by other authors.
Of course, this statistic does not take into account the number of years any given method
has been available to be used, only the absolute number of uses. However, this should not
have a great impact in the proportions.
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Figure 8: Statistics about themethods used in the experimental setups of all papers reviewed.

26



Pub. 1 - Overview 83

Used

 (149 ~ 48.5%)
Not used

 (158 ~ 51.5%)

Proportion of CC methods 
 used in experiments

(a) Proportion of CC methods that are used in
later studies to compare with.

Others

 (237 ~ 61.4%)

CC

 (149 ~ 38.6%)

Type of methods used 
 in experiments

(b) Proportion of methods used in experiments
which are CC or other type of clustering methods.

Figure 9: Piecharts depicting the usability of all CC methods reviewed in experimental se-
tups.

5.3 Analysis of Validity Indices

Validity indices are used to objectively evaluate the performance of a givenmethod indepen-
dently of the benchmarks it is tested in. This means that the output value of the validity
indices is independent from the features of the benchmarks datasets, such as their size of
their number of features in the case of classification datasets. The same analysis performed
over the datasets (Section 5.1) is performed over the validity indices. Figure 10 shows the
statistical summary on the usage of validity indices in CC literature (as it was performed for
the datasets). From Figure 10a it is clear that the most used validity index is the Normalized
Mutual Information (NMI), followed by the Clustering Error (EC), the Rand Index (RI), the
Adjusted Rand Index (ARI) and the F-measure. Time is used to compare methods a total
of 25 times, which represents a very low percentage over the total number of comparisons.
Note howVisual validationmakes it to the top 15, despite not being an objective and reliable
comparison method. Non Standard (NS) measures are used in 10 studies, meaning that the
used measure is proposed specifically in the same paper for that specific case or that it is
never referred to again in CC literature. Among the 15 most used measures, there is only
one specifically designed to compare CC methods: the Unsat. Unsat measures the propor-
tion of constraints violated by the output partition of any givenmethod, and therefore can be
used to measure scalability with respect to the number of constraints. In this study, authors
want to draw two validity indices to the attention of the reader: the Constrained Rand Index
(CRI), proposed in [85], and the Constrained F-measure (CF-measure), proposed in [192].
These two validity indices are versions of RI and F-measure, respectively, corrected by the
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number of constraints available. They assume that the higher the number of constraints
available, the easier it is to score a high value in classic clustering validity indices, therefore
they correct (lower) those values with the size of the constraint set. These two measures are
used in very few cases, while they are specifically designed to benchmark CCmethods. This
fact is particularly remarkable in the case of the CRI, as it was proposed along with the first
CC study ever in [85].
Figure 10b shows that themost commonnumber of validity indices used in CC literature is 1.
Using more than one validity index is a healthy practice in any study, as demonstrating the
capabilities of a new method in more than one dimension reinforces positive conclusions
about it. With respect to Figure 10c, the variability observed in the other cases (Figures 7c
and 8c) is not present here, as the number of validity indices used is not related to the com-
putation power, and most of them were proposed before the inception of CC.
Some of the validity indices in Table 4 do not need to be specifically defined, as it is the
case of the Time or the Visual indices, which are self-explanatory. Others are incidentally
defined, such as the Precision, which is a by-product of the F-measure. Lastly, no general
definition can be given for the Non Standard indices. For the rest of them, both a formal and
intuitive definition can be found here. From now on, in this section, 𝐶 refers to the partition
generated by any given CCmethod, and 𝐶∗ refers to the ground-truth partition. Please note
the influence of the use of classification datasets in the selection of validity indices used
to evaluate CC methods. All of the validity indices take two partitions as their input, and
produce a measure according to their similarity or dissimilarity. Therefore, these validity
indices can be used to evaluate the performance of a clustering algorithm only when one of
the partitions given as input is the ground-truth partition, which can be obtained for labeled
datasets only.

NormalizedMutual Information (NMI) The NMI is an external validity index that es-
timates the quality of a partition with respect to a given underlying labeling of the data. In
other words, NMImeasures how closely a clustering algorithm could reconstruct the under-
lying label distribution. Taking𝐶 as the randomvariable denoting the cluster assignments of
instances (the partition), and𝐶∗ as the random variable denoting the underlying class labels,
the NMI can be formulated in terms of information theory as in Equation 4 [193, 194, 189].

NMI = 2 𝐼(𝐶; 𝐶∗)
𝐻(𝐶) + 𝐻(𝐶∗) , (4)

where 𝐼(𝑋; 𝑌) = 𝐻(𝑋)−𝐻(𝑋|𝑌) is the mutual information between the random variables 𝑋
and 𝑌 , 𝐻(𝑋) is the Shannon entropy of 𝑋 and 𝐻(𝑋|𝑌) is the conditional entropy of 𝑋 given
𝑌 . For more details on NMI please see [195]. The output value range for the NMI is [0, 1],
with high values indicating a high level of similarity between the two partitions, and a low
value indicating a low level of similarity.
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Figure 10: Statistics about the validity indices used in the experimental setups of all papers
reviewed.
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The Clustering Error (CE) The CE is the negative, unsupervised version of the classic
classification accuracy. It measures the proportion of correctly clustered instances by best
matching the cluster labels to the ground-truth labels. Given the permutationmapping func-
tion map(⋅) over the cluster labels, the CE with respect to map(⋅) can be computed as in
Equation 5 [196, 197, 198]. The best mapping function that permutes clustering labels to
match the ground truth labels can be computed by the Kuhn-Munkres algorithm (the Hun-
garian method) [196, 199]. Please note that the CE validity index is sometimes used in its
positive form, which is the clustering accuracy. It can be computed by just changing the
condition in the indicator function 1J⋅K to be negative (replace = by ≠). The output value
range for the CE is [0, 1], with high values indicating a low level of accuracy, and a low value
indicating a high level of accuracy.

CE = 1 − 1
𝑛

𝑛
∑
𝑖=1

1Jmap(𝑙𝐶𝑖 ) = 𝑙𝐶∗
𝑖 K (5)

The Rand Index (RI) The RI measures the degree of agreement between two partitions.
It can be used to measure the quality of a partition obtained by any CC algorithm by giving
the ground-truth partition as one of them. Therefore, the two compared partitions are 𝐶
and 𝐶∗. The RI views 𝐶 and 𝐶∗ as collections of 𝑛(𝑛 − 1)/2 pairwise decisions. For each
𝑥𝑖 and 𝑥𝑗 in 𝑋 , they are assigned to the same cluster or to different clusters by a partition.
The number of pairings where 𝑥𝑖 is in the same cluster as 𝑥𝑗 in both 𝐶 and 𝐶∗ is taken as
𝑎; conversely, 𝑏 represents the number of pairings where 𝑥𝑖 and 𝑥𝑗 are in different clusters.
The degree of similarity between 𝐶 and 𝐶∗ is computed as in Equation 6 [200], where 𝑛 is
the number of instances in 𝑋 . The output value range for the RI is [0, 1], with high values
indicating a high level of agreement between the two partitions, and a low value indicating
a low level of agreement.

RI = 𝑎 + 𝑏
𝑛(𝑛 − 1)/2 (6)

The RI can be conveniently formulated in terms of the elements of a confusion matrix as
well [201]. Equation 7 defines these elements in terms of cluster memberships in a partition,
which can be referred to as: True Positives (TP), False Positives (FP), True Negatives (TN),
and False Negatives (FN). Equation 8 makes use of these elements to give a new definition
for the RI.

TP = {(𝑥𝑖, 𝑥𝑗)|𝑙𝐶
∗

𝑖 = 𝑙𝐶∗
𝑗 , 𝑙𝐶𝑖 = 𝑙𝐶𝑗 , 𝑖 ≠ 𝑗}

FP = {(𝑥𝑖, 𝑥𝑗)|𝑙𝐶
∗

𝑖 = 𝑙𝐶∗
𝑗 , 𝑙𝐶𝑖 ≠ 𝑙𝐶𝑗 , 𝑖 ≠ 𝑗}

TN = {(𝑥𝑖, 𝑥𝑗)|𝑙𝐶
∗

𝑖 ≠ 𝑙𝐶∗
𝑗 , 𝑙𝐶𝑖 ≠ 𝑙𝐶𝑗 , 𝑖 ≠ 𝑗}

FN = {(𝑥𝑖, 𝑥𝑗)|𝑙𝐶
∗

𝑖 ≠ 𝑙𝐶∗
𝑗 , 𝑙𝐶𝑖 = 𝑙𝐶𝑗 , 𝑖 ≠ 𝑗}

. (7)
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RI = |TP| + |TN|
|TP| + |FP| + |TN| + |FN| (8)

The Adjusted Rand Index (ARI) The ARI is the corrected-for-chance version of the RI.
This correction is done by taking into account the expected similarity of all comparisons
between partitions specified by the randommodel to establish a baseline. This modifies the
output value range of the original RI, transforming it into [−1, 1] and slightly changing its
interpretation. InARI, a high output value still means a high level of agreement between the
two partitions, and a low valuemeans a low level of agreement. However, a value lower than
0 means that the results obtained are worse than those expected from the average random
model. Equation 9 gives the formalization for the ARI [202].

ARI = RI − Expected Index
Maximum Index − Expected Index , (9)

where Expected Index is the degree of similarity with a random model, Maximum Index is
assumed to be 1, and RI is the RI value computed for partitions 𝐶 and 𝐶∗.

Pairwise F-measure (PF-measure) The PF-measure is defined as the harmonic mean
of pairwise precision and recall, which are classic validity indices adapted to evaluate pairs
of instances. For every pair of instances, the decision to cluster this pair into the same or
different clusters is considered to be correct if it matches with the underlying class labeling.
In other words, the PF-measure gives the matching degree between the obtained partition
𝐶 and the ground-truth class labels 𝐶∗. It can be formalized as in Equation 11 [189, 193],
where Precision and Recall are defined as in Equation 10, following the notation introduced
in Equation 7 [201]. For more details on the PF-measure please see [203]. The output value
range for the PF-measure is [0, 1], with high values indicating a high level of agreement
between the two partitions, and a low value indicating a low level of agreement.

Precision = |TP|
|TP| + |FP| , Recall = |TP|

|TP| + |FN| . (10)

PF-measure = 2Precision × Recall
Precision + Recall =

2|TP|
2|TP| + |FP| + |FN| . (11)

The Constrained Pairwise F-measure (CPF-measure) The CPF-measure is a version
of the classic PF-measures that takes constraints into account. It does so by including the
number of ML constraints in the computation of the Precision and Recall terms as in Equa-
tion 12. This way, the number of correctly clustered instances is penalized by the number of
ML constraints. Subsequently, the higher the number ofML constraints available to perform

31



88 Chapter II. Publications

clustering, the less credit the term TP is given. The final CPF-measure can be computed as
in Equation 13. The output value range for the CPF-measure is [0, 1], and the value is inter-
preted as in the PF-measure.

Precision′ = |TP| − |𝐶=|
|TP| + |FP| − |𝐶=|

, Recall′ = |TP| − |𝐶=|
|TP| + |FN| − |𝐶=|

. (12)

CPF-measure = 2Precision
′ × Recall′

Precision′ + Recall′
. (13)

The Purity This is a classic validity index used to evaluate the performance of clustering
methods. It measures the homogeneity of the generated partition, i.e.: the extent to which
clusters contain a single class [204, 205, 206]. It can be computed by determining the most
common class of each cluster 𝑐𝑖 (with respect to the true labels 𝐶∗), which can be done my
determining the greatest intersection with respect to the ground-truth partition. The sum
of all intersection is then divided by the total number of instances 𝑛 in the partition 𝐶 to
obtain the Purity value of said partition. Equation 14 formalizes this concept. The output
value range for the Purity is [0, 1], with high values indicating high level of resemblance
between the two partitions, and a low value indicating a low level of resemblance.

Purity = 1
𝑛 ∑
𝑐𝑖∈𝐶

max
𝑐∗𝑖 ∈𝐶∗

|𝑐𝑖 ∩ 𝑐∗𝑖 | (14)

The Unsat The Unsat measures the ability of any given CCmethod to produce partitions
satisfying as many constraints as possible. It is computed as the ratio of satisfied constraints
as in Equation 15 [81, 95]. It produces a value in the range [0, 1], with a high value indicating
a high number of violated constraint, and a low value indicating the contrary.

Unsat = Infs(𝐶, 𝐶𝑆)
|𝐶𝑆| . (15)

The Jaccard Index (JC) The JC measures similarity between finite sample sets. It is
defined as the size of the intersection divided by the size of the union of the sample sets.
However, this definition is inconvenient when JC is applied to measure the quality of a par-
tition. Subsequently, a more useful definition can be given in terms of Equation 7 as in
Equation 16 [207, 208, 209]. Please note that a high value of the CJ in the range [0, 1] indi-
cates high dissimilarity between the two compared partitions, while a low value indicates
high similarity.

JC = |TP|
|TP| + |FP| + |FN| (16)
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The V-measure . This measure is closely related to the NMI, as it can be viewed as a
version of it that computes the normalization of the denominator in Equation 4 with an
arithmetic mean instead of a geometric mean. The V-measure is defined as the harmonic
mean of Homogeneity and Completeness, which evaluate a partition in a complementary
way [210, 211]. Homogeneity measures the degree to which each cluster contains instances
from a single class of 𝐶∗. This value can be computed as in Equation 17, where 𝐻(𝑋|𝑌) is
the conditional entropy of the class distribution of partition 𝑋 with respect to partition 𝑌 ,
and𝐻(𝑋) is the Shannon entropy of 𝑋 . Following the same notation, the Completeness can
be defined as in Equation 18. This can be intuitively interpreted as the degree to which each
class is contained in a single cluster. Subsequently, the V-measure is computed as in 19 [210].
Please note that another aspect to which the V-measure and the NMI are closely related is
that the mutual information between two random variables 𝐼(𝑋; 𝑌) can always be expressed
in terms of the conditional distribution of said variables𝐻(𝑋|𝑌) as follows: 𝐼(𝑋; 𝑌) = 𝐻(𝑋)−
𝐻(𝑋|𝑌). The output value range for the V-measure is [0, 1], with high values indicating a
high level of similarity between the two partitions, and a low value indicating a low level of
similarity.

Homogeneity = 1 − 𝐻(𝐶∗|𝐶)
𝐻(𝐶∗) . (17)

Completeness = 1 − 𝐻(𝐶|𝐶∗)
𝐻(𝐶) . (18)

V-measure = 2Homogeneity × Completeness
Homogeneity + Completeness . (19)

The Folkes-Mallows Index (FMI) The FMI is another classic external validity index
used tomeasure the similarity between two partitions. It is defined as the geometricmean of
the Precision and the Recall [209]. It can be formulated as in Equation 20. The output value
range for the FMI is [0, 1], with high values indicating a high level of agreement between
the two partitions, and a low value indicating a low level of agreement.

FMI =
√

|TP|
|TP| + |FP| ×

|TP|
|TP| + |FN| =

√Precision × Recall (20)

The Constrained Rand Index (CRI) The CRI is a revised version of the RI which in-
cludes constraints specifically in its definition. It introduces the concept of free decisions,
which are defined as decisions not influenced by constraints. The CRI subtracts the number
of available constraints from the numerator and the denominator of the classic RI [85, 212].
As a result, it only evaluates the performance of the CCmethods in the free decisions. Equa-
tion 21 formalizes CRI, following the same notation as Equation 6 (RI). Its results are inter-
preted as those of RI, but taking into account that the difficulty to obtain values close to 1
increases with the size of the constraint set |𝐶𝑆|.
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CRI = 𝑎 + 𝑏 − |𝐶𝑆|
𝑛(𝑛 − 1)/2 − |𝐶𝑆| (21)

5.4 Constraint Generation Methods

The most frequently used procedure to generate constraints is the one proposed in [86]. It is
a simple yet effective method to generate a set of constraints based on a set of labels, hence
the generalized use of classification datasets as benchmarks in CC literature. It consists of
randomly choosing pairs of instances and setting a constraint between them depending on
whether their labels are the same (ML constraint) or different (CL constraint).
The way pairs of instances are chosen from the dataset may differ from one study to another.
However, two common trends are observed. One first decides the percentage of labeled
data the oracle has access to and then generates the complete constraints graph based on
those labels. The other one first decides the size of the constraint set, and then extracts
random pairs of instances from the complete dataset. On the one hand, the first method is
more realistic in the sense that it has limited access to labeled data, although it may bias the
solution towards poor local optima if the selected labeled instances are not representative
enough of the whole dataset. On the other hand, the second constraint generation method
has virtual access to the complete set of labels, as pairs of instances are randomly chosen, and
the constraint set may end up involving all instances in the dataset in at least one constraint,
which might not be a realistic scenario. Nevertheless, it is less likely to bias the solution
towards local optima.
There is no consensus on howmany constraints need to be generated in order to evaluate the
capabilities of a given CC method. However, some general guidelines can be given. Based
on Observation 5.1, it is clear that proper empiric evaluation of CC methods must include
an averaging process on the results obtained for different constraint sets, in order to reduce
the effects of specific adverse constraint sets.

Observation 5.1 Specific constraint sets can have adverse effects. Even if constraint sets
are generated on the basis of the true labels, some constraint sets may decrease accuracy when
predicting those very labels [11].

Given Observation 5.2, testing CC methods should include different levels of constraint-
based information. This must be done in order to study the scaling capabilities of the pro-
posed method. If a method does not scale the quality of the solutions with the size of the
constraint set, any improvement over the solutions obtained with an empty constraint set
may be due to random effects.

Observation 5.2 The accuracy of the predictions scales with the amount of constraint-
based information. The quality of the solution should scale with the size of the constraint set:
the more constraint are available, the better the results obtained are [11].
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5.5 On the Use of Statistical Tests

Statistical testing is a settled practice in Computer Science. It provides objective evidence of
the results of a study, supporting its conclusions, either if the used tests are Null Hypothesis
Statistical Tests (NHST) [213] or the more recent Bayesian Tests [214]. However, this does
not seem to be the case in the CC area. As shown in Figure 11, only 5,6% of the studies
(16 out of 270) analyzed in this review use statistical testing to support their conclusions.
Authors consider this to be one of the major criticisms of the area of CC. Studies supporting
their conclusions on mere average results values for any validity index/indices (as it is the
case for most of them) should be encouraged to use statistical testing to further objectively
prove their hypotheses.

Use tests

(16 studies, 5.9%)

Do not use tests

(254 studies, 94.1%)

Proportion of CC studies 
 using statistical tests

Figure 11: Piechart featuring the proportion of CC studies which use statistical tests.

6 Scoring System

The aim of this study is not only to give a taxonomy of constrained clustering methods, but
also to provide researchers with tools to decide whichmethods to use. This section proposes
an scoring system that is designed to indicate the potential and popularity of every reviewed
method. This system assigns a numerical value to every CC method, which will be later
used to rank all 307 of them. This value can be interpreted as a measure for the quality of
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the method. Three semantically different aspects of every method𝒜 are analyzed to decide
its score: the quality of the experimental setup they are tested in (𝐸𝑄𝒜), the confidence in
the results obtained in the experiments (𝑉𝑄𝒜), and the influence of the method in later
studies (𝐼𝒜). As for the formalization of these concepts, it is necessary to define the basic
quantifiable elements that can be obtained from a method, which are shown in Table 5. All
of them are lists that contain a value or a set of values associated to everymethod. Therefore,
the length of these lists is always equal to the number of methods reviewed in this study.
These lists can be accessed in a more precise way, by method or by year. For example: 𝐷𝒜
is a single value which refers to the number of datasets used to test method 𝒜, and 𝐷𝑌 is a
list of values referring to the number of datasets used to test methods from year 𝑌 . Note that
𝑀𝒜 is the list of methods used to compare 𝒜, therefore𝑀𝑌 is a list of lists.

Function Meaning

𝑌 The list of publication years for all methods.

𝑀 The lists of sets of methods used in comparisons.

𝐶 The list of number of times a method is used to be compared with in later studies.

𝑇 The list of indicators for the use of statistical tests for every method

𝐷 The list of number of datasets used to test every method.

𝑉 The list of number of validity indices used to evaluate every method.

Table 5: Functions to get basic features of methods.

In this study, authors have decided to evaluate each method within its time context, i.e. the
year of publication of the method is taken into account to compute its score. This is done
to remove the computational capacity component from the scoring system, as the number
of datasets or the number of methods used to test new proposal is highly dependent of said
parameter (see Figure 7 and Figure 8). Moreover, publication requirements and standards
change over the years, and tend to become more rigid. Not taking the year of publication
into account would greatly benefit recent methods, as their studies have to meet harder
publication requirements which are usually related to their novelty and their experimental
quality.

6.1 Scoring of the Experimental Quality

The quality of the experimental setup 𝐸𝑄 used to test a method 𝒜 can be computed with
information that is fully contained in the study which proposes it. Two of the experimental
elements introduced in Section 5 take part in this procedure: the number of datasets used
to test the scoring method 𝒜 (in list 𝐷), and the methods that are used to compare it (in list
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𝑀). Equation 22 gathers these two basic measures and gives the expression to compute the
experimental quality of a scoring method 𝐸𝑄𝒜.

𝐸𝑄𝒜 = 𝛼𝑌𝒜1 𝐷′
𝒜 + 𝛼𝑌𝒜2 𝑀𝑆′𝒜

𝛼𝑌𝒜1 + 𝛼𝑌𝒜2
, (22)

where the𝑀𝑆𝒜 term is computed on the basis of𝑀𝒜, but taking the publication year of both
the scoring method 𝒜 and the compared method 𝑚 into account, as shown in Formula 23.
As a result, every compared method 𝑚 contributes in an inversely proportional way to 𝑀𝑆
with respect to the difference between the years of publication of the two methods 1. This
way, methods published in years close to the year of publication of 𝒜 contribute more to
𝑀𝑆𝒜 that methods published long time before𝒜. In other words: the contribution of every
method is proportional to its novelty in the year it is used to make comparisons. Please note
that non CCmethods are always considered to be published one year before the first CCwas
published (1999). Subsequently, the contribution of non CCmethods to𝑀𝑆𝒜 decays invari-
ably with the years. By doing this, the first CC methods comparing with classic clustering
methods are given credit by the comparison, as no CC baseline methods could have been
established by that time. However, this is not the case for modern CCmethods, which must
be compared to other CC methods for said comparison to be meaningful.

𝑀𝑆𝒜 = 1
|𝑀𝒜|

∑
𝑚∈𝑀𝒜

1
𝑌 𝒜 − 𝑌𝑚

. (23)

Both the values of 𝐷 and𝑀𝑆 are normalized within each year following the normalization
procedure described in Equation 24 (min-max normalization), which results in 𝐷′ and𝑀𝑆′.
This is done to lessen the effects that the computation capability context can have in 𝐸𝑄𝒜.
Please note that, only with respect to the year grouping aspects, methods published in years
2000-2003 are considered to belong to the same time context, hence they are treated as if they
were published in the same year. With this inmind, neither Equation 23 nor Equation 28 are
affected. This is done to enable withing-groups normalization and comparisons, as only 1
methodwas published in 2000 and 2001, and only 3 were published in 2002 and 2003. These
were the years in which the CC research topic was conceived and it was starting to grow in
interest (see Section 3.4). Subsequently, authors consider this exception to be justified.

𝐷′
𝒜 = 𝐷𝒜 −min(𝐷𝑌𝒜 )

max(𝐷𝑌𝒜 ) −min(𝐷𝑌𝒜 ) , 𝑀𝑆′𝒜 = 𝑀𝑆𝒜 −min(𝑀𝑆𝑌𝒜 )
max(𝑀𝑆𝑌𝒜 ) −min(𝑀𝑆𝑌𝒜 ) . (24)

The last elements to be introduced from Equation 23 are the 𝛼𝑌𝒜1 and 𝛼𝑌𝒜2 values, which
are different for every year. These values are used to determine the influence of the datasets
score and the comparedmethods score in the computation of the experimental quality score.
They are computed as in Equation 25, where 𝜎(⋅) and 𝜇(⋅) are functions which return the

1This difference is considered to be 1 for methods published in the same year, in order to avoid divisions by
0.
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standard deviation and the mean of the list of values given as argument, respectively. Sub-
sequently, 𝛼𝑌𝒜1 and 𝛼𝑌𝒜2 are directly proportional to the standard deviation of the datasets
scores and the compared methods scores, respectively. In other words, 𝛼𝑌𝒜1 and 𝛼𝑌𝒜2 are
used to give more importance to disperse measures, which are usually good discriminators,
and therefore are better suited to be used in a scoring system.

𝛼𝑌𝒜1 = 𝜎(𝐷′𝑌𝒜 )
𝜇(𝐷′𝑌𝒜 )

, 𝛼𝑌𝒜2 = 𝜎(𝑀𝑆′𝑌𝒜 )
𝜇(𝑀𝑆′𝑌𝒜 )

. (25)

6.2 Scoring of the Validation Procedure Quality

Once again, the information needed to determine the quality of the validation procedures
𝑉𝑄 used to evaluate the results obtained with a method 𝒜 is fully contained in the study
which proposes it. The two experimental elements (introduced in Section 5) that take part
in this procedure are: the number of validity indices used to quantify the results obtained by
the scoring method𝒜 (in list 𝑉), and the indicator of the use of statistical testing procedures
(in list 𝑇). The list 𝑇 indicates which methods use statistical tests by giving them a value
of 1, whereas the 0 value is assigned to method that do not support their conclusions with
statistical tests. Equation 26 shows the expression to compute the validation procedures
quality of a scoring method 𝑉𝑄𝒜.

𝑉𝑄𝒜 = 𝑉 ′
𝒜 + 𝑇𝒜, (26)

where 𝑉 ′
𝒜 is the normalized value of 𝑉 ′

𝒜, which is computed following formula 27. Please
note that in this case the min-max normalization does not take the publication year into
account (in contrast to Equation 24), as the number of validity indices used to quantify the
results of the proposed methods does not show any tendency with respect to the publica-
tion year (see Figure 10). Authors consider studies which use statistical tests to have a sig-
nificantly higher confidence rate in their results, hence the strength of the second term in
Equation 26.

𝑉 ′
𝒜 = 𝑉 𝒜 −min(𝑉)

max(𝑉) −min(𝑉) . (27)

6.3 Scoring of the Influence

The influence 𝐼 of a given method 𝒜 cannot be computed with just the information con-
tained in the study which proposes the method. This aspect of the method refers to how in-
fluential it has been in later literature, i.e. howmany timesmethod𝒜 has been used tomake
experimental comparisons. This number differs from the total number of times it has been
cited, as a citation does not guarantee that the method is being used to make comparisons.
In fact, this is one of the hardest aspects to evaluate, and requires experimental comparisons
carried out in a corpus of papers to be self-contained. This means that no method referred
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in the experimental section of any paper is left out of the corpus. As will be explained in
Section 7, authors have made sure that this is the case for the taxonomy presented in this
study. However, once this information has been obtained, an index for the influence of any
given method can be computed as simply as in Equation 28, where CY refers to the current
year, therefore CY = 2022. This is, the number of times a method is used in experimental
comparisons divided by the number of years it has been available.

𝐼𝒜 = 𝐶𝒜
CY − 𝑌 𝒜

. (28)

6.4 Final Scoring

The final scoring 𝑆 of any given method 𝒜 can be computed by normalizing and adding
up the three partial scores presented in previous sections, and scaling the output range to
[0, 100]. Equation 29 gives the expression to compute 𝑆𝒜. Please note that none of the partial
scores are bounded, hence the need of the min-max normalization step in Equation 30.

𝑆𝒜 = (𝐸𝑄′
𝒜 + 𝑉𝑄′

𝒜 + 𝐼′𝒜) × 100
3 . (29)

𝐸𝑄′
𝒜 = 𝐸𝑄𝒜 −min(𝐸𝑄)

max(𝐸𝑄) −min(𝐸𝑄)

𝑉𝑄′
𝒜 = 𝑉𝑄𝒜 −min(𝑉𝑄)

max(𝑉𝑄) −min(𝑉𝑄)

𝐼′𝒜 = 𝐼𝒜 −min(𝐼)
max(𝐼) −min(𝐼)

. (30)

Finally, authors want to remark that no hand-tuned parameter is needed to compute 𝑆𝒜.
Consequently, the probability of introducing any human bias in the scoring system is re-
duced.

7 Taxonomic Review of Constrained Clustering Methods

In this section, a ranked taxonomic classification for a total of 307 CCmethods is presented.
The starting point to obtain the corpus of CC studies to be reviewed was to run Query 7.1 in
the Scopus scientific database.

Query 7.1 Scopus Query: ( TITLE-ABS-KEY ( “constrained clustering” ) OR TITLE-ABS-
KEY ( “semi-supervised clustering” ) AND TITLE-ABS-KEY ( “constraint” OR “constraints”
OR “constrained” ) )
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This is a very general andwide query, whichwas conceived tomake sure that themost of the
CC research area was contained in its output. This search outputted 1162 indexed scientific
papers in 24/3/2022. Authors briefly reviewed and evaluated all of these papers to remove
those which did not belong to the CC research area. Afterwards, a recursive procedure was
used to obtain the final corpus to be reviewed: if a study compares its proposal with a CC
proposal not included in the corpus, then the newly identified study is included and applied
this procedure over. This is done with the aim of producing a self-contained comparison.
Figure 12 presents a taxonomic tree, organizing the categories in which the CC landscape
may be divided. Particular methods are introduced and discussed in Sections 7.1 to 7.17,
where tables detailing the features of every method can be found.
As Figure 12 shows, a high-level dichotomy can be made within the CC area: constrained
partitional methods versus constrained distance metric learning (DML) methods [11, 12].
The main difference lies in their approach to CC and in their output. In constrained parti-
tional methods, constraints are included into a procedure that progressively builds a parti-
tion for the dataset. This is typically done by designing a clustering engine which can deal
with constraints or by including constraints in the objective function of a given method, for
example, by means of a penalty term. Generally, constrained partitional methods produce a
partition of the dataset, which may be accompanied by other by-products of the CCmethod,
such as new constraints or feature weights. On the other hand, constrained DML methods
aim to learn a distance metric that reflects the information contained in the constraint set.
In general, the learned distances will try to bring ML instances together in the output space,
while trying to maximize the distance between CL instances. Generally, constrained DML
method do not produce a partition of the dataset, but a new metric, data space or distance
matrix. This output can be used to later produce a partition by means of classic clustering
algorithms, or even by constrained clustering algorithms. Please note that the difference
found between the tree classes of constrained DML methods is merely conceptual, as the
results of all the three of them (new metric/data space/distance matrix) can always be de-
rived from each other using classic DML methods. However, the distinction between the
three classes is useful from the point of view of CC, as their approach to the problem is dif-
ferent. The vast majority of CC methods are constrained partitional methods. There are
hybrid methods, which combine features inherited from both approaches.
Feature tables in Sections 7.1 to 7.17 generally include 8 columns:

• The 𝑆𝒜 column gives the quality score assigned to each method. It is computed
following the scoring system introduced in Section 6.

• The Acronym column provides the acronym of the method. Bearing in mind that
some authors do not name their methods, we have decided to refer to these methods
by the initials of their authors’ names. However, there are exceptions for this rule,
such as methods that are not named by their author but are consistently referred by
later literature with a given name. In cases in which two methods have the same
name, the year it was proposed in is added at the end of the name to differentiate
them.
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Figure 12: Taxonomic tree for the CC landscape.

• The ID column assigns a numeric identifier to each method. This number can be
used to find themethod inAppendix A,where the full name of allmethods are listed,
along with its identifier and its acronym. Full names are listed only in said appendix
for the sake of readability and visualization.

• The Penalty column takes two values: “✓” or “×”. This indicates whether con-
straints are included in the method by means of a penalty term in its objective func-
tion (“✓”) or by other means (“×”).
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• The ML and CL columns refer to the type of constraints the method can handle.
Soft is used for soft constraints, Hard is used for hard constraints, Hybrid is used
for method that can use both hard and soft constraints. If a method cannot handle
ML or CL constraints it is indicated with “-”.

• TheHybrid column indicates if the method belongs to more than one class, specify-
ing the classes it belongs to. The “-” character is used if the method belongs to only
one class.

• The Year and Ref columns provide the year of publication and the reference of the
method respectively.

7.1 Constrained K-Means

The Constrained K-Means (CKM) category gathers methods that can be considered modifi-
cations over the classic K-Means algorithm to include constraints. Their common feature is
that all of them use an expectation-minimization (EM) optimization scheme. In the expecta-
tion step of an EM scheme, instances are assigned to clustersminimizing the error according
to an objective function. In the minimization step, centroids are reestimated according to
the assignations made in the expectation step. A plethora of objective functions and cen-
troid update rules has emerged to approach the CC problem, although methods belonging
to these category can be divided into two main categories.

7.1.1 Cluster Engine-adapting Methods

Cluster engine-adaptingmethodsmodify one of the two steps (or both) from the EM scheme
in order to include constraints. Methods belonging to this category are presented in Table 6.
The first and most basic method performing CC this way is COP-K-Means. It modifies the
instance to clusters assignation rule from the expectation step (the clustering engine) so that
an instance is assigned to the cluster associated to its closer centroid whose assignation does
not violate any constraint. Another popular technique in this category consists of perform-
ing clustering over the previously computed chunklet graph (which enforces ML), consider-
ing only CL in the expectation step. This is how methods like CLAC, CLWC, PCCK-Means,
PCBK-Means or SSKMP perform CC. All of them consider hard ML. They differ from each
other in the way in which they build their particular chunklet graph, which may contain
weighted chunklets (as in CLAC and CLWC), or may rank chunklets in order for them to be
examined more efficiently (as in PCCK-Means). Other methods use basic chunklet graph
(like PCBK-Means and SSKMP). Some methods include constraints in EM scheme that are
not basic K-Means, like SSKMP, which is a constrained version of the K-Medoids algorithm.
Based on the COP-K-Means, methods like CLC-K-Means or ICOP-K-Means are designed to
solve the dead-ends problem found in the basic algorithm.

7.1.2 Penalty-based Methods

Penalty-based methods include constraints by means of a penalty term in the objective func-
tion of an EM scheme. Thesemethods are presented in Table 7. Some of them simplymodify
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𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
33.33 COP-K-Means 2 × Hard Hard — 2001 [86]
16.94 PCSK-Means 42 × Hard Soft — 2007 [215]
7.62 CLAC 55 × Hard Hard Graph-based 2008 [216]
7.56 MLC-K-Means 57 × Soft Soft — 2008 [217]
12.54 CLWC 66 × Hard Soft — 2008 [188]
7.90 COPGB-K-Means 71 × Soft Soft Graph-based 2008 [218]
9.14 PCCK-Means 72 × Hard Soft — 2008 [219]
3.79 SCK-Means 76 × Hybrid Hybrid — 2009 [45]
5.16 CMSC 90 × Soft Soft — 2009 [220]
6.51 SCKMM 101 × Soft Soft Constrained Distance Transformation 2010 [221]
6.04 PCBK-Means 102 × Hard Soft — 2010 [221]
5.82 ICOP-K-Means 104 × Hard Hard — 2010 [222]
10.24 CLC-K-Means 115 × Hard Hard — 2011 [223]
5.24 SKMS 190 × Soft Soft — 2014 [224]
4.94 BCK-Means 255 × Hard Hard — 2019 [225]
8.73 SSKMP 256 × Hard Hard — 2019 [226]

Table 6: Feature table for CKM - Cluster Engine-adapting Methods.

previous CC or classic clustering algorithms to include a plain penalty term, such as SCOP-
K-Means, PCK-Means, S-SCAD. Other methods, like MPCK-Means, also include a metric
learning step in the EM scheme, which estimates a cluster-local distance measure for every
cluster, and allows them to find clusters with arbitrary shapes. Besides, there are methods
which use variable penalty terms, such as HMRF-K-Means, CVQE, LCVQE or CVQE+ that
include the distance between constrained instances in it. This is, more relevance is assigned
to ML relating distant instances and CL relating close instances. Methods which combine
pairwise constraints and other types of constraints have also emerged, like PCS, which in-
cludes cluster-size constraints in its EM scheme too. Other methods like GPK-Means use a
Gaussian function and the current cluster centroids to infer new constraints in the neigh-
borhood of the original constraints. These new constraints are added to the constraint set
and used in subsequent iterations of the EM scheme.

7.2 Latent Space CC

Latent space clustering performs clustering in a spacewhich is different from the input space
andwhich is computed on the basis of the dataset, and also the constraint set in Latent Space
CC (LSCC). The input to these algorithms is an adjacency matrix defining the topology of
the network (or graph) over which clustering needs to be performed. Each row or column
may be regarded as the feature or property representation of the corresponding node. La-
tent space clustering methods first obtain new property representations in a latent space for
each node by optimizing different objective functions, and then clusters nodes in that latent
space [240].
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𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
0.00 SCOP-K-Means 3 ✓ Soft Soft — 2002 [227]
16.18 PCK-Means 9 ✓ Soft Soft — 2003 [87, 189]
20.61 MPCK-Means 11 ✓ Soft Soft Constrained Distance Transformation 2003 [87, 228]
8.97 HMRF-K-Means 12 ✓ Soft Soft Constrained Distance Transformation 2004 [194]
13.99 GPK-Means 18 ✓ Soft Soft — 2005 [229]
8.79 CVQE 19 ✓ Soft Soft — 2005 [81]
8.92 LCVQE 44 ✓ Soft Soft — 2007 [230]
6.16 S-SCAD 52 ✓ Soft Soft — 2007 [231]
4.37 SemiStream 127 ✓ Soft Soft Online CC 2012 [205]
17.64 PC-HCM-NM 176 ✓ Soft Soft — 2014 [232]
2.51 AC-CF-tree 185 ✓ Soft Soft Active Clustering with Constraints 2014 [147]
4.68 PCS 191 ✓ Soft Soft — 2014 [233]
4.34 TDCK-Means 193 ✓ Soft Soft Online CC 2014 [234]
12.47 HSCE 207 ✓ Soft Soft Non Graph-based & Constrained Pool Generation 2015 [235, 236]
2.47 CVQE+ 242 ✓ Soft Soft Active Clustering with Constraints 2018 [237]
3.00 PCSK-Means(21) 276 ✓ Soft Soft — 2021 [238]
16.80 fssK-Means 279 ✓ Soft Soft Time Series 2021 [239]

Table 7: Feature table for CKM - Penalty-based Methods.

7.2.1 Spectral CC

Classic spectral clustering algorithms try to obtain the latent space by finding themostmean-
ingful eigenvectors of the adjacency matrix, which are used to define the embedding in
which clusters are eventually obtained [240]. A dichotomy can be made within this cate-
gory: in graph-based methods the input data is always given in the form of a graph, while in
non-graph based the input is an adjacency matrix or a regular dataset, which can be trans-
formed into an adjacencymatrix. Please note that this distinction only affects the conceptual
level of the spectral CC category, as a graph can always be converted to and adjacency ma-
trix and vice versa, all methods from one category may also be applied in the other category.
However, the authors have decided to make this distinction, since the terminology and con-
cepts used in the studies referring to each of them differ greatly and can be misleading if
interpreted together.

Graph-based spectral clustering In graph-based spectral clustering, the input is as-
sumed to be a graph. The goal is to partition the set of vertices of the graph, taking into
account the information contained in the vertices themselves and in the edges of the graph.
Edges may carry similarity or dissimilarity information regarding the vertices they connect.
Some common strategies to perform graph clustering try to maximize the similarity of ver-
tices within a cluster, normalizing the contribution of each to the objective by the size of the
cluster in order to balance the size of the clusters. Other methods try to minimize the total
cost of the edges crossing the cluster boundaries [241]. Graph-based methods are particu-
larly suitable to perform CC, as constraints can be naturally represented in their graph form,
which is the constraint graph and the chunklet graph (introduced in Section 4).
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Table 8 gathers graph-based spectral clustering methods. COP-b-coloring and CLAC exem-
plify the use of chunklets to enforce ML, while including CL by other means. Other meth-
ods modify the input graph to include the information contained in the constraint set. For
example, PCOG modifies affinities so that ML instances are always placed in the same con-
nected components and removes edges which connect CL instances. CCHAMELEONmod-
ifies affinities between constrained instances, making them larger if instances are related by
ML and lower in the case of CL. The all-pairs-shortest-path algorithm is used to propagate
changes. PAST-Toss uses a spanning tree based technique to perform CC directly over the
constraint graph. SCRAWL is the only non-spectral graph-basedCC algorithm, as it does not
need pairwise similarity/dissimilarity information to perform CC, but graph-related mea-
sures instead.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
4.35 COP-b-coloring 38 × Hard Hard — 2007 [242]
3.56 PAST-Toss 54 × Soft Soft Single Individual 2008 [243]
7.62 CLAC 55 × Hard Hard Cluster Engine-adapting Methods 2008 [216]
7.90 COPGB-K-Means 71 × Soft Soft Cluster Engine-adapting Methods 2008 [218]
8.29 GBSSC 98 × Hard Soft Dimensionality Reduction 2010 [185, 244, 245, 246]
4.54 CCHAMELEON 112 × Soft Soft — 2011 [247]
11.27 SCRAWL 184 × Soft Soft — 2014 [192]
5.37 PCOG 269 × Hard Hard Non Graph-based 2020 [90]

Table 8: Feature table for the LSCC - Spectral CC - Graph-based methods.

Non graph-based spectral clustering In these methods, the input is given in the form
of an adjacency matrix, or a dataset whose adjacency matrix can be easily obtained. Two
techniques are commonly used to include pairwise constraints in these methods. (1) Mod-
ifying similarities/dissimilarities in the original adjacency matrix, computing eigenvectors
and eigenvalues to obtain the spectral embedding. (2) Using the constraints to directly mod-
ify the embedding, obtained on the basis of the original adjacency matrix. Any classic clus-
tering method can be used to obtain the final partition in the new embedding, which can
always be mapped to the original data [240].
Table 9 shows a list of non-graph-based spectral CC methods. The first spectral CC method
is found in KKM/SL, known in the literature by these two acronyms (respectively obtained
from the name of its authors and the title of the study which proposes it). It is based on
HMRF, performing CC by modifying the transition probabilities of the field based on the
constraints. KKM/SL andAHMRF constitute the only twoHMRF-based approaches to spec-
tral CC. Another common technique in spectral CC is learning a kernel matrix based on the
dataset over which spectral clustering is later conducted, as in RSCPC, CCSR, CCSKL, LSE
or SSCA. This kernel matrix is usually built taking both pairwise distances and constraints
into account. With respect to the methods which modify the original adjacency matrix, two
strategies are the most used ones: some methods, such as ACCESS or CSC, simply set en-
tries which relate constrained instances to specific fixed values, while other methods, such
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as NSDR-NCuts or LCPN, use constraint propagation techniques to propagate changes in
the affinity matrix once it has been modified.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
14.40 KKM 6 × Soft Soft — 2003 [248]
11.11 TBJSBM 7 × Hybrid Hybrid — 2004 [249]
12.73 ACCESS 16 × Soft Soft Active Constraint Acquisition 2005 [250]
6.88 CSC 20 × Soft Soft — 2005 [251]
12.47 LCPN 61 × Soft Soft Constraint Propagation 2008 [252]
8.40 S3-K-Means 63 ✓ Soft Soft — 2008 [109]
3.68 RSCPC 86 × Soft Soft — 2009 [253]
15.39 CCSR 87 ✓ Soft Soft — 2009 [197]
6.82 SCLC 88 × Soft Soft — 2009 [254]
15.81 CCSKL 89 × Soft Soft Kernel CC 2009 [198]
8.76 CSP 105 × Hybrid Hybrid — 2010 [255]
13.47 ASC 110 × Any Any Active Clustering with Constraints 2010 [256]
8.57 SSC-ESE 152 ✓ Soft Soft — 2012 [257]
3.90 IU-Red 144 × Soft Soft Active Clustering with Constraints 2012 [258]
5.65 LSE 148 × Soft Soft — 2012 [259]
7.73 NSDR-NCuts 135 × Soft Soft — 2012 [260]
13.38 COSC 138 × Hybrid Hybrid — 2012 [261]
3.62 SSCA 181 × Soft Soft — 2014 [262]
6.78 FHCSC 183 × Hybrid Hybrid — 2014 [263]
6.93 CNP-K-Means 187 × Soft Soft Dimensionality Reduction 2014 [264]
4.46 STSC 188 × Soft Soft Matrix Completion 2014 [265]
5.98 LXDXD 200 × Soft Soft Non-negative Matrix Factorization CC 2015 [240]
12.47 HSCE 207 × Soft Soft Constrained Pool Generation & Penalty-based Methods 2015 [235, 236]
8.82 FAST-GE 218 × Soft Soft — 2016 [266]
6.65 URASC 227 × Soft Soft Active Clustering with Constraints 2017 [267]
16.54 FAST-GE2.0 231 × Soft Soft — 2017 [268]
12.11 TI-APJCF 233 ✓ Soft Soft — 2017 [49]
12.11 TII-APJCF 234 ✓ Soft Soft — 2017 [49]
1.89 AHMRF 246 × Soft Soft — 2018 [212]
18.17 MVCSC 261 × Soft Soft Intra-View Constrained 2019 [269]
15.04 SFS3EC 257 × Soft Soft Full Constrained 2019 [270]
5.37 PCOG 269 × Hard Hard Graph-based 2020 [90]

Table 9: Feature table for the LSCC - Spectral CC - Non Graph-based methods.

7.2.2 Non-negative Matrix Factorization CC

Non-negative Matrix Factorization (NMF) clustering algorithms obtain the new represen-
tation of the data by factorizing the adjacency matrix into two non-negative matrices [240].
These two matrices can be interpreted as the centroids of the partition and the membership
degree of each instances to each cluster. By doing this, all instances can be obtained as a lin-
ear combination of each column of the centroidsmatrix, parameterized by its corresponding
membership, found in its associated row from themembershipmatrix. It can be proven that
minimizing the difference between the original dataset matrix and the product matrix (com-
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puted usually as the Frobenius norm) is equivalent to performing K-Means clustering over
the dataset [271].
Table 10 presents a list of NMF-based CC methods. One of the most common strategies
to include constraints into the classic NMF-based methods is to modify its objective func-
tion. This can be done by means of a penalty term accounting for the number of violated
constraints, as in PNMF, SSCsNMF and SS-NMF(08), or by more complex techniques, as in
CPSNMF or NMFS. Another popular strategy is forcing affinities between ML instances to
be 0 and affinities between CL instances to be 1, as in NMFCC and SymNMFCC.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
5.68 NMFS 45 × Soft Soft — 2007 [272]
16.28 SS-NMF(08) 73 × Soft Soft — 2008 [273]
4.74 OSS-NMF 96 × Soft Soft Co-Clustering 2010 [98]
11.88 SS-NMF 109 × Soft Soft Co-Clustering 2010 [274]
4.51 PNMF 123 ✓ Soft Soft — 2011 [116]
6.47 SSCsNMF 129 × Soft Soft — 2012 [275]
5.98 LXDXD 200 × Soft Soft Non Graph-based 2015 [240]
4.45 CPSNMF 211 × Soft Soft Constraint Propagation 2016 [276]
8.20 NMFCC 219 × Soft Soft — 2016 [277]
11.94 SymNMFCC 220 × Soft Soft — 2016 [277]
5.02 PCPSNMF 251 × Soft Soft — 2018 [278]
2.85 CMVNMF 254 × Soft Soft Inter-View Constrained & Active Clustering with Constraints 2018 [91, 271]

Table 10: Feature table for the LSCC - Non-negative Matrix Factorization CC methods.

7.3 Active CC

Active learning is a subfield of machine learning in which algorithms are allowed to choose
the data fromwhich they learn. The goal of active learning is to reduce the amount of super-
visory information needed to learn, an therefore reduce the human effort and implication
in machine learning. In the active learning paradigm, learning methods are provided with
an oracle, which is capable of answering a limited number of an specific type of query. For
example, in traditional classification, active learning is used to select the best instances to be
labeled from a dataset, so the oracle provides the label of the specific queried instance [279].
In Active CC (ACC), the oracle is queried about the type of constraint relating pairs of in-
stances. The key aspect in any active learning algorithm is how to choose the queries to be
presented to the oracle.
Active learning is specially useful in CC. In order to have an explanation for this, we compare
the complexity of the answers given by oracles involved in active classification and ACC. In
active classification, the oracle is queried about the class of a given instance. This query
has a virtually infinite number of answers, as the number of classes in the dataset may be
unknown. On the other hand, an oracle involved in CC is queried with two instances and
asked about the constraint between them (ML or CL), which is the same as asking whether
they belong to the same class. There are only three possible answers to this question: “yes”,
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“no” or “unknown”. It is clear that the oracle in CC carries out a far simpler job than the one
in classification. Let us remember that the oracle is just an abstraction of a knowledge source,
which is generally a human user. Querying a human about the relation between instances
instead of about their class requires less effort from them and leads to less variability and
noise in the queries, as the extensive literature in active CC shows.
Two subcategories can be found in Active CC. In active constraint acquisition, constraints
are actively generated before performing constrained clustering, while in active clustering
with constraints, both clustering and active constraint generation are performed iteratively
at the same time. This way, in active constraint acquisition queries are generated on the
basis of the dataset and the current state of the constraint set, while in active clustering with
constraints information about the current partition can also be used.

7.3.1 Active Constraint Acquisition

The immediate result of active constraint acquisition methods is a set of constraints, rather
than a partition of the dataset. However, the partition can be obtained using any other CC
method by just feeding the generated constraints into it, along with the dataset used to gen-
erate the constraints. Only the dataset, the constraint set generated so far, and an initial
unconstrained partition are available to perform active constraint learning in the active con-
straint acquisition paradigm. No CC algorithm is involved in the constraint acquisition step.
Table 11 shows a list of active constraint acquisition methods. Columns indicating the type
of constraint these methods can handle have been removed, as they are not relevant here.
Column “CC Method” has been added, indicating the CC method used to produce a parti-
tion based on the constraint generated by every active constraint acquisition method in the
experimental section of the studies that propose them.
Many strategies to select the best pair of instances to query to the oracle have been pro-
posed. Somemethods start by dividing the dataset into preliminary groups and then use the
oracle to query constraints which consolidate that information, such as FFQS, MMFFQS,
SSL-EC or LCML. Other methods focus on finding the boundaries in the dataset to select
pairs of instances from them, such as ACCESS, ASC(10) or SACS. Besides, there are meth-
ods that use classic clustering to obtain preliminary information from the dataset, such as
the co-association of instances or the compactness of clusters. DGPC, JDFD, WAKL, MICS,
AAA(19), AIPC, ALPCS or ASCENT are some of themethods which use this strategy. Other
methods focus on specific features from the constraint themselves in order to evaluate them
and select the more informative ones, such as AAVV or KAKB. More complex approaches
can be found in AAA(18), which solves the active constraint acquisition problem as an ins-
tance of the uncapacited k-facility location problem, or RWACS, which uses the commute
time from graph theory to select queries.
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𝑆𝒜 Acronym ID CC Methods Hybrid Year Ref.
16.24 FFQS 10 — — 2004 [189]
12.73 ACCESS 16 — Non Graph-based 2005 [250]
7.00 DGPC 289 PCK-Means — 2007 [280]
13.19 MMFFQS 69 MPCK-Means — 2008 [281]
9.42 ASC(10) 106 AHCC, MPCK-Means — 2010 [282, 191, 283]
7.24 KAKB 290 S3OM — 2011 [284]
4.63 SSL-EC 131 — Constraint Propagation 2012 [285]
5.74 Cons-DBSCAN 137 — Hierarchical CC & Density-based CC 2012 [111]
8.62 JDFD 292 — — 2013 [286]
8.64 SACS 186 Xiang’s, RCA, MPCK-Means — 2014 [287]
6.34 WAKL 293 MPCK-Means — 2014 [288]
4.27 MICS 294 RCA+K-Means — 2015 [289]
11.85 CCCPYL 203 DBSCAN, COP-K-Means, KKM, CSI, MPCK-Means — 2015 [290]
6.63 LCML 300 MPCK-Means — 2016 [291]
7.12 AAA(18) 296 MPCK-Means, RCA — 2018 [292]
5.88 RWACS 297 MPCK-Means, RCA — 2018 [293]
9.91 AAA(19) 298 MPCK-Means, RCA — 2019 [294]
18.34 AIPC 301 PCK-Means — 2019 [201]
5.65 AAVV 302 MPCK-Means, RCA — 2020 [295]
7.36 ALPCS 299 — — 2020 [296]
3.93 ASCENT 307 MPCK-Means — 2020 [193]

Table 11: Feature table for the ACC - Active Constraint Acquisition methods.

7.3.2 Active Clustering with Constraints

In active clustering with constraints, a CC procedure and a constraint generation method
are applied alternately. The immediate result of these methods are both a partition of the
dataset and a constraint set. These methods usually start by computing an unconstrained
partition of the dataset. After this, some criteria are applied to select pairs of instances to
query the oracle on the basis of the obtained partition. The answers to these queries are used
to generate and save new constraints, which are later used to generate a new partition of the
dataset by means of a CC method. Active clustering with constraints methods iterate these
steps to produce the final constraint set and the partition. The active constraint generation
method can be dependent of the CC method used to produce partitions, in which case they
cannot be used separately. On the other hand, some active constraint generation methods
are designed to be paired with any CC algorithm.
Table 12 gathers a list of active clustering with constraints methods. A major trend in this
category is found in the use of the uncertainty of instances to rank and pair them to select
the more uncertain ones and query them to the oracle. The uncertainty is always computed
based in the current partition and is usually defined as the probability of an instance belong-
ing to different known clusters. Some methods in this category are: RHWL, IU-Red, ALC-
SSC, CMKIPCM, AAA, URASC, A-COBS, ADP and ADPE. There are as well other criteria
to select pairs of instances to query, such as the utility maximization (SRBR), the maximum
expected error reduction (ASC), the partition change maximization (Active-HACC), the en-
semble consensus (PT), or the classic informativeness and coherence (A-ITML-K-Means).
Cluster-related criteria can also be used to select queries, such as the size and distance
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between the clusters (CAC, COBRA) or how well defined the frontiers are between them
(AFCC, CVQE+). Paradigm-specific criteria are used by some methods, such as CMVNMF,
which performs multi-view clustering and selects pairs of instances to query, based on intra-
view and inter-view criteria, or AC-CF-tree and COBRAS, which use queries to determine
the best cluster merge to perform in hierarchical CC. Similarly, the family of active FIECE-
EM use concepts related to the population of individuals it maintains to select the best in-
stances to query.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
7.14 RHWL 43 × Soft Soft Probabilistic Clustering 2007 [96]
7.62 PT 56 × Soft Soft Constrained Pool Generation 2008 [216]
9.50 AFCC 59 × Soft Soft Fuzzy CC 2008 [297]
13.47 ASC 110 — Any Any Non Graph-based 2010 [256]
4.17 CAC1 113 — Hard Soft Hierarchical CC 2011 [140]
3.90 IU-Red 144 × Soft Soft Non Graph-based 2012 [258]
7.86 SRBR 155 × Soft Soft — 2013 [298]
5.62 A-ITML-K-Means 156 × Soft Soft Constraint Propagation 2013 [299]
9.09 ALCSSC 180 × Soft Soft — 2014 [300]
2.51 AC-CF-tree 185 ✓ Soft Soft Penalty-based Methods 2014 [147]
3.57 Active-HACC 189 × Soft Soft Hierarchical CC 2014 [142]
16.77 CMKIPCM 202 × Soft Soft Fuzzy CC 2015 [301]
21.19 AAA 221 × Soft Soft Fuzzy CC 2016 [302]
4.20 COBRA 225 × Soft Soft Hierarchical CC 2017 [108]
6.65 URASC 227 × Soft Soft Non Graph-based 2017 [267]
8.76 A-COBS 241 × Soft Soft Constrained Consensus 2017 [303]
2.47 CVQE+ 242 × Soft Soft Penalty-based Methods 2018 [237]
19.57 COBRAS 244 × Soft Soft Hierarchical CC 2018 [304]
2.85 CMVNMF 254 × Soft Soft Non-negative Matrix Factorization CC & Inter-View Constrained 2018 [91, 271]
15.56 FIECE-EM+BFCU 303 × Hard Hard Genetic Algorithm &Mixture Model-based CC 2020 [305, 306]
15.56 FIECE-EM+FCU 304 × Hard Hard Genetic Algorithm &Mixture Model-based CC 2020 [305, 306]
15.56 FIECE-EM+DVO 305 × Hard Hard Genetic Algorithm &Mixture Model-based CC 2020 [305, 306]
15.56 FIECE-EM+LUC 306 × Hard Hard Genetic Algorithm &Mixture Model-based CC 2020 [305, 306]
17.22 ADPE 281 × Soft Soft Density-based CC & Constrained Pool Generation 2021 [307]
17.84 ADP 282 × Soft Soft Density-based CC 2021 [307]

Table 12: Feature table for the ACC - Active Clustering with Constraints methods.

7.4 Neural Network-based CC

Neural Networks (NN) are universal approximators which have been applied in many ma-
chine learning tasks, and CC is not an exception. Neural Network-based CC (NNbCC) tack-
les the CC from the NN perspective in three different ways: through self organizing maps,
through deep-embeded clustering and through classic neural networks architectures.

7.4.1 Self Organizing Maps-based CC

Self organizing maps are NN (usually with fixed topology) whose neurons modify their posi-
tion in the solution space to organize themselves according to the shape of the clusters. The
result is a net whose neurons are grouped in clusters, which can be used to determine the
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cluster every instance belongs to. Constraints can be included into this process in different
ways, as Table 13 shows. Some on them, like SS-FKCN, simply use a penalty term account-
ing for violated constraints in a classic SOM variant. Others such as PrTM and SSGSOM,
reformulate the classic SOM problem and use multiple neuron layers, forcing instances to
flow through these to layers to be ultimately assigned to the appropiate cluster. In order to
do so, PrTM uses constraint-influenced probabilities to decide how the position of the neu-
rons changes, while SSGSOM adjusts the between-layer weights and the number of nodes
of the first layer to dynamically correct the violation of constraints. Simpler methods like
the S3OM, modify classic SOM for it to carry out only assignations without violating any
constraints, similarly to COP-K-Means.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
5.74 SS-FKCN 36 ✓ Soft Soft — 2006 [127]
10.13 PrTM 77 × Soft Soft — 2009 [308]
7.70 S3OM 111 × Hard Hard — 2011 [284]
10.74 CS2GS 201 × Soft Soft Online CC 2015 [309]
Table 13: Feature table for the NNbCC - Self Organizing Maps-based CC methods.

The main difference between SOM-based approaches to CC and the other two approaches
(deep embedded clustering and classic neural networks) is that the primary goal of the for-
mer is to produce a partition of the dataset, while the latter’s is to cast predictions over unseen
instances regarding the cluster they belong to. Please note that a partition can be obtained
with deep embedded clustering and classic neural networks by feeding the training instances
to the trained model.

7.4.2 Deep Embedded Clustering-based CC

In deep embeded clustering-based CC constraints are included into the classic Deep Em-
beded Clustering (DEC) model. Table 14 gathers methods which use this approach. SDEC
includes constraints into the classic DECmodel by using constraints to influence its distance
learning step, DCCdoes so by simplymodifying the loss function ofDECwith a penalty term.
CDEC uses DEC to initialize its encoder, which is finally retrained to finally assign instances
to clusters and satisfy the constraints.

7.4.3 Classic Neural Network-based CC

Lastly, classic neural network-based CC methods are presented in Table 15. Some of them,
such as S3C2 and CDC, use the siamese neural networks, as they are known, to solve the
CC problems in two steps. In the case of S3C2, the siamese neural network is used to solve
the two steps in which the CC is decomposed into simpler binary problems, while CDC uses
the siamese neural network to perform unsupervised clustering and a triple NN to perform
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𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
8.32 SDEC 260 × Soft Soft — 2019 [310]
10.31 DCC 265 × Soft Soft — 2020 [43, 311]
2.44 CDEC 275 × Soft Soft — 2021 [93]
Table 14: Feature table for the NNbCC - Deep Embeded Clustering-based CC methods.

CC. NN-EVCLUS simply implements EVCLUS in an NN setup and uses a penalty term in
its loss function to include constraints.
SNNs consist of a NNmodel designed to learn non-linear similarity measures from pairwise
constraints and to generalize the learned criterion to new data pairs. A SNN is a feedforward
multi-layer perceptron whose learning set is defined as triplets composed of two instances
and the constraint set between them, using 1 for ML and 0 for CL. In other words, ML in-
stances have an associated target equal to 1, while CL instances have an associated target
equal to 0. From the architectural point of view, the SNN has an input layer which accepts
pairs of instances, a single hidden layer which contains an even number of units, and an out-
put neuron with sigmoidal activation. The training of the SNN can be performed using the
standard backpropagation scheme. Since the metric learned by an SNN cannot be straight-
forwardly used by a K-Means style algorithm, as the centroids do not necessarily have to be
found in the dataset, centroids computation can be embedded in the SNN by using a classic
K-Means minimization scheme based on backpropagation. This scheme keeps the weights
and biases of the trained SNN fixed and varies the centroid coordinates (seen as free param-
eters). This is equivalent to redefining the original SNN model by adding a new layer to the
network structure whose neuron activation functions correspond to the identity mapping.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
7.01 SNN 136 × Soft Soft Constrained Distance Transformation 2012 [312]
15.54 S3C2 268 × Soft Soft — 2020 [313]
10.09 CDC 274 × Soft Soft — 2021 [314]
3.56 NN-EVCLUS 284 ✓ Soft Soft — 2021 [92]

Table 15: Feature table for the NNbCC - Classic Neural Network-based CC methods.

7.5 Ensemble CC

Ensemble clustering methods usually perform clustering in two steps. (1) generating a pool
of solutions, whose diversity depends on the method (or methods) used for the generation.
(2) taking the pool of solutions as input and producing a single final solution by merging or
selecting solutions from the pool. The function in charge of this procedure is called the con-
sensus function. The application of ensemble-based clustering methods on the constrained
clustering problem gives place to a new distinction within this category, which classifies
Ensemble CC (ECC) methods depending on the step (or steps) in which they consider con-
straints. 52
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7.5.1 Constrained Pool Generation

These ensemble methods use constraints in the pool generation step (the first step), i.e.: the
partitions in the pool of solutions are generated with CCmethods. Table 16 presents the list
of methods belonging to this category. The consensus functions used by these methods do
not take constraints into account. Therefore they are not considered in any distinctionmade
within this category. The most commonly used consensus functions are majority voting,
NCuts and CSPA.
Manymethods use the subspace technique, which consists of performing clustering in a new
space with a lower number of dimensions than the original space. The technique used to
produce different subspaces introduces variability on the pool of solutions. The most com-
mon procedure used to generate the subspaces is simply a random sampling of the original
features, such as in SCSC, ISSCE, RSSCE, CESCP, DCECP or ADPE. However, there are
subspace generation methods specifically designed for certain algorithms. An example of
this is SMCE, which uses the CSI method to project instances and constraints into multiple
low-dimensional subspaces and then learning positive semi-definite matrices therein.
Other methods simply use any previous CC algorithm to produce the pool. The most com-
mon way to introduce diversity in the pool is by applying different CC methods to produce
different partitions. Methods that use this strategy are SCEV, MVSCE, E2CPE, HSCE or
FQH. Another (and less used) method to generate diversity is varying the hyperparameters
of a single CC method, as in Samarah.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
5.33 SMCE 37 × Soft Soft — 2006 [315]
7.62 PT 56 × Soft Soft Active Clustering with Constraints 2008 [216]
10.81 Samarah 99 × Soft Soft — 2010 [316]
0.00 SCEV 146 × Soft Soft — 2012 [317]
11.05 MVSCE 164 × Soft Soft — 2013 [318]
1.25 E2CPE 170 × Soft Soft — 2013 [319]
5.48 SCSC 206 × Soft Soft Online CC 2015 [320]
12.47 HSCE 207 × Soft Soft Non Graph-based & Penalty-based Methods 2015 [235, 236]
23.05 ISSCE 214 × Soft Soft Constraint Propagation 2016 [321]
20.25 RSSCE 215 × Soft Soft Constraint Propagation 2016 [321]
6.09 FQH 232 × Soft Soft — 2017 [322]
7.83 CESCP 252 × Soft Soft Constraint Propagation 2018 [323]
10.64 DCECP 253 × Soft Soft Constraint Propagation 2018 [323]
17.22 ADPE 281 × Soft Soft Density-based CC & Active Clustering with Constraints 2021 [307]

Table 16: Feature table for the ECC - Constrained Pool Generation methods.

7.5.2 Constrained Consensus

In constrained consensus ensemble methods, constraints are used only in the consensus
function to produce a final partition meeting as much constraints as possible. Table 17
gathers the four methods which belong to this category. All of these methods generate the
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partitions in the pool by means of classic clustering algorithms. This is why the consensus
functions used by thesemethods usuallymeasure the quality of the generated solutionswith
respect to the constraints by means of a quality index and select the best ones to be finally
merged. For example COBS and A-COBS use the infeasibility to select the best partition in
the pool, which is generated by any classic clustering method. WECR K-Means runs classic
K-Means multiple times with different hyperparameters to generate the pool, then a weight-
ing procedure is used to automatically assign a weight to every partition depending on their
local and global quality, which includes the infeasibility. A weighted co-association ma-
trix based consensus approach is then applied to achieve a final partition. Semi-MultiCons
builds a tree-like pool or partitions and then applies a normalized score which measures
constraint satisfaction if any given merge or split operation between clusters is performed
in the tree.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
7.00 COBS 240 × Soft Soft — 2017 [303]
8.76 A-COBS 241 × Soft Soft Active Clustering with Constraints 2017 [303]
6.68 WECR K-Means 278 × Soft Soft — 2021 [324]
5.39 Semi-MultiCons 288 × Soft Soft — 2022 [325]

Table 17: Feature table for the ECC - Constrained Consensus methods.

7.5.3 Full Constrained

These methods (in Table 18) include constraints in both the pool generation and the con-
sensus steps. They make use of the formulas described before and combine them. On the
one hand, SFS3EC, ARSCE and RSEMICE make use of the subspace technique, although
they differ in the consensus function. SFS3EC merges partitions in the pool by building a
hypergraph which takes partitions and constraints into account and running METIS over
this graph to get the final partition. ARSCE computes the affinity graph for every solution
in the pool, and uses regularized ensemble diffusion to fuse the similarity information. Fi-
nally, RSEMICE assigns a confidence factor to each solution in the pool to build a consensus
matrix, which can be interpreted as a graph over which the NCut algorithm is applied (used
as the consensus function). On the other hand, COP-SOM-E and Cop-EAC-SL use previous
CC methods (ICOP-K-Means and COP-K-Means, respectively) to generate their pool. COP-
SOM-E uses a hard constrained version of SOM as the consensus matrix, and Cop-EAC-SL
runs the constrained single-link algorithm over a co-association matrix which counts how
many times pairs of instances are placed in the same cluster in different partitions.

7.6 Metaheuristics-based CC

Metaheuristics-based CC (MbCC) use metaheuristic algorithms to approach the CC prob-
lem. Many distinctions can be made within the metaheuristic algorithms field, in this study
the trajectory-basedmethods versus population-basedmethods is used to produce to subcat-
egories of CC approaches, as it is the one which results in the more consistent dichotomy.
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𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
6.36 Cop-EAC-SL 75 × Soft Soft — 2009 [326]
3.00 En-Ant 133 × Soft Soft Swarm Optimization 2012 [327]
7.54 COP-SOM-E 143 × Hard Hard — 2012 [328]
10.77 RSEMICE 237 ✓ Soft Soft — 2017 [329]
15.04 SFS3EC 257 × Soft Soft Non Graph-based 2019 [270]
6.86 ARSCE 263 × Soft Soft — 2020 [330]

Table 18: Feature table for the ECC - Full Constrained methods.

7.6.1 Population-based

A plethora of metaheuristic methods has been applied to the CC problem. Particularly,
population-based methods have shown remarkable success, with evolutive algorithms be-
ing the most used ones. A further distinction can be made within these methods: swarm
optimization algorithms and genetic algorithms. In swarm optimization algorithms, a pop-
ulation of individuals is used to mimic the behavior of a colony of insects in its natural en-
vironment, while in genetic algorithms, the population is evolved according to the rules of
natural selection, expecting them to generate the best possible individual (solution).

SwarmOptimization Table 19 gathers swarm optimization algorithms which tackle the
CC problem. All of them are based on ant colonies behavior, with the main differences
found in the scheme used to include constraints. MCLA, MELA and CELA are all based in
the Leader Ant algorithm and use the same integration scheme. They modify the ant-nest
assignment rule so that only feasible assignments are taken into account. MCLA andMELA
ensure that they do not violate any ML constraints by using chunklets. They only differ
in the type of constraints they can handle. CAC is based on the RWAC algorithm, which
tries to simulate the behavior of ants in their environment trying to find a place to sleep.
Constraints are included in this schemebymodifying attractive and repulsive forces between
ants associated to constrained instances. The En-Ant algorithm uses three instances of the
Semi-Ant algorithm as the partition generation algorithm in an ensemble setup. Constraints
are used both in the generation of the partition pool and in the consensus function. Please
note how none of these algorithms modify the fitness function of the ant colony algorithm
on which they are based, instead they include constraints by modifying other aspects of the
algorithms.

Genetic Algorithm Genetic strategies used to tackle the CC problems are presented in
Table 20. A low-level dichotomy can be made within these methods, they can be either
single-objective or multi-objective genetic algorithms. On the one hand, multi-objective al-
gorithms optimize a set of fitness functions all at the same time. Constraints can be naturally
included in this paradigm by simply adding the infeasibility as one of the functions to be op-
timized. This is the case for MOCK (which includes constraints into the classic PESA-II
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𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
6.26 MCLA 91 × Hard Hard — 2009 [331]
12.66 MELA 92 × Hard — — 2009 [331]
12.66 CELA 93 × — Hard — 2009 [331]
7.71 CAC 132 × Soft Soft — 2012 [206, 332]
3.00 En-Ant 133 × Soft Soft Full Constrained 2012 [327]

Table 19: Feature table for the MbCC - Population-based - Swarm Optimization methods.

algorithm), PCS (which is based on NSGAII) and ME-MOEA/D𝐶𝐶 (which modifies clas-
sic MOEA/D). These three proposals also modify a basic aspect of the algorithm they are
based on for it to fit better to the CC problem. MOCK implements a constraint-oriented
initialization scheme. PCS features an improving procedure applied to the population after
the classic operators have been applied. Lastly, ME-MOEA/D𝐶𝐶 uses memetic elitism with
controlled feedback. On the other hand, single objective genetic algorithms usually opti-
mize a combination of any classic clustering related measure and the infeasibility included
as a penalty term. Methods such as COP-HGA, BRKGA+LS or SHADE𝐶𝐶 use this strategy.
Other proposals, such as Cop-CGA and FIECE-EM, evolve separate populations or subpop-
ulations which have individuals with different solutions qualities and make them interact
to generate new individuals. FIECE-EM+BFCU, FIECE-EM+FCU, FIECE-EM+DVO and
FIECE-EM+LUC are all active variants of FIECE-EM.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
15.92 MOCK 30 × Soft Soft — 2006 [333]
9.10 COP-CGA 62 × Soft Soft — 2008 [334]
10.79 COP-HGA 65 ✓ Soft Soft — 2008 [335]
4.31 PSC 126 × Soft Soft — 2012 [336]
4.38 CEAC 212 × Soft Soft — 2016 [337]
13.75 BRKGA+LS 235 ✓ Soft Soft — 2017 [338]
13.97 FIECE-EM 247 × Hard Hard Mixture Model-based CC 2018 [339]
15.56 FIECE-EM+BFCU 303 × Hard Hard Active Clustering with Constraints & Mixture Model-based CC 2020 [305, 306]
15.56 FIECE-EM+FCU 304 × Hard Hard Active Clustering with Constraints & Mixture Model-based CC 2020 [305, 306]
15.56 FIECE-EM+DVO 305 × Hard Hard Active Clustering with Constraints & Mixture Model-based CC 2020 [305, 306]
15.56 FIECE-EM+LUC 306 × Hard Hard Active Clustering with Constraints & Mixture Model-based CC 2020 [305, 306]
29.32 SHADE𝐶𝐶 285 ✓ Soft Soft — 2021 [340]
28.22 ME-MOEA/D𝐶𝐶 286 ✓ Soft Soft — 2021 [94]

Table 20: Feature table for the MbCC - Population-based - Genetic Algorithm methods.

7.6.2 Single Individual

Single individual methods focus on modifying and improving a single candidate solution.
They start with a single individual which is improved with respect to the fitness function.
Simulated annealing, local search, iterated local search or guided local search are exam-
ples of single solution metaheuristics. Table 21 lists methods which belong to this category.
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CCLS and DILSCC use both variants of the classic LS algorithm to find solutions for the CC
problem. They use a combination of the intra-cluster mean distance and the infeasibility
to build their fitness function. The SemiSync algorithm is a nature-inspired non-evolutive
based on regarding instances as a set of constrained phase oscillators, whose dynamics can
be simulated to build a partition. The local interaction of every oscillator with respect to its
neighborhood can be computed over time. Therefore similar instances will synchronize to-
gether in groups that can be interpreted as clusters. ML and CL are included by introducing
an additional global interaction term.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
3.56 PAST-Toss 54 × Soft Soft Graph-based 2008 [243]
3.99 CCLS 223 ✓ Soft Soft — 2016 [341]
11.50 CG+PR+LS 236 × Soft Soft Column Generation 2017 [338]
14.10 SemiSync 258 × Soft Soft — 2019 [342]
20.09 DILS𝐶𝐶 270 ✓ Soft Soft — 2020 [95]

Table 21: Feature table for the MbCC - Single individual methods.

7.7 Multi-View CC

In many applications, data is collected from different sources in diverse domains, usually
involvingmultiple feature collectors. This data refers to the same reality, although it exhibits
heterogeneous properties, which translates into every instance being described by different
sets of features. These are the called views, and the problem of performing clustering over
instances described by different sets of features is known as multi-view (or multi-source)
clustering [343]. Inmulti-view clustering, different sources of the data are used to produce a
single partition. Constraints can be included intomulti-view clustering in differentways and
levels, giving place toMulti-ViewConstrainedClustering (MVCC).With respecto to the level
in which constraints can be used, two options are available: intra-view constraints and inter-
view constraints. Intra-view constraints relate instances which belong to the same view of
the data (similarly to constraints in any nonMVCC algorithm), while inter-view constraints
relate instances which belong to different views, hence encouraging collaboration between
the clustering processes applied to them.

7.7.1 Intra-View Constrained

Intra-view CC usually performs clustering separately in each view and then tries to find a
consensus between the obtained partitions (similarly to what ensemble clustering does with
the consensus function). Methods which belong to this category are gathered in Table 22.
SMVC models clustering views via multivariate Bayesian mixture distributions located in
subspace projections. It includes constraints in the Bayesian learning processes. TVClust
and RDPM are both very particular methods, as they view the dataset and the constraint set
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as different sources of information for the same data, thus performing multi-view cluster-
ing with only two views. The dataset is modeled by a Dirichlet Process Mixture model and
the constraint set is modeled by a random graph. They aggregate information from the two
views through a Bayesian framework and they reach a consensus about the cluster structure
though a Gibbs sampler. MVMC independently builds a pairwise similarity matrix for every
view and casts the clustering task into amatrix completion problem based on the constraints
and the feature information frommultiple views. The final pairwise similaritymatrix is built
iteratively by approaching the independent pairwise similarity matrices in different views
to each other. The final partition is obtained by performing spectral clustering of the final
similarity matrix. SSCARD is based on classic CARD, which is able to combine multiple
weighted sources of relational information (some may be more relevant than others) to pro-
duce a partition of the dataset. SSCARD simply includes the PCCA penalty term (see Sec-
tion 7.11) into the classic CARD objective function. Lastly, MVCC is the only intra-view CC
method that performs clustering in the different views in a collaborative way. It performs
constrained clustering in each view separately, inferring new constraints and transferring
them between views using partial mapping. For constraint inference and transfer, a variant
of the co-EM algorithm [344] is used, which is an iterative EM based algorithm that learns
a model from multiple views of the data.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
7.09 SSCARD 49 ✓ Soft Soft Fuzzy CC 2007 [345, 346]
3.45 MVCC 182 × Soft Soft — 2014 [347]
3.62 SMVC 195 × Soft Soft — 2014 [348]
19.21 TVClust 209 × Soft Soft — 2015 [349]
20.02 RDPM 210 × Soft Soft — 2015 [349]
11.04 MVMC 226 × Soft Soft Matrix Completion & Spectral CC 2017 [350]
18.17 MVCSC 261 × Soft Soft Non Graph-based 2019 [269]

Table 22: Feature table for the MVCC - Intra-View Constrained methods.

7.7.2 Inter-View Constrained

Inter-View CC methods can handle both intra-view and inter-view constraints. Methods
which belong to this category are presented in Table 23. UCP uses the results of intra-view
constraint propagation to adjust the similarity matrix of each view, and then performs inter-
view constraint propagation with the adjusted similarity matrices. Its main drawback is that
it is limited to two views. CMVNMF minimizes the loss function of NMF in each view, as
well as the disagreement between each pair of views. The disagreement is defined as the dif-
ference between feature vectors associated to the same instance in the same view. It should
be high if they are CL instances and low if they are ML instances. MSCP can propagate con-
straints across different data sources by dividing the problem into a series of two-source con-
straint propagation subproblems, which can be transformed into solving a Sylvester matrix
equation, viewed as a generalization of the Lyapunov matrix equation. MCPCP uses a low-
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rank relation matrix to represent the pairwise constraints between instances from different
views. Afterwards it learns the full relation matrix by using a matrix completion algorithm
and derives an indicator matrix from it with an iterative optimization process.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
5.27 UCP 167 × Soft Soft Constraint Propagation 2013 [351]
4.03 MSCP 169 × Soft Soft Constraint Propagation 2013 [319]
8.95 MCPCP 198 × Soft Soft Matrix Completion 2015 [352]
2.85 CMVNMF 254 × Soft Soft Non-negative Matrix Factorization CC & Active Clustering with Constraints 2018 [91, 271]

Table 23: Feature table for the MVCC - Inter-View Constrained methods.

7.8 Kernel CC

Kernel methods perform clustering by mapping the data from the original input space to
a new feature space, which is usually of higher dimensionality. The key aspect of kernel-
based methods is the avoidance of an explicit knowledge of the mapping function, which
is achieved by computing dot products in the feature space via a kernel function. A critical
aspect for kernel-based methods is the selection of the optimal kernel and its parameters.
The basic classic kernel-based clustering method is the Kernel-K-Means algorithm. It per-
forms clustering directly in the feature space by computing pairwise distances and updating
centroids, using dot products and the kernel trick [241]. The goal of Kernel CC (KCC) is to
learn a kernel function that maps ML instances close to each other in feature space, while
mapping CL instances far apart, an then perform clustering in the feature space.
Table 24 shows a list ofKCCmethods. The firstKCCmethod canbe found in SSKK [353, 354],
which is built on the basis of the HMRF-K-Means method. Kernel CC methods are all very
similar to each other, with one of the few differences being the way in which they include
the kernel parameters in clustering process. Somemethods, such asASSKKor SFFA include
this parameter in the optimization process. Therefore they do not need to be specified by
the user, not withstanding the higher computational cost. Additionally, other methods use
more than one kernel, such as TRAGEK and ENPAKL. They learn multiple kernels which
are later combined in a single one to obtain the global kernelmatrix. Someminor differences
can be found in ssFS, for example, which is specifically designed to cluster sets of graphs.

7.9 Fuzzy CC

Fuzzy classic clustering represents a hard dichotomy within the clustering area. In fuzzy
clustering, instances are allowed to belong to more than one cluster, with a list of proba-
bilities that indicate the likelihood of said instance to belong to every cluster. The set of
these lists is called a fuzzy partition, in contrast to crisp (or hard) partitions obtained by non-
fuzzy clustering algorithms, where instances are assumed to belong to a single cluster with
a 100% probability [362]. Fuzzy clustering algorithms are usually applied over relational
information, meaning that the feature vector describing the instances in the dataset are not
needed, only the pairwise relations between them, which can be computed as pairwise dis-
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𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
20.98 SSKK 23 × Soft Soft — 2005 [353, 354]
6.24 ASSKK 27 × Soft Soft — 2006 [355]
9.90 BoostCluster 40 × Soft Soft — 2007 [356]
15.81 CCSKL 89 × Soft Soft Non Graph-based 2009 [198]
2.37 SFFA 125 × Soft Soft — 2012 [357]
6.97 TRAGEK 141 × Soft Soft — 2012 [358]
6.97 ENPAKL 142 × Soft Soft — 2012 [358]
4.15 ssFS 291 ✓ Soft Soft — 2012 [359]
5.82 SSKSRM 157 × Hard Hard — 2013 [360]
5.82 SSSeKRM 158 × Hard Hard — 2013 [360]
12.08 SKML 194 × Soft Soft — 2014 [361]

Table 24: Feature table for KCC methods.

tances [363]. This makes the fuzzy clustering paradigm specially suitable to be extended in
order to include constraints, as constraints are a natural type of relational information.
A list of Fuzzy CC (FCC) methods is proposed in Table 25. Even if this is one of the largest
categories in clustering-based CC methods, authors have found that no further significant
categorizations can be performed over it. The vast majority of methods in this category
include constraints by means of a penalty term, which can be computed with different con-
fidence degrees [125]. The confidence degree of the penalty refers to the number of possible
assignations in which constraints violations are checked. Some methods examine all possi-
ble assignations for all constraints, such as SSCARDorAFCC,while others only examine the
most probable assignation, like SSFCA, which is equivalent to perform violations checks in
the crisp partition. Many methods are based on the PCCA method (see Section 7.11), such
as AFCC, ACC, SS-CARD, PCsFCM and SS-CLAMP. These methods modify the objective
function of PCCA to make it fuzzy or borrow its objective function to use it in a new op-
timization scheme. Besides, it is worth noting that some fuzzy methods are not relational
but evidential. The evidential clustering framework is built around the concept of credal
partition, which extends the concepts of crisp and fuzzy partitions and makes it possible to
represent not only uncertainty, but also imprecision with respect to the class membership
of an instance. Methods such as CECM, CEVCLUS and k-CEVCLUS include constraints
into the evidential clustering paradigm, with CEVCLUS and k-CEVCLUS combining both
relational en evidential fuzzy clustering features.

7.10 Mixture Model-based CC

Mixture models are parametric statistical models which assume that a dataset originates
from a weighted sum of several statistical sources. These sources can typically be Gaussian
distributions, originating the Gaussian Mixture Model (GMM). However, other statistical
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𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
7.09 SSCARD 49 ✓ Soft Soft Intra-View Constrained 2007 [345, 346]
9.50 AFCC 59 × Soft Soft Active Clustering with Constraints 2008 [297]
0.00 ACC 60 ✓ Soft Soft — 2008 [144]
0.00 PCsFCM 78 × Soft Soft — 2009 [364]
0.00 PCeFCM 79 × Soft Soft — 2009 [364]
6.17 SCAP 124 ✓ Soft Soft — 2011 [365]
4.82 SSFCA 134 × Soft Soft — 2012 [125]
7.43 CECM 139 × Soft Soft — 2012 [366]
6.41 SS-CLAMP 168 ✓ Soft Soft — 2013 [367]
12.45 SS-FCC 163 ✓ Soft Soft Co-Clustering 2013 [112]
13.78 SSeFCMCT 162 × Soft Soft — 2013 [368]
13.78 SSsFCMCT 161 × Soft Soft — 2013 [368]
17.64 PC-eFCM-NM 177 ✓ Soft Soft — 2014 [232]
17.64 PC-sFCM-NM 178 ✓ Soft Soft — 2014 [232]
5.81 CEVCLUS 192 × Soft Soft — 2014 [369]
16.77 CMKIPCM 202 × Soft Soft Active Clustering with Constraints 2015 [301]
6.38 SFFD 295 ✓ Soft Soft — 2015 [370]
21.19 AAA 221 × Soft Soft Active Clustering with Constraints 2016 [302]
6.84 k-CEVCLUS 245 × Soft Soft — 2018 [89]

Table 25: Feature table for FCC methods.

distributions (like theDirichlet distribution) can be used in themixturemodels paradigm. In
GMM-based clustering, each cluster is associated to a parameterized Gaussian distribution.
These parameters are optimized for the final distribution to explain its associated cluster.
The result of GMM-based clustering is not a crisp partition, but the probability for each ins-
tance to be generated by each of the available optimizedGaussian distributions. EMschemes
are one of themost widely usedmethods to optimize the parameters of the distribution [371].
Table 26 gathers Mixture Model-based CC (MMbCC) methods. The most common way to
include constraints in GMM-based clustering is by discarding unwanted distributions. For
the case of hard CC, this is done by removing all distributions which violate any constraints
from the addition of Gaussians, as in Constrained EM or DPMM. In the case of soft CC, the
summation of distributions is modified to take these distributions into account to a higher
or lower extent depending on the number of violated constraints and on the relevance of
constraints themselves. This can be achieved by means of a penalty-style objective function,
as in sRLe-GDM-FFS, MCGMM, SCGMM, or by assigning a level of confidence to each con-
straint, as in MAA or PPC. Some methods use different statistical models (not Gaussian),
like DPMM, which uses Diritchlet Processes, or they allow a single cluster to be represented
bymore than one distribution, as inMCGMM. SPGP is not based on Gaussianmixture mod-
els but on Gaussian process classifiers (GPC). Given its similitude with GMM, authors have
decided to include it in this category. The main difference between these two paradigms is
that GMM are generative models, while GPC are discriminative models.
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𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
5.45 MAA 8 × Hybrid Hybrid — 2004 [51]
17.70 Constrained EM 14 × Hard Hard — 2004 [372]
4.67 PPC 21 × Hybrid Hybrid — 2005 [373, 374]
20.58 MCGMM 24 × Soft Soft — 2005 [204]
20.25 SCGMM 25 × Soft Soft — 2005 [204]
9.01 SPGP 48 × Hybrid Hybrid — 2007 [375]
1.45 CDPMM08 58 × Hard Hard — 2008 [211]
7.30 sRLe-GDM-FFS 147 × Soft Soft — 2012 [145]
4.71 C4S 238 × Soft Soft — 2017 [376]
13.97 FIECE-EM 247 × Hard Hard Genetic Algorithm 2018 [339]
8.18 JDG 249 × Soft Soft — 2018 [339]
15.56 FIECE-EM+BFCU 303 × Hard Hard Active Clustering with Constraints & Genetic Algorithm 2020 [305, 306]
15.56 FIECE-EM+FCU 304 × Hard Hard Active Clustering with Constraints & Genetic Algorithm 2020 [305, 306]
15.56 FIECE-EM+DVO 305 × Hard Hard Active Clustering with Constraints & Genetic Algorithm 2020 [305, 306]
15.56 FIECE-EM+LUC 306 × Hard Hard Active Clustering with Constraints & Genetic Algorithm 2020 [305, 306]

Table 26: Feature table for MMbCC methods.

7.11 Hierarchical CC

Details in classic hierarchical clustering and hierarchical CC have been already introduced
in Section 3.1. Let us remember that hierarchical clusteringmethods produce a dendrogram,
instead of a partition. Affinity criteria are used to determine cluster merges in every lever of
the dendrogram.
Table 27 presents a list of Hierarchical CC (HCC) methods. Many strategies designed to in-
clude constraints into hierarchical clustering can be found in this category. Some on them
modify the clustering engine of existing methods to include constraints in the process of
selecting the clusters to merge, such as COP-COBWEB, C-DBSCAN, CAC1, Cons-DBSCAN
or SDHCC. Others transform the dataset in some way for it to include the information con-
tained in the constraint set, such as COBRA, COBRAS, C-DenStream. AHC-CTP includes
constraints in the computation of the dissimilarities without using a penalty term, while
methods such as 2SHACC and PCCA have to use one. The only divisive hierarchical CC
method found by the authors is SDHCC, all of the rest perform hierarchical agglomerative
CC.

7.12 Density-based CC

In density-based classic clustering, a cluster is considered to be a set of instances spread in the
data space over a contiguous region with high density of instances. Density-based methods
separate clusters by identifying regions in the input space with low density of instances,
which are usually considered as noise or outliers [386].
Table 28 presents a list of Density-based CC (DbCC) methods. Two main strategies are used
to include constraints into density-based clustering methods. The first one consists of mod-
ifying the assignation rule for instances to cluster, taking constraints into account, similarly
to the way in which it is done in cluster engine-adapting methods. This strategy is used in
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𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
4.78 COP-COBWEB 1 × Hard Hard — 2000 [85]
19.30 IDSSR 17 × Hard Hard — 2005 [72, 82]
4.44 PCCA 22 × Soft Soft — 2005 [377, 143]
3.87 C-DBSCAN 39 × Hard Hard Density-based CC 2007 [378]
4.48 C-DenStream 80 × Hard Hard Density-based CC & Online CC 2009 [379]
0.00 AHC-CTP 94 × Soft Soft — 2010 [380, 381]
4.17 CAC1 113 × Hard Soft Active Clustering with Constraints 2011 [140]
5.07 SDHCC 116 × Hard Soft — 2011 [382]
3.44 AHCP 117 × Hard Soft — 2011 [383]
3.29 SGID 121 × Hard Hard SAT 2011 [384]
5.74 Cons-DBSCAN 137 × Hard Hard Density-based CC & Active Constraint Acquisition 2012 [111]
3.57 Active-HACC 189 × Soft Soft Active Clustering with Constraints 2014 [142]
4.20 COBRA 225 × Soft Soft Active Clustering with Constraints 2017 [108]
19.57 COBRAS 244 × Soft Soft Active Clustering with Constraints 2018 [304]
16.51 2SHACC 262 × Soft Soft Constraint Propagation 2020 [385]
22.52 3SHACC 287 ✓ Soft Soft Constrained Distance Transformation 2022 [190]

Table 27: Feature table for HCC methods.

methods like C-DBSCAN, C-DenStream, Cons-DBSCAN, SDenPeak or SSDC. On the other
hand, some methods use constraints to redefine the density computation method to take
them into account, such as in SemiDen or YZWD. In addition, there are methods that sim-
ply use constraints to modify the similarity measure or the dataset on the basis of the con-
straints, which run classic density-based clustering algorithm over them afterwards, such as
SSDPC or fssDBSCAN.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
3.87 C-DBSCAN 39 × Hard Hard Hierarchical CC 2007 [378]
4.48 C-DenStream 80 × Hard Hard Hierarchical CC & Online CC 2009 [379]
5.74 Cons-DBSCAN 137 × Hard Hard Hierarchical CC & Active Constraint Acquisition 2012 [111]
3.83 SDenPeak 213 × Soft Soft — 2016 [387]
3.34 SemiDen 224 × Hard Hard — 2017 [388]
4.33 YZWD 239 × Soft Soft — 2017 [389]
5.37 SSDC 243 × Soft Hard — 2018 [390]
15.94 SSDPC 272 × Soft Soft — 2020 [391]
16.80 fssDBSCAN 280 × Soft Soft Time Series 2021 [239]
17.22 ADPE 281 × Soft Soft Active Clustering with Constraints & Constrained Pool Generation 2021 [307]
17.84 ADP 282 × Soft Soft Active Clustering with Constraints 2021 [307]

Table 28: Feature table for DbCC methods.

7.13 Online CC

Online clustering methods perform clustering over data which varies over time. This is
called a data stream. In classic online clustering, new data instances arrive (in the form of
chunks or single instances) over time and the goal of the clustering algorithm is to produce
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a partition of the current set of instances, usually taking into account information obtained
from past instances. In online constrained clustering, not only new instances are provided
to the method over time, but also constraints and, in some cases, only constraints. Methods
performing Online CC (OCC) are gathered in Table 29.
The CME algorithm is an online wrapper for the COP-K-Means algorithms. It gradually for-
gets past constraints, lowering their effect on the current partition as new data from the data
stream arrive. TDCK-Means is built on the basis of classic K-Means and also uses a decay
term to handle online constraints. It addresses the temporal nature of the data by adapting
the Euclidean distance to take into account both the distance in themultidimensional space
and in the temporal space. A penalty term is then added to include constraints, which is
more severe for instances closer in time and whose magnitude decays over time. CS2GS
also uses constraint weight decay to perform online CC and is based on SOM. The architec-
ture of the neural network used by CS2GS features two layers. The between-layer weights
and the number of nodes of the first layer are adapted to dynamically correct the violation
of constraints. Using the metrics included in these layers as a reference, the violation of
constraints is quantified as network’s error. Weights are modified over time based on the
error to obtain the new weights. The weight update procedure tries to satisfy the currently
violated constraints while keeping the new weights close to the old ones to avoid breaking
the old constraints.
O-LCVQE and C-RPCL are both online competitive learners. Competitive learning algo-
rithms are characterized by competition among 𝑘 neurons, which compete to learn in-
stances. This is known as the winner-take-all (WTA) approach. Competitive learning can
be seen as performing cluster in the input space, viewing the neurons as centroids and us-
ing the Euclidean distance as the competition score. The O-LCVQE is aWTA approach that
can only deal with CL constraints by defining the score as in LCVQE. Therefore the winner
centroid is computed with regards to the objective function of LCVQE modified to consider
only CL constraints. Similarly, the RPCL algorithm [392] can be modified to include only
CL constraints within theWTA, resulting in C-RPCL. The intuition behind this modified al-
gorithm is that, if a CL constraint gets violated by assigning the instance to a given centroid,
C-RPCL searches for the nearest rival which does not cause any constraint violations. This
nearest rival becomes the winner, and the previous winner prototype is moved away from
that instance.
C-DenStream is based on the density-based clustering DenStream, which is the online ver-
sion of DBSCAN. DenStream performs density-based clustering. it uses the micro-cluster
density, which is based on weighting areas of instances in a neighborhood as a result
of an exponential decay function over time. C-DenStream includes constraints into the
DenStream clustering process by translating instance-level constraints into micro-cluster-
level constraints using the micro-cluster membership of each instance in each timestamp.
SemiStream builds an initial partition using MPCK-Means and updates it as new chunks
of data arrive. The update process consist of performing clustering assigning pairs of con-
strained instances to clusters, minimizing the cost of said assignment. The SCSC algorithm
is the only online cc algorithm that keeps the dataset constant over time and consider the
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time dimension only over the constraint set. It consists of two main components, an offline
procedure to build a convex hull, and an online procedure to update the clustering results
when new pairwise constraints are received.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
0.35 CME 34 ✓ Hard Hard — 2006 [393]
4.48 C-DenStream 80 × Hard Hard Hierarchical CC & Density-based CC 2009 [379]
4.37 SemiStream 127 ✓ Soft Soft Penalty-based Methods 2012 [205]
12.20 O-LCVQE 159 ✓ — Soft Neural Networks-based CC 2013 [394]
12.20 C-RPCL 160 × — Soft Neural Networks-based CC 2013 [394]
4.34 TDCK-Means 193 ✓ Soft Soft Penalty-based Methods 2014 [234]
10.74 CS2GS 201 × Soft Soft Self Organizing Maps-based CC 2015 [309]
5.48 SCSC 206 × Soft Soft Constrained Pool Generation 2015 [320]

Table 29: Feature table for OCC methods.

7.14 Others

This section gathers minor CC categories. These categories, shown in Table 30, are consid-
ered to beminor because of the number of methods belonging to them (5 or less), or because
of the restricted applicability or specificity of saidmethods. A total of 15minor CC categories
are briefly introduced, for a total of 40 methods.

7.14.1 Constrained Co-clustering

Co-clustering methods perform clustering on the column and the rows of a given dataset at
the same time, considering them as closely related different sources of information. OSS-
NMF extends the classic NMF by introducing constraints and performing clustering by solv-
ing a constrained optimization problem. This method is specifically proposed to solve the
document clustering task, and does so by performing co-clustering in words and documents
simultaneously, and considering both word-level and document-level constraints. RJFM
is based on the meta-algorithm called Bregman Co-clustering, which can optimize a large
class of objective functions belonging to the Bregman divergences. Its principle is simple: it
alternatively refines row and column clusters, while optimizing an objective function that
takes both partitions into account. It includes constraints in both columns and rows cluster-
ing the same way: it never performs rows or columns assignation breaking CL constraints,
and always assigns full cliques of ML constraints. SS-NMF learns a new metric by applying
simultaneously distance metric learning and modality selection. The new metric is used to
derive distance matrices over which clustering is finally performed. SS-FCC formulates the
CC problem as an optimization problem with an objective function built on the basis of the
competitive agglomeration cost with fuzzy terms and constraint-based penalties. It intro-
duces cooperation into the co-clustering process by including two fuzzy memberships, one
of them related to columns and other related to rows, which are expected to be highly cor-
related. The amount of cooperation is delivered by the degree of aggregation, which should
be maximized among clusters to accomplish the clustering task.
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𝑆𝒜 Acronym ID Category Penalty ML CL Hybrid Year Ref.
5.49 SSAP 85 Affinity Propagation × Soft Soft — 2009 [395]
9.13 COALA 28 Alternative Clustering × Any Any — 2006 [207]
9.13 COALAcat 29 Alternative Clustering × Any Any — 2006 [207]
4.34 ADFT 67 Alternative Clustering × Soft Soft — 2008 [396]
8.56 ClusILC 46 Clustering Trees × Soft Soft — 2007 [397]
12.45 SS-FCC 163 Co-Clustering ✓ Soft Soft Fuzzy CC 2013 [112]
11.88 SS-NMF 109 Co-Clustering × Soft Soft Non-negative Matrix Factorization CC 2010 [274]
2.06 RJFM 97 Co-Clustering × Hard Hard — 2010 [398]
4.74 OSS-NMF 96 Co-Clustering × Soft Soft Non-negative Matrix Factorization CC 2010 [98]
5.08 CCG 175 Column Generation × Hard Hard — 2014 [61]
11.50 CG+PR+LS 236 Column Generation × Soft Soft Single Individual 2017 [338]
6.31 TKC(17) 229 Constraint Programming × Hard Hard — 2017 [399]
8.03 3CP 197 Constraint Programming × Hard Hard — 2015 [400]
2.38 BBMSC 205 Constraint Programming ✓ Soft Soft — 2015 [196]
15.45 CMSSCCP 199 Constraint Programming × Soft Soft — 2015 [401]
7.58 CCPP 264 Constraint Programming × Hard Hard — 2020 [42]
16.39 cut 84 Constraint Programming × Soft Soft — 2009 [402]
9.06 TKC 154 Constraint Programming × Hard Hard — 2013 [62]
4.12 YLYM 70 Feature Selection × Soft Soft — 2008 [403]
7.53 SCAN 259 HIN × Soft Soft — 2019 [404]
2.66 SCHAIN 230 HIN × Soft Soft — 2017 [405]
7.02 EICC 53 Incremental CC × Hard Hard — 2007 [406]
4.42 3SMIC 196 Information Maximization × Soft Soft — 2014 [400]
5.55 NLPPC 271 Label Propagation ✓ Soft Soft — 2020 [407]
4.88 PCKMMR 114 MapReduce × Soft Soft — 2011 [408]
11.04 MVMC 226 Matrix Completion × Soft Soft Intra-View Constrained & Spectral CC 2017 [350]
11.83 PMMC 140 MaximumMargin Clustering ✓ Soft Soft — 2012 [409]
17.11 CMMC 68 MaximumMargin Clustering × Soft Soft — 2008 [410]
13.16 TwoClaCMMC 171 MaximumMargin Clustering × Soft Soft — 2013 [411]
8.73 DCPR 222 Probabilistic Clustering × Hybrid Hybrid — 2016 [52]
7.14 RHWL 43 Probabilistic Clustering × Soft Soft Active Clustering with Constraints 2007 [96]
13.76 d-graph 250 Probabilistic Clustering × Soft Soft — 2018 [412]
2.98 JPBMS 130 SAT × Hard Hard 2012 [413]
3.29 SGID 121 SAT × Hard Hard Hierarchical CC 2011 [384]
4.02 ISL 103 SAT × Hard Hard — 2010 [71]
3.20 JBMJ 228 SAT × Hard Hard — 2017 [414]
12.97 CPSC*-PS 151 Spatial CC × Soft Soft — 2012 [168]
12.97 CPSC* 150 Spatial CC × Soft Soft — 2012 [168]
3.54 CPSC 149 Spatial CC × Hard Hard — 2012 [168]
16.80 fssK-Means 279 Time Series ✓ Soft Soft Penalty-based Methods 2021 [239]
16.80 fssDBSCAN 280 Time Series × Soft Soft Density-based CC 2021 [239]

Table 30: Feature table for CC algorithms belonging to minor categories (Others).

7.14.2 Alternative Clustering based on constraints

Constrains can have multiple uses, other than serving as hints for the clustering process. In
alternative clustering, constraints are used to produce different partitions of a single datasets.
Alternative clustering methods are not strictly CC methods, as they do not use constraints
generated from a side source of information (an oracle), but from the current state of a par-
tition in an iterative clustering process. The COALA takes a partition of a dataset as input,
and aims to find a different high-quality partition using constraints. In order to make the
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obtained partition different from the one provided, CL constraints are created between the
instances assigned to the same cluster in the original partition. COALA applies agglomera-
tive hierarchical clustering considering two possible merges in each step, one involves the
two closest instances and the other involves the two closest instances that do not violate a
CL constraint. Which merge is performed depends on a parameter controlling the trade-off
between quality and dissimilarity (with respect to the base partition) of the new partition.
COALAcat is the categorical version of COALA. Contrary to COALA, ADFT does not take a
partition of a dataset as input. The overall ADFT method can be summarized in five steps.
In the first step, a classic clustering method like K-Means is applied to partition the dataset.
The second step characterizes this partition by means of ML and CL constraints and obtains
a new distancemetric based on them (using the CSImethod). In the third step, this distance
metric is taken as basis to compute an alternative distance measure, by obtaining singular
values decomposition of the matrix that defines the metric is obtained, and by computing
the Moore-Penrose pseudo-inverse of the stretcher matrix. This effectively flips the stretch-
ing and compressing dimensions. After that, the metric matrix is recomposed, multiplying
its decomposition. In the fourth step, the newly learned metric is applied on the dataset to
transform it, and in the fifth step, the classic clustering algorithm run to obtain the original
partition is re-run to obtain a new (and different) one.

7.14.3 CC based on clustering trees

Methods which belong to this category perform clustering by using decision trees. ClusILC
uses the Top-Down Induction (TDI) approach to build the clustering tree. While most TDI
approaches are based on heuristics local to the node that is being built, ClusILC employs a
global heuristic which measures the quality of the entire tree and which takes all instances
of the dataset into account. ClusILC’s heuristic measures the average variance in the leafs of
the tree (normalized by the overall dataset variance) and the proportion of overall violated
constraints. ClusILC greedily searches for a tree that minimizes this heuristic using an itera-
tive process that refines the current tree in every iteration by replacing one of its leaves with
a subtree consisting of a new test node and two new leaves. This subtree is selected among
a set of candidates generated procedurally based on the heuristic described above.

7.14.4 MaximumMargin CC

Maximum Margin Clustering (MMC) uses the maximum margin principle adopted in the
supervised learning paradigm. It tries to find the hyperplanes that partition the data into
different clusters with the largest margins between them. CMMC includes constraints into
MMC by adding concave-convex restrictions to the original MMC optimization problem.
These restrictions behave as penalties for constraint violation. PMMC introduces a set of
loss functions, featuring a strong penalty to partitions violating constraints while operating
under the maximum margin principle at the same time. In order to do so, the classical
definition of score used in MMC to determine cluster membership is modified to include
high penalties for assignations violating constraints. Both CMMC and PMMC use the con-
strained concave-convex procedure (proposed in [409]) to solve the non-convex optimiza-

67



124 Chapter II. Publications

tion problem they set to address the CC problem. TwoClaCMMC is proposed to overcome
some shortcomings of the CMMC algorithm, although it is limited to two-class problems.
It modifies the MMC objetive function with a penalty term which accounts for constraints
violations. TwoClaCMMC differs from CMMC in the formulation of the penalty term. In
TwoClaCMMC, the position of the hyperplane with respect to the instances involved in a vi-
olated constraint is taken into account, weighting the cost of violating such constraints with
respect to said position.

7.14.5 Feature Selection

Clustering can be used to perform feature selection over high-dimensionality datasets.
YLYM is a clustering method designed to perform feature selection making use of a con-
straint set. It is composed of three steps. The first two steps consist of the classic expectation
and maximization steps from an EM optimization scheme, in which feature saliencies are
computed in a completely unsupervisedway. The third step is called the tuning step (T-step),
which refines saliencies to minimize the feature-wise constraint violation measure, which
is computed based on the Jensen-Shannon divergence. The three steps (expectation, maxi-
mization and tuning) are performed iteratively until they reach convergence. The proposed
method outputs a partition of the dataset and the saliency of every feature.

7.14.6 CC throughMapReduce

The MapReduce paradigm is used to address problems in the context of Big Data. The
MapReduce paradigm consists of dividing the computational load associated with process-
ing a dataset among multiple processing nodes, in order to decrease the time required to
obtain results. MapReduce is based on two operations: (1) The Map operation processes
inputs in the form of key-value pairs and generates intermediate key/value pairs received by
the Reduce operation (2) The Reduce operation processes all intermediate values associated
with the same intermediate key generated by Map. PCKMMR constitutes the first MapRe-
duce approach to CC. It applies the MapReduce approach on the COP-K-Means algorithm.
In order to do so, authors propose a Map function which calculates the distance of each ins-
tance to each centroid and assigns it to the one that minimizes this measure and does not
violate any constraint. To avoid interdependence between mappers, the constraints are gen-
erated locally to each mapper in each call. The map function returns the centroid/instance
pair. The Reduce operation takes as input all instances associated to a centroid and updates
the value for that centroid by computing the average of those instances.

7.14.7 SAT-based CC

SAT-based CC approaches formulate the CC problems in terms of logical clauses in con-
junctive normal form. They apply general SAT solvers to find a solution, which can find
solutions for any problems formulated as a satisfiability problem. This approaches to CC
problem can include hard constraints in a very natural way, as well as they usually can han-
dle many types of the constraints described in Section 2. ISL is limited to clauses of 2 literals.
Several types of problems within the CC framework can be expressed in the form of sets
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of formulas in closed normal form (CNF), implying that they can be approached with ISL
and therefore solved optimally. It is worth noting that ISL is limited to two-class problems
(𝑘=2), although it can find a solution to these problems in polynomial times (if such solu-
tions exists). SGID performs agglomerative hierarchical clustering given a dataset and a set
of constraints formulated in terms of logical clauses in its Horn’s normal form. In order
to produce a dendrogram, the clauses modeling its properties must also be given to SGID,
which allows them to vary in the features of the dendrogram it produces. In JPBMS the
declarative modeling principle of constrained programming is used to define a CC problem
taking into account the constraint set, the description of the clusters and the clustering pro-
cess itself. Traditionally, clustering algorithms proceed by iteratively refining queries until a
satisfactory solution is found. JPBMS includes the stepwise refinement process in a natural
way to focus on more interesting clustering solutions. JBMJ performs CC under the correla-
tional clustering paradigm, where a labeled weighted undirected graph is given to perform
clustering. The objective function of correlation clustering clusters the nodes of the graph in
a way that minimizes the number of positive edges between different clusters and negative
edgeswithin clusters. JBMF formulates this problems in terms of clause satisfiability and ap-
plies MaxSAT to obtain an optimal solution. It is able to include several types of constraints
by modifying the graph structure and applying specific SAT-translation procedure for some
of them. Particularly, instance-level constraints are included by just setting the weight of
the edges which connect ML related instances to∞ and CL related instances to −∞, there
is no need to generate specific clauses.

7.14.8 CC through constraint programming

The CC problem can be addressed from the constraint programming (CP) point of view
when the classic requirements of a clustering problem formulated as restrictions for a CP
are extended with the restrictions regarding ML and CL constraints. TCK does this exactly:
it models the classic clustering problem requirements, the constraints, and the clustering
optimization criteria, including the within-cluster sums of squares (WCSS), as constraints
to be solved by a general constraint programming solver. 3CP extends TCK in the sense
that it is more general and it does not need the number of clusters to be specified, only the
boundaries of the interval it lies in. Additionally, 3CP is capable of optimizing more than
one clustering criteria at the same time, finding the minimal set of nondominated Pareto
solutions. TKC(17) also extends TCK, differing from it in two key aspects. Firstly, It does
not need the number of clusters to be specified, only bounds need to be given (as in 3CP).
Secondly, three optimization criteria are modeled as CP constraints in TKC(17): minimiz-
ing the maximal diameter, maximizing the split between clusters, and minimizing WCSS.
Besides, CMSSCCP optimizes the WCSS, but it does so via a global optimization constraint.
A lower bound for this criterion is computed using dynamic programming, and a filtering
algorithm is proposed to filter objective variables as well as decision variables. As usual,
instance-level constraints are modeled in terms of constraint programming, along with the
classic clustering problem requirements. JPBMS (also in Section 7.14.7) uses the declarative
modeling principles of CP to define the CC problem as a SAT problem, which can be solved
with a general SAT solver. BBMSC formulates the CC problem in terms of an integer pro-
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gramming problem, rather than in terms of a constraint programming problem (which can
be considered as a subtype of the former). It employs the same procedures as in constraint
programming, incorporating ML and CL constraints via a weighted penalty term added to
the base classic clustering restrictions, alongside with a regularization term to favor smooth-
ness.

7.14.9 CC through Column Generation

In Column Generation (CG), the minimum sum-of-squares (MSS) problem for clustering
is solved optimally. This is done by formulating the problem in terms of an integer linear
programming problem. In it, a booleanmatrix encoding all possible partitions in its columns
is explored to find an optimal solution with respect to a cost function (the MSS in this case)
that is applied to the booleanmatrix by columns. In practice, the booleanmatrix is too large
to be computed, therefore it is incrementally built when searching for the optimal solution.
The column generation approach derives amaster problem from a reduced set of restrictions
and iterates between two steps: solving the master problem and adding one or multiple
candidate columns to the boolean matrix. A column is a candidate to be included in the
restricted master problem if its addition improves the objective function. If no such column
can be found, one is certain that the optimal solution of the restricted master problem is
also the optimal solution of the full master problem. CCG includes constraints into this
framework by modifying the MSS formulation. This way a new restriction which enforces
all constraints to be satisfied is added to is classic form. Effectively, this is translated into
the clustering process by removing all partitions violating any amount of constraints from
the booleanmatrix. This way, they are discarded from candidate solutions. The CG+PR+LS
solves CC similarly to CCG, however it includes two extra steps: path-relinking algorithms
are used to intensify and diversify the search in a group of solutions, and a LS procedure is
used to locally improve the final solution.

7.14.10 Information-maximization CC

Information-maximization clustering techniques address the lack of objective model selec-
tion and parameter optimization strategies from which most other clustering techniques
suffer. In it, a probabilistic classifier is learned so that some information measure be-
tween instances and clusters assignments is maximized. 3SMIC includes constraints into
the information-maximization clustering algorithm SMIC. SMIC tries to learn the class-
posterior probability in an unsupervised manner so that the mutual information between
instances and their class labels (in the final partition) are maximized. Constraints are in-
cluded into SMIC bymodifying the SMI approximator, so that the inner product of the prob-
abilities of constrained instances which belong to the same cluster is maximized in the case
of ML and minimized in the case of CL. Furthermore 3SMIC includes a procedure to apply
the transitive property of ML efficiently.
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7.14.11 CC through Heterogeneous Information Networks

Heterogeneous Information Networks (HINs) are graphs which model real world entities
and their relationships with objects and links, where objects can be of different types and
whose links represent different kinds of relationships. HINs in which objects are described
by attributes (features) are called attributed HIN or AHIN abbreviated. The challenge in
AHINs is to perform clustering based not only on attribute similarity, but also based on
link similarity. The former can be measured with a conventional distance measure, while
the latter is measured with graph-oriented distance measures, such as shortest-path length
and random-walk-based, although meta-path are commonly used as well. A meta-path is
a sequence of node types that expresses a relation between two objects in an AHIN. SCAN
includes constraints in AHIN by means of a penalty term in its similarity function. It com-
putes the similarity of every node pair based on their attribute similarity and the connect-
edness of the nodes network. The former is obtained by an attribute similarity measure
which considers coupling relationship among attributes, while the latter is derived based
on the meta-paths connecting the object pair. This similarity is then penalized proportion-
ally to the number of violated constraints. SCHAIN includes constraints in AHINs by first
composing a similarity matrix that measures the similarity of every object pair based on the
attribute similarity and the network connectedness. SCHAIN assigns a weight to each ob-
ject attribute and meta-path in composing the similarity matrix. To take constraints into
account, SCHAIN uses a penalty function which involves the generated weights and cluster
memberships. It employs an iterative, staggered 2-step learning process to determine the
optimal weights and cluster assignment as output.

7.14.12 Incremental CC

In incremental CC, a fixed set of instances and a variable constraint set are provided to per-
form clustering. Modifications over the constraint sets are given to incremental CC algo-
rithms over time. These modifications include the addition and removal of constraints. The
goal of Incremental CC is to efficiently update a the current partition, without running the
base clustering algorithm used to generate the initial partition. EICC is the only proposal
belonging to this category. This method takes as input a single constraint at a time, and
depending on the properties of the constraint, it will attempt to greedily optimize a given
(not specified) objective function. If the constraint does not result in a significant improve-
ment in the objective function, it is passed over and a new one is chosen (by the user). This
algorithm only works when a set of preconditions are met, otherwise it will not produce a
partition of the dataset, therefore it cannot be used to address a general constrained cluster-
ing problem.

7.14.13 CC through affinity propagation

In Affinity Propagation (AP) a binary grid factor-graph is used to perform clustering and to
determine the most representative instances, which are called exemplars and can be com-
pared with the notion of centroid. In order to do so, a number of hidden variables equal to
the number of pairwise dissimilarities is defined. Afterwards, an iterative procedure is per-
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formed over the hidden variables, updating their value on the basis of their neighborhood
variables and hyperparameters. The final value of the hidden variables determines the ex-
emplar instances and the membership of the rest of instances with respect to the exemplars.
SSAP includes constraints in AP by introducing a fictitious meta-points for every chunklet
in the transitive closure and for every CL instance which is not part of a chunklet. The
meta-points allow explicitly enforcing ML constraints and CL constraints, while they also
propagate them.

7.14.14 Spatial CC

Spatial clustering is a variant of classical clustering in which instances are not points, but
polygons. Classic clusteringmethods do not workwell when applied to spatial clustering be-
cause they represent the polygons as points which summarize their features; which are not
sufficiently representative of the polygons to obtain a good result. To overcome this problem,
the CPSC algorithm is proposed, a spatial clustering algorithm based on the A* algorithm
which is able to consider both instance-level constraints (ML and CL) and cluster-level con-
straints. In order to include the constraints into the clustering process, the heuristic function
used by the A* algorithm is designed based on them. CPSC starts by selecting 𝑘 seeds from
the data set (polygons), which will be the initial clusters and will grow through the iterative
process. The seeds must be selected in such a way that each of them violates all ML con-
straints with respect to other seeds, thus ensuring that they will not be grouped in the same
cluster. In addition to this, the seeds must satisfy all CL constraints between them. The best
𝑘 seeds are selected among those that meet these conditions. After that, the A* algorithm
starts. The seeds are considered as the initial state, and the target clusters as the goal state.
Each cluster is increased by adding polygons to its initial state one by one until it reaches its
goal state. At each iteration, the best cluster (with respect to the heuristic) to be augmented
and the best polygon to be augmented are selected. This is done to ensure that all clusters
grow in parallel and not sequentially, which would affect compactness. The process contin-
ues until all polygons have been assigned to a cluster or until a deadlock state is reached,
which can occur when two clusters compete for the same polygon and in which case there
may be polygons which are not assigned to any cluster in the final partition. To overcome
this problem, two other algorithms are proposed: CPSC*, which allows the user to relax the
constraints to ensure that all polygons are assigned to a cluster, ensuring convergence, and
CPSC*-PS (polygon split), which also allows polygons to be split when strictly necessary.

7.14.15 Probabilistic CC

In probabilistic clustering a probabilistic model is used to describe relationships between
instances and their cluster memberships. Constraints are included into this framework by
also describing them in terms of probabilities. RHWL is an active CC method which uses
a basic probabilistic CC procedure as the clustering algorithm. It takes advantage of the
probabilities computed by this procedure to later use them to decide the pair of instances
to query to the oracle. DCPR uses an objective function maximizing the likelihood of the
observed constraint labels composed of two terms: (1) the first is the conditional entropy of
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the empirical cluster label distribution, which is maximized when the cluster labels are uni-
formly distributed (the clusters are balanced). (2) the second term is the conditional entropy
of instance cluster labels for the unlabeled instances, which is minimized when the formed
clusters have large separation margin and high confidence for the cluster memberships of
unconstrained instances. A variational EM optimization scheme is used to optimized the
proposed objective function.

7.15 Constrained Distance Transformation

Distance transformation methods usually take a standard distance measure as their basis
(like as the Euclidean distance) and parameterize it. By modifying this parameters, the dis-
tance measure is transformed for it to be adapted to the data and the constraints. Generally,
the goal of these methods is to learn a new distance metric bringing ML instances together
and setting CL instances apart. Constrained Distance Transformation (CDT) methods are
presented in Table 31.
Methods such as CSI and Xiang’s learn the weights of a matrix by parameterizing a family of
Mahalanobis distances. RCA also learns a Mahalanobis metric. In order to do so it changes
the feature space used for data representation by assigning high weights to relevant dimen-
sions and low weights to irrelevant dimensions by means of a global linear transformation.
The relevant dimensions are estimated using chunklets. ERCA extends RCA to include CL.
It does so by computing a matrix that optimizes the between-class scatter and combining it
with the matrix optimizing the within-class scatter. DCA is another extension over RCA to
include CL. It does so by looking for a linear transformation which results in an optimal dis-
tance metric by maximizing the variance between chunklets and minimizing the variance
between instances in the same chunklet. KDCA uses the kernel trick to learn a nonlinear
metric distance under the same principles of DCA. MSSB is a modification over RCA that
uses a data-dependent regularizer term to avoid the drawbacks that weighting discrimina-
tion brings to RCA. From all methods using Mahalanobis distances parameterization, the
ITML andA-ITML-K-Means approaches are the only ones using Information TheoreticMet-
ric Learning as its base framework. ITML learns a constrained distance metric by learning a
positive-definite matrix that parameterizes a Mahalanobis distance. This matrix is regular-
ized to be as close as possible to a given Mahalanobis distance function, parameterized by
another auxiliary matrix. The distance between these two matrices can be quantified via an
information-theoretic approach, so it can be computed as the relative entropy between their
correspondingmultivariate Gaussians. Instance-level constraints are included as linear con-
straints to the optimization problem, which results in a particular case of the Bregman di-
vergence. Therefore, it can be optimized by the Bregman’s method. A-ITML-K-Means is
an active clustering with constraints setup for the ITML approach that uses K-means as its
clustering algorithm.
It uses a reduced set of selected constraints to perform ITML and applies classic clustering
(K-Means) with the newly learned metric in an active clustering setup. ITML learns a Ma-
halanobis distance metric under a given set of constraints and instances by minimizing the
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LogDet divergence between the original distance matrix and an objective distance matrix
that in built on the basis of constraints.
HMRF-K-Means approaches the CC problem from a hybrid probabilistic framework based
on Hidden Markov Random Fields (HMRF), which is developed to find an EM-optimizable
objective function derived from the posterior energy, which is defined by the HMRF. This
objective function combines an adaptive distance measure, such as the Bregman divergence
or directional similarity measures, and a constraint-violation penalty term. The later is con-
trolled by a scaling function that assign more relevance to ML constraints relating distant
instances andCL constraints relating close instances. Comraf uses a combinatorialMRF (an
MRF inwhich at least one node is a combinatorial random variable). The Comrafmodel can
be applied to classic clustering by searching for cliques in the Comraf graph and using the
mutual information as a potential function. This graph is built on the basis of the interac-
tions between the combinatorial random variables. Comraf can be extended to constrained
clustering by incorporating weighted constraints as a penalty term in the objective function
that Comraf optimizes.
Othermethods such asMPCK-Means iteratively compute cluster-local weights for every fea-
ture, effectively creating a new distance metric for every cluster, which can be applied and
updated during the clustering process in an EM scheme. LLMA also performs metric learn-
ing through locally linear transformations, achieving global consistency via interactions be-
tween adjacent local neighborhoods.
SMR builds the graph Laplacian matrix based on pairwise similarities. This matrix is then
used to regularize a non-parametric kernel learning procedure in which the learned kernel
matrix is forced to be consistent with both pairwise similarities and the constraint sets by
minimizing the regularizer that is based on the Laplacian graph. MSBSBS is similar to SMR.
However it uses the Karush-Kuhn-Tucker conditions to learn the non-parametric kernel.
MSBSBS(10) is an improvement over MSBSBS which combines both the constraint set and
the topological structure of the data to learn a non-linear metric. CDJPBY uses a weighted
sum to combine multiple kernels. It includes an optimization criterion that allows it to
automatically estimate the optimal parameter of the composite Gaussian kernels directly
from the data and the constraints.
RDF transforms the metric learning problem into a binary class classification problem and
employs random forests as the underlying representation. Constraints are included by re-
placing the original distance function with a feature map function which transforms each
constrained instance, changing their location to reflect the information contained in the con-
straint set. The transformed data is used as training data for a random forest that evaluates
each instance pair. Each tree from the random forest independently classifies the pair as sim-
ilar or dissimilar, based on the leaf node at which the instance-pair arrives. SSMMHF uses a
random forest-based strategy as well. It first builds amodel of the data by computing a forest
of semi-random cluster hierarchies. Each tree is generated applying a semi-randomized bi-
nary semi-supervised maximum-margin clustering (MCC) algorithm iteratively. This way,
each tree encodes a particular model of the full semantic structure of the data, so the full
structure of the tree can be considered as a weak metric. A final metric model can be pro-
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duced by merging the output of the forest described above. Constraints are included by
modifying theMMC procedure, producing Semi-SupervisedMMC. This results in a method
that seeks to simultaneously maximize the cluster assignment margin of each point (as in
unsupervisedMMC) and an additional set of margin terms reflecting the satisfaction of each
pairwise constraint.
SCKMM firstly estimates the optimal value for the parameter of a Gaussian kernel by as-
cending gradient and obtains an initial partition using PCBKM, which is a modification of
the classic K-Means algorithm to include constraints. After this, a distance measure is ob-
tained using the assignments of the last partition, which is used by PCBKM to produce a
new partition. SCKMM iterates between steps two and three until it converges.
3SHACC includes a metric learning step in 2SHACC. In first place, it determines the rele-
vance of every constraint in a completely unsupervised manner. Said relevances are used as
constraint weights by the Weighted-Learning from Side Information (WLSI) DML method,
which is a weighted version of CSI.

7.16 Distance Matrix Modification

In Distance Matrix Modification (DMM) methods, the CC problem is approached from the
DML point of view. Nevertheless these methods work directly with the distance matrix.
Their goal is to modify the entries of the distance matrix for it to reflect the information
contained in the constraint set, once again resulting in ML instances being brought closer
together and CL instances being set apart. These methods do not provide neither a new
distancemetric nor a new data space, although these two can be obtained from said distance
matrix with classic DML techniques.

7.16.1 Constraint Propagation

In constraint propagation methods, entries in the distance matrix which correspond to con-
strained instances are usually first modified. Then, those changes are propagated to the rest
of the matrix to a variable extent and using different strategies. Table 32 gathers methods
which use constraint propagation to perform CC.
The most simple approach in constraint propagation consists of simply setting distances
between ML instances to 0 and to a high value for CL instances in the distance matrix. Af-
terwards, the all-pairs-shortest-path algorithm is run to propagate the changes to the rest of
entries. Methods such as CCL, 2SHACC and CAF use this approach.
E2CP propagates constraints in the distance matrix by taking each of its columns as the
initial configuration of a two-class semi-supervised learning problem with respect to the
instance associated to the column. The positive class contains the examples which should
appear in the same cluster as the instance associated to the column, and the negative class
contains the examples that should not. In this way, the constraint propagation problem
can be decomposed into a number of subproblems equal to the size of the dataset. After
that, the same process is repeated, this time taking rows instead of columns. MSCP extends
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𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
19.17 CSI 5 × Soft Soft — 2002 [88]
20.61 MPCK-Means 11 ✓ Soft Soft Penalty-based Methods 2003 [87, 228]
8.97 HMRF-K-Means 12 ✓ Soft Soft Penalty-based Methods 2004 [194]
15.99 DistBoost 13 × Soft Soft — 2004 [415]
13.18 LLMA 15 × Soft Soft — 2004 [416]
16.01 RCA 26 × Soft — Constrained Data Space Transformation 2005 [187]
26.59 ERCA 31 × Soft Soft — 2006 [417]
19.24 DCA 32 × Soft Soft — 2006 [418]
16.08 KDCA 33 × Soft Soft — 2006 [418]
5.68 Comraf 35 — Soft Soft — 2006 [419]
19.96 DYYHC 47 × Soft — — 2007 [420]
6.62 ITML 50 × Soft Soft — 2007 [421]
11.01 SMR 51 × Soft Soft — 2007 [422]
15.05 Xiang’s 74 × Soft Soft — 2008 [423]
11.82 MSSB 83 × Soft Soft — 2009 [424]
16.97 MSBSBS 100 × Soft Soft — 2010 [425]
6.51 SCKMM 101 × Soft Soft Cluster Engine-adapting Methods 2010 [221]
17.78 MSBSBS(10) 107 × Soft Soft — 2010 [426]
5.01 LRML 108 × Soft Soft — 2010 [141]
18.63 LRKL 118 × Soft Soft — 2011 [427]
7.28 CDJPBY 119 × Soft Soft — 2011 [241]
7.01 SNN 136 × Soft Soft Classic Neural Network-based CC 2012 [312]
7.83 RFD 145 × Soft Soft — 2012 [428]
5.62 A-ITML-K-Means 156 × Soft Soft Active Clustering with Constraints 2013 [299]
7.07 LSCP 204 × Soft Soft Constraint Propagation 2015 [429]
10.40 SSMMHF 216 × Soft Soft — 2016 [430]
15.34 AMH-L 266 × Soft Soft — 2020 [431]
15.34 AMH-NL 267 × Soft Soft — 2020 [431]
22.52 3SHACC 287 × Soft Soft Hierarchical CC 2022 [190]

Table 31: Feature table for CDT methods.

E2CP to consider multi-source data. It decomposes the problem into a series of two-source
constraint propagation subproblems, which can be transformed into solving a Sylvester ma-
trix equation, viewed as a generalization of the Lyapunov matrix equation. SRCP also uses
decomposition to propagate constraints, although it decomposes the problem taking into ac-
count the full dataset, not only columns or rows. It exploits the symmetric structure of pair-
wise constraints to develop a constraint propagation approach based on symmetric graph
regularization. MMCP propagates constraints in rows and columns separately without de-
composition using multi-graph propagation methods.
LCP propagates the influence of the constraints to the unconstrained instances in the dataset
proportionally to their similarity with the constrained data. LCP first determines the propor-
tion in which constrained instances influence unconstrained instances using a previously
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𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
19.16 CCL 4 × Soft Soft — 2002 [432]
12.47 LCPN 61 × Soft Soft Non Graph-based 2008 [252]
8.22 Lo-NC 82 × Soft Soft — 2009 [433]
11.96 E2CP 95 × Soft Soft — 2010 [434, 319]
5.32 SRCP 120 × Soft Soft — 2011 [435]
6.94 MMCP 122 × Soft Soft — 2011 [436]
5.74 LCP 128 × Soft Soft — 2012 [437]
4.63 SSL-EC 131 × Soft Soft Active Constraint Acquisition 2012 [285]
5.27 UCP 167 × Soft Soft Inter-View Constrained 2013 [351]
4.03 MSCP 169 × Soft Soft Inter-View Constrained 2013 [319]
5.62 A-ITML-K-Means 156 × Soft Soft Active Clustering with Constraints 2013 [299]
10.31 CAF 166 × Soft Soft Constrained Data Space Transformation 2013 [438]
4.04 ACC(14) 179 × Soft Soft — 2014 [439]
7.07 LSCP 204 × Soft Soft Constrained Distance Transformation 2015 [429]
4.45 CPSNMF 211 × Soft Soft Non-negative Matrix Factorization CC 2016 [276]
23.05 ISSCE 214 × Soft Soft Constrained Pool Generation 2016 [321]
20.25 RSSCE 215 × Soft Soft Constrained Pool Generation 2016 [321]
7.73 C3 217 × Soft Soft — 2016 [440]
7.83 CESCP 252 × Soft Soft Constrained Pool Generation 2018 [323]
10.64 DCECP 253 × Soft Soft Constrained Pool Generation 2018 [323]
5.21 PCPDAMR 273 × Soft Soft — 2020 [441]
16.51 2SHACC 262 × Soft Soft Hierarchical CC 2020 [385]
4.16 ILMCP 277 × Soft Soft — 2021 [442]

Table 32: Feature table for DMM - Constraint Propagation methods.

proposed label propagation procedure. Then, intermediate structures, called constrained
communities, are defined to include the factional instances that are affected by a constrained
instance (including itself). These structures are used to find the range of influence of each
constraints without any parameter estimation. ACC(14) performs constraint propagation
the same way as LCP, the only difference being that ACC(14) allows overlapping between
constrained communities. C3 propagates constraints proportionally in constrained commu-
nities as well, although directly performing clustering on them through their indicator ma-
trix.
PCPDAMR uses both the similarity and the dissimilarity (distance) matrix to perform con-
straint propagation. It does so to emphasize the difference between ML and CL constraints,
which are usually encoded in the samematrix. The constraint propagation is carried out via
manifold embedding, in which the inherent manifold structure among the data instances is
mapped to their similarity/dissimilarity codings. A regularization term to consider adversar-
ial relations between the two matrices is used to enhance the discriminability of propagated
constraints.
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Many methods simply use the E2CP as an intermediate step performed between other CC-
related operations. For example, RSSCE, CESCP and DCECP are all ensemble clustering
methodwhich use E2CP as the CCmethod to generate different partitions using the random
subspace technique. CPSNMF simply performs E2CP and a penalty-based version of NMF
afterwards.
More exotic approaches can be found in LCPN or Lo-NC. LCPN takes the affinity matrix
as the covariance matrix of a parameterized Gaussian process with mean 0, effectively con-
necting the spatial locations of constrained instances and propagating a positive or negative
affinity value (depending on whether it is a ML or CL constraint) in those locations. Lo-
NC performs a space-level generalization of pairwise constraints by locally propagating the
information contained in the constraint set.

7.16.2 Matrix Completion

Matrix completion techniques, gathered in Table 33, are used to fill gaps in relational ma-
trices. Its key concept is found in how to build the matrix over which matrix completion is
applied. The reason is that matrix completion algorithm itself does not need to be specifi-
cally designed for CC, but it only need a matrix with gaps to be filled, so low-rank matrices
are preferred.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
6.79 MCCC 165 × Soft Soft — 2013 [443]
4.46 STSC 188 × Soft Soft Non Graph-based 2014 [265]
8.95 MCPCP 198 × Soft Soft Inter-View Constrained 2015 [352]
3.49 LMRPCP 208 × Soft Soft — 2015 [444]
11.04 MVMC 226 × Soft Soft Intra-View Constrained & Spectral CC 2017 [350]

Table 33: Feature table for DMM - Matrix Completion methods.

In CC, the constraint matrix is usually a low-rank matrix, perfectly suitable for constraint
propagation. STSC takes advantage of this and proposes the first approach to CC from the
Self-taught learning paradigm, where side information is generated by the same algorithm
that will make use of it later without the need of an oracle (or human). STSC can augment
the set of constraints taking advantage of the low-ranknature of the constraintmatrix viama-
trix completion. Matrix completionmethods are able to recover low-rankmatriceswith high
probability by using only a small number of observed entries. STSC performs self-taught
constraint augmentation and constrained spectral clustering in an iterative manner. Con-
straint augmentation is performed viamatrix completion over a combination of the low-rank
constraint matrix and the affinities in the affinity graph. MCPCP also performs matrix com-
pletion over the constraint matrix, with each entry in the matrix being a real number that
represents the relevance of the two corresponding instances. MCPCP aims to learn the full
relationmatrix by using amatrix completion algorithm and derives an indicatormatrix from
it.
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Other methods aim to reconstruct and artificially made low-rank similarity matrix. This is
the case of MCCC, which assigns similarity 1 for any pair of instances in the same cluster
and 0 otherwise, based on the given constraints and the dataset. It can be proven that this is
equivalent to finding the best data partition. A convex optimization problem, whose global
solution can be efficiently obtained, can be used to solve this problem. Please note that the
aim ofMCCC is reconstructing the similarity matrix taking constraints into account, not the
constraint matrix.
Lastly, LMRPCP performs matrix completion within a transductive learning framework.
These approaches make the data matrix and the label matrix jointly low-rank and simul-
taneously apply a matrix completion algorithms to them. LMRPCP assumes that the data
matrix is a clean low-rank matrix, while the constraint matrix is considered to be noisy and
low-rank. The resulting problem is a matrix completion problem which can be solved with
an augmented Lagrangian multiplier algorithm. The generated constraints are used to ad-
just pairwise similarities, over which classic spectral clustering is performed to obtain a par-
tition.

7.17 Constrained Data Space Transformation

Constrained Data Space Transformation (CDST) techniques (gathered in Table 34) seek to
transform the space in which the data is embeded so that the new space can include the
information contained in the constraint set. This usually involves reducing or augmenting
the number of dimensions of said space. The majority of methods which belong to this cat-
egory seek to reduce the number of dimensions, thus summarizing (and sometimes losing)
information from the original data space. Other methods augment the number of dimen-
sions based on the constraints and without any loss of information, although they produce
a larger dataset which is usually harder to process by partitional methods.

𝑆𝒜 Acronym ID Penalty ML CL Hybrid Year Ref.
16.01 RCA 26 × Soft — Constrained Distance Transformation 2005 [187]
17.68 SCREEN 41 × Hard Soft — 2007 [215]
16.07 PCP 64 × Soft Soft — 2008 [445]
8.22 RLC-NC 81 × Soft Soft — 2009 [433]
8.29 GBSSC 98 × Hard Soft Graph-based 2010 [185, 244, 245, 246]
17.73 CPSSAP 153 × Soft Soft — 2012 [446]
10.31 CAF 166 × Soft Soft Constraint Propagation 2013 [438]
11.55 MPHS-Linear 172 × Soft Soft — 2013 [447]
11.55 MPHS-Gauss 173 × Soft Soft — 2013 [447]
11.55 MPHS-PCP 174 × Soft Soft — 2013 [447]
6.93 CNP-K-Means 187 × Soft Soft Non Graph-based 2014 [264]
4.43 CCC-GLPCA 248 × Soft Soft — 2018 [448]
7.74 DP-GLPCA 283 × Soft Soft — 2021 [449]

Table 34: Feature table for CDST methods.

79



136 Chapter II. Publications

Most methods in this category perform dimensionality reduction over the original dataset.
Some of them are based on the classic PCA algorithm: RCA, CCC-GLPCA and DP-GLPCA
are some examples of this. RCA is an ML constrained version of the classic PCA algorithm.
It seeks to identify and down-scale global unwanted variability within the data. In order to
do so, it changes the feature space used for data representation by assigning high weights
to relevant dimensions and low weights to irrelevant dimensions by means of a global lin-
ear transformation. The relevant dimensions are estimated using chunklets. CCC-GLPCA
includes a regularized term in the objective function of GLPCA (a Graph-Laplacian variant
of PCA) to include constraints. This regularizes the similarity between the multiple low-
dimensional representations used by GLPCA. DP-GLPCA simply performs classic GLPCA
over the modified distance matrix to set distances between instances related by ML and CL
to 0 or 1, respectively. Besides, it includes a dissimilarity regularizer which emphasizes CL
to expand their influence.
Other methods use diverse procedures to perform dimensionality reduction taking con-
straints into account. SCREEN includes a step where a constraint-guided feature projec-
tion method (called SCREEN𝑃𝑅𝑂𝐽) is used to project the original data in a low-dimensional
space. RLC-NC seeks a low-dimensional representation of the data through orthogonal fac-
torizations in which the clustering structure defined by the prior knowledge is strengthened.
GBSSC first obtains the chunklet graph, over which a Laplacian process is applied for the
graph to reflect CL constraints. The entire resulting graph is then projected onto a lower-
dimensional space. CPSSAP uses the constraint projection methods to produce a faithful
representation of the constraint set in a lower-dimensional space. The affinitymatrix is com-
puted on the basis of the new data space and a classic affinity propagation algorithm is used
to produce a partition of the dataset. CNP-K-Means seeks to project the original dataset into
a lower-dimensional space, preserving the information contained in the constraint set. In
order to do so, it defines a neighborhood for every instance based on a parameterized radius
value, used to propagate the influence of constraints from constrained instances without
augmenting the constraint set.
The three variants of MPHS perform dimensionality reduction in a more exotic constraint-
oriented way. It is inspired by the maximum margin hyperplane of SVM. Intuitively, CL
constraints can be used to define hyperplanes between pairs of instances. Given two in-
stances with related by CL constraint, we can compute its mid-perpendicular hyperplane
which is perpendicular to the line across the two instances, which is also themaximummar-
gin hyperplane. Since there is more than one CL constraint in the constraint set, multiple
mid-perpendicular hypeprlanes can be obtained. MPHS contains three main steps. Firstly,
it learns a new data representation using the mid-perpendicular hyperplane correspond-
ing to each cannot-link constraint, which can also be regarded as dimensionality reduction.
Secondly, it learns individual similarity matrix according to the new data representation
corresponding to each CL. In the end, individual similarity matrices are aggregated into a
similarity matrix and then perform kernel k-means. Three variants of MPHS are proposed
in [447]: MPHS-linear (for simple and well-structured data), which is performed on orig-
inal data space, MPHS-Gauss (for complex data) which is performed on Gaussian-kernel
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induced feature space, and MPHS-PCP which first learns a data-dependent kernel similar-
ity (PCP-kernel [445]) and performs MPHS in PCP-kernel induced feature space.
PCP is one of the few methods which projects the original data into a higher-dimensional
space to include constraints. To do so, it learns a mapping over the data graph and maps
the data onto a unit hypersphere, where instances related by ML are mapped into the same
point and instances related by CL are mapped to be orthogonal. This can be achieved using
the kernel trick via semidefinite programming, and has to be done in a high dimensional
space, as implementing it in the input space is hard if not unfeasible. Another method
which projects the original data into higher dimensions is CAF. It augments the initial space
with additional dimensions derived fromCL constraints. The instances are augmented with
additional features, each of which is defined by one of the given CL constraints. ML con-
straints are included by modifying the initial distance matrix so that the distance between
instances related byML is the lowest among all pairwise distances (greater than 0) and restor-
ingmetricity and the triangle inequality afterwards. Pairwise distances between instances in
the augmented space combines both the distances in the original space (modified to include
ML) and the distances of instances according to each CL constraint. The distance derivation
for the new dimension is based on diffusion maps. The actual clustering is then performed
by any classic clustering technique.

8 Statistical Analysis of the Taxonomy

This section presents relevant statistics on the ranked taxonomy proposed in Section 7. The
UpSetR package provides the perfect tool to obtain a visualization of the overall taxonomy in
the form of a statistical summary, presented in Figure 14. The left histogram represents the
number of methods which belong to every category, while the top histogram considers all
hybridizations found between said categories. The categories involved in hybridizations are
indicated by the central dot matrix. For example, the left histogram shows that a total of 12
methods belong to the KCC category, and the top histogram shows that 11 of them are purely
KCC methods, with a single hybrid method, which the central dot matrix indicates that
belongs to both KCC and LSCC category thanks to (which is consistent with the information
provided in Table 24).
Figure 14 shows that the ACC category is the most prominent one, while also being the
one which represents the most hybridizations. The rationale behind this is that all meth-
ods which belong to the active clustering with constraints category (Table 12) always use a
CC method from another category as their core CC method. In addition to this, it can be
observed that the more successful hybridization are found in MMbCC+MbCC, HCC+ACC,
and LSCC+ACC, with up to five hybrids methods in each combination. Please note that,
for Constrained DML categories (CDT, CDST and DMM) hybridization never refer to the
method used to eventually obtain a partition from their outputs, as these method are never
considered to determine their category memberships. The proportion of methods which be-
long to the classes of the highest level dichotomy in the taxonomy (constrained partitional
versus constrained DML) is presented in Figure 13a, which is introduced next to Figure 13b,
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Constrained Partitional

(242 methods, 78.8%)

Constrained DML

(45 methods, 14.7%)

Hybrids

(20 methods, 6.5%)

Proportion of partitional and 
 DML methods in CC studies

(a) Proportion of Constrained Clustering and
Constrained DML methods

Soft

(222 methods, 76.8%)

Hard

(39 methods, 13.5%)

Others

(28 methods, 9.7%)

Proportion of the types of constraints 
 used in CC methods

(b) Proportion of constraint types used in CCmeth-
ods

Figure 13: Piecharts on the proportions of methods in the highest dichotomy of the taxon-
omy and on the types of constraints.

depicting the proportion of the types of constraints used by these methods. From these fig-
ures is clear that the vast majority of methods belong to the constrained partitional category
and that the use of soft constraints is greatly preferred over any other type of constraints.
The “Others” portion in Figure 13b gathers methods that consider any combination of con-
straints that are not purely soft nor hard. For example, methods considering only one type
of constraints, or using hard ML and soft CL are included in said portion.
Another interesting statistic is presented Figure 15, which shows a histogram for the number
of publications in the CC area sorted by year (please note that only three months of the year
2022 are included in this figure). It is clear that this number increases consistently from
2001 to 2008, when the proficiency of the area becomes inconsistent. Authors firmly believe
that this is due to the lack of a solid, general reference in the area, which may help new
researchers get a general understanding on the problems and the points of view proposed to
tackle them.
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Figure 15: Number of proposals per year.

A relevant concern within any clustering task is the determination of the number of clusters
𝑘. The vast majority of both classic clustering and CC methods simply leaves this step out
of the clustering process and takes 𝑘 as an input hyperparameter. However there are other
alternatives to approach this problem. Table 35 gathers CC methods that do not need the
number of clusters 𝑘 to be specified by the user, but they include procedures to determine it
in some circumstances. For example, SSFCA can handle both a specification for the number
of clusters and the lack of it, as it will try to automatically determine it in such case. The
BoostCluster method is basically a wrapper which can be applied to any clustering method
in order to include constraints in it, thus handling both cases. Other methods ask the user
about an interval in which the 𝑘 lies in, such as CMSSCCP, 3CP and TKC(17). Besides, there
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are methods that can only work with a fixed number of clusters (usually 𝑘 = 2), such as CSP
and ISL. The rest of themethods do not accept the number of cluster of the output partitions
in their inputs, and include procedures to determine it through the clustering process.

Acronym Type Ref. Acronym Type Ref.
SSFCA Hybrid [125] URASC Not Needed [267]
BoostCluster Hybrid [356] PCCA Not Needed [377, 143]
CMSSCCP Bounded [401] SemiDen Not Needed [388]
3CP Bounded [400] FIECE-EM+LUC Not Needed [305, 306]
TKC(17) Bounded [399] CECM Not Needed [366]
CSP Fixed [255] En-Ant Not Needed [327]
ISL Fixed [71] CAC Not Needed [206, 332]
SSDC Not Needed [390] CELA Not Needed [331]
COBRAS Not Needed [304] MELA Not Needed [331]
FIECE-EM Not Needed [339] MCLA Not Needed [331]
JDG Not Needed [339] SSAP Not Needed [395]
Semi-MultiCons Not Needed [325] ACC Not Needed [144]
ssFS Not Needed [359] AFCC Not Needed [297]
SFFD Not Needed [370] COP-b-coloring Not Needed [242]
AAVV Not Needed [295] MOCK Not Needed [333]
FIECE-EM+BFCU Not Needed [305, 306] MCGMM Not Needed [450]
FIECE-EM+FCU Not Needed [305, 306] COBRA Not Needed [108]
FIECE-EM+DVO Not Needed [305, 306] ASCENT Not Needed [193]
JBMJ Not Needed [414] - - -

Table 35: Methods that do not need 𝐾 to be specified.

8.1 Statistic Analysis of Ranked Scores

This section tackles the distribution of the final scores, obtained by applying the methodol-
ogy introduced in Section 6. Firstly, Figure 16 gives the values for 𝛼1 and 𝛼2 for every year,
so the reader can have a better understanding of how the final scores are obtained. Overall,
𝛼1 and 𝛼2 do not show sufficiently significant differences between them for the year of publi-
cation to be decisive, although enough to be used as a discriminating factor on a reasonable
scale.
Figure 17 gives a visual representation of the detailed scorings for the top 20 best ranked
methods. As expected, the best score is obtained by the COP-K-Meansmethod, as it features
a high quality experimental setup (S1, S2 and S3) and it is the single most cited CC method
ever proposed (S7). This is enough for it to obtain the highest score, even if the paper which
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Figure 16: Values for the weighting parameters 𝛼1 and 𝛼2 used in every year.

proposes it lacks of a proper validation procedure (S4 and S5). Please note that the fact that
COP-K-Means is ranked as the best method ever proposed is evidence of the scoring system
being reluctant to the number of years the method has been available. As a result, one of
the oldest CC method reaches top 1 in the ranking, and is followed by a method which was
proposed as recently as in 2021, which is SHADE𝐶𝐶 . A number of baseline method make
it to the top 20, such as ERCA, SSKK, MPCK-Means, DCA or CSI. The reason behind this
is the high influence of the 𝐼′𝒜 term over the final score 𝑆𝒜. Other methods reach the top
20 by other means, such as a high experimental quality combined with proper validation
procedures.
Finally, Figure 18 shows a histogram with the distribution of all final scores presented in
Section 7. It is clear that the majority of methods are scored in [0, 10], fewer methods are
in the next higher range of values, which is (10, 20], and very few outlier scores are found
in the range (20, 35]. Please note that the effective output range of the scoring systems is
[0, 33.33], as no method fully complies with its standards. This shows the suitability of the
proposed scoring system, as any objective raking procedure should place the majority of
methods in the low-medium range and fewmethods in the upper range of the ranking, with
those methods being the more remarkable ones for their quality and the robustness of their
conclusions.
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Figure 17: Detailed scorings for the top 20 ranked methods. Every subscore (S1 to S7)
has its own meaning and can be understood individually as follows: the weighted year-
normalized number of datasets (𝛼𝑌𝒜1 𝐷′

𝒜), the weighted year-normalized number of meth-
ods (𝛼𝑌𝒜2 𝑀𝑆′𝒜), the normalized experimental quality (𝐸𝑄′

𝒜), the normalized number of
validity indices (𝑉 ′

𝒜), the statistical test usage indicator (𝑇𝒜), the normalized validation pro-
cedure quality (𝑉𝑄′

𝒜), and the normalized influence (𝐼′𝒜). Finally, 𝑆𝒜 is given in the final
score column.
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Figure 18: Distribution of all final scores presented in Section 7.
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9 Conclusions, Criticisms and Future Research Guidelines

This study presented a systematical review on the Constrained Clustering (CC) research
domain. Firstly, a general introduction to the Semi-Supervised Learning (SSL) paradigm
is given, after which the specific area of semi-supervised clustering is discussed in detail.
The discussed methods within this area are capable of including background knowledge (or
incomplete information) about the dataset onto the clustering process. To the best of the
authors’ knowledge, this study provides the first ever overview and taxonomization of the
types of background knowledge (in Section 2) that can be included as constraints in semi-
supervised clustering. Afterwards, we motivate why out of all types of background knowl-
edge, the instance-level pairwise Must-Link (ML) and Cannot-Link (CL) constraints, are
the most successful and prominent types of constraints. Semi-supervised clustering meth-
ods that use ML and CL constraints are known as Constrained Clustering (CC). The CC
problem is formalized and presented in later sections, and illustrated by giving examples of
several practical fields of applications. Afterwards, advancedCC concepts and structures are
described and formalized, allowing to discuss in more detail the advantages and disadvan-
tages of different approaches. Afterwards, a statistical analysis of the experimental elements
used in studies which proposes new CC methods has been carried out, revealing the basics
research in CC area, as well as the baseline methods, benchmark datasets and suitable valid-
ity indices. This overview leads to the proposal of an objective scoring system that captures
the potential and relevance of each approach, which is used later to assign every method a
score that summarizes its quality, and to produce a ranking of CC methods. Afterwards, a
taxonomization of 307 CC methods is conducted, ranking them according to the proposed
scoring system and categorizing them in two major families: constrained partitional and
constrained DML. These two families are further divided in more specific categories, whose
common features and specific methods are described in Sections 7.1 to 7.17.
The proposed taxonomy can be used to:

• Decide which type of approach and model is best suited to a new constrained clus-
tering problem.

• Compare newly proposed techniques to those belonging to the same family in this
taxonomy, so that in can be determined whether the new method represents an im-
provement over the current state-of-the-art.

• Identify the proposalswhich best support their conclusions and proposemore robust
methods, thanks to the scoring system.

As any other Computer Science research area, the CC area is not free of flaws and criticism.
Having reviewed 270 studies (proposing 307 methods), the authors have identified 5 major
problems which affect the vast majority of them. These problems can be summarized as
follows:

• The lack of a unified, general reference. There is not an updated, general refer-
ence unifying the overall CC literature. This affects the foundations of new propos-
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als, as it is hard to find the state-of-the-art methods that can be used to compare new
techniques with. This is illustrated in Figure 9a, which shows that more than half
of the proposed CC methods (52.1%) are never used in subsequent studies. The aim
of this study is to address this deficiency.

• Low number of application studies. Even if the main purpose of this study is
not to review and gather literature concerning CC applications, it has been difficult
for the authors to find application studies other than the 95 presented in Section 3.5.
This is specially significant, given the high number and diversity found inCC studies
which propose new methods.

• The lackof extensive experimental comparisons. FromSection 5, it is clear that,
unfortunately, the CC research area is consistently poor regarding the number of
datasets, validity indices and competing methods used to support their conclusions.
Very few methods use more than 10 datasets or 2 validity indices. With respect to
the number of competing methods, it is shocking that no study has ever considered
more than 9 of them, given that there are, at least, 307. The authors firmly believe
that (open-source) code unavailability is responsible for this unsettling fact, as im-
plementation details are rarely given in CC studies.

• Unavailability of specific standardized CC-oriented datasets and constraint
sets. One of the major flaws of the CC area is the lack of specific datasets, which
may be justified, provided that the low number of application papers. However, this
is not the casewhen it comes to the constraint sets. In Section 5.4, the constraint gen-
erationmethod used in the vast majority of CC studies was presented. It is clear that
this procedure is highly dependent of random effects, as constraints are randomly
allocated. For this reason, it is necessary to have access to the specific constraint
sets used in a given experimentation if it needs to be reproduced. Unfortunately,
constraint sets are only rarely published by authors.

• Statistically unsupported experimental conclusions. This is an effect derived
from the two previous criticisms, as a low number of standardized experiments is
not significant enough to perform statistical testing procedures or to derive gener-
alized conclusions that are broadly applicable. In fact, a very reduced minority of
studies support their conclusions using statistical testing. This may greatly affect
the confidence future researches may have towards the reviewed studies, reducing
their usability in both the development of new methods and their applications in
real-world problems.

In respect to future research guidelines, new proposals would greatly benefit from avoiding
the mentioned flaws as much as possible. New studies should perform extensive experi-
mental comparisons with state-of-the-art methods. A major goal of this overview is to pro-
vide easy access to such methods. Similarly, studies would benefit from the use of multiple
datasets focusing on a wide range of application domains to make conclusions more gener-
alisable. To this end, authors should always make their datasets and constraint sets public,
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in order for the result to be reproducible, and preferably also the source code. Supporting
conclusions with statistical testing is also essential, as this will increase confidence in the
results.
Future research based on this study can extend the scoring system to evaluate not only quan-
titative features regarding the quality of the proposal, but also qualitative features, as their
novelty or their applicability. This objective would be arduous to achieve with objective
standards in mind, as these features greatly depend on the perception of the researchers.
Additionally, the constraint equivalences presented in Section 2.8 would benefit from for-
malization. Lastly, the creation of a library of CC baseline algorithms would greatly benefit
this research area, making it more accessible to new researchers. Thanks to this study, the
mentioned CC baselines algorithms can be chosen using objective criteria.
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A Full Names for all Methods Reviewed

This appendix gathers Tables 36 to 47, which list all method reviewed in this study, sorted
by their identifier, and giving their full names. Methods named after the initials of their
authors’ names are marked with the word “names”. Methods whose name does not refer to
neither any acronym nor authors’ initials are marked with a hyphen dash (“-”).

ID Acronym Full Name
1 COP-COBWEB COnstrained Partitional - COBWEB
2 COP-K-Means COnstrained Partitional - K-Means
3 SCOP-K-Means Soft COnstrained Partitional - K-Means
4 CCL Constrained Complete-Link
5 CSI Clustring with Side Information
6 KKM names
7 TBJSBM names
8 MAA names
9 PCK-Means Pairwise Constrained K-Means
10 FFQS Farthest First Query Selection
11 MPCK-Means Metric Pairwise Constrained K-Means
12 HMRF-K-Means Hidden Markov Random Fields - K-Means
13 DistBoost —
14 Constrained EM Constrained Expectation-Minimization
15 LLMA Locally Linear Metric Adaptation

16 ACCESS Active Constrained Clustering by Examining Spectral
eigenvectorS

17 IDSSR names
18 GPK-Means Gaussian Propagated K-Means
19 CVQE Constrained Vector Quantization Error
20 CSC Constrained Spectral Clustering
21 PPC Penalized Probabilistic Clustering
22 PCCA Pairwise Constrained Competitive Agglomeration
23 SSKK Semi-Supervised Kernel K-Means

Table 36: Full names for all methods reviews, sorted by ID (Part I).
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ID Acronym Full Name
24 MCGMM Multiple-Component Gaussian Mixture Model
25 SCGMM Single-Component Gaussian Mixture Model
26 RCA Relevant Components Analysis
27 ASSKK Adaptive Semi Supervised Kernel K-Means
28 COALA Constrained Orthogonal Average Link Algorithm

29 COALAcat Constrained Orthogonal Average Link Algorithm
(Categorical)

30 MOCK Multi Objective Clustering with automatic
K-determination

31 ERCA Extended Relevant Components Analysis
32 DCA Discriminative Component Analysis
33 KDCA Kernel - Discriminative Component Analysis
34 CME names
35 Comraf Combinatorial Markov Random Fields
36 SS-FKCN Semi-Supervised Fuzzy Kohonen Clustering Network
37 SMCE Subspace Metric Cluster Ensemble
38 COP-b-coloring COnstrained Partitional - b-coloring
39 C-DBSCAN Constraint-driven - DBSCAN
40 BoostCluster —

41 SCREEN Semi-supervised Clustering method based on spheRical
k-mEans via fEature projectioN

42 PCSK-Means Pairwise Constrained Spherical K-Means
43 RHWL names
44 LCVQE Linear Constrained Vector Quantization Error

45 NMFS Non-negative Matrix Factorization-based
Semi-supervised

46 ClusILC Clustering with Instance-Level Constraints
47 DYYHC names
48 SPGP Semi-supervised Pairwise Gaussian Process classifier

49 SSCARD Semi-Supervised Clustering and Aggregating
Relational Data

50 ITML Information-Theoretic Metric Learning

Table 37: Full names for all methods reviews, sorted by ID (Part II).
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ID Acronym Full Name
51 SMR names

52 S-SCAD Semi-Supervised Clustering and Attribute
Discrimination

53 EICC Efficient Incremental Constrained Clustering
54 PAST-Toss Pick A Spanning Tree – Toss
55 CLAC Constrained Locally Adaptive Clustering
56 PT Penta-Training
57 MLC-K-Means Must-Link Constrained - K-Means
58 CDPMM08 Constrained Dirichlet Process Mixture Models 2008
59 AFCC Active Fuzzy Constrained Clustering
60 ACC Adaptive Constrained Clustering
61 LCPN names
62 COP-CGA COnstrained Partitional - Clustering Genetic Algorithm
63 S3-K-Means Semi-Supervised Spectral K-Means
64 PCP Pairwise Constraint Propagation
65 COP-HGA COnstrained Partitional - Hybrid Genetic Algorithm
66 CLWC Constrained Locally Weighted Clustering
67 ADFT Alternative Distance Function Transformation
68 CMMC Constrained MaximumMargin Clustering
69 MMFFQS Min-Max Farthest First Query Selection
70 YLYM names
71 COPGB-K-Means COnstrained Partitional Graph-Based - K-Means
72 PCCK-Means Partial Closure-based Constrained K-Means
73 SS-NMF(08) Semi-Supervised - Non-negative Matrix Factorization
74 Xiang’s —

75 Cop-EAC-SL Constrained partitional Evicende ACcumulation Single
Link

76 SCK-Means Soft Constrained K-Means
77 PrTM Probabilistic Topographic Mapping
78 PCsFCM Pairwise Constrained standard Fuzzy c-means
79 PCeFCM Pairwise Constrained entropy Fuzzy c-means

Table 38: Full names for all methods reviews, sorted by ID (Part III).
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ID Acronym Full Name
80 C-DenStream Constrained - Density Stream
81 RLC-NC Constrained Normalized Cut
82 Lo-NC Local Normalized Cut
83 MSSB names
84 cut —
85 SSAP Semi-Supervised Affinity Propagation

86 RSCPC Regularized Spectral Clustering with Pairwise
Constraints

87 CCSR Constrained Clustering with Spectral Regularization
88 SCLC Spectral Clustering with Linear Constraints
89 CCSKL Constrained Clustering by Spectral Kernel Learning
90 CMSC Constrained Mean Shift Clustering
91 MCLA Must-link Cannot-link Leader Ant
92 MELA Must-link 𝜖-link Leader Ant
93 CELA Cannot-link 𝜖-link Leader Ant

94 AHC-CTP Agglomerative Hierarchical Clustering – Clusterwise
Tolerance Pairwise

95 E2CP Exhaustive and Efficient Constraint Propagation

96 OSS-NMF Orthogonal Semi-Supervised - Non-negative Matrix
tri-Factorization

97 RJFM names
98 GBSSC Graph-Based Semi-Supervised Clustering
99 Samarah —
100 MSBSBS names

101 SCKMM Semi-supervised Clustering Kernel Method based on
Metric learning

102 PCBK-Means Pairwise Constrained Based K-Means
103 ISL names
104 ICOP-K-Means Improved COP-K-Means
105 CSP Constrained SPectral clustering
106 ASC(10) Ability to Separate between Clusters
107 MSBSBS(10) names

Table 39: Full names for all methods reviews, sorted by ID (Part IV).
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ID Acronym Full Name
108 LRML Laplacian Regularized Metric Learning
109 SS-NMF Semi-Supervised Nonnegative Matrix Factorization
110 ASC Active Spectral Clustering
111 S3OM Semi-Supervised Self Organizing Map
112 CCHAMELEON Constrained CHAMELEON
113 CAC1 Constrained Active Clustering 1
114 PCKMMR Parallel COP-K-Means based on MapReduce
115 CLC-K-Means Cannot-Link Constrained – K-Means

116 SDHCC Semi-supervised Divisive Hierarchical Clustering of
Categorical data

117 AHCP Agglomerative Hierarchical Clustering with Penalties
118 LRKL Low-Rank Kernel Learning
119 CDJPBY names
120 SRCP Symmetric graph Regularized Constraint Propagation
121 SGID names
122 MMCP Multi-Modal Constraint Propagation
123 PNMF Penalty - Nonnegative Matrix Factorization

124 SCAP Semi-supervised fuzzy Clustering Algorithm with
Pairwise constraints

125 SFFA names

126 PSC Pareto based multi objective algorithm for
Semi-supervised Clustering

127 SemiStream —
128 LCP Local Constraint Propagation

129 SSCsNMF Semi-supervised symmetriC Non-negative Matrix
Factorization

130 JPBMS names

131 SSL-EC Semi-Supervised Learning based on Exemplar
Constraints

132 CAC Constrained Ant Clustering
133 En-Ant Ensemble Ant
134 SSFCA Semi-Supervised Fuzzy Clustering Algorithm

Table 40: Full names for all methods reviews, sorted by ID (Part V).
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ID Acronym Full Name
135 NSDR-NCuts Near Stranger or Distant Relatives – NCuts
136 SNN Similarity Neural Networks
137 Cons-DBSCAN Constrained - DBSCAN
138 COSC Constrained One Spectral Clustering
139 CECM Constrained Evidential C-Means
140 PMMC Pairwise-constrained MaximumMargin Clustering
141 TRAGEK TRAnsductive Graph Embedding Kernel
142 ENPAKL Efficient Non-PArametric Kernel Learning

143 COP-SOM-E COnstrained Partitional - Self Organazing Map -
Ensemble

144 IU-Red Iterative Uncertainty Reduction
145 RFD Random Forest Distance
146 SCEV Semi-supervised Clustering Ensemble by Voting

147 sRLe-GDM-FFS semi-supervised Robust Learning of finite Generalized
Dirichlet Mixture models and Feature Subset Selection

148 LSE Learned Spectral Embedding
149 CPSC Constrained Polygonal Spatial Clustering
150 CPSC* Constrained Polygonal Spatial Clustering*
151 CPSC*-PS Constrained Polygonal Spatial Clustering-Polygon Split

152 SSC-ESE Semi-Supervised Clustering with Enhanced Spectral
Embedding

153 CPSSAP Constraint Projections Semi-Supervised Affinity
Propagation

154 TKC names
155 SRBR names

156 A-ITML-K-Means Active - Information Theoric Metric Learning -
K-Means

157 SSKSRM Semi-Supervised Kernel Switching Regression Models
158 SSSeKRM Semi-Supervised Sequential Kernel Regression Models

Table 41: Full names for all methods reviews, sorted by ID (Part VI).
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ID Acronym Full Name
159 O-LCVQE Online - Linear Constrained Vector Quantization Error
160 C-RPCL Constrained - Rival Penalyzed Competitive Learning

161 SSsFCMCT Semi-Supervised standard Fuzzy C-Means for data with
Clusterwise Tolerance by opposite criteria

162 SSeFCMCT Semi-Supervised entropy Fuzzy C-Means for data with
Clusterwise Tolerance by opposite criteria

163 SS-FCC Semi-Supervised - Fuzzy Co-Clustering
164 MVSCE Majority Voting Semi-supervised Clustering Ensemble
165 MCCC Matrix Completion based Constraint Clustering
166 CAF Constraints As Features
167 UCP Unified Constraint Propagation

168 SS-CLAMP
Semi-Supervised fuzzy C-medoids CLustering
Algorithm of relational data with Multiple Prototype
representation

169 MSCP Multi-Source Constraint Propagation

170 E2CPE Exhaustive and Efficient Constraint Propagation
Ensemble

171 TwoClaCMMC Two Classes Constrained MaximumMargin Clustering
172 MPHS-Linear Mid-Perpendicular Hyperplane Similarity - Linear
173 MPHS-Gauss Mid-Perpendicular Hyperplane Similarity - Gaussian

174 MPHS-PCP Mid-Perpendicular Hyperplane Similarity - Pairwise
Constraint Propagation

175 CCG Constrained Column Generation
176 PC-HCM-NM Pairwise Constrained - Hard C-Means - Non Metric

177 PC-eFCM-NM Pairwise Constrained - entropy Fuzzy C-Means - Non
Metric

178 PC-sFCM-NM Pairwise Constrained - standard Fuzzy C-Means - Non
Metric

179 ACC(14) Adaptive Constrained Clustering

180 ALCSSC Active Learning of Constraints for Semi-Supervised
Clustering

Table 42: Full names for all methods reviews, sorted by ID (Part VII).
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ID Acronym Full Name
181 SSCA Semi-supervised Spectral Clustering Algorithm
182 MVCC Multi-View Constrained Clustering
183 FHCSC Flexible Highly Constrained Spectral Clustering
184 SCRAWL Semi-supervised Clustering via RAndomWaLk
185 AC-CF-tree Active Constrained - Clustering Feature - tree
186 SACS Sequential Approach for Constraint Selection
187 CNP-K-Means Constraint Neighborhood Projections - K-Means
188 STSC Self-Taught Spectral Clustering

189 Active-HACC Active - Hierarchical Agglomerative Constrained
Clustering

190 SKMS Semi-supervised Kernel Mean Shift
191 PCS PCK-Means with Size constraints
192 CEVCLUS Constrained EVidential CLUStering
193 TDCK-Means Temporal-Driven Constrained K-Means
194 SKML Spectral Kernel Metric Learning
195 SMVC Semi-supervised Multi-View Clustering

196 3SMIC Semi-Supervised Squared-loss Mutual Information
Clustering

197 3CP Constrained Clustering by Constraint Programming
198 MCPCP Matrix Completion - Pairwise Constraint Propagation

199 CMSSCCP Constrained Minimum Sum of Squares Clustering by
Constraint Programming

200 LXDXD names
201 CS2GS Constrained Semi-Supervised Growing SOM

202 CMKIPCM Constrained Multiple Kernels Improved Possibilistic
C-Means

203 CCCPYL names
204 LSCP Learning Similarity of Constraint Propagation
205 BBMSC Branch-and-Bound Method for Subspace Clustering

206 SCSC Semi-supervised Clustering with Sequential
Constraints

207 HSCE Hybrid Semi-supervised Clustering Ensemble

Table 43: Full names for all methods reviews, sorted by ID (Part VIII).
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ID Acronym Full Name

208 LMRPCP Low-rank Matrix Recovery based Pairwise Constraint
Propagation

209 TVClust Two-Views Clustering
210 RDPM Relational Diritchlet Process Means

211 CPSNMF Constrained Propagation for Semi-supervised
Nonnegative Matrix Factorization

212 CEAC Constrained Evolutionary Algorithm for Clustering
213 SDenPeak Semi-Supervised Density Peak
214 ISSCE Incremental Semi-Supervised Clustering Ensemble

215 RSSCE Random Subspace based Semi-supervised Clustering
Ensemble

216 SSMMHF Semi-Supervised Max-Margin Hierarchy Forest
217 C3 Constrained Community Clustering
218 FAST-GE Fast-Generalized Spectral Clustering

219 NMFCC Non-negative Matrix Factorization based Constrained
Clustering

220 SymNMFCC Symmetric Non-negative Matrix Factorization based
Constrained Clustering

221 AAA names
222 DCPR —
223 CCLS Constrained Clustering by Local Search
224 SemiDen Semi-supervised Density-based data clustering
225 COBRA COnstraint-Based Repeated Aggregation
226 MVMC Multi-View Matrix Completion
227 URASC Uncertainty Reducing Active Spectral Clustering
228 JBMJ names
229 TKC(17) names

230 SCHAIN Semi-supervised Clustering in Heterogeneous
Attributed Information Networks

231 FAST-GE2.0 Fast-Generalized Spectral Clustering 2.0
232 FQH names

233 TI-APJCF Type-I Affinity and Penalty Jointly Constrained
Spectral Clustering

Table 44: Full names for all methods reviews, sorted by ID (Part IX).
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ID Acronym Full Name

234 TII-APJCF Type-II Affinity and Penalty Jointly Constrained
Spectral Clustering

235 BRKGA+LS Biased Random Key Genetic Algorithm + Local Search
236 CG+PR+LS Column Generation + Path Relinking + Local Search

237 RSEMICE Random subspace based SEMI-supervised Clustering
Ensemble framework

238 C4S
Constrained Clustering with a Complex Cluster
Structure

239 YZWD names
240 COBS COnstraint-Based Selection
241 A-COBS Active - COnstraint-Based Selection
242 CVQE+ Constrained Vector Quantization Error +
243 SSDC Semi-Supervised DenPeak Clustering
244 COBRAS COnstraint-Based Repeated Aggregation and Splitting
245 k-CEVCLUS k - Constrained EVidentialCLUStering
246 AHMRF A - Hidden Markov Random Field

247 FIECE-EM Feasible-Infeasible Evolutionary Create & Eliminate -
Expectation Maximization

248 CCC-GLPCA Convex Constrained Clustering - Graph-Laplacian PCA
249 JDG names
250 d-graph —

251 PCPSNMF Pairwise Constraint Propagation-induced Symmetric
NMF

252 CESCP Clustering Ensemble based on Selected Constraint
Projection

253 DCECP Double-weighting Clustering Ensemble with
Constraint Projection

254 CMVNMF Constrained Multi-View NMF
255 BCK-Means Binary Constrained K-Means
256 SSKMP Semi-Supervised K-Medioids Problem

Table 45: Full names for all methods reviews, sorted by ID (Part X).
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ID Acronym Full Name

257 SFS3EC Stratified Feature Sampling for Semi-Supervised
Ensemble Clustering

258 SemiSync —

259 SCAN Semi-supervised clustering with Coupled attributes in
Attributed heterogeneous information Networks

260 SDEC Semi-supervised Deep Embedded Clustering
261 MVCSC Multi-View Constrained Spectral Clustering
262 2SHACC 2 -Stages Hybrid Agglomerative Constrained Clustering

263 ARSCE Adaptive Regularized Semi-supervised Clustering
Ensemble

264 CCPP Constrained Clustering via Post-Processing
265 DCC Deep Constrained Clustering
266 AMH-L names
267 AMH-NL names
268 S3C2 Semi-Supervised Siamese Classifiers for Clustering
269 PCOG Pairwise Constrained Optimal Graph
270 DILS𝐶𝐶 Dual Iterative Local Search - Constrained Clustering
271 NLPPC New Label Propagation with Pairwise Constraints
272 SSDPC Semi-Supervised Density Peak Clustering

273 PCPDAMR Pairwise Constraint Propagation with Dual Adversarial
Manifold Regularization

274 CDC Constrained Deep Clustering
275 CDEC Constrained Deep Embedded Clustering
276 PCSK-Means(21) Pairwise Constrained Sparse K-Means
277 ILMCP Instance Level Multi-modal Constraint Propagation
278 WECR K-Means WEighted Consensus of Random K-Means ensemble
279 fssK-Means fast semi-supervised K-Means
280 fssDBSCAN fast semi-supervised DBSCAN
281 ADPE Active Density Peak Ensemble
282 ADP Active Density Peak

Table 46: Full names for all methods reviews, sorted by ID (Part XI).
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283 DP-GLPCA Dissimilarity Propagation-guided - Graph-Laplacian
Principal Component Analysis

284 NN-EVCLUS Neural Network-based EVidential CLUSstering

285 SHADE𝐶𝐶
Succes History-based Adaptive Differential Evolution -
Constrained Clustering

286 ME-MOEA/D𝐶𝐶

Memetic Elitist - Multiobjective Optimization
Evolutionary Algorithm based on Decomposition -
Constrained Clustering

287 3SHACC 3 -Stages Hybrid Agglomerative Constrained Clustering
288 Semi-MultiCons Semi-supervised Multiple Consensus
289 DGPC names
290 KAKB names
291 ssFS semi-supervised subgraph Feature Selection
292 JDFD names
293 WAKL names
294 MICS Most InformativeConStraints

295 SFFD Semi-supervised Fuzzy clustering with Feature
Discrimination

296 AAA(18) names
297 RWACS RandomWalk Approach to Constraints Selection
298 AAA(19) names
299 ALPCS Active Learning Pairwise Constraint based on Skeletons
300 LCML names
301 AIPC Active Informative Pairwise Constraints algorithm
302 AAVV names

303 FIECE-
EM+BFCU FIECE-EM + Best Feasible Classification Uncertainty

304 FIECE-EM+FCU FIECE-EM + Feasible Classification Uncertainty
305 FIECE-EM+DVO FIECE-EM + Distance to Violated Objects
306 FIECE-EM+LUC FIECE-EM + Largest Unlabeled Clusters
307 ASCENT —

Table 47: Full names for all methods reviews, sorted by ID (Part XII).
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1 Introduction

Clustering is one of the most well-known and extensively studied data analysis problems.
It constitutes a key research area in the field of unsupervised learning, where there is no
supervision onhow the information should be handled. Partitional clustering can be defined
as the task of grouping the instances of a dataset into 𝑘 clusters, so that new information
can be extracted from them. A dataset 𝑋 is composed of 𝑛 instances, and each instance is
described by 𝑢 features. More formally, 𝑋 = {𝑥1,⋯ , 𝑥𝑛}, with the 𝑖th instance noted as 𝑥𝑖 =
(𝑥[𝑖,1],⋯ , 𝑥[𝑖,𝑢]). A typical clustering algorithm assigns a class label 𝑙𝑖 to each instance 𝑥𝑖 ∈
𝑋 . As a result, the set of labels 𝐿 = {𝑙1,⋯ , 𝑙𝑛} is obtained, with 𝑙𝑖 ∈ {1,⋯ , 𝑘}, that effectively
splits 𝑋 into 𝑘 non-overlapping clusters 𝑐𝑖 to form a partition called 𝐶. The criterion used to
assign an instance to a given cluster is the similarity to the rest of elements in that cluster,
and the dissimilarity to the rest of instances of the dataset, and can be obtained with some
kind of distance measurement [1].
Semi-supervised learning (SSL) is a machine learning paradigm that arises from adding in-
complete information to unsupervised learning [2]. Following this paradigm, background
information to the clustering process can be incorporated, resulting in constrained cluster-
ing, which is the main subject of the study presented in this paper [3]. The objective of
constrained clustering is to find a partition of the dataset that meets the proper characteris-
tics of a clusteringmethod result, in addition to satisfying a certain constraint set. It has been
successfully applied in many knowledge fields, among which the following are worth men-
tioning: advanced robotics applications [4], hyperspectral image classification [5], applied
marketing [6], obstructive sleep apnea analysis [7], terrorist sub-communities detection [8],
vocabulary maintenance policy for case-based reasoning systems [9], electoral district de-
signing, [10], and lane finding in GPS data [11] among others.
Constraints can be understood in different ways, resulting in three main types of con-
strained clustering: cluster-level [12], instance-level [13] and feature-level constrained clus-
tering [14]. Moreover, hybrid approacheswhich try to integrate different types of constraints
have also been proposed [15]. Particularly, there are two main types of instance-level con-
straints in the literature: pairwise constraints and distance-based constraints. Specifically,
pairwise constraints tell us if two specific instances of a dataset must be placed in the same
or in different clusters, resulting inMust-link (ML) andCannot-link (CL) constraints respec-
tively. This paper focuses on these types of constraints (ML and CL), whichwill be discussed
later in Section 2.1.
With regard to the degree to which the constraints have to be satisfied, a distinction between
the concepts of hard [11] and soft [16] constraints can be made. Hard constraints must
necessarily be satisfied in the output partition of any algorithm that makes use of them,
whereas soft constraints are taken as a strong guide for the algorithm that uses them but can
be partially satisfied in the output partition [6]. For the purpose of this paper, soft constraints
will be employed, given their practical applicability to real-world problems.
Finding the optimal partition in a dataset, with respect to any kind of reasonable criteria,
is known as an NP-hard problem. Therefore, the incorporation of constraints may modify

2



Pub. 2 - DILS𝐶𝐶 201

the complexity of the clustering problem, depending on the type of constraints used. As it
will be studied in more depth in Section 2.2, the use of ML and CL constraints makes the
constrained clustering problemNP-complete [17].
The constrained clustering problem can be formulated in terms of optimization so that var-
ious optimization techniques to solve it can be applied. As mentioned earlier, its resolution
poses a tough challenge, and metaheuristics are presented as a promising option to find
quality approximate solutions. Metaheuristic algorithms are designed to explore the solu-
tion space of a problem with the guidance of a fitness (heuristic) function [18]. In this type
of approach, the key is to find a good exploration-exploitation trade-off. For this reason, the
Iterated Local Search (ILS) metaheuristic algorithm, derived from Local Search (LS), intro-
duces periodic perturbations in the LS exploration of the solution space process to escape
local optima [19]. ILS—or variants of it—has been applied to a wide variety of problems,
including the traveling salesman [20], the quadratic multiple knapsack [21] or the vehi-
cle routing problem [22, 23]. ILS is also commonly used in the design of hybrid methods
with good exploration-exploitation trade-off, such as its combination with expeditingmech-
anisms [24] or with the success-history based differential evolution algorithm [25].
Metaheuristics methods have been successfully applied to the clustering problem [26, 27,
28]; although little work has been done on investigating their suitability for the constrained
clustering problem, particularly in highly constrained environments. Encouraged by this
success, we propose a new ILS variant, which we call Dual Iterative Local Search (DILS)
and which constitutes the main contribution of this paper. DILS seeks to explore the solu-
tion space by combining the exploitation capability of ILS and classic diversity-introducing
techniques used in the metaheuristics field such as recombination and mutation operators.
DILS is also able to adapt to the problem at hand by implementing a restarting mechanism
to avoid local optima. To carry out these tasks, DILS optimizes two individuals at the same
time, which allows it to recombine and compare them in order to to manage the exploration
of the solution space. We have built the application of DILS to constrained clustering—
which is referred to as DILS𝐶𝐶—with the aid of an integer-based problem representation
and a penalty-style fitness function. Additionally, it has been proven that it constitutes a
competitive approach to obtain quality results for the constrained clustering problem. Par-
ticularly, it has been shown how the DILS approach is able to scale the quality of the results
as the number of constraints increases, making it suitable for highly constrained problems.
This is due to the exploitation capability DILS exhibits when exploring the solution space.
In terms of the organization of this paper, Section 2 reviews the existing knowledge con-
cerning constrained clustering and the state-of-the-art. In Sections 3 and 4, the DILS algo-
rithm and its formulation for constrained clustering DILS𝐶𝐶 will be reviewed. Sections 5
to 7 present the experimental setup, the results and their analysis, respectively. Finally, in
Section 9 the conclusions are discussed.
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2 Background

In this section, the background knowledge concerning constrained clustering (Section 2.1)
is presented, its computational complexity (Section 2.2) and a brief description of some of
the state-of-the-art methods for constrained clustering (Section 2.3).

2.1 Constrained Clustering

In most clustering applications, it is common to have some kind of information about the
dataset which will be analyzed. In pairwise instance-level constrained clustering, this infor-
mation is given in the form of pairs of instances. A constraint states whether the instances
which it refers to must, or must not, be assigned to the same cluster. It is possible to ob-
tain a better result by using this type of information than by using completely unsupervised
clustering algorithms. The two types of constraints mentioned can now be formalized:

• Must-link constraints 𝐶=(𝑥𝑖, 𝑥𝑗): instances 𝑥𝑖 and 𝑥𝑗 from 𝑋 must be placed in the
same cluster.

• Cannot-link constraints 𝐶≠(𝑥𝑖, 𝑥𝑗): instances 𝑥𝑖 and 𝑥𝑗 from 𝑋 cannot be assigned
to the same cluster.

The goal of constrained clustering is to find a partition (or clustering) of 𝑘 clusters 𝐶 =
{𝑐1,⋯ , 𝑐𝑘} of the dataset 𝑋 that ideally satisfies all constraints in the constraint set. As in
the original clustering problem, the sumof instances in each cluster 𝑐𝑖 is equal to the number
of instances in 𝑋 , which has been defined as 𝑛 = |𝑋| = ∑𝑘

𝑖=1 |𝑐𝑖|.
Knowing how a constraint is defined, ML constraints are an example of an equivalence
relation; therefore, ML constraints are reflexive, transitive and symmetrical. In this man-
ner, given constraints 𝐶=(𝑥𝑎, 𝑥𝑏) and 𝐶=(𝑥𝑏, 𝑥𝑐), then 𝐶=(𝑥𝑎, 𝑥𝑐) is verified. In addition, if
𝑥𝑎 ∈ 𝑐𝑖 and 𝑥𝑏 ∈ 𝑐𝑗 are related by 𝐶=(𝑥𝑎, 𝑥𝑏), then 𝐶=(𝑥𝑐, 𝑥𝑑) is verified for any 𝑥𝑐 ∈ 𝑐𝑖 and
𝑥𝑑 ∈ 𝑐𝑗 [13].
It can also be proven that CL constraints do not constitute an equivalence relation. However,
analogously, given 𝑥𝑎 ∈ 𝑐𝑖 and 𝑥𝑏 ∈ 𝑐𝑗 , and the constraint 𝐶≠(𝑥𝑎, 𝑥𝑏), then it is also true
that 𝐶≠(𝑥𝑐, 𝑥𝑑) for any 𝑥𝑐 ∈ 𝑐𝑖 and 𝑥𝑑 ∈ 𝑐𝑗 [13].

2.2 The Feasibility Problem

Given that constrained clustering adds a new element to the clustering problem, it should be
considered how this element affects the complexity of the problem. The feasibility problem
for instance-level constrained clustering was defined in [17] as can be seen in Definition 1.

Definition 1 Feasibility Problem: given a dataset 𝑋 , a constraint set 𝐶𝑆, and the bounds
on the number of clusters 𝑘𝑙 ≤ 𝑘 ≤ 𝑘𝑢, is there a partition 𝐶 of 𝑋 with 𝑘 clusters such that all
constraints in 𝐶𝑆 are satisfied? [17]
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In [17] it is proven that, when 𝑘𝑙 = 1 and 𝑘𝑢 ≥ 3, the feasibility problem for constrained
clustering is NP-complete, by reducing it from the Graph K-Colorability problem (it is also
proven that it is not harder, so both have the same complexity). Table 1 shows the complexity
of the feasibility for different types of constraints.

Constraints Complexity
Must-Link P
Cannot-Link NP-complete
ML and CL NP-complete

Table 1: Feasibility problem complexity [17].

These complexity results show that the feasibility problemwithCL constraints is intractable,
and hence constrained clustering is intractable too. For more details on the complexity of
constrained clustering see [17].
Intractable problems are hard to solvewith deterministic and exactmethods. That is the rea-
son why metaheuristic algorithms constitute useful approaches to finding quality solutions
to the constrained clustering problem.

2.3 Constrained Clustering State-of-the-art Methods

The first adaptation of a classic clustering method for constrained clustering was proposed
in [11]. It involved modifying the widely studied K-means algorithm to take into account
instance-level constraints: the already-known ML and CL. This method, named COP-
kmeans, introduces a modification to the assignment rule of instances to clusters of the
K-means algorithm so that an instance can be assigned to a cluster only if the assignment
does not violate any constraints.
Within the fuzzy clustering family of methods, Constrained Evidential c-means (CECM),
a variant of the Evidential c-means (ECM [29]) algorithm, is proposed in [30]. The par-
ticularity of this algorithm is that the membership of instances to a cluster is defined by a
probabilistic belief function. This method redefines constraints from the point of view of
belief functions and includes them in the cost function.
Amodification of the Constrained Vector Quantization Error algorithm (CVQE [17]) is pro-
posed in [31]. The CVQE algorithm proved to produce high quality results, at the cost of a
very high computational complexity. Linear CVQE (LCVQE) introduces a modification of
the cost function of CVQE to make it more intuitive and less computationally complex. The
experimentation resulted in a dramatic improvement of clustering quality over both noisy
and clean constraint sets.
Two Views Clustering (TVClust) and Relation Dirichlet Process - Means (RDPM) were pro-
posed in [32]. TVClust is able to incorporate the constraints into the clustering problem by
making a soft interpretation of them. The authors model the dataset and constraints in dif-
ferent ways, perform clustering methods on them and try to find a consensus between both
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interpretations. Using this model as a basis, the authors derive the deterministic algorithm
RDP-means. This method can be viewed as an extension of K-means that includes side in-
formation (constraints) and is characterized by the fact that the number of clusters (𝑘) does
not need to be specified.
An adaptation of the Biased Random-Key Genetic Algorithm (BRKGA) [33]—a variant
of the Random-Key genetic algorithm [34]—for the constrained clustering problem, the
BRKGA+LS method, is proposed in [35]. It uses a genetic algorithm, combined with a LS
procedure and guided by a penalty-style fitness function, to obtain a partition of the input
dataset. It constitutes one of the few approaches to constrained clustering from the point
of view of evolutionary computing. An adaptive version of the BRKGA+LS algorithm (A-
BRKGA) can also be found in the literature [36]. Even if it has not yet been applied to con-
strained clustering, the reader may consider this method for future comparisons.

3 The Dual Iterative Local Search Method

The Dual Iterative Local Search (DILS) is a new variant of the classic ILS method [19]. Its
goal is to perform a search in the solution space to find the solution with the best fitness
value (given by fitness function 𝑓) by introducing diversity in an adaptive and guided way.
While ILSworks with a single individual, DILS keeps two of them {𝑚𝑏, 𝑚𝑤} inmemory at all
times, which allows it to guide diversity-inducing methods and to avoid local optima. The
individual 𝑚𝑏 provides the best fitness value, whereas 𝑚𝑤 provides the worst fitness value
at the end of each stage of the optimization process. These stages involve generating, evalu-
ating and optimizing new individuals, which will be referred to as ”generations”. Successive
generations will eventually lead to finding better individuals (in terms of 𝑓).
Recombination andmutation. DILS builds a new individual in each generation 𝐺 of the
optimization process by applying a recombination operator to𝑚𝑏 and𝑚𝑤. After that, it ap-
plies a strong mutation operator to the newly generated individual. This is the individual
DILS applies the LS procedure in order to improve its fitness value, resulting in the trial indi-
vidual𝑚𝑡. The trial individual𝑚𝑡 replaces the worst of its predecessors,𝑚𝑤, if it achieves a
better fitness value; this operation represents the acceptance criterion for DILS. Equation 1
displays the expression for this criterion in the case of a minimization problem.

𝑚𝑤,𝐺 = { 𝑚𝑡 if 𝑓(𝑚𝑡) < 𝑓(𝑚𝑤)
𝑚𝑤,𝐺 otherwise . (1)

Reinitialization method. The process described so far will most likely fall into a local
optimum, effectively stopping the exploration of the solution space. To avoid it, DILS imple-
ments a reinitializationmethod for𝑚𝑤 based on the differences between the two individuals
it keeps in memory ({𝑚𝑏, 𝑚𝑤}). Equation 2 shows the reinitialization criterion for a mini-
mization problem. RandInit() is a function that returns a randomly initialized individual
and 𝜉 ∈ [−1, 1] is the parameter that controls the tolerance of the reinitialization method.
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𝑚𝑤,𝐺+1 = {
RandInit() if 𝑓(𝑚𝑏) − 𝑓(𝑚𝑤) > 𝑓(𝑚𝑏) ∗ 𝜉
𝑚𝑤,𝐺 if 𝑓(𝑚𝑏) − 𝑓(𝑚𝑤) ≤ 𝑓(𝑚𝑏) ∗ 𝜉 ∧ 𝑓(𝑚𝑏) < 𝑓(𝑚𝑤)
𝑚𝑏,𝐺 if 𝑓(𝑚𝑏) − 𝑓(𝑚𝑤) ≤ 𝑓(𝑚𝑏) ∗ 𝜉 ∧ 𝑓(𝑚𝑏) > 𝑓(𝑚𝑤)

. (2)

Maintaining consistency. In order to maintain consistency between generations, we also
need to reassign 𝑚𝑏 to the true best individual once the reinitialization criterion has been
tested, as shown in Equation 3. As a result, the best individual is always preserved and there-
fore always takes part in the process of generating new individuals (via the recombination
operator) as the best predecessor.

𝑚𝑏,𝐺+1 = { 𝑚𝑏,𝐺 if 𝑓(𝑚𝑏) < 𝑓(𝑚𝑤)
𝑚𝑤,𝐺 if 𝑓(𝑚𝑏) > 𝑓(𝑚𝑤)

. (3)

Figure 1 summarizes the DILS optimization process. Dashed arrows indicate stages of the
algorithm where 𝑚𝑏 and 𝑚𝑤 are reassigned to the true best and worst individual, respec-
tively. Consequently, at the point where the reinitialization criterion is tested, it is possible
for 𝑓(𝑚𝑤) to yield a smaller value than 𝑓(𝑚𝑏), so that 𝑓(𝑚𝑏) − 𝑓(𝑚𝑤) can be either positive
or negative.

Recombination Mutation Local Search

YES

NO

Reinit. worst
individual 

Acceptance
criterion

NO

Exploration Exploitation

Meets
termination

criteria

Meets
reinitialization

criterion

YES

Initialization

Return best
individual 

Figure 1: Diagram summarizing the DILS optimization process.

On the influence of 𝜉. Let us consider a minimization problem again. On the one hand, if
𝜉 > 0, then the true worst individual is only reinitialized when 𝑚𝑡 replaces 𝑚𝑤 and is also
better than 𝑚𝑏 by a margin. On the other hand, if 𝜉 < 0, we allow DILS to reinitialize the
true worst individual even when𝑚𝑡 is not better than𝑚𝑏. It becomes clear that when 𝜉 = 0
the worst individual is restarted if 𝑓(𝑚𝑏) = 𝑓(𝑚𝑤). Note that 𝜉 could take any real value,
but it is not realistic to set it outside of the range [−1, 1], and it is recommended [−0.5, 0.5]
preserving a good exploration-exploitation trade-off. Otherwise, 𝜉 would bias the search
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towards a random-restart LS in the case of 𝜉 < −0.5, or towards a simple-path optimization
process applied to two individuals in the case of 𝜉 > 0.5. Briefly stated, the closer 𝜉 is to
1, the more restrictive the reinitialization criterion is—in the minimization case. It is also
worth noting that in early stages of the optimization process, the reinitialization criterion
tends to bemet more often than in later stages. The reason for this is that the fitness value of
the best individual 𝑓(𝑚𝑏) never worsens (𝑓(𝑚𝑏,𝐺) ≥ 𝑓(𝑚𝑏,𝐺+1)), so it becomes increasingly
harder for𝑚𝑤 to achieve similar or better scores. Algorithm 1 summarizes the overall DILS
optimization process.

Algorithm 1: Dual Iterative Local Search (DILS)
Input: Probability for recombination operator 𝑝𝑟, segment size for mutation operator

𝑝𝑠, reinitialization method tolerance 𝜉.
// Initialization phase

[1] 𝐺 ← 0
[2] 𝑚𝑏 ← RandInit();𝑚𝑤 ← RandInit()

// Main loop
[3] while Termination criteria are not met do

// Find best and worst individual
[4] 𝑚𝑏 ← Best({𝑚𝑏, 𝑚𝑤});𝑚𝑤 ← Worst({𝑚𝑏, 𝑚𝑤})

// Generate new individual
[5] 𝑚𝑡 ← Recombination(𝑚𝑏, 𝑚𝑤)
[6] 𝑚𝑡 ← Mutation(𝑚𝑡)

// Improve new individual
[7] 𝑚𝑡 ← LocalSearch(𝑚𝑡)

// Apply replacement operator
[8] if 𝑓(𝑚𝑡) < 𝑓(𝑚𝑤) then
[9] 𝑚𝑤 ← 𝑚𝑡
[10] end

// Check restart criterion
[11] if 𝑓(𝑚𝑏) − 𝑓(𝑚𝑤) > 𝑓(𝑚𝑏) × 𝜉 then
[12] 𝑚𝑏 ← Best({𝑚𝑏, 𝑚𝑤})
[13] 𝑚𝑤 ← RandInit()
[14] end
[15] 𝐺 ← 𝐺 + 1
[16] end
[17] 𝑚𝑏 ← Best({𝑚𝑏, 𝑚𝑤})
[18] return𝑚𝑏
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For the recombination and mutation operators that appear in Algorithm 1, we use the uni-
form recombination and the segment mutation operator, respectively. The uniform recom-
bination consists in selecting features from the best individual𝑚𝑏 based on a given probabil-
ity 𝑝𝑟 to introduce them in the resulting individual, so the rest of the features are taken from
𝑚𝑤 [37]. The segment mutation operator consists in replacing a fixed-size segment from
the features of the individual with randomly generated features. The size of the segment 𝑝𝑠
must be fixed at the beginning of the optimization process. The starting point of the segment
to replace is chosen randomly. Although other (problem-specific) recombination andmuta-
tion operators could be used in DILS, we highly recommend the operators described above.
The uniform recombination operator provides a non-biased way to include the features of
the best solutions found in the search process so far, while the segment mutation operator
is able to produce diversity to widen the search space.
It should be noted that the optimization process described so far is applicable to any mini-
mization problem, although it is clear that there is a direct adaptation of DILS formaximiza-
tion problems. In addition, the LS procedure used to obtain the trial individual𝑚𝑡 must be
specified for each problem, as well as numerical representation details and termination cri-
teria.
On the complexity of DILS. Regarding the algorithmic complexity of the proposed DILS
method, the mutation and recombination operators are the only complex algorithmic oper-
ations that have been explicitly defined. Both of them can be performed in linear time𝒪(𝑛),
with 𝑛 being the length of the vector representing the solution to the problem. However,
the fitness function 𝑓 and the LS procedure need to be defined for each problem and will
likely represent the algorithmic bottleneck for the optimization process, as most hard prob-
lems (suitable to be addressed with DILS) will make use of complex evaluation and local
optimization methods.

4 DILS application scheme for constrained clustering

In this section, the application scheme of DILS for constrained clustering is generated. This
new approach will be referred to as DILS𝐶𝐶 . An integer-based representation will be used
for all the individualswithwhichDILS𝐶𝐶 works. In doing so, each individual𝑚 is defined as
a vector of 𝑛 integers, with 𝑛 being the number of instances of the dataset. Each integer𝑚𝑖 ∈
[0, 𝑘) in𝑚 represents the label of the cluster that instance 𝑥𝑖 is assigned to. Therefore, each
individual 𝑚 is a solution to the clustering problem. a label-based representation has been
selected because of its straightforward application to DILS operators such as recombination
and mutation operators. Please notice that the neighborhood-generation operator from the
LS procedure benefits from a label-based representation by simplifying the tracking of the
already generated neighbors. Additionally, in order not to bias the exploration of the solution
space, a random initialization will be employed to set 𝑚𝑏 and 𝑚𝑤; this procedure will be
applied in the reinitialization of𝑚𝑤 as well.
When it comes to the diversity-introducing operators, the recommended uniform recombi-
nation and segment mutation operators are used. Please note that no repairing procedure
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is applied to the newly generated solutions (using the mentioned operators). As a conse-
quence, the resulting solutions will most likely violate an unspecified number of constraint.
Experimental results show that there is no need for that kind of repairing procedure, as it
would highly bias the exploration of the solution space.
Regarding the fitness function 𝑓, for each individual𝑚 its fitness value 𝑓𝑚 can be calculated
as seen in Equation 4.

𝑓𝑚 = 𝑧𝑚 ∗
𝑝𝑒𝑛𝑎𝑙𝑡𝑦

⏞⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏞(infeasibility𝑚 + 1), (4)

where infeasibility𝑚 is the number of unsatisfied constraints and 𝑧𝑚 is the within-cluster-
sum-of-squares that can be computed as shown in Equation (5). As infeasibility is used as
a scale factor, this fitness function allows DILS to clearly identify solutions which satisfy
different numbers of constraints. Let us remember that, even though a soft interpretation
of the constraints is made, they must be used as a strong guide for the optimization process.
The fitness function is designed to favor the exploration of the solution space from the point
of view of the constraint set, so that in Figure 1 the explorationmodule optimizes the penalty
term in Equation (5) while the exploitation module optimizes 𝑧𝑚. With this in mind, both
the exploration and the exploitationmodule share the overall fitness optimization workload
without being completely independent from each other.

𝑧𝑚 = ∑
𝑐𝑖∈𝐶𝑚

[
∑𝑥𝑎,𝑥𝑏∈𝑐𝑖

𝑑2(𝑥𝑎, 𝑥𝑏)
|𝑐𝑖|

] . (5)

Furthermore, it is necessary to specify an LS procedure for DILS to improve themutant indi-
vidual to obtain the trial vector𝑚𝑡. Algorithm 2 shows the LS used in DILS𝐶𝐶 . In each LS it-
eration, a random index 𝑖 ∈ [1, 𝑛] (instance 𝑥𝑖) is chosen to explore its neighborhood, which
is generated by changing its label 𝑙𝑖 (moving it from one cluster to another) in a random fash-
ion, in order not to bias the search. When amore suitable neighbor is found,(𝑓(𝑚′) < 𝑓(𝑚))
it replaces the current solution𝑚 and neighborhood generation stops. If no improvement is
found, a new random index that has not already been explored is selected. If all indices have
been explored, the explored set is rearranged to empty. Note that, in order not to bias the
search, indices from vector𝑚 and labels from the set of labels are randomly chosen to gen-
erate the neighborhood of𝑚. Themaximum number of neighbors 𝑝𝑚 that can be generated
in each call is stablished as well; which is done to ensure a better exploration-exploitation
trade-off.
On the complexity of DILS𝐶𝐶. In terms of the algorithmic complexity of the DILS opti-
mization scheme for constrained clustering, it is necessary to start focusing on the defined
specific LS procedure . The maximum number of iterations is given by the 𝑝𝑚 parameter,
and in each iteration the entire set of labels could be analyzed (𝑝𝑚∗𝑘). Additionally, we need
to study the complexity of the fitness function 𝑓, which is also specific to the constrained
clustering problem. Constraints can be given in the form of lists or matrices. Computing the
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Algorithm 2: Local Search
Input: Dataset 𝑋 , constraint sets 𝐶= and 𝐶≠, individual (solution)𝑚, number of

clusters 𝑘, maximum number of neighbors that can be generated 𝑝𝑚.

[1] 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ← ∅
[2] while 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 and 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 < 𝑝𝑚 do
[3] 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← false

// Select random index (object) from 𝑚
[4] 𝑖 ← Rand({1,⋯ , 𝑛} − 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑)
[5] 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ← 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ∪ {𝑖}

// Random shuffle labels set
[6] 𝑅𝑆𝐿 ← RandomShuffle({1,⋯ , 𝑘})
[7] for 𝑙 ∈ 𝑅𝑆𝐿 and while not 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 do
[8] 𝑚′ ← 𝑚

/* Move object 𝑖 from 𝑚 to the cluster associated with label 𝑙
*/

[9] 𝑚′
𝑖 ← 𝑙

[10] if 𝑓(𝑚′) < 𝑓(𝑚) then
[11] 𝑚 ← 𝑚′

[12] 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← true
[13] end
[14] 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 + 1
[15] end
[16] if |𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑| == 𝑛 then
[17] 𝑒𝑥𝑝𝑙𝑜𝑟𝑒𝑑 ← ∅
[18] end
[19] end

[20] return𝑚
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infeasibility of a newly generated partition of a given dataset requires 𝑛2/2 − 1 comparisons
when the constraints are given in matrix form (as the matrix must be symmetrical), and
|𝐶=| + |𝐶≠| when they are given in the form of a list. Please note that, unless the complete
graph of constraints is available, |𝐶=| + |𝐶≠| will always be smaller than 𝑛2/2 − 1. Conse-
quently, we selected the list representation of constraint for the implementation of DILS𝐶𝐶 .
The real bottleneck of DILS𝐶𝐶 is found in the computation of the within-cluster-sum-of-
squares (𝑧𝑚). This can be achieved by firstly computing the centroid of each cluster, which
involves iterating over the dataset. Afterwars, computing the distance of each instance the
centroid of the cluster it has been assigned to, which again involves iterating over the entire
dataset. In doing so, the computation of the within-cluster-sum-of-squares can be carried
out in 2 ∗ 𝑛 ∗ 𝑢 operations. Bearing this in mind, the algorithmic complexity of DILS𝐶𝐶 can
be extracted, as in Expression 6.

𝒪(

Local Search

𝑝𝑚 × 𝑘 × (
Fitness Function 𝑓

|𝐶=| + |𝐶≠|
Infeasibility

× 𝑛 × 𝑢
𝑧𝑚

)) (6)

5 Experimental Setup

As for our experiments, the results obtained by DILS𝐶𝐶 and state-of-the-art methods over
25 datasets and three constraint sets for each one of them will be compared. Most of these
datasets can be found at the Keel-dataset repository1 [38], although some of them have been
obtained via scikit-learn python package2 [39]. We also include three artificial datasets
in our analysis, namely: Circles,Moons and Spiral, which can be found at GitHub3. Table 2
displays a summary of every dataset.
Classification datasets are commonly used in the literature to test constrained clustering
algorithms; the reason behind this being that they enable us to generate constraints with
respect to the true labels (see Section 5.1). They also facilitate an easy evaluation of the
quality of the algorithmbymeans ofmeasures like theAdjustedRand Index (see Section 5.2).

5.1 Constraint Generation

Since we have the true labels associated with each dataset, the method proposed in [11] to
generate artificial constraint sets will be applied. This method consists of randomly select-
ing two instances of a dataset, then comparing its labels, and finally setting an ML or CL
constraint depending on whether the labels are the same or different.
For each dataset, three different sets of constraints—𝐶𝑆10, 𝐶𝑆15 and 𝐶𝑆20—will be gener-
ated. These will be associated with three small percentages of the size of the dataset: 10%,
15% and 20%. With 𝑛𝑓 being the fraction of the size of the dataset associated with each of

1https://sci2s.ugr.es/keel/category.php?cat=clas
2https://scikit-learn.org/stable/datasets/index.html
3https://github.com/GermangUgr/DILS_CC
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Name No. Instances No. Classes No. Features
Appendicitis 106 2 7
Breast Cancer 569 2 30
Bupa 345 2 6
Circles 300 2 2
Ecoli 336 8 7
Glass 214 6 9
Haberman 306 2 3
Hayesroth 160 3 4
Heart 270 2 13
Ionosphere 351 2 33
Iris 150 3 4
Led7Digit 500 10 7
Monk2 432 2 6
Moons 300 2 2
Movement Libras 360 15 90
Newthyroid 215 3 5
Saheart 462 2 9
Sonar 208 2 60
Soybean 47 4 35
Spectfheart 267 2 44
Spiral 300 2 2
Tae 151 3 5
Vehicle 846 4 18
Wine 178 3 13
Zoo 101 7 16

Table 2: Summary of datasets used for the experiments.

these percentages, the formula 𝑛𝑓(𝑛𝑓−1)
2

tells us how many artificial constraints will be cre-
ated for each constraint set; this number is equivalent to howmany edges a complete graph
with 𝑛𝑓 vertices would have.
The random allocation of constraints has a potential advantage over simply using the con-
straints contained in an 𝑛𝑓-vertex complete graph: there is a lower probability of biasing the
constraint set towards having classes with poor representation. Table 3 shows the number
of constraints of each type obtained for each dataset. All constraint sets used in our experi-
ments are available here 4.
Note that the greater the number of classes present in the dataset, the fewer ML constraints
obtained with the method proposed in [11]. The reason for this being that the probability of

4https://drive.google.com/drive/u/1/folders/1sjnPYitey8q9zrPKa_YpFS7iNKTT15QH
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Dataset 𝐶𝑆10 𝐶𝑆15 𝐶𝑆20
ML CL ML CL ML CL

Appendicitis 39 16 71 49 164 67
Breast Cancer 876 720 1965 1690 3487 2954
Bupa 323 272 699 627 1201 1145
Circles 208 227 502 488 853 917
Ecoli 163 398 357 918 609 1669
Glass 52 179 139 389 259 644
Haberman 304 161 634 401 1135 756
Hayesroth 39 81 102 174 177 319
Heart 178 173 396 424 744 687
Ionosphere 330 300 732 646 1299 1186
Iris 26 79 82 171 136 299
Led7Digit 126 1099 267 2508 460 4490
Monk2 473 473 979 1101 1917 1824
Moons 200 235 494 496 900 870
Movement Libras 27 603 112 1319 158 2398
Newthyroid 108 123 270 258 449 454
Saheart 595 486 1292 1123 2330 1948
Sonar 100 110 245 251 436 425
Soybean 4 6 6 22 12 33
Spectfheart 233 118 543 277 965 466
Spiral 224 211 487 503 918 852
Tae 40 80 82 171 151 314
Vehicle 874 2696 1955 6046 3589 10776
Wine 49 104 121 230 217 413
Zoo 21 34 29 91 41 169

Table 3: Number of constraints used in experiments.

randomly choosing two individuals from the same class decreases as the number of classes
included in the dataset increases.

5.2 Evaluation Method

Taking in to account that the true labels associated with each of the datasets are within our
scope, they can be used to evaluate the results provided by each method. The Adjusted
Rand Index (ARI) will be used to measure the accuracy of the predictions resulting from
each tested method [40]. The basic Rand Index computes the degree of agreement between
two partitions𝐶1 and𝐶2 of a given dataset𝑋 . 𝐶1 and𝐶2 are viewed as collections of 𝑛(𝑛−1)/2
pairwise decisions [41].
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For each pair of instances 𝑥𝑖 and 𝑥𝑗 in 𝑋 , a partition assigns them to the same cluster or to
different clusters. We take 𝑎 as the number of pairings where 𝑥𝑖 is in the same cluster as 𝑥𝑗
in both 𝐶1 and 𝐶2, and 𝑏 as the opposite event (𝑥𝑖 and 𝑥𝑗 are in different clusters in 𝐶1 and
𝐶2). Following this, the degree of similarity between 𝐶1 and 𝐶2 is calculated as in Equation
(7).

Rand(𝐶1, 𝐶2) =
𝑎 + 𝑏

𝑛(𝑛 − 1)/2 (7)

The ARI is a corrected-for-chance version of the Rand Index. This correction uses the ex-
pected similarity of all comparisons between clusterings specified by a randommodel to set
up a baseline. The ARI is computed as seen in Equation (8),

ARI(𝐶1, 𝐶2) =
Rand(𝐶1, 𝐶2) − Expected Index

Maximum Index − Expected Index , (8)

where Maximum Index is expected to be 1 and Expected Index is the already mentioned
expected degree of similarity with a random model. It is particularly noticeable that
ARI(𝐶1, 𝐶2) ∈ [−1, 1], such that an ARI value close to 1 means a high degree of agreement
between𝐶1 and𝐶2, a positive value close to 0means no agreement and a value smaller that 0
means that the Rand(𝐶1, 𝐶2) is less than expected when comparing with random partitions.
To summarize, the higher the ARI, the greater the degree of similarity between 𝐶1 and 𝐶2.
For more details on ARI see [40].
Our objective is to quantify the quality of the solutions obtained as a result of the methods
presented in this paper. To accomplish this task, we set one of the two partitions given to
compute ARI as the ground truth labels.

5.3 Validation of results

In order to validate the results which will be presented in Section 6, Bayesian statistical tests
will be used instead of the classic Null Hypothesis Statistical Tests (NHST). In [42] we can
find an in-depth analysis of the disadvantages of NHST, and a new model is proposed for
carrying out the comparisons in which researchers are interested. “In a nutshell: NHST do
not answer the question we ask”. To shed some light on this matter, the disadvantages of the
NHST that the authors highlight in [42] are based on the trap of black-and-white thinking,
that is: to reject, or not to reject?
At the outset, NHST do not provide us with the probabilities associated with the analyzed
hypotheses, and therefore it is not possible to answer the question ”what is the probability
that two methods are different?” Another pitfall of NHST is that, with a sufficiently large
number of observations, it is possible to reject almost any hypothesis. This is explained as
the p-value does not allow us to separate between the effective size and the sample size,
which is established by the researcher.
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Likewise, NHST do not provide information about the magnitude of the effects and the un-
certainty of its estimate. As a consequence, NHSTmay reject hypotheses despite tiny effects,
or even if there is significant uncertainty in the magnitude of the effects.
Furthermore, and this is a situation that all researchers have faced, NHST do not provide
any information about the null hypothesis! In other words: What can we conclude when
NHST do not reject the null hypothesis? We can not infer anything, as NHST cannot provide
evidence in its favor.
All things considered, there are two other questions that researchers face when performing
NHST. The first one is the choice of the significance level 𝛼, for which there are no objective
guidelines despite being critical to the test results. The second one is the need to previously
formalize the intentions of the sampling of the results, which are usually fixed a posteriori;
this could lead to a misreading of said results.
As shown in [42], most of these problems can be avoided by using Bayesian tests instead of
NHST. In particular, the Bayesian sign test will be employed, which is the Bayesian version
of the frequentist non-parametric sign test. As for its use, we will run the R package rNPBST,
whose documentation and guide can be found in [43].
The Bayesian sign test is based on obtaining the statistical distribution of a certain parameter
𝜌 according to the difference between the results, under the assumption that said distribu-
tion is a Dirichlet distribution. To get the distribution of 𝜌we count the number of times that
𝐴−𝐵 < 0, the number of timeswhere there are no significant differences, and the number of
times that𝐴−𝐵 > 0. In order to identify cases where there are no significant differences, the
region of practical equivalence (rope) [𝑟min, 𝑟max] is defined, so that 𝑃(𝐴 ≈ 𝐵) = 𝑃(𝜌 ∈ rope).
Using these results, we calculate the weights of the Dirichlet distribution and sample it to
get a set of triplets with the following form:

[𝑃(𝜌 < 𝑟min) = 𝑃(𝐴 − 𝐵 < 0), 𝑃(𝜌 ∈ rope), 𝑃(𝜌 > 𝑟max) = 𝑃(𝐴 − 𝐵 > 0)]

5.4 Calibration

Table 4 shows a summary of the parameter setup used for the DILS𝐶𝐶 .
The stop criterion is given by the Evals parameter, which refers to the number of evaluations
of the fitness function 𝑓 and which will be set at 300000. The implementation for DILS𝐶𝐶
can be found at GitHub5.
To compare our proposal with the state-of-the-art methods mentioned in Section 2.3, we
will use the parameters setup shown in Table 5 for the python implementation that can be
found at GitHub6. The implementation for the BRKGA+LS algorithm can be found in the
same link as DILS𝐶𝐶 . In all cases, the value of 𝑘 is equal to the number of classes displayed
in Table 2.

5https://github.com/GermangUgr/DILS_CC
6https://github.com/GermangUgr/TFG/tree/master/Software
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Parameter Meaning Value

Evals Fitness function evaluations 300000

𝑝𝑠
Segment size for the mutation opera-
tor 0.3 × 𝑛

𝑝𝑚
Maximum number of neighbors gen-
erated in each call to the LS proce-
dure

Evals ×0.01

𝑝𝑟
Probability that a feature is selected
from𝑚𝑏 for recombination

0.3

𝜉 Reinitialization method tolerance 0.0
𝑘 Output partition number of clusters No. Classes (Table 2)

Table 4: Parameters setup used for DILS𝐶𝐶 .

Method name Parameters name and values

BRKGA+LS Evals = 300000; |𝑃| = 100; 𝑃𝑒 = 𝑃𝑚 = 0.2 ∗ |𝑃|; 𝑝inherit = 50%

COPKM max_iter = 300; tolerance = 1 ∗ 10−4; init_mode = ``rand''

CECM max_iter = 300; 𝛼 = 1, 𝜌 = 100, 𝜉 = 0.5,
stop_threshold = 1 ∗ 10−3, init_mode = ``rand''

LCVQE max_iter = 300; initial_centroids = ∅

RDPM max_iter = 300; 𝜉0 = 0.1, 𝜉rate = 1, 𝜆 is calculated on the basis
of the mean distances in the dataset.

TVClust max_iter = 300; 𝛼0 = 1.2, stop_threshold = 5 ∗ 10−4

Table 5: Parameters setup used for the state-of-the-art algorithms.

Parameter values have been assigned following the guidelines of the original creators of the
different proposals. Since the evaluation in the experimental stage operates with a high
number of datasets, tuning each parameter specifically for each dataset is not feasible. In-
deed, our goal is not optimization in a case-by-case basis but instead a comparison in the
most general and plausible scenario. Therefore, given that the purpose of this work is to
draw a fair comparison between the algorithms and assess their robustness in a common
environment with multiple datasets, we have not included a tuning step to maximize any
particular performance metric.
As previously stated, the programming language chosen to implement allmethods described
in this paper is Python. All our experiments have been carried out in the University of
Granada Hercules Computing Server, which features 51 computing nodes with a 2.8 GHz
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Intel i7 processor, 24 GB of RAM and 1TB SATA2 hard drive disk in each node. Two Gigabit
Ethernet internal nets are used to interconnect nodes. Ubuntu 18.04.1 LTS is installed in
each node.

6 Experimental Results

In this section, Tables from 6 to 8 are presented. These tables display the results obtained
by DILS𝐶𝐶 and six state-of-the-art methods to be compared for each dataset and constraint
set. Figures 2 to 4 offer a visual summary of the information contained in the tables.
Since some of themethods compared involve non-deterministic procedures, the results may
vary from one run to another. To lessen the effect this may have on the results, each method
will be executed 30 times to each dataset and constraint set, so that the measures shown
in Tables 6 to 8 correspond to the average of the 30 runs. The “Avg.” column shows the
average results for every compared method in every dataset, while the “SD” column shows
the Standard Deviation. With 25 datasets, 3 constraint sets for each one of them, 7 different
methods, and 30 runs, a total of 15750 experiments for our study have been conducted.

_
_

_

_ _ _ _

−1.0

−0.5

0.0

0.5

1.0

DILSCC BRKGA + LS COPKM LCVQE RDPM TVClust CECM

A
R

I

Figure 2: CS10 comparative average plot.

It should be noted that there are some missing results in these tables. In the case of the
COPKM algorithm, this is due to the fact that it is highly dependent on the order in which
constraints are analyzed. It is possible that COPKM cannot find a solution, even though it
is always feasible, since the constraints have been generated based on the true labels. In the
case of CECM, some of the results are not available because thememory structures that hold
the algorithm grow non-linearly with the number of classes and the number of features of
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ARI Results for 𝐂𝐒𝟏𝟎
Dataset DILS𝐶𝐶 BRKGA+LS COPKM LCVQE RDPM TVClust CECM

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD
Appendicitis .𝟔𝟏𝟏 .𝟎𝟎𝟎 .118 .078 - - .450 .000 .267 .081 .211 .184 .005 .001
Breast Cancer .755 .040 .173 .198 -.604 .792 .𝟗𝟏𝟕 .𝟎𝟎𝟎 .502 .000 .016 .048 .005 .013
Bupa .𝟖𝟖𝟗 .𝟎𝟐𝟐 .355 .233 - - .149 .009 -.006 .003 -.009 .002 -.005 .002
Circles .𝟕𝟖𝟏 .𝟎𝟏𝟒 .104 .055 - - .006 .008 .243 .280 .404 .377 .072 .049
Ecoli .039 .008 .018 .008 - - .404 .066 .333 .057 .𝟒𝟑𝟐 .𝟐𝟐𝟑 - -
Glass .008 .011 .014 .012 .212 .027 .229 .007 .202 .077 .𝟐𝟑𝟏 .𝟎𝟒𝟎 - -
Haberman .𝟖𝟎𝟐 .𝟎𝟐𝟗 .020 .023 -.807 .580 .019 .003 .088 .057 .332 .043 .004 .010
Hayesroth .057 .033 .015 .011 - - .073 .046 .𝟏𝟎𝟑 .𝟎𝟑𝟒 .064 .076 .061 .013
Heart .𝟖𝟒𝟔 .𝟎𝟒𝟔 .131 .179 - - .006 .007 .032 .004 .223 .213 .000 .008
Ionosphere .𝟖𝟎𝟗 .𝟎𝟒𝟎 .018 .022 - - .060 .000 .202 .047 .004 .011 .112 .094
Iris .550 .065 .311 .083 -.105 .895 .𝟕𝟔𝟗 .𝟎𝟎𝟎 .567 .064 .511 .074 .405 .283
Led7Digit .013 .006 .005 .003 .𝟓𝟐𝟓 .𝟎𝟑𝟔 .503 .024 .359 .031 .254 .055 - -
Monk2 .823 .032 .404 .130 .𝟗𝟖𝟐 .𝟎𝟎𝟎 .575 .000 .092 .031 .096 .292 .009 .025
Moons .𝟗𝟔𝟑 .𝟎𝟐𝟐 .227 .124 - - .319 .000 .310 .028 .962 .027 .267 .161
Mov. Libras .019 .008 .000 .004 .283 .013 .𝟑𝟐𝟐 .𝟎𝟏𝟕 .249 .025 .000 .000 - -
Newthyroid .040 .053 .013 .019 - - .𝟕𝟗𝟏 .𝟎𝟎𝟗 .370 .150 .695 .206 -.004 .009
Saheart .788 .025 .163 .092 .𝟗𝟕𝟒 .𝟎𝟎𝟎 .020 .011 .028 .023 .367 .372 .007 .003
Sonar .𝟕𝟏𝟎 .𝟎𝟔𝟖 .023 .020 - - .109 .000 .007 .007 .000 .000 -.003 .007
Soybean .289 .062 .342 .165 .613 .152 .551 .007 .𝟔𝟑𝟓 .𝟎𝟑𝟒 .000 .000 .076 .087
Spectfheart .𝟖𝟗𝟓 .𝟎𝟑𝟗 .257 .083 - - .014 .000 -.118 .008 .000 .000 -.024 .032
Spiral .𝟖𝟒𝟗 .𝟎𝟒𝟐 .386 .310 - - .042 .000 .015 .009 .049 .041 .036 .006
Tae .028 .019 .022 .022 - - .015 .000 -.002 .004 .𝟎𝟓𝟐 .𝟎𝟐𝟐 .000 .000
Vehicle .023 .009 .006 .005 - - .078 .001 .081 .000 .𝟐𝟓𝟎 .𝟏𝟐𝟓 .020 .013
Wine .326 .051 .152 .051 - - .𝟑𝟗𝟕 .𝟎𝟎𝟎 .368 .002 .376 .097 .010 .008
Zoo .221 .031 .111 .064 .684 .099 .𝟕𝟏𝟎 .𝟎𝟒𝟖 .438 .110 .399 .116 - -
Mean .𝟒𝟖𝟓 .136 -.490 .301 .214 .236 −.158

Table 6: Experimental results obtained for𝐶𝑆10 byDILS𝐶𝐶 and the state-of-the-artmethods.

the dataset to be analyzed. It is established that in these cases, the ARI value considered for
the mean calculation—and the forthcoming statistical analysis of results—is−1.000, which
is the worst possible ARI value.
Table 6 shows the results for the 𝑆𝐶10 constraint set, which are visually summarized in Ta-
ble 2. It can be observed that DILS𝐶𝐶 represents a consistent improvement as compared to
all other 6 methods. This is due to the fact that the exploitation capacity of DILS𝐶𝐶 allows
it to take better advantage the constraints, even with the lowest level of constraint-based
information we work with.
The results obtained with the 𝑆𝐶15 constraint set are presented in Table 7, and summarized
in Figure 3. It is noticeable how DILS𝐶𝐶 and COPKM are able to obtain ARI values equal to
1, meaning that the resulting partitions of the datasets perfectly match the true partitions.
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ARI Results for 𝐂𝐒𝟏𝟓
Dataset DILS𝐶𝐶 BRKGA+LS COPKM LCVQE RDPM TVClust CECM

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD
Appendicitis .𝟗𝟓𝟕 .𝟎𝟎𝟎 .418 .368 - - .379 .018 .335 .084 .261 .201 -.005 .003
Breast Cancer .792 .016 .915 .031 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .979 .000 .502 .000 .096 .285 -.006 .008
Bupa .993 .006 .994 .006 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.002 .000 -.006 .003 .092 .303 .000 .000
Circles 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .987 .013 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .011 .010 .408 .292 .910 .270 .066 .049
Ecoli .091 .026 .024 .012 - - .513 .058 .402 .103 .𝟓𝟔𝟒 .𝟐𝟒𝟏 - -
Glass .076 .042 .025 .009 - - .𝟐𝟖𝟔 .𝟎𝟐𝟖 .248 .016 .244 .066 - -
Haberman 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .490 .392 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .001 .001 .079 .048 .973 .000 .006 .009
Hayesroth .𝟒𝟕𝟖 .𝟎𝟔𝟔 .131 .057 - - .087 .055 .111 .021 .097 .082 .002 .013
Heart 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .980 .020 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .053 .000 .030 .012 .435 .433 -.000 .001
Ionosphere .973 .009 .981 .020 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .004 .000 .261 .046 .004 .011 .129 .094
Iris .832 .051 .240 .136 - - .𝟗𝟒𝟏 .𝟎𝟎𝟎 .543 .006 .524 .127 .228 .323
Led7Digit .012 .002 .003 .003 - - .𝟓𝟓𝟕 .𝟎𝟐𝟗 .454 .033 .261 .051 - -
Monk2 .899 .015 .951 .031 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .671 .000 .144 .028 .098 .301 .100 .025
Moons 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .982 .018 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .639 .000 .470 .065 1.00 .000 .299 .161
Mov. Libras .018 .006 .002 .002 -.742 .516 .𝟑𝟑𝟒 .𝟎𝟐𝟓 .255 .032 .000 .000 - -
Newthyroid .390 .113 .104 .076 - - .835 .010 .455 .156 .𝟖𝟒𝟖 .𝟏𝟗𝟏 .013 .018
Saheart .870 .021 .815 .265 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .017 .000 .030 .023 .808 .384 .003 .003
Sonar .𝟗𝟖𝟏 .𝟎𝟎𝟎 .947 .067 - - .037 .013 .014 .013 .000 .000 -.001 .001
Soybean .468 .045 .421 .137 .𝟔𝟓𝟔 .𝟐𝟎𝟎 .550 .011 .593 .058 .000 .000 .153 .232
Spectfheart 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .861 .302 .983 .000 .167 .000 -.116 .008 .000 .000 .032 .032
Spiral 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .594 .333 - - .022 .007 .011 .009 .411 .482 .012 .006
Tae .𝟑𝟖𝟔 .𝟎𝟒𝟓 .077 .077 - - .046 .000 .002 .007 .053 .018 -.000 .000
Vehicle .066 .014 .023 .014 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .083 .003 .081 .000 .454 .159 -.006 .007
Wine .𝟕𝟒𝟎 .𝟎𝟒𝟕 .163 .083 - - .395 .000 .369 .001 .430 .129 .001 .002
Zoo .193 .066 .109 .066 .416 .023 .𝟕𝟐𝟒 .𝟎𝟓𝟗 .434 .112 .423 .138 - -
Mean .𝟔𝟒𝟗 .489 .013 .333 .244 .359 −.159

Table 7: Experimental results obtained for𝐶𝑆15 byDILS𝐶𝐶 and the state-of-the-artmethods.

The fact that DILS𝐶𝐶 is always able to output a partition of the datasets is a noteworthy
advantage over COPKM. Even in the cases where COPKM is unable to produce a partition,
DILS often finds the optimal or a near-optimal partition.
In Table 8, which shows the results obtained with the 𝑆𝐶20 constraint set, we can see how
the quality of the results of DILS𝐶𝐶 scales with the number of constraints, as well as that of
methods such as BRKGA+LS or COPKM (the latter being more limited in other aspects).
This same trend can be confirmed in Figure 4. The TVClust method should also be high-
lighted, as it is able to find the optimal solution in two cases, which implies a significant
improvement over its performance on previous constraint sets. It is also worth noting that
DILS𝐶𝐶 provides the best average ARI for each of the three constraint sets analyzed in this
paper.
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Figure 3: CS15 comparative average plot.
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Figure 4: CS20 comparative average plot.

Considering that BRKGA and DILS𝐶𝐶 are the two metaheuristic approaches to the con-
strained clustering problem presented in this paper, we want to highlight the clear improve-
ment that the latter constitutes over BRKGA.Bothmethods are able to scale the quality of the

21



220 Chapter II. Publications

ARI Results for 𝐂𝐒𝟐𝟎
Dataset DILS𝐶𝐶 BRKGA+LS COPKM LCVQE RDPM TVClust CECM

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD
Appendicitis 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 - - .050 .000 .380 .184 .419 .324 -.007 .001
Breast Cancer .796 .009 .962 .015 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .944 .000 .502 .000 .098 .291 .014 .013
Bupa .988 .007 .996 .005 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.002 .000 -.006 .003 .093 .302 -.002 .002
Circles 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .001 .002 .573 .193 .911 .266 .066 .049
Ecoli .264 .126 .039 .026 - - .607 .072 .427 .071 .𝟔𝟖𝟖 .𝟐𝟒𝟑 - -
Glass .258 .131 .084 .040 - - .216 .012 .276 .017 .𝟑𝟒𝟒 .𝟏𝟔𝟓 - -
Haberman 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .001 .000 .102 .053 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .002 .010
Hayesroth .𝟖𝟏𝟔 .𝟎𝟒𝟒 .395 .136 - - .132 .048 .114 .027 .266 .259 .002 .013
Heart 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .042 .002 .034 .005 .488 .468 .003 .008
Ionosphere .984 .006 .994 .006 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.002 .000 .324 .042 .004 .011 .129 .094
Iris .𝟗𝟓𝟑 .𝟎𝟐𝟔 .476 .237 - - .941 .000 .597 .074 .573 .138 .375 .283
Led7Digit .017 .006 .008 .003 - - .𝟓𝟓𝟓 .𝟎𝟐𝟖 .534 .044 .272 .057 - -
Monk2 .899 .017 .991 .008 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .883 .000 .196 .104 .199 .401 .034 .025
Moons 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .774 .000 .816 .095 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .299 .161
Mov. Libras .020 .009 .003 .003 - - .𝟑𝟓𝟎 .𝟎𝟐𝟒 .292 .029 .000 .000 - -
Newthyroid .845 .016 .719 .107 - - .801 .001 .445 .151 .𝟗𝟐𝟒 .𝟏𝟑𝟖 .000 .009
Saheart .867 .006 .981 .006 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .009 .001 .030 .022 .808 .384 .003 .003
Sonar 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.004 .000 .043 .042 .000 .000 .006 .007
Soybean .629 .057 .592 .230 -.609 .783 .560 .000 .𝟔𝟒𝟏 .𝟎𝟓𝟎 .000 .000 .123 .087
Spectfheart 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .997 .006 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.004 .000 -.123 .008 .000 .000 .032 .032
Spiral 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .400 .917 -.003 .000 .010 .006 .601 .488 .012 .006
Tae .𝟖𝟒𝟔 .𝟎𝟑𝟏 .247 .128 - - .021 .000 .000 .006 .051 .015 -.000 .000
Vehicle .171 .049 .043 .024 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .070 .000 .081 .000 .089 .026 -.006 .007
Wine .𝟖𝟗𝟖 .𝟎𝟐𝟒 .383 .183 - - .625 .000 .369 .002 .488 .165 .011 .008
Zoo .250 .060 .115 .073 .751 .117 .𝟕𝟐𝟖 .𝟎𝟔𝟗 .455 .111 .443 .131 - -
Mean .𝟕𝟒𝟎 .641 .102 .332 .284 .390 −.156

Table 8: Experimental results obtained for𝐶𝑆20 byDILS𝐶𝐶 and the state-of-the-artmethods.

solutions with the amount of available constraint-based information, although the DILS𝐶𝐶
exhibits a better behavior from the smallest constraint set 𝐶𝑆10, where the largest average
difference between these to methods is found. The aim of the DILS𝐶𝐶 method is to pre-
serve a good exploration-exploitation trade-off while maintaining an exploitation-oriented
general scheme (ILS). This gives DILS𝐶𝐶 the ability to deeply exploit certain regions of the
solutions space when needed (which we have found to be beneficial to the constrained clus-
tering problem), whereas BRKGA does not include mechanisms to explicitly exploit a par-
ticular local-optima region when it is likely to contain the general optimal solution. Notice
that BRKGA does include a local search optimization procedure, making it a memetic algo-
rithm. Although it does not transfer the results of this procedure to the population itself, it
is only used to update the best solution found so far if required.
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7 Statistical Analysis of Results

With the results obtained by all methods for a total of 75 different datasets—the 25 datasets
in combination with the three constraint sets for each one—an empirical analysis can be
performed. In doing so, we can statistically determine whether DILS𝐶𝐶 represents a signif-
icant improvement over previous proposals.
With the notation introduced in Section 5.3 in mind, the results obtained by a given state-
of-the-art method will be referred to as sample 𝐴, and the results obtained with DILS𝐶𝐶 as
sample 𝐵.
One of the major advantages of the Bayesian sign test is the possibility of obtaining a highly
illustrative visual representation of its results. It allows us to produce a representation of the
triplet set in the form of a heatmapwhere each triplet constitutes one point whose location is
given by barycentric coordinates. In that context, each of the triplet values will be associated
with each of the three vertices of an equilateral triangle. In order to find out where a certain
triplet will be placed within the triangle, each of its three values will be considered and
a parallel line will delimit the opposing side of the corresponding vertex. The separation
between a triangle side and its parallel line will be proportional to the associated triplet
value, so that the higher the value, the closer the line will be to the vertex. The location
where the three lines intersect is marked with a point. As the values of every triplet describe
a probability distribution, and therefore they must add up to one, all triplets will lie in some
point within the triangle in all likelihood. The color indicates the density of points in a given
region, with yellow representing a high density and red a low density.
Figure 5 shows all six heatmaps obtained when applying the Bayesian sign test to DILS𝐶𝐶
and the state-of-the-art methods. All heatmaps suggest that the test assigns a high proba-
bility to 𝐴 − 𝐵 < 0, since most triplets are presented in the lower left third of the heatmap.
Bearing this in mind, and considering that ARI is a measure to maximize, it can be observed
that the Bayesian sign test provides strong evidence in favor of DILS𝐶𝐶 . The same test in-
dicates that the results offered by the the state-of-the-art are not equivalent to those offered
by DILS𝐶𝐶 , and are lower in quality.

23



222 Chapter II. Publications

rope

DILSCC BRKGA + LS

rope

DILSCC COPKM

rope

DILSCC LCVQE

rope

DILSCC TVClust

rope

DILSCC RDPM

rope

DILSCC CECM

Figure 5: Heatmaps comparing DILS with the state-of-the-art methods. With 𝐿 being equiv-
alent to 𝐴 and 𝑅 being equivalent to 𝐵 (results obtained by DILS𝐶𝐶).
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8 Discussion and Future Work

In this Section, a discussion regarding the main discoveries made during the development
of our study is presented, as well as future lines of research that may be of interest for the
reader. Throughout this paper, the suitability of the proposed method to address highly
constrained problems has been analyzed, although in some cases DILS is not able to provide
better results than those a random model would produce for certain datasets. Please note
that no optimization procedurewas used to alter any parameter. As a result, it is possible that
with a different parameter configuration, better results could be obtained for these datasets.
Regarding future research lines, our proposal is centered on performing the optimization
process, which was previously mentioned, for DILS parameters. This would lead to a better
understanding of the influence over the DILS optimization process. Even if the majority of
the datasets used in our experiments are real-world datasets, it would be interesting to ap-
ply DILS to a real-world problem in which the amount of side information would be prob-
ably limited. Performing this action, would allow us to test the robustness of the proposed
method in a less controlled environment, i.e., out of the laboratory.
We alsowant to put clear that the experimental study presented in this paper can be extended
in the future. Dozens of constrained clustering methods have been proposed over the years,
among the most renowned ones have been chosen for our comparison. Future research
lines may include other methods in different frameworks such as GC+PR+LS [35], classic
spectral learning approaches [44], density-based clustering [45], and genetic multi-objective
optimization [46], among many others.

9 Conclusions

In this paper, the DILS heuristic method has been proposed, along with its application to the
SSL constrained clustering problem, which is referred to as DILS𝐶𝐶 . Focusing on instance-
levelML and CL constraints, DILS𝐶𝐶 has proven that heuristic techniques constitute a com-
petitive approach to constrained clustering, being able to scale the quality of the results in a
way that is directly proportional to the number of constraints.
Supported by the Bayesian statistical tests, it can be objectively proven that the DILS𝐶𝐶 ap-
proach is significantly better than the state-of-the-art methods. DILS𝐶𝐶 has proven to be
better when considering the quality and availability of the solutions, namely in cases where
large sets of constraints are analyzed.
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Abstract
Traditionally unsupervised, clustering techniques have received renewed at-
tention recently, as they have been shown to produce better results when
provided with incomplete information about the dataset in the form of con-
straints. Combining classic clustering and constraints leads to constrained
clustering, a semi-supervised learning problem still unexplored in many as-
pects. Based on the exploration-exploitation requirements of constrained
clustering, a memetic elitist multiobjective evolutionary algorithm based
on decomposition is proposed, which combines classic multiobjective op-
timization strategies with single-objective optimization procedures. The ap-
plication scheme of our proposal for the constrained clustering problem is
scrutinized and compared to several state-of-the-art methods for 20 datasets
with incremental levels of constraint-based information. Experimental re-
sults, supported by Bayesian statistical testing, show a consistent improve-
ment in clustering and multiobjective optimization related measures in fa-
vor of our proposal over the state-of-the-art.
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1 Introduction

Clustering has always been a key research area in machine learning. It is able to provide
valuable insight within the unsupervised learning paradigm, where no information other
than an unlabeled dataset by itself is available for learning. However, new types of informa-
tion can be added to the classic clustering framework. Subsequently, better and more accu-
rate results are obtained. These new types of information may be given in many forms—not
only in the form of labels—, moving the problem from the unsupervised learning frame-
work to the machine learning paradigm known as Semi-Supervised Learning (SSL) [1, 2].
Background knowledge about the problem domain can be incorporated into clustering tech-
niques to improve their capabilities. When the new type of information is given as con-
straints, the problem is called Constrained Clustering (CC). In CC, a set of constraints is
used to guide the clustering process, as the resulting partition of the dataset is required to
satisfy as many constraints as possible, in addition to meeting the proper characteristics of a
classic clustering partition. CC has been successfully applied in many fields of knowledge,
among which it is worth mentioning: satellite image time series [3], storage location assign-
ment in warehouses [4], obstructive sleep apnea analysis [5], electoral district design [6],
terrorist sub-communities detection [7], documents clustering [8] and lane finding in GPS
data [9] among others.
Many distinctions can be made within the general CC framework. Three main ways to
include constraints into the clustering problem can be found in the literature: cluster-
level [10], instance-level [11] and feature-level CC [12]. Two main strategies to take con-
straints into account are commonly used in CC: (1) in distance-based methods a new met-
ric reflecting the information contained in the constraint set is learned [13, 14, 15], (2) in
clustering-engine adapting constraints are used as hints to guide the clustering process by
modifying the clustering engine to include them [9, 16, 17]. Finally, the concepts of soft [18]
and hard [9] constraints can also be found in the literature. Concerning hard constraints,
methods are forced to output partitions satisfying all constraints, whereas soft constraints
allow output partitions with some unsatisfied constraints. This study is focused on soft
instance-level Must-link (ML) and Cannot-link (CL) constraints, which tell us if two spe-
cific instances of a dataset must be placed in the same or in different clusters, respectively.
UsingML andCL constraintsmakes the CC problemNP-complete [19]. Due to this fact, it is
easy to understand why approximate methods such as metaheuristics represent a promising
approach to the CC problem. Metaheuristics have been successfully applied to many real-
world problems such as: crude oil time series [20], COVID-19 disease recognition through
X-ray images [21], digital currency forecasting [22] and control of unmanned aerial vehi-
cles [23], among others. The classic clustering problem is not an exception to this trend, with
many studies presenting excellent results [24, 25, 26], although very little work has been
done on CC. Within the field of metaheuristics, Multiobjective Evolutionary Algorithms
(MOEAs) are particularly interesting to approach the clustering problem. Many measures
can be used to guide the clustering process towards a quality solution [27], although it is of-
ten not straightforward to integrate constraints in a single function that could be optimized
by a standard optimizer. Such problem is also found in the CC framework, as even more
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quality measures need to be used to include constraints. Constraint-related quality mea-
sures often contradict classic clustering quality measures, causing difficulties to integrate
them in a single-objective function optimizable by a single-objective evolutionary algorithm.
Multiobjective optimization schemes provide us with a powerful tool to overcome all these
drawbacks.
A great variety of MOEAs have been developed to solve problems with different characteris-
tics and needs of exploration and exploitation [28]; to name a few: Non-dominated Sorting
Genetic Algorithm III (NSGA-III) [29], MultiObjective Evolutionary Algorithm based on
Decomposition (MOEA/D) [30], Strength Pareto Evolutionary Algorithm 2 (SPEA2) [31],
Pareto Envelope-based Selection Algorithm II (PESA-II) [32] or MultiObjective Genetic Al-
gorithm based on Error Correcting Output Codes (MOGAECOC) [33]. Several studies can
be found showing the advantages of usingMOEAs in order to approach the classic clustering
problem [34, 35, 36], although very little work has been done on investigating their suitabil-
ity for the CC problem. MOEAs are presented as a promising approach to the CC problem
thanks to their capability to optimize objective functions which are often contradictory. The
CC problem is an example of the previous, as classic clustering objective functions tend to
create hyperspherical clusters and constrained clustering objective functions (such as the
infeasibility) are used to deviate the clustering process from this trend. Two relevant stud-
ies in this topic are found in the literature: in [37] the MOCK technique (an adaptation of
PESA-II [32]) is extended to include constraints, and in [38] an MOEA is used to perform
spectral clustering taking into account a set of constraints, and finally K-means is applied to
perform clustering. In [39] an MOEA is applied to the self-labeling problem, which is not a
clustering problem (as constrained clustering) but an SSL classification problem.
Memetic evolutionary algorithms are widely used to improve and accelerate metaheuris-
tics towards high quality solutions [40, 41]. Guiding the evolutionary process of any given
MOEA towards high quality solutions by means of memetic components is a common prac-
tice in real-world applications [42]. MOEA/D is not an exception to this trend. Mechanisms
ranging from redesigning its selection mechanism [43] or an elitist parallelization for large-
scale problems [44], to combinations with local search procedures by means of a hybridiza-
tion with NSGA-II [45] or direct inclusion methods [46] are used to accelerate MOEA/D.
In this study, we extend our previous work in [47], where a memetic elitist version of
MOEA/D [30] is applied to constrained clustering. The general optimization scheme of our
proposal ME-MOEA/D (Memetic Elitist - Multiobjective Optimization Evolutionary Algo-
rithm based on Decomposition) is examined in detail. Unlike MOEA/D, our proposal im-
plements memetic elitism by means of any single-objective optimization procedure and a
dominance-guided sorting mechanism, which is applied to the full population to select elite
individuals. ME-MOEA/D can adaptively select the single-objective function to apply the
single-objective optimization procedure on, at any given stage of the optimization process,
while also allowing the user to control this feature through parameter settings.
ME-MOEA/D is able to fuse classic multiobjective optimization methods with single-
objective procedures such as the Local Search (LS) by adaptively choosing a single-objective
function to optimize for each individual. For the purposes of this study, we improve the ap-
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plication of ME-MOEA/D to the CC problem, which we call ME-MOEA/D𝐶𝐶 . We include a
new initialization method, a biased crossover operator and an external population limiting
method. To the best of our knowledge, no previous study combines these genetic compo-
nents and a memetic elitist version of MOEA/D to approach the CC problem. We further
prove the capabilities ofME-MOEA/D𝐶𝐶 to produce high quality results for the CC problem
by means of a more extensive experimentation than the one presented in [47]. The quality
of the results from the point of view of multiobjective optimization is compared throughout
this study.
The rest of this paper is structured as follows: background related to CC and multiobjec-
tive optimization is introduced in Section 2; our proposal ME-MOEA/D is described in Sec-
tion 3, and its application scheme for the CC problem (ME-MOEA/D𝐶𝐶) is presented in 4;
the experimental setup is explained in Section 5; results and their analysis are discussed in
Sections 6 and 7, respectively; finally, conclusions are presented in Section 8.

2 Background

In this section, we explore the background knowledge concerning CC (Section 2.1), along
with its computational complexity (Section 2.2). We will also present the basis of multiob-
jective optimization (Section 2.3).

2.1 Constrained Clustering

Partitional clustering can be defined as the task of grouping the 𝑛 instances of a dataset 𝑋
into 𝑘 clusters. Each instance is described by 𝑢 features. More formally, 𝑋 = {𝑥1,⋯ , 𝑥𝑛},
with the 𝑖th instance noted as 𝑥𝑖 = (𝑥1𝑖 ,⋯ , 𝑥𝑢𝑖 ). A class label 𝑙𝑖 is assigned to each instance
𝑥𝑖 ∈ 𝑋 . As a result, the set of labels 𝐿 = {𝑙1,⋯ , 𝑙𝑛}, with 𝑙𝑖 ∈ {1,⋯ , 𝑘} is obtained. 𝐿
effectively splits 𝑋 into 𝑘 non-overlapping clusters 𝑐𝑖 to form a partition called 𝐶. Assigning
an instance to a cluster depends on the similarity to the rest of elements in that cluster, and
the dissimilarity to the rest of instances of the dataset. The similarity between two instances
can be obtained with some kind of distance measurement [48].
In instance-level Constrained Clustering (CC) a set of constraints is given to guide the clus-
tering process. Constraints consist of pairs of instances that state whether the two instances
must be placed in the same cluster or in different clusters. Better results can be obtained by
integrating these constraints into the clustering process. Constraints can be formalized as
follows:

• Must-link (ML) constraints 𝐶=(𝑥𝑖, 𝑥𝑗): instances 𝑥𝑖 and 𝑥𝑗 from 𝑋 must be placed in
the same cluster.

• Cannot-link (CL) constraints 𝐶≠(𝑥𝑖, 𝑥𝑗): instances 𝑥𝑖 and 𝑥𝑗 from 𝑋 cannot be as-
signed to the same cluster.

In constrained clustering, a partition of 𝑘 clusters 𝐶 = {𝑐1,⋯ , 𝑐𝑘} must be found given a
dataset 𝑋 and two constraint sets 𝐶=(𝑥𝑖, 𝑥𝑗) and 𝐶≠(𝑥𝑖, 𝑥𝑗). The number of instances in each
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cluster 𝑐𝑖 must add up to the total number of instances in the dataset 𝑋 , which is defined as
𝑛 = |𝑋| = ∑𝑘

𝑖=1 |𝑐𝑖|.
ML constraints are reflexive, transitive and symmetric, and therefore they constitute an
equivalence relation. Given constraints 𝐶=(𝑥𝑎, 𝑥𝑏) and 𝐶=(𝑥𝑏, 𝑥𝑐) then 𝐶=(𝑥𝑎, 𝑥𝑐) is veri-
fied. In addition, if 𝑥𝑎 ∈ 𝑐𝑖 and 𝑥𝑏 ∈ 𝑐𝑗 are related by 𝐶=(𝑥𝑎, 𝑥𝑏), then 𝐶=(𝑥𝑐, 𝑥𝑑) is verified
for any 𝑥𝑐 ∈ 𝑐𝑖 and 𝑥𝑑 ∈ 𝑐𝑗 [11].
CL constraints do not constitute an equivalence relation. However, analogously, given 𝑥𝑎 ∈
𝑐𝑖 and 𝑥𝑏 ∈ 𝑐𝑗 , and the constraint 𝐶≠(𝑥𝑎, 𝑥𝑏), then it is also true that 𝐶≠(𝑥𝑐, 𝑥𝑑) for any
𝑥𝑐 ∈ 𝑐𝑖 and 𝑥𝑑 ∈ 𝑐𝑗 [11].

2.2 The Feasibility Problem

A relevant aspect to consider is to what extent constraints affect the complexity of the classic
clustering problem. The feasibility problem for non-hierarchical instance-level constrained
clustering can be formulated as in Definition 1 [19].

Definition 1 Feasibility Problem: given a dataset 𝑋 , a constraint set 𝐶𝑆, and the bounds
on the number of clusters 𝑘𝑙 ≤ 𝑘 ≤ 𝑘𝑢, does there exist a partition 𝐶 of 𝑋 with 𝑘 clusters such
that all constraints in 𝐶𝑆 are satisfied? [19]

When 𝑘𝑙 = 1 and 𝑘𝑢 ≥ 3, the feasibility problem for constrained clustering isNP-complete,
which can be proven by reducing it from the Graph K-Colorability problem (it can also be
proven that it is not harder, and thus both have the same complexity) [19]. Table 1 shows
the complexity of the feasibility for different types of constraints.

Constraints Complexity
Must-Link P
Cannot-Link NP-complete
ML and CL NP-complete

Table 1: Feasibility problem complexity [19].

These complexity results show that the feasibility problemwith CL constraints is intractable
and hence constrained clustering is intractable too. For more details on the complexity of
constrained clustering see [19].
Solving intractable problems with exacts methods is not feasible. Furthermore, many
partition-related features can be optimized to obtain a good partition of a given dataset [27].
This provides an explanation for why multiobjective evolutionary algorithms constitute a
good approach to the constrained clustering problem.
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2.3 Multiobjective Optimization

The Multiobjective Optimization Problem (MOP) is formalized as in Equation 1:

minimize 𝐹(𝑦) = (𝑓1(𝑦),⋯ , 𝑓𝑚(𝑦))

s.t. 𝑦 ∈ Ω
, (1)

whereΩ is the variable space and 𝐹 ∶ Ω → 𝑅𝑚 consists of𝑚 real-valued functions (objective
functions). 𝑅𝑚 is known as the objective space and {𝐹(𝑦)|𝑦 ∈ Ω} defines the attainable object
set. If 𝑦 ∈ 𝑅𝑛 and Ω is defined as in Equation 2, with ℎ𝑗 being continuous functions, then
the MOP in Equation 1 is said to be continuous.

Ω = {𝑦 ∈ 𝑅𝑛|ℎ𝑗(𝑦) ≤ 0, 𝑗 = 1,⋯ ,𝑚}. (2)

MOP techniques aim to balance all objective functions in Equation 1; this task is not trivial
in the general case due to conflicts between the objective functions. AMOP technique finds
a trade-off which can be defined in terms of Pareto optimality. Let 𝑣, 𝑤 ∈ 𝑅𝑚, then, 𝑣 dom-
inates 𝑤 if and only if 𝑓𝑖(𝑣) ≤ 𝑓𝑖(𝑤)∀𝑖 ∈ {1,⋯ ,𝑚} and if ∃𝑗|𝑓𝑗(𝑣) < 𝑓𝑗(𝑤), 𝑗 ∈ {1,⋯ ,𝑚}.
This is: 𝑣 dominates 𝑤 if and only if 𝑣 is better than 𝑤 in at least one objective and as good
as 𝑤 in the rest, and is denoted as 𝑤 ≺ 𝑣.
A point 𝑦∗ ∈ Ω is said to be Pareto optimal if there is no other point 𝑦 ∈ Ω such that 𝑦
dominates 𝑦∗. The set of Pareto optimal points is referred to as the Pareto Set (PS). The
Pareto Front (PF) is formed by the objective vectors associated with the points in PS. AMOP
technique aims to find the best possible approximation to the PF for any given optimization
problem. A MOP definition for maximization problems can be obtained by reversing all
inequalities.
In real-life applications of multiobjective optimization, a PF needs to be obtained so that
a decision maker can later select the preferred solution. Being the MOP defined as above,
there are no restrictions in the size of the PF, so in theory, for some problems, very large
or even infinite Pareto optimal vectors could be found. This is why obtaining the full PF is
usually not feasible, or at least very time-consuming. Moreover, if the Pareto approximation
to the PF is too large the decision maker would have trouble choosing a solution from it due
to the excess of information. Most multiobjective optimization methods struggle to find a
set of well-distributed Pareto optimal vectors with a reasonable size that constitutes a good
approximation to the entire PF. Evolutionary algorithms have proven to be excellent at find-
ing this approximation to the PF [49], resulting in a whole new family of algorithms called
Multiobjective Evolutionary Algorithms (MOEA) [50].

3 Memetic Elitist MOEA/D

In this section, we describe the general optimization scheme of Memetic Elitist MultiObjec-
tive Evolutionary Algorithm Based on Decomposition (ME-MOEA/D), which is based on
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the classic MOEA/D method presented in [30]. ME-MOEA/D uses a biased selection op-
erator to introduce elitism into the exploration process. Our proposal also takes advantage
of the decomposition approach of MOEA/D to MOP to apply single-objective optimization
methods.
ME-MOEA/Dmaintains a population 𝑃 of |𝑃| individuals and a weight vector 𝜆 for each one
of them. Each individual in𝑃 is referred to as𝑝𝑖 = {𝑝1𝑖 ,⋯ , 𝑝𝑛𝑖 }, and its associatedweight vec-
tor as 𝜆𝑖 = {𝜆1𝑖 ,⋯ , 𝜆𝑚𝑖 }. The set of weight vectors is referred to as Λ = {𝜆𝑖,⋯ , 𝜆|𝑃|}. Every 𝜆𝑖
is composed of𝑚 values such that 𝜆𝑗𝑖 ≥ 0|𝑗 ∈ {1,⋯ ,𝑚} and∑𝑚

𝑗=1 𝜆
𝑗
𝑖 = 1. By doing this, the

𝑚-dimensional 𝜆-space is defined. ME-MOEA/D also uses an external archive EP (External
Population) to store the set of non-dominated solutions found so far (the approximation to
the PF).

Multiobjective Problem Decomposition ME-MOEA/D uses the set of weight vectors
Λ to introduce the decomposition factor into the optimization process as it is done in the
classic MOEA/D. ME-MOEA/D decomposes the problem by approximating the PF as sepa-
rated scalar problems. Each individual 𝑝𝑖 ∈ 𝑃 is associated with a particular scalar problem.
Three decomposition schemes were originally proposed in [30] for minimization problems
(all of them can be reformulated for maximization problems). Selecting an appropriate de-
composition scheme is of first importance in order to obtain high quality results for the
problem to which we are applying ME-MOEA/D to. This is an utterly problem-dependent
decision and needs to be carefully addressed. Here we introduce the Tchebycheff decompo-
sition scheme. However, other approaches can be found in [51, 52, 49, 30].
The Tchebycheff approach [49] is shown in Equation 3, where 𝑧∗ = (𝑧∗1 ,⋯ , 𝑧∗𝑚) is the refer-
ence point, defined as 𝑧∗𝑗 = min{𝑓𝑗(𝑝𝑖)|𝑗 ∈ 1,⋯ ,𝑚} with 𝑝𝑖 ∈ Ω for minimization prob-
lems. For each Pareto Optimal point 𝑦∗, there is a weight vector 𝜆 such that 𝑦∗ is optimal
for Equation 3 and each optimal solution of Equation 3 is optimal for Equation 1. This way,
the weight vectors {𝜆1,⋯ , 𝜆|𝑃|} can be modified to obtain different PFs.

minimize 𝑔𝑡𝑒(𝑝𝑖|𝜆𝑖, 𝑧∗) = 𝑚𝑎𝑥{𝜆𝑗𝑖 |𝑓𝑗(𝑝𝑖) − 𝑧𝑗 |}
s.t. 𝑝𝑖 ∈ Ω , (3)

A key concept in ME-MOEA/D is the neighborhood in the 𝜆-space. Without loss of gener-
alization, let us assume that the optimal solution of 𝑔𝑡𝑒(𝑝𝑖|𝜆𝑖, 𝑧∗) should be close to the one
for 𝑔𝑡𝑒(𝑝𝑗 |𝜆𝑗 , 𝑧∗) if 𝜆𝑖 and 𝜆𝑗 are close in the 𝜆-space. Then, any information about 𝑔𝑡𝑒s with
weight vectors close to 𝜆𝑖 can be used to improve 𝑔𝑡𝑒(𝑝𝑖|𝜆𝑖, 𝑧∗). The concept of neighbor-
hood must be defined in order to do so: the neighborhood of 𝜆𝑖 is composed by its 𝛿 closest
weight vectors in Λ, with distances between weight vectors calculated using the Euclidean
distance.

Genetic Operators Given that ME-MOEA/D is still a genetic algorithm, it relies on the
crossover, mutation and selection operators to explore the solution space. For each indi-
vidual 𝑝𝑖 in the population 𝑃, the crossover operator is used to generate a new individual
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combining characteristics from two already explored individuals. Therefore, the mutation
operator randomly modifies this new individual to introduce diversity in the population 𝑃.
These problem-dependent procedures need to be defined bearing inmind the particularities
of the problem to solve.
For each individual 𝑝𝑖 two individuals 𝑝𝑎 and 𝑝𝑏 need to be selected from 𝑃 for combi-
nation by the crossover operator. For this purpose, ME-MOEA/D uses a biased selection
operator, which always randomly chooses the first individual 𝑝𝑎 from the 𝜆-neighborhood
of 𝑝𝑖. A second individual 𝑝𝑏 is (also randomly) chosen from the same 𝜆-neighborhood
or from the external population (EP), which is the set of non-dominated solutions, with a
certain probability given by a parameter 𝛾 ∈ (0, 1). This parameter 𝛾 is meant to control
the exploration-exploitation trade-off of ME-MOEA/D. When 𝛾 = 0, the unbiased (regular)
selection operator is used, so 𝑝𝑏 is always chosen from 𝑃, whereas if 𝛾 = 1, 𝑝𝑏 is always
chosen from EP (the elitist part of this biased selection operator is applied). Figure 1 shows
a graphical representation of the biased selection operator.

Memetic Elitism ME-MOEA/D introduces a bias towards high quality individuals by
means of an LS procedure. In each generation, the elite of the population must be obtained.
In order to do so, the dominance index 𝜓𝑖 of each individual 𝑝𝑖 has to be computed as in
Equation 4.

𝜓𝑖 = |{𝑝𝑗 |𝑝𝑖 ≺ 𝑝𝑗 ∧ 𝑝𝑗 ∈ 𝑃}| (4)

For every individual 𝑝𝑖, its dominance index 𝜓𝑖 is computed as the number of individuals
in the population 𝑃 dominating it. The set of 𝜈 individuals featuring the lowest dominance
index are selected as the elite of 𝑃. The elite of the population is improved by applying
an LS procedure to each individual in it. Since LS procedures are typically single-objective
optimization procedures, we cannot apply it to optimize all𝑚 objective functions at the same
time. Here is where we again use the 𝜆-space in our favor: we can decide which objective
function to optimize for every 𝑝𝑖 depending on its associated 𝜆𝑖. There are multiple options:

• Optimize the least relevant target function: we can determine what would be the
least significant objective function when computing 𝑔𝑡𝑒(𝑝𝑖|𝜆𝑖, 𝑧∗), which would be
𝑓𝛼|𝛼 = argmin𝑚𝑖=1{𝜆1𝑖 ,⋯ , 𝜆𝑚𝑖 }. Applying the LS procedure to the least relevant func-
tion for every𝑝𝑖 effectivelymakes the evolutionary part ofME-MOEA/D responsible
for the optimization of the more relevant target functions for every 𝑝𝑖.

• Optimize the most relevant target function: similarly, the most relevant target func-
tion for every 𝑝𝑖 can be determined as 𝑓𝛼|𝛼 = argmax𝑚𝑖=1{𝜆1𝑖 ,⋯ , 𝜆𝑚𝑖 }. Applying the
LS procedure to the most relevant function reinforces the evolutionary algorithm
in the optimization of the same target functions, which effectively intensifies the
exploitation stages.

• Optimize any other target function: any decision maker can be used to determine
which target function to optimize when a 𝜆-space is available. Adaptive methods
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could even be used to better balance the exploration-exploitation trade-off of ME-
MOEA/D. This is an exceedingly problem-dependent aspect of our proposal and
needs to be carefully considered before applying ME-MOEA/D to real-world prob-
lems.

The LS procedure is a problem-dependent algorithm, although a conditionmust be fulfilled:
given an initial individual𝑝𝑖 to apply it to, a local change ismade to get𝑝′𝑖 and this individual
replaces 𝑝𝑖 if and only if 𝑝𝑖 ≺ 𝑝′𝑖 . By doing so, wemake sure that true improvement is always
achieved and that the original solution 𝑝𝑖 never degenerates into worse solutions, so that its
dominance index 𝜓𝑖 is never higher after applying the LS. As we have already mentioned,
ME-MOEA/D maintains a set of non-dominated solutions called EP. Results obtained by
the LS procedure are transferred only to EP and not to the population itself, as this would
strongly bias the exploration of the solutions space. Note that the LS procedure indirectly
helps the population to converge to high quality solutions, as the EP population takes part
in our proposed biased selection operator.
In each generation, the current population is composed of the best solution found so far
for each individual 𝑝𝑖 (subproblem), and an external population (EP) is maintained to store
all non-dominated solutions found. It is also necessary to keep track of the target function
values for each individual. To this end, ME-MOEA/D uses the set {𝐹𝑉1,⋯ , 𝐹𝑉 |𝑃|}, where
𝐹𝑉 𝑖 is 𝐹(𝑝𝑖). Algorithm 1 summarizes the overall ME-MOEA/D optimization process and
Figure 2 shows a pictorial representation of it.
Initialization of Λ, 𝑧 and 𝑃 are problem-specific procedures. A proper initialization step for
𝑃 is crucial to the evolutionary process. Also note that the size of the external population
EP can be limited, preventing it from growing indefinitely. This is a problem-dependent
procedure too, and the influence of EP in our proposed biased selection operator has to be
taken into account when designing it.

4 Constrained Clustering ThroughME-MOEA/D

In this section, a description of all problem-dependent elements that need to be defined to
apply ME-MOEA/D to the constrained clustering problem is provided. The combination of
these elements has never been applied to the CC problem before. ME-MOEA/D is able to
produce high quality results when provided with this components to solve the CC problem.
The particularization of ME-MOEA/D for CC is referred as ME-MOEA/D𝐶𝐶 .

Label-based Representation Scheme Metaheuristic methods have already been suc-
cessfully applied to automatic clustering. Several representations schemes have been pro-
posed: binary encoding, label-based encoding, graph-based encoding, fixed-length real en-
coding or variable-length real encoding, among others [26, 53]. All of them have advantages
in specific application scenarios. We have selected label-based encoding, as it allows a spe-
cific control of the number of clusters in a partition.
In label-based encoding, each individual 𝑝𝑖 from 𝑃 defines a partition of the dataset 𝑋 by ex-
plicitly assigning a label to each one of its instances. With this, we have that𝑝𝑖 = [𝑝1𝑖 ,⋯ , 𝑝𝑛𝑖 ]

10
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Algorithm 1:Memetic Elitist MOEA/D
Input: Size of the population |𝑃|, maximum size of the external population |EP|, size of

the 𝜆-neighborhoods 𝛿, selection operator bias probability 𝛾, size of the elite of
the population 𝜈, set of weight vectors Λ.

// Initialization Step
[1] 𝐸𝑃 = ∅
[2] Initialize Λ and 𝑧 = [𝑧𝑖,⋯ , 𝑧𝑚]
[3] Obtain the 𝜆-neighborhood for every 𝜆𝑖 ∈ Λ as {𝜆1𝑖 ,⋯ , 𝜆𝛿|𝑃|} by computing the

Euclidean distances in Λ. Then, for every 𝑖 ∈ {𝑖,⋯ , |𝑃|} set Δ(𝑖) = {𝑖1,⋯ 𝑖𝛿}
[4] Generate the initial population 𝑃 = {𝑝1,⋯ , 𝑝|𝑃|} and get their fitness values as

𝐹𝑉 𝑖 = 𝐹(𝑝𝑖)∀𝑖 ∈ {𝑖,⋯ , |𝑃|}
[5] while stopping criteria are not met do
[6] for 𝑖 ∈ {𝑖,⋯ , |𝑃|} do

// Selection Operator
[7] if Rand(0, 1) < 𝛾 then
[8] Select 𝑝𝑎 randomly from the 𝑝𝑖 𝜆-neighborhood and select 𝑝𝑏 randomly

from EP
[9] else
[10] Select 𝑝𝑎 and 𝑝𝑏 randomly from the 𝑝𝑖 𝜆-neighborhood.
[11] end

// Crossover Operator
[12] Obtain a new individual 𝑝new by applying the crossover operator to 𝑝𝑎 and 𝑝𝑏.

// Mutation Operator
[13] Mutate 𝑝new by applying the mutation operator

// Update reference point 𝑧
[14] For each 𝑗 ∈ {1,⋯ ,𝑚} set 𝑧𝑗 = 𝑓𝑗(𝑝new) if 𝑓𝑗(𝑝new) < 𝑧𝑗

// Update the neighborhood of 𝑝𝑖
[15] For each 𝑗 ∈ Δ(𝑖) set 𝑝𝑗 = 𝑝new and 𝐹𝑉 𝑗 = 𝐹(𝑝new) if

𝑔𝑡𝑒(𝑝new|𝜆𝑗 , 𝑧) ≤ 𝑔𝑡𝑒(𝑝𝑗 |𝜆𝑗 , 𝑧)
// Update the external population EP

[16] Remove from EP all vectors dominated by 𝐹(𝑝new)
[17] Add 𝐹(𝑝new) to EP if it is not dominated by any vector in EP
[18] Remove elements from EP if its maximum size is exceeded
[19] end

// Memetic Elitism
[20] Obtain the indices 𝐸𝑙𝑖𝑡𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠 of the best 𝜈 individuals in 𝑃 by computing the

dominance index 𝜓𝑖 for every individual
[21] for 𝑗 ∈ 𝐸𝑙𝑖𝑡𝑒𝐼𝑛𝑑𝑖𝑐𝑒𝑠 do
[22] Apply LS to 𝑝𝑗 having into account 𝜆𝑗 to get an improved individual 𝑝𝐿𝑆
[23] Remove from EP all vectors dominated by 𝐹(𝑝𝐿𝑆)
[24] Add 𝐹(𝑝𝐿𝑆) to EP if it is not dominated by any vector in EP
[25] end
[26] end
[27] return EP
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Figure 2: Diagram summarizing ME-MOEA/D optimization process.

where 𝑝𝑗𝑖 = 𝑙|𝑙 ∈ {1,⋯ , 𝑘}∀𝑗 ∈ {𝑖,⋯ , 𝑛}. This means that every position 𝑝𝑗𝑖 of 𝑝𝑖 contains
the label of the 𝑗th instance of the dataset 𝑋 . Figure 3 shows an example of the label-based
representation scheme.

1 1 1 1 2 2 2 2 2 2

Dataset

Labels

Clustering

1 1 1 1 2 2 3 3 3 3

Dataset

Labels

Clustering

Figure 3: Label-based representation scheme.

Target Functions for theCCProblem The following three functions (𝑚 = 3) are used to
find high quality solutions to the CC problem. The ratio of the within-cluster mean distance
to the between-cluster separation is known as theDavies-Bouldin function [54]. It is used to
keep clusters compact and separated from each other. Equation 5 defines the within-cluster
mean distance for a cluster 𝑐𝑖.

𝑐𝑖 =
1
|𝑐𝑖|

∑
𝑥𝑗∈𝑐𝑖

‖𝑥𝑗 − 𝜇𝑖‖2, (5)
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where 𝜇𝑖 is the centroid of cluster 𝑐𝑖. The distance between two clusters 𝑐𝑖 and 𝑐𝑗 is
computed as the Euclidean distance between their centroids: 𝑑𝑖,𝑗 = ‖𝜇𝑖 − 𝜇𝑗‖2. Then,
𝑅𝑖 = max𝑗,𝑗≠𝑖{(𝑐𝑖 + 𝑐𝑗)/𝑑𝑖,𝑗}, so that the Davies-Bouldin function can be defined as in Equa-
tion 6 for a partition𝐶 and a dataset𝑋 . Quality results are obtained byminimizingDB(𝐶, 𝑋).

DB(𝐶, 𝑋) = 1
𝑘

𝑘
∑
𝑖=1

𝑅𝑖. (6)

Secondly, the Connectedness function is utilized to keep the number of clusters of the gener-
ated solutions under control [55]. Every instance in the dataset is related to the number of
neighboring instances placed in different clusters. Given a partition 𝐶 and a dataset 𝑋 , the
Connectedness is computed as in Equation 7.

Conn(𝐶, 𝑋) =
𝑛
∑
𝑖=1

(
𝜖
∑
𝑗=1

𝑥𝑖,𝑛𝑛𝑖(𝑗)) , (7)

where 𝑛𝑛𝑖(𝑗) is the 𝑗th neighbor of instance 𝑥𝑖, 𝜖 defines the size of the neighborhood for
every instance and 𝑥𝑖,𝑛𝑛𝑖(𝑗) is computed as in Equation 8. A good partition would minimize
Conn(𝐶, 𝑋).

𝑥𝑖,𝑛𝑛𝑖(𝑗) = {
1
𝑗

∄𝑐𝑘|𝑥𝑖, 𝑛𝑛𝑖(𝑗) ∈ 𝑐𝑘
0 otherwise

. (8)

Lastly, the Infeasibility function integrates constraints into the clustering process. It mea-
sures the number of violated constraints in a given partition 𝐶 for a set of ML constraints 𝐶=
and a set of CL constraints 𝐶≠, as in Equation 9.

Infs(𝐶, 𝐶=, 𝐶≠) =
𝑛
∑
𝑖=0

𝑛
∑
𝑗=0

𝑉(𝐶=(𝑥𝑖, 𝑥𝑗)) + 𝑉(𝐶≠(𝑥𝑖, 𝑥𝑗)), (9)

where 𝑉(⋅) is a function that returns 1 if the constraint given as argument exists and is vio-
lated and 0 otherwise. Clearly Infs(𝐶, 𝐶=, 𝐶≠) is a function to minimize.
All three target functions described above need to be minimized, and thus, the CC problem
is approached from the point of view of minimization. The lower bound for all functions is
0, so that the reference point is set as 𝑧∗ = (0, 0, 0). ME-MOEA/D𝐶𝐶 uses the Tchebycheff
decomposition scheme to optimize these functions.

Local Search Procedure for the CC Problem ME-MOEA/D uses an LS procedure to
locally improve individuals 𝑝𝑖 from 𝑃 in a non-exhaustive way. The LS procedure proposed
for the CC problem randomly chooses an index 𝑗 from an individual 𝑝𝑖 (instance 𝑗 from the
dataset 𝑋) and assigns it to different clusters iteratively. The target function to optimize for

13
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each individual is determined by the most relevant target function, which is referred in this
study as 𝑓𝑎𝑙𝑝ℎ𝑎, as we aim to reinforce the exploitation part of the evolutionary algorithm.
Every time an instance is moved from one cluster to another in 𝑝𝑖, a new individual 𝑝′𝑖 is
generated. This individual substitutes 𝑝𝑖 if 𝑓𝛼(𝑝′𝑖) < 𝑓𝛼(𝑝𝑖) and 𝑝𝑖 ≺ 𝑝′𝑖 . When there is
no possible improvement for a particular index 𝑗 from 𝑝𝑖, the LS is said to fail and the fails
counter is increased. If the LS reaches the maximum number of fails, it stops. This maxi-
mumnumber of fails is given in the formof a proportion 𝜉 ∈ (0, 1) of the number of instances
in the dataset 𝑋 (equivalent to the length of each individual 𝑝𝑖). Parameter 𝜉 allows for an
effective control of the exploration-exploitation trade-off and helps the evolution process to
converge. If 𝜉 is properly set then a lot of target function evaluations will be spent in the LS
in the early stages of the algorithm, as the individuals in the population aremore likely to be
locally improved. However, in late stages of the evolution process individuals in the popula-
tion are arduous to locally improve. The maximum number of fails will prevent the LS from
wasting target function evaluations that could be employed by the exploration components
of the algorithm. Algorithm 2 summarizes the LS procedure described above.

Algorithm 2: Local Search
Input: Individual to be locally improved 𝑝𝑖, weights vector 𝜆𝑖, fail percent 𝜉, number of

clusters 𝑘.
// Find the most significant cost function index

[1] 𝛼 ← argmax𝑚𝑖=1{𝜆1𝑖 ,⋯ , 𝜆𝑚𝑖 }
[2] fails← 0
[3] while improvement or fails < 𝑛 × 𝜉 do
[4] improvement← false
[5] 𝑗 ← RandInt({1,⋯ , 𝑛})

// Random shuffle labels set
[6] 𝑅𝑆𝐿 ← RandomShuffle({1,⋯ , 𝐾})
[7] for 𝑙 ∈ 𝑅𝑆𝐿 and while not improvement do
[8] 𝑝′𝑖 ← 𝑝𝑖

// Move instance 𝑗 to the cluster associated with label 𝑙
[9] [𝑝𝑗𝑖 ]

′
← 𝑙

[10] if 𝑓𝛼(𝑝′𝑖) < 𝑓𝛼(𝑝𝑖) and 𝑝𝑖 ≺ 𝑝′𝑖 then
[11] 𝑝𝑖 ← 𝑝′𝑖
[12] improvement← true
[13] end
[14] end
[15] if not improvement then
[16] fails←fails+1
[17] end
[18] end
[19] return 𝑝𝑖

14



Pub. 3 - ME-MOEA/D𝐶𝐶 245

EP Limiting Method The size of the external archive storing non-dominated vectors
needs to be kept from growing indefinitely. Adaptive archiving methods can be used to
do so [56]. Such methods involve removing non-dominated solutions from EP, and have
the potential to worsen the PF approximation found by ME-MEOA/D. Nonetheless, we can
take advantage of one of the characteristics of the CC problem: it is a multimodal problem.
This means that two different individuals 𝑝𝑖 and 𝑝𝑗 , distant from each other in the solutions
space, can have very similar values for all objective functions 𝐹(𝑝𝑖) ≈ 𝐹(𝑝𝑗) and thus their
projection in the objective space would be very close to each other. These two individuals
𝑝𝑖 and 𝑝𝑗 are unlikely to dominate each other 𝐹(𝑝𝑖) ≈ 𝐹(𝑝𝑗) ↛ 𝑝𝑖 ≺ 𝑝𝑗 ∧ 𝑝𝑗 ≺ 𝑝𝑖, in
which case both need to be kept in the external population, even if they encode very similar
partitions. Figure 4 shows an example of this.

Solutions Space Objective Space

ML
CL

ML
CL

ML
CL

Figure 4: Multimodality in the CC problem.

In Figure 4, partitions 𝐶1 and 𝐶3 are very similar, they only differ on the label of instance 𝑥9,
which belongs to cluster 𝑐1 (in green) in partition 𝐶1, and to cluster 𝑐2 (in red) in partition
𝐶3. Individuals 𝑝1 and 𝑝3 encode partitions 𝐶1 and 𝐶3 respectively. On the one hand, note
how clusters in 𝐶3 are more compact than clusters in 𝐶1, thus DB(𝑝3) < DB(𝑝1). On the
other hand, achieving more compact clusters 𝐶3 violates a constraint, whereas 𝐶3 does not,
and thus Infs(𝑝3,ML,CL) > Infs(𝑝1,ML,CL). This is a clear example of the effects of mul-
timodality: 𝑝1 and 𝑝3 are different partitions of 𝑋 and thus they are distant in the solutions
space, whereas their values for all objective functions are very similar 𝐹(𝑝1) ≈ 𝐹(𝑝3) but
they do not dominate each other 𝑝1 ⊀ 𝑝3 ∧𝑝3 ⊀ 𝑝1, as 𝑝1 features a better value than 𝑝3 for
the Infs function and vice versa for the DB function.
To reduce the effect of themultimodality of the CC problem, a density-based storingmethod
for non-dominated solutions can be used: when a new solution needs to be stored and the
maximum size |EP| for the EP has been reached, a solution from the most crowded region
in the objective space is removed [57]. In order to do so, an adaptive 𝑚-dimensional mesh
is extended over the objective space. This effectively divides the objective space into 𝑚-
dimensional cells, with each one of them enclosing a region of the objective space. Every
dimension of the objective space is divided into 𝜑 equal intervals, so the total number of cells
is given by 𝜑𝑚. The size of the interval dividing every dimension of the objective space is
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computed for every 𝑓𝑎|𝑎 ∈ {1,⋯ ,𝑚} as (max𝑛𝑖=1{𝑓𝑎(𝑝𝑖)} −min𝑛𝑖=1{𝑓𝑎(𝑝𝑖)})/𝜑. The crowding
of every cell is computed as the number of solutions enclosed by it in the objective space.
Figure 5 shows an example of this with 𝜑 = 4. Once the crowding for every cell has been
computed, a random cell is selected among those with the highest crowding, and a random
individual belonging to this cell is removed in order to make room for a new solution enter-
ing EP.

Objective	Space

Crowding	=	2

Crowding	=	1

Crowding	=	3

Figure 5: Adaptive mesh over an objective space with 𝜑 = 4.

This EP archiving strategy prevents cell overcrowding and thus lessens the effects of multi-
modality in the CC problem. Additionally, let us remember that the EP does not only stores
non-dominated solutions, but also takes part in the evolutionary process ofME-MOEA/D by
means of the biased selection operator. Once the elitist part of the biased selection operator
is applied, a solution is randomly chosen from EP to be fed into the crossover operator. By
using this EP archiving strategy, a better-distributed approximation to the PF is achieved,
thus reducing the probability of the same solution being randomly selected multiple times
from EP for the biased selection operator. As a result a better exploration capability for ME-
MOEA/D𝐶𝐶 is achieved.

Biased Crossover Operator and UniformMutation Operator The crossover operator
is always given two individuals (parents) 𝑝𝑎 and 𝑝𝑏 to generate a new individual (offspring)
𝑝new combining their features. The uniform crossover operator randomly selects a given
percentage (typically 50%) of features from the first parent 𝑝𝑎 and copies them into the off-
spring 𝑝new without change, and then fills the rest with features from the second parent 𝑝𝑏.
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However, if any difference can be established between 𝑝𝑎 and 𝑝𝑏, the percentage of fea-
tures inherited from each parent can be tuned to affect the convergence of the evolutionary
process. This is the case of ME-MOEA/D𝐶𝐶 .
With respect to the CC problem, the new individual𝑝new always inherits a higher percentage
𝜁 of features from 𝑝𝑏 than from 𝑝𝑎, and therefore 𝑝𝑏 is considered to be the elite parent.
Now, there is the issue of deciding which one in a pair of individuals will be the elite parent
𝑝𝑏. Once the elitist half of the biased selection operator is applied, the decision is easy: the
elite parent is always the individual randomly selected fromEP.When the regular half of the
operator is used, this decision becomes a bitmore complex. Given the set ofweight vectorsΛ,
a label 𝑙𝑖 can be assigned to every 𝜆𝑖 such that 𝑙𝑖 = argmax{𝜆1𝑖 ,⋯ , 𝜆𝑚𝑖 }, effectively splitting the
𝜆-space into𝑚 clusters. The elite parent 𝑝𝑏 will be the individual whose associated weight
vector 𝜆𝑏 is closer (Euclidean distance) to the centroid of its associated cluster label 𝑙𝑏 in the
𝜆-space. Cluster membership and centroids in the 𝜆-space have to be computed only once,
since the weight vectors are never changed in ME-MOEA/D.
Once the new individual 𝑝new has been generated, it is fed into the classic uniform muta-
tion operator, which randomly changes membership of instances to clusters to introduce
diversity. The mutation probability for each instance (gene) is controlled by the parameter
𝜛.

Population and Λ Initialization Procedure Initializing the population 𝑃 with a good
mixture of random solutions and quality solutions is of paramount importance in order for
the evolutionary process of the population to converge and ultimately find better solutions.
To achieve this, aK-means based initializationmethod is used for theCCproblem [37]. A pa-
rameter 𝜚 specifies the percentage of the population to be initialized with a random number
in [10, 20] of iterations of the K-means algorithm. This lets us generate different solutions
and favor diversity. The rest of the population is randomly initialized only by filling the in-
dividual (array) 𝑝𝑖 with random integers in the interval [1, 𝑘]. We have found this to produce
more advantageous results than a full random initialization. Regarding Λ initialization, all
weight vectors 𝜆𝑖 are randomly initialized following a normal distribution. Advantages of
random initialization for the 𝜆-space are discussed in [58].

5 Experimental Setup

Table 2 displays a summary of the datasets used in our experiments. Results obtained by
ME-MOEA/D𝐶𝐶 and the state-of-the-art are compared over 20 real-world datasets and 3
constraint sets for each one of them. These datasets can be found at the Keel-dataset repos-
itory1 [59], and at the scikit-learn Python package2 [60]. Datasets marked with ∗ have
been undersampled to 30%, as they have already been solved in the literature and are used
here just as benchmarks.

1https://sci2s.ugr.es/keel/category.php?cat=clas
2https://scikit-learn.org/stable/datasets/index.html
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Name No. Instances No. Classes No. Features
Appendicitis 106 2 7
Banana∗ 1590 2 2
Breast Cancer 569 2 30
Bupa 345 16 5
Contraceptive 1473 3 9
Heart 270 2 13
Ionosphere 351 2 33
Iris 150 3 4
Monk2 432 2 6
Newthyroid 215 3 5
Phoneme∗ 1622 2 5
Pima 768 2 8
Saheart 462 2 9
Soybean 47 4 35
Spectfheart 267 2 44
Tae 151 3 5
Titanic∗ 661 2 3
Vowel 990 11 13
Wdbc 569 2 30
Wine 178 3 13

Table 2: Summary of datasets used for the experiments.

Classification datasets allow for an easy building of the constraint set. Labels are used as
an oracle which is queried with two instances. If they belong to the same class, an ML
constraint is set between the two instances; a CL constraint is set otherwise (see Section 5.1).
Classification datasets also provide an easy evaluation of constrained clusteringmethods, as
the true labels can be used to assess the quality of the results (see Section 5.2). All datasets
used in our experiments are commonly used as benchmarks, covering awide range of values
for all three features displayed in Table 2.

5.1 Constraint Generation

Three constraint sets with incremental levels of constraint-based information are generated
for every dataset in Table 2 following the method proposed in [9]. This method builds the
constraint set by randomly selecting two instances from the dataset and setting a ML or CL
constraint depending on the labels of the instances.
The three constraint sets 𝐶𝑆10, 𝐶𝑆15 and 𝐶𝑆20 are associated with a small percentage of
the size of the dataset: 10%, 15% and 20%, respectively. To get the number of constraints
generated for every constraint set associatedwith every dataset, the formula 𝑛𝑓(𝑛𝑓−1)

2
is used,

which is the number of edges in a complete graph with 𝑛𝑓 vertices.
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Dataset 𝐶𝑆10 𝐶𝑆15 𝐶𝑆20
ML CL ML CL ML CL

Appendicitis 37 18 76 44 154 77
Banana∗ 6368 6193 14311 14130 25509 24894
Breast Cancer 846 750 1954 1701 3292 3149
Bupa 91 504 217 1109 374 1972
Contraceptive 3893 6985 8620 15690 15372 27993
Heart 173 178 436 384 747 684
Ionosphere 338 292 738 640 1357 1128
Iris 28 77 92 161 132 303
Monk2 484 462 1064 1016 1835 1906
Newthyroid 125 106 273 255 488 415
Phoneme∗ 7817 5386 17270 12376 30826 21824
Pima 1572 1354 3601 3069 6443 5338
Saheart 613 468 1281 1134 2368 1910
Soybean 1 9 11 17 5 40
Spectfheart 230 121 563 257 952 479
Tae 31 89 88 165 164 301
Titanic∗ 1249 962 2721 2229 4908 3870
Vowel 445 4406 1020 10006 1786 17717
Wdbc 864 732 1975 1680 3448 2993
Wine 57 96 105 246 210 420

Table 3: Number of constraints used in experiments.

By randomly allocating the constraints as described above, the bias introduced by using sub-
sets of labeled data can be avoided, as the risk of biasing the constraint set towards classes
with poor representation is lower. The number of constraints of each type obtained for every
dataset and constraint set is displayed in Table 3. All these constraint sets can be found in
this link 3.

5.2 Evaluation Method

In this study, a series of MOEAs and classic CC algorithms are compared with our pro-
posal, ME-MOEA/D𝐶𝐶 . All methods can be compared from the point of view of CC, as
ultimately they all output a partition for a given dataset. Concerning the comparison of
multiple MOEAs, the approximation to the PF produced by each one of them can be com-
pared by using Pareto-specific measures.

3https://drive.google.com/drive/u/1/folders/1sjnPYitey8q9zrPKa_YpFS7iNKTT15QH
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Comparing Partitions When it comes to evaluating the quality of the partition ob-
tained by any given constrained clustering method, the Adjusted Rand Index (ARI) can be
used [61]. As classification datasets are used, we have the true labels at our disposal. By
using the ARI measure, the degree of similarity of two partitions for the same dataset can
be computed; therefore, if one of these partitions corresponds to the true labels, the degree
of similarity with the ground truth can be obtained.
ARI is the corrected-for-chance version of the basic Rand Index, which computes the degree
of agreement between two partitions𝐶1 and𝐶2 of a given dataset𝑋 . 𝐶1 and𝐶2 can be viewed
as collections of 𝑛(𝑛−1)/2 pairwise decisions [62]. For each 𝑥𝑖 and 𝑥𝑗 in𝑋 , they are assigned
to the same cluster or to different clusters by a partition. The number of pairings where 𝑥𝑖 is
in the same cluster as 𝑥𝑗 in both 𝐶1 and 𝐶2 is taken as 𝑎; conversely, 𝑏 represents the number
of pairings where 𝑥𝑖 and 𝑥𝑗 are in different clusters. The degree of similarity between𝐶1 and
𝐶2 is computed as in Equation 10.

Rand(𝐶1, 𝐶2) =
𝑎 + 𝑏

𝑛(𝑛 − 1)/2 (10)

Equation 10 can be corrected for chance by taking into account the expected similarity of
all comparisons between partitions specified by the random model to establish a baseline.
Equation (11) shows the expression used to compute ARI.

ARI(𝐶1, 𝐶2) =
Rand(𝐶1, 𝐶2) − Expected Index

Maximum Index − Expected Index , (11)

where Expected Index is the degree of similarity with a randommodel andMaximum Index
is assumed to be 1. With this, it is clear that ARI(𝐶1, 𝐶2) ∈ [−1, 1], with a value close to 1
meaning a high degree of agreement between 𝐶1 and 𝐶2, positive values close to 0 meaning
no agreement, and a value below 0meaning that the Rand(𝐶1, 𝐶2) is less than expectedwhen
comparedwith the results of a randommodel. To summarize: the higher theARI, the greater
the degree of similarity between 𝐶1 and 𝐶2. For more details on ARI, see [61].
The ability of each method to integrate constraints into the clustering process needs to be
evaluated as well. To this end, we define the Unsat measure, which, given a partition 𝐶
and the constraint sets 𝐶= and 𝐶≠, computes the percentage of unsatisfied constraints as in
Equation 12.

Unsat(𝐶, 𝐶=, 𝐶≠) =
Infs(𝐶, 𝐶=, 𝐶≠)
|𝐶=| + |𝐶≠|

, (12)

Comparing PF Approximations An in-depth analysis of MO evaluation methods can
be found in [63], where authors insist on the importance of using more than one measure
to evaluate the quality of the PF approximation found by a given method. In this study
we use the hypervolume unary quality indicator 𝐻(⋅) to evaluate the performance of every
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MOEA individually, and the additive 𝜖-indicator (𝜖+-indicator) 𝐼𝜖+(⋅, ⋅) to carry out paired
comparisons.
The hypervolumemeasurewas proposed in [64] and can be defined as in [65] byDefinition 2
assuming minimization.

Definition 2 Hypervolume [65]: Given a set 𝐴 of points in the positive orthant ℝ𝑑
≥0, the

hypervolume indicator𝐻(𝐴) is defined as the𝑑-dimensional volume of the hole-free orthogonal
polytope

Π𝑑 = {𝑥 ∈ ℝ𝑑
≥0|𝑎 ⪯ 𝑥 ∧ 𝑥 ≤ 𝑟 ∀𝑎 ∈ 𝐴}

This polytope corresponds to the space dominated by at least one point in 𝐴, and 𝑟 is the
reference point used to compute the volume of Π𝑑.

Objective	Space

Hypervolume	defined

by	

Figure 6: 2-dimensional polytope defining the hypervolume of a set of solutions in a Pareto
approximation.

The 𝜖+-indicator was proposed in [64]. It is a binary indicator comparing two sets of non-
dominated solutions and can be defined as in Definition 3.

Definition 3 𝜖+-indicator [64]: Without loss of generality, let us suppose a minimization
problemwith𝑚 positive objectives𝑍 ⊆ ℝ+𝑛 . Given two objective vectors 𝑧1 = (𝑧11, 𝑧21,⋯ , 𝑧𝑚1 ) ∈
𝑍 and 𝑧2 = (𝑧12, 𝑧22,⋯ , 𝑧𝑚2 ) ∈ 𝑍 then:
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𝑧1 ⪰𝜖+ 𝑧2 ↔ ∀𝑖|1 ≤ 𝑖 ≤ 𝑚|𝑧𝑖1 ≤ 𝜖 + 𝑧𝑖2

for a given 𝜖 > 0. Then 𝑧1 is said to 𝜖+-dominate 𝑧2. Given two approximation sets 𝐴 and 𝐵,
the binary 𝜖+-indicator 𝐼𝜖+(⋅, ⋅) is defined as:

𝐼𝜖+(𝐴, 𝐵) = inf𝜖∈ℝ {∀𝑧2 ∈ 𝐵 ∃𝑧1 ∈ 𝐴|𝑧1 ⪰𝜖+ 𝑧2}

Intuitively, the 𝜖+-indicator shows the factor by which an approximation set is worse than
another in all objectives. In other words: 𝐼𝜖+(𝐴, 𝐵) gives the minimum factor 𝜖 such that any
vector in 𝐵 is 𝜖+-dominated by at least one vector in𝐴. This can be computed in𝒪(𝑚×|𝐴|×
|𝐵|) as in Equation 13.

𝐼𝜖+(𝐴, 𝐵) = max
𝑧2∈𝐵

min
𝑧1∈𝐴

max
1≤𝑖≤𝑚

(𝑧𝑖1 − 𝑧𝑖2) (13)

Note that 𝐼𝜖+(⋅, ⋅) is not a symmetric function, so 𝐼𝜖+(𝐴, 𝐵) ≠ 𝐼𝜖+(𝐵, 𝐴). In order to truly
compare 𝐴 and 𝐵, both 𝐼𝜖+(𝐴, 𝐵) and 𝐼𝜖+(𝐵, 𝐴) have to be computed. Having said that, if
𝐼𝜖+(𝐴, 𝐵) > 𝐼𝜖+(𝐵, 𝐴) itmeans that the factor 𝜖+1 bywhich𝐴𝜖+-dominates𝐵 is higher than the
factor 𝜖+2 by which 𝐵 𝜖+-dominates 𝐴, indicating an advantage of 𝐴 over 𝐵, and 𝐼𝜖+(𝐴, 𝐵) <
𝐼𝜖+(𝐵, 𝐴) indicates exactly the opposite.

5.3 Validation of results

An in-depth analysis of the disadvantages of the classic Null Hypothesis Statistical Tests
(NHST) can be found in [66], where a new model is proposed to carry out statistical com-
parisons between two sets of results. In [66], the authors summarize the drawbacks of NHST
as “In a nutshell: NHST do not answer the question we ask”. These drawbacks are based on
the trap of black-and-white thinking, that is: to reject, or not to reject?
Bayesian tests can be used to overcome the drawbacks found in NHST. The Bayesian sign
test is the Bayesian version of the NHST non-parametric sign test. It can be easily used to
compare two sets of results by employing the rNPBST R package in [67]. A general use guide
to Bayesian statistical testing can be found in [68].
The Bayesian sign test obtains the statistical Dirichlet distribution of a parameter 𝜌 accord-
ing to the differences between two sets of results. The number of cases where 𝐴−𝐵 < 0, the
number of cases where no significant differences are found, and the number of cases where
𝐴−𝐵 > 0 are counted to get the distribution of 𝜌. The region of practical equivalence (rope)
[𝑟min, 𝑟max] needs to be defined in order to identify cases where there are no significant dif-
ferences, so that 𝑃(𝐴 ≈ 𝐵) = 𝑃(𝜌 ∈ rope). Finally, the weights of the Dirichlet distribution
are computed so it can be sampled to get triplets with the following form:

[𝑃(𝜌 < 𝑟min) = 𝑃(𝐴 − 𝐵 < 0), 𝑃(𝜌 ∈ rope), 𝑃(𝜌 > 𝑟max) = 𝑃(𝐴 − 𝐵 > 0)]
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5.4 Competing Methods

Our proposal, ME-MOEA/D𝐶𝐶 , is compared with other 8 CC algorithms, including the
base method MOEA/D, the state-of-the-art in MOEA applied to the CC problem, a single-
objective EA, and other 4 well-known non-evolutionary CC methods. These 8 methods can
be briefly summarized as follows:

• MOEA/D: TheMOEA/Dmethod is the base algorithm used to buildME-MOEA/D.
The same application scheme used for ME-MOEA/D (described in Section 4) can
be used (excluding memetic elements) to apply MOEA/D to the CC problem to get
MOEA/D𝐶𝐶 .

• MOCK: TheMultiobjectiveClusteringwith automaticK-determination (MOCK) al-
gorithm is the application scheme of PESA-II [32] to the clustering problem, which
is further extended to CC. It uses a graph-based representation scheme, along with
a selection operator based on crowding [32] and a biased mutation operator to opti-
mize compactness and connectedness. It was originally designed for the classic clus-
tering problem, and extended to the CC problem by computing the ARI of a subset
of labeled data with the labels that the algorithm finds for those same instances of
the dataset. The K-means algorithm and a minimum spanning trees based method
are used to initialize the population [37].

• PESA-II: Although the Pareto Envelope-based SelectionAlgorithm II (PESA-II) [32]
is used by the MOCK application scheme as the base algorithm, the capabilities of
this MO strategy need to be tested when provided with the same information as our
proposal ME-MOEA/D𝐶𝐶 . In order to do so, the application scheme used for ME-
MOEA/D (Section 4) can be used (excludingmemetic elements) to apply PESA-II to
the CC problem, thus obtaining PESA-II𝐶𝐶 .

• SHADE: In [69] the single-objective Success History based Adaptive Differential
Evolution (SHADE) algorithm is applied to the CC problem, resulting in SHADE𝐶𝐶 .
It uses the label-based representation scheme, as well as memetics elements such as
an elitist selection operator and a local search procedure, to produce quality results
for the CC problem.

• COPKM: COnstrained Partitional K-means (COPKM)modifies the assignment rule
of instances to clusters of the classic K-means algorithm in a way such that an ins-
tance can be assigned to a cluster only if no constraints are violated by the assign-
ment [9].

• LCVQE: The Linear Constrained Vector Quantization Error algorithm introduces
a modification of the cost function of CVQE to make it less computationally com-
plex [70].

• TVClust: Two Views Clustering applies clustering methods over the dataset and
the constraint set separately, and try to find a consensus between the results [71]. It
makes a soft interpretation of the constraints.
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• RDPM: Relation Dirichlet Process - Means can be viewed as an extension of K-
means that includes side information (constraints). It is a deterministic derivation
of the TVClust model. The number of clusters (𝑘) does not need to be specified [71].

5.5 Parameters Setting

The parameters used for every competing method are described in this section. The pa-
rameters used for the three MOEAs compared in this study are presented in Table 4. The
stopping criterion for the evolutionary process is the maximum number of target functions
evaluations in all three cases. As classification datasets are used for our experiments, the
𝑘 parameter (which determines the number of clusters in the output partition) can always
be set to the optimal value, with the exception of the MOCK method, which does not need
𝑘 to be specified. The optimal value of 𝑘 for each dataset is featured in Table 2 under the
column “No. Classes”. Please note that this is the only parameter whose value depends on
the dataset and cannot be computed solely from the information contained in it (which does
not interfere with the semi-supervised foundations).

Parameter Meaning ME-MOEA/D𝐶𝐶 MOEA/D𝐶𝐶 MOCK PESA-II𝐶𝐶
|𝑃| Population size 100 100 100 100

|EP| External population maximum
size 1000 1000 1000 1000

Evals Maximum target functions
evaluations 300000 300000 300000 300000

𝜖 Connectivity neighborhood
size √𝑛 √𝑛 √𝑛 √𝑛

𝜑 Grid size 16 16 16 16
𝜛 Mutation probability 7% 7% - 7%
𝛿 𝜆-neighborhood size ⌊|𝑃|/10⌋ ⌊|𝑃|/10⌋ - -
𝜈 Population elite size 0.2 ∗ |𝑃| - - -

𝜁 Probability that a feature is in-
herited from an elite parent 60% - - -

𝛾 Probability for the elitist selec-
tion operator to be applied 20% - - -

𝜉 Maximum number of fails al-
lowed in LS 𝑛 × 0.15 - - -

𝑘 Output partition number of
clusters No. Classes (Table 2) No. Classes (Table 2) - No. Classes (Table 2)

Table 4: Parameters setup used for ME-MOEA/D𝐶𝐶 , MOEA/D𝐶𝐶 , MOCK and PESA-II𝐶𝐶 .

Table 5 describes parameter setup for the non-evolutionary state-of-the-art methods men-
tioned in Section 5.4. A Python implementation for thesemethods can be found at GitHub4.
In all cases the value for 𝑘 is equal to the number of classes displayed in Table 2. All param-
eter values for the non-evolutionary methods have been set following the guidelines of their
authors.
Since our goal is not to optimize parameters in a case-by-case basis, but to get the fairest and
most general comparison possible, we have not included any parameter tuning step for any

4https://github.com/GermangUgr/TFG/tree/master/Software
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Method name Parameters name and values

SHADE𝐶𝐶
max_eval = 300000
population_size = 100
prt_elite = 0.25

COPKM
max_iter = 300
tolerance = 1 ∗ 10−4
init_mode = ``rand''

LCVQE max_iter = 300;
initial_centroids = ∅

RDPM

max_iter = 300;
𝜉0 = 0.1; 𝜉rate = 1
𝜆 is calculated on the basis of the
mean distances in the dataset.

TVClust max_iter = 300; 𝛼0 = 1.2
stop_threshold = 5 ∗ 10−4

Table 5: Parameters setup used for non-evolutionary state-of-the-art methods.

competing method, not even for our proposal ME-MOEA/D𝐶𝐶 . Also, the high number of
datasets used in our experiments makes tuning each parameter specifically for each dataset
unfeasible in a reasonable time. The final purpose of this study is to provide a fair compari-
son between algorithms, assessing their robustness in a common environmentwithmultiple
datasets. All parameters concerningMOEAs have been set within reasonable values follow-
ing the specific guidelines given by their authors and the general ones given in [50]
All our experiments have been carried out in the Hercules computing server of the Univer-
sity of Granada, which features 19 computing nodes with two 2.2 GHz Intel®Xeon Silver
4214 processor, 256 GB of RAM, a 6 TB SATA2 HDD and a 1 TB SSD in each node. Two
Gigabit Ethernet internal nets are used to interconnect nodes. Ubuntu 20 LTS is installed in
each node.

6 Experimental Results

In this section experimental results are reported. For the sake of readability, all the tables
have been moved to Appendices A and B. Tables 6 to 11 in Appendix A present ARI and
Unsat results, thereby comparing overall quality for all methods from the point of view of
clustering. Tables 13 to 16 in Appendix B present Pareto approximations-related measures,
enabling comparisons from the point of view of MOEAs. In order for clustering-quality
comparisons to be made, a single solution from Pareto approximations found by the three
MOEAs compared need to be chosen. As true labels are available, the chosen solution is
one featuring the highest ARI in for all cases. Note that this would not be possible in an out-
of-lab application or any other decision maker should be applied [72]. However, this study
aims to prove general applicability of MOEAs to the CC problem, as well as the capability
of our proposal, ME-MOEA/D𝐶𝐶 , to find high quality solutions. Extracting these solutions
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from the Pareto approximation is a problem-dependent procedure, an expert or a specifically
designed decision maker must be used in out-of-lab applications.
Given that all methods compared in this study rely on non-deterministic procedures, varia-
tions in the results can be found between different runs. Every method is run 30 times for
every dataset and constraint set to mitigate the effects these non-deterministic procedures
could have on the results. This results in a total of 16200 experiments. In all tables, the
“Avg.” column shows average results for every compared method in every dataset, while
the “SD” column shows the Standard Deviation.

6.1 Clustering Quality Comparison

Tables from 6 to 11 (in Appendix A) present ARI and Unsat results for the 𝐶𝑆10, 𝐶𝑆15, 𝐶𝑆20
constraint sets generated for every dataset. Note that, for the COPKMmethod, some results
are missing. This is because COPKM is highly dependent on the order in which constraints
are analyzed and it makes a hard interpretation of constraints. COPKM may not be able to
find a solution for a given constraint set, even if this solution always exists, as constraints
are generated on the basis of the true labels and no noise is introduced in the constraint set.
This is amajor drawback for the COPKMmethod, and cases where COPKMdoes not output
a partition are considered to produce the worst benchmark values for plotting and averaging
purposes.
Figures 7, 8 and 9 are used to compare average results for all methods, we refer to them as
average plots. They allow a quick view of the distribution of ARI results produced for each
method within the ARI output range [−1, 1], with black marks representing average results
for each method.
Tables 6 and 7 display results obtained by every method for the 𝐶𝑆10 constraint set gener-
ated for every dataset. We can observe how our proposal, ME-MOEA/D𝐶𝐶 , represents a
consistent improvement in average results over every one of the other 7 methods compared.
It is able to achieve near-optimal results for datasets such as Breast Cancer and Appendici-
tis. Also note that, even if the COPKM method is able to obtain optimal results for a few
datasets, the standard deviation is more than twice the average, making it very unreliable
when looking for consistent quality. This can also be observed in Figure 7, where a clear po-
larization of results obtained by COPKM is featured. This will be the tendency for COPKM
as the amount of constraint-based information is increased.
Results obtained for the CS15 are presented in Tables 8 and 9. We continue to observe how
MOEA/D𝐶𝐶 outperforms most of the state-of-the-art methods, and offers results as com-
petitive as those obtained by RDPM. Regarding the comparison with previous MOEAs, all
of them are able to scale the quality of the results with the amount of constraint-based in-
formation, with our proposal and SHADE𝐶𝐶 being the ones scaling to a greater extent, and
SHADE𝐶𝐶 . Notably, SHADE𝐶𝐶 goes from being one of the worst performing methods in
Table 7 (with average results worst than 0.2) to being one of the best in Table 9 (with average
close to 0.5). This can be clearly observed in Figure 8 when compared with Figure 7.
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Figure 7: CS10 comparative average plot.
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Figure 8: CS15 comparative average plot.

In Tables 10 and 11, featuring results obtained for the 𝐶𝑆20 constraint set, the scaling ten-
dency observed in previous tables remains. Once again, our proposal outperforms the
state-of-the-art, with RDPM and SHADE𝐶𝐶 being the more disputed comparison. ME-
MOEA/D𝐶𝐶 continues to scale the quality of its results with the amount of constraint-based
information. This is not the case for the otherMOEAs, whose averageARI results increase to
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a lesser extent. This is a sign of a proper constraint-integration scheme in ME-MOEA/D𝐶𝐶 ;
it is as well indicative of memetic elitism being beneficial for the CC problem. The scaling
differences can be, once more, clearly observed by comparing Figure 8 with Figure 9.
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−0.5

0.0

0.5

1.0

ME−MOEA/DCC MOEA/DCC MOCK PESA−IICC SHADECC COPKM LCVQE RDPM TVClust

Figure 9: CS20 comparative average plot.

It is alsoworth noting howPESA-II𝐶𝐶—which is the label-based version ofMOCK—obtains
results consistently worst than those obtained by MOCK for all three levels of constraints.
This is indicative of the capabilities of the PESA-II optimization scheme beingmore suitable
for a graph-based representations scheme than for a label-based one. A significant improve-
ment ofME-MOEA/D𝐶𝐶 over PESA-II𝐶𝐶 can also be observed, which is another evidence in
favor of the CC problem benefiting from the specific ME-MOEA/D exploration-exploitation
capabilities.

6.2 Pareto Approximation Quality Comparison

Tables 12 to 17 (in Appendix B) show values for 3MOEAs-orientedmeasures. Hypervolume
and 𝐼𝜖+ were introduced in Section 5.2. The size of the Pareto approximation found by every
method has also been included. In order for comparisons to be made, all Pareto approxima-
tions have been normalized, thus the range for both the hypervolume and the 𝐼𝜖+ measures
is set to [0, 1].
With regards to the hypervolume measure, in the first four columns of Tables 13, 15 and 17
we observe how ME-MOEA/D𝐶𝐶 consistently achieves more compact Pareto approxima-
tions than the other two competing methods. No compared method features a consistent
increase or decrease in the hypervolume measure when the amount of constraint-based in-
formation is increased. However, by looking at the 𝐼𝜖+ measure, in Tables 12, 14 and 16,
we observe how it contains very high quality solutions, even if the Pareto approximations
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found byME-MOEA/D𝐶𝐶 aremore compact than those obtained by othermethods. The 𝐼𝜖+
measure indicates that Pareto approximation found by our proposal 𝜖+-dominate approxi-
mations found by other competing methods by a large margin in the majority of the cases,
whereas the opposite situation does not happen. We also observe how this margin increases
as we move from 𝐶𝑆10 to 𝐶𝑆20, indicating that ME-MOEA/D𝐶𝐶 is much more capable of
integrating constraints into the clustering process than the other methods. It is also worth
noting how PESA-II𝐶𝐶 is able to obtain 𝜖+-indices as competitive as those obtained by ME-
MOEA/D𝐶𝐶 for CS10, although it is quickly outscaled by ME-MOEA/D𝐶𝐶 as the level of
constraint-based information is increased.
Regarding the comparison of the Pareto approximation sizes in the last four columns of Ta-
bles 13, 15 and 17, we observe how the more populated Pareto approximations are always
achieved by MOCK. This is clearly due to its graph-based representation scheme, which de-
rives in a representation-related multimodality issue resulting in a partition having many
different representations. This, in combination with MOCK actively trying to populate the
less crowded regions of the Pareto approximation, by giving up resources that could be used
to further improve promising regions, makes Pareto approximations achieve by MOCK ex-
cessively crowded. These conclusions are supported by the well-known fact that a more
populated Pareto approximation does not mean a higher quality Pareto approximation.
Regarding the other three compared MOEAs—ME-MOEA/D𝐶𝐶 , MOEA/D𝐶𝐶 and PESA-
II𝐶𝐶—, we observe howME-MOEA/D𝐶𝐶 , even if it implements procedures to intensify the
search in promising areas, finds and appropriate balance between the crowding of the Pareto
approximation and the quality of the solutions in it. This is why it is able to find better
solutions than any other MOEA with a better balanced Pareto approximation.
To summarize, the results presented in this section prove that our proposalME-MOEA/D𝐶𝐶
obtains average-sized Pareto approximations, with them being more compact than those
obtained by the previous proposal MOCK and the base method MOEA/D𝐶𝐶 . Even if Pareto
approximations found by our proposal are more compact, they contain very high quality
solutions, as they 𝜖+-dominate Pareto approximations found by other proposals by a large
margin in the vast majority of cases.

7 Statistical Analysis of Results

An empirical analysis comparing all ARI results obtained by every method—20 datasets
combined with 3 constraint sets for a total of 60 results—can be performed by using the
Bayesian signed-rank test. This test is similar to the Bayesian sign test described in Sec-
tion 5.3, the only difference being that it sorts (ranks) differences by absolute values in the
process of obtaining the Dirichlet distribution of the parameter 𝜌. Bearing this in mind the
notation introduced in Section 5.3, we take the results obtained by a given state-of-the-art
method as sample 𝐴, and the results obtained by ME-MOEA/D𝐶𝐶 as sample 𝐵. As ARI is a
measure to maximize, a higher value for 𝑃(𝜌 < 𝑟min) = 𝑃(𝐴 − 𝐵 < 0) would give the advan-
tage to ME-MOEA/D𝐶𝐶 , whereas a high value for 𝑃(𝜌 > 𝑟max) = 𝑃(𝐴 − 𝐵 > 0) would mean
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the opposite. The rope area has been set to rope = [−0.02, 0.02], following the guidelines
in [68].
A very illustrative visual representation of the results obtained by the Bayesian signed-rank
test can be created. Once the result distribution has been sampled, it can be represented in
the form of a heatmap by plotting every triplet in it as a point in barycentric coordinates in
an equilateral triangle. In order to do so, each triplet value is associated with each of the
three vertices of the triangle; the higher the value, the closer it is to its associated vertex.
Values of every triplet must add up to one, since they describe a probability distribution, so
all triplets lie within the triangle.
Figure 10 shows heatmaps comparing our proposal with all other 8 competing methods in
a 1vs1 style, with color indicating the density of points in a given region: yellow represents
high density and red is associated to low density. We can observe that no single triplet repre-
sented in the top region of any heatmap is shown. This means that the Bayesian signed-rank
test assigns a very low probability to our proposal being equivalent to any other method.
Heatmaps 10a, 10b and 10c compare our proposal with the three other MOEAs considered.
They are all very similar, giving a clear advantage to our proposalME-MOEA/D𝐶𝐶 obtaining
significantly better results thanMOEA/D𝐶𝐶 , MOCK and PESA-II𝐶𝐶 respectively. The same
can be said for Heatmaps 10d, 10e, 10f and 10h, noting how in some cases the COPKM ob-
tains competitive results. The most contested comparison corresponds to ME-MOEA/D𝐶𝐶
vs RDPM, shown in Heatmap 10g, with both methods being statistically different, but with
the advantage corresponding to one or the other depending on the dataset. However, we
observe a slight tendency to the left on the point cloud, which means that the test confers a
slight advantage in favor of our proposal ME-MOEA/D𝐶𝐶 .
Figure 11 shows a general Bayesian signed-rank test comparison, with the lower triangu-
lar matrix indicating the method given the advantage by the test, and the upper triangular
matrix displaying rope probability values for those same comparisons. As Figure 11 shows,
ME-MOEA/D𝐶𝐶 is given the advantage in all cases. The Bayesian signed-rank test suggests
to never use COPKM, due to its unreliability to obtain results. It also indicates that the
previous MOEAs obtain competitive results depending on the case, with the comparisons
regarding MOEA/D𝐶𝐶 , MOCK and PESA-II𝐶𝐶 featuring a high value for rope, indicating a
non-negligible probability of both methods being statistically identical.
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Figure 10: Heatmaps comparing ME-MOEA/D𝐶𝐶 with all other compared methods.
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Figure 11: Overall Bayesian signed-rank test comparisons.

8 Conclusions

In this study theME-MOEA/D (Memetic Elitist - Multiobjective Optimization Evolutionary
Algorithm based on Decomposition) is presented. It implements exploitation procedures
able to improve the quality of the solutions stored in the Pareto approximation without
seriously interfering with the exploration capabilities of the base method MOEA/D. ME-
MOEA/D𝐶𝐶 is the result of integrating a constrained clustering application scheme, which
we describe in the study, into ME-MOEA/D. A biased crossover operator is used to bias the
search towards high quality solutions and an adaptive archiving method lessens the effects
of multimodality in the constrained clustering problem.
A total of 8 constrained clusteringmethods (including 3 otherMOEAs) are compared in this
study. Experimental results over 20 datasets and 3 constraint sets for every dataset (for a total
of 60) show a consistent advantage in favor ofME-MOEA/D𝐶𝐶 with respect to the rest of the
methods. Regarding the quality comparisons for Pareto approximations, our proposal has
proven to produce Pareto approximations containing better individual solutions than those
obtained by previous approaches, notwithstanding the Pareto approximations obtained by
ME-MOEA/D𝐶𝐶 being more compact. Bayesian statistical tests have been used to validate
these results. The Bayesian signed-rank test assigns a higher probability to our proposal
being better on average than any other method presented in this study. The broad scope of
the experimentation carried out makes the conclusions drawn in this study generalizable
to real-world applications, as real-world benchmark datasets are used to test all compared
methods. Therefore, our proposed ME-MOEA/D𝐶𝐶 could be implemented in any of the
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CC applications introduced in Section 1, after a detailed study of the particularities of the
problem analyzed and with a specific parameter tuning step.
To bring this study to and end, the following conclusions can be extracted:

• In the vast majority of the cases, our proposal ME-MOEA/D𝐶𝐶 obtains better av-
erage results than the 8 previous approaches to the CC problem presented in this
study.

• The Bayesian signed-rank test assigns a high probability to the differences between
sets of results being statistically relevant.

• The Bayesian signed-rank test assigns a high probability to this differences being in
favor of ME-MOEA/D𝐶𝐶 .

• ME-MOEA/D𝐶𝐶 generates Pareto approximations containing better solutions than
previous multiobjective approaches to the CC problem.

• ME-MOEA/D𝐶𝐶 generates more compact Pareto approximations than previous
multiobjective approaches to the CC problem.
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A Clustering Quality Comparison - Tables

This appendix presents result tables for the clustering quality comparison. Tables 6, 8 and 10
show results forARImeasure. Tables 7, 9 and 11 present results forUnsatmeasure. All these
tables are referenced and analyzed in Section 6.1.
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B Pareto Approximation Quality Comparison - Tables

This appendix presents result tables for the Pareto front approximation quality comparison.
Tables 12, 14 and 16 show results for different setups of the 𝜖+-indicator. Tables 13, 15 and 17
present results for the hypervolume and the Pareto front size. All these tables are referenced
and analyzed in Section 6.2.

Dataset

𝐼𝜖+(⋅, ⋅) ∶ 𝐴 ←ME-MOEA/D𝐶𝐶 for 𝐶𝑆10
𝐵 ←MOEA/D𝐶𝐶 𝐵 ←MOCK 𝐵 ← PESA-II𝐶𝐶

𝐼𝜖+(𝐴, 𝐵) 𝐼𝜖+(𝐵, 𝐴) 𝐼𝜖+(𝐴, 𝐵) 𝐼𝜖+(𝐵, 𝐴) 𝐼𝜖+(𝐴, 𝐵) 𝐼𝜖+(𝐵, 𝐴)
Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

Appendicitis .𝟐𝟏𝟐 .𝟎𝟑𝟏 .028 .031 .𝟑𝟑𝟐 .𝟎𝟑𝟒 .273 .073 .064 .017 .𝟏𝟎𝟓 .𝟎𝟏𝟕
Banana∗ .𝟓𝟑𝟐 .𝟎𝟗𝟓 .054 .021 .𝟒𝟗𝟑 .𝟏𝟎𝟓 .049 .054 .𝟐𝟓𝟏 .𝟎𝟗𝟗 .101 .037
Breast Cancer .𝟓𝟒𝟑 .𝟏𝟑𝟒 .305 .120 .𝟒𝟐𝟓 .𝟏𝟎𝟓 .243 .137 .087 .099 .𝟒𝟓𝟏 .𝟏𝟓𝟒
Bupa .𝟐𝟖𝟔 .𝟎𝟐𝟖 .070 .020 .𝟐𝟒𝟒 .𝟎𝟑𝟖 .086 .019 .𝟏𝟖𝟑 .𝟎𝟑𝟓 .120 .038
Contraceptive .𝟑𝟖𝟓 .𝟎𝟕𝟔 .046 .027 .𝟑𝟏𝟗 .𝟎𝟑𝟓 .213 .042 .𝟏𝟗𝟖 .𝟏𝟐𝟎 .157 .057
Heart .𝟐𝟐𝟒 .𝟎𝟐𝟖 .103 .021 .𝟐𝟗𝟒 .𝟎𝟐𝟓 .052 .023 .𝟏𝟑𝟔 .𝟎𝟑𝟐 .070 .029
Ionosphere .𝟐𝟕𝟓 .𝟎𝟑𝟗 .165 .095 .𝟑𝟕𝟐 .𝟎𝟑𝟓 .153 .128 .144 .039 .𝟐𝟐𝟗 .𝟏𝟑𝟑
Iris .𝟐𝟔𝟕 .𝟎𝟖𝟖 .088 .058 .𝟑𝟎𝟑 .𝟏𝟑𝟏 .171 .067 .159 .077 .𝟐𝟓𝟒 .𝟎𝟕𝟖
Monk2 .𝟐𝟑𝟗 .𝟎𝟑𝟔 .103 .038 .𝟐𝟒𝟏 .𝟎𝟑𝟕 .059 .022 .051 .036 .𝟏𝟕𝟗 .𝟎𝟑𝟖
Newthyroid .𝟏𝟗𝟏 .𝟏𝟎𝟐 .130 .056 .𝟏𝟕𝟓 .𝟎𝟖𝟐 .151 .075 .116 .036 .𝟑𝟗𝟗 .𝟎𝟖𝟖
Phoneme∗ .𝟒𝟔𝟕 .𝟏𝟑𝟐 .297 .147 .𝟑𝟔𝟖 .𝟎𝟖𝟗 .149 .146 .222 .129 .𝟐𝟑𝟔 .𝟏𝟗𝟏
Pima .𝟒𝟕𝟖 .𝟎𝟑𝟏 .093 .028 .𝟑𝟖𝟐 .𝟎𝟓𝟓 .097 .062 .𝟏𝟗𝟓 .𝟎𝟒𝟑 .148 .046
Saheart .𝟑𝟓𝟖 .𝟎𝟓𝟎 .064 .019 .𝟑𝟑𝟓 .𝟎𝟓𝟏 .014 .006 .073 .028 .𝟏𝟏𝟒 .𝟎𝟐𝟓
Soybean .𝟑𝟖𝟒 .𝟎𝟐𝟓 .131 .051 .𝟒𝟑𝟎 .𝟎𝟐𝟖 .136 .018 .𝟎𝟏𝟎 .𝟎𝟑𝟔 .000 .000
Spectfheart .093 .035 .𝟐𝟎𝟖 .𝟎𝟒𝟗 .𝟏𝟓𝟑 .𝟎𝟓𝟗 .118 .040 .092 .040 .𝟏𝟏𝟒 .𝟎𝟒𝟓
Tae .𝟐𝟏𝟑 .𝟎𝟑𝟓 .041 .023 .𝟐𝟗𝟓 .𝟎𝟑𝟐 .213 .081 .097 .025 .𝟏𝟎𝟒 .𝟎𝟐𝟕
Titanic∗ .𝟒𝟔𝟗 .𝟎𝟑𝟓 .071 .015 .𝟒𝟏𝟎 .𝟎𝟓𝟗 .160 .015 .154 .061 .𝟏𝟔𝟒 .𝟎𝟒𝟑
Vowel .𝟐𝟗𝟕 .𝟎𝟖𝟑 .155 .026 .𝟐𝟕𝟎 .𝟎𝟖𝟒 .061 .043 .136 .072 .𝟏𝟖𝟕 .𝟎𝟔𝟒
Wdbc .𝟓𝟓𝟎 .𝟎𝟓𝟑 .278 .094 .𝟒𝟒𝟓 .𝟎𝟔𝟖 .151 .129 .166 .111 .𝟑𝟖𝟒 .𝟎𝟖𝟗
Wine .𝟐𝟗𝟒 .𝟏𝟎𝟑 .136 .063 .𝟐𝟖𝟓 .𝟏𝟎𝟔 .154 .083 .196 .114 .𝟑𝟐𝟑 .𝟏𝟎𝟐
Average .𝟑𝟑𝟖 .𝟎𝟔𝟐 .128 .050 .𝟑𝟐𝟗 .𝟎𝟔𝟑 .135 .063 .137 .062 .𝟏𝟗𝟐 .𝟎𝟔𝟓
Table 12: Experimental results for the 𝜖+-indicator obtained by ME-MOEA/D𝐶𝐶 and 3 pre-
vious MO approaches in the 𝐶𝑆10 constraint set.
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272 Chapter II. Publications

Dataset

𝐼𝜖+(⋅, ⋅) ∶ 𝐴 ←ME-MOEA/D𝐶𝐶 for 𝐶𝑆15
𝐵 ←MOEA/D𝐶𝐶 𝐵 ←MOCK 𝐵 ← PESA-II𝐶𝐶

𝐼𝜖+(𝐴, 𝐵) 𝐼𝜖+(𝐵, 𝐴) 𝐼𝜖+(𝐴, 𝐵) 𝐼𝜖+(𝐵, 𝐴) 𝐼𝜖+(𝐴, 𝐵) 𝐼𝜖+(𝐵, 𝐴)
Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

Appendicitis .𝟐𝟒𝟕 .𝟎𝟐𝟖 .052 .023 .353 .026 .𝟑𝟓𝟔 .𝟎𝟔𝟏 .𝟎𝟗𝟕 .𝟎𝟐𝟖 .038 .010
Banana∗ .𝟑𝟕𝟖 .𝟎𝟖𝟏 .142 .112 .𝟑𝟐𝟒 .𝟎𝟗𝟒 .095 .110 .084 .040 .𝟐𝟏𝟗 .𝟏𝟔𝟓
Breast Cancer .𝟒𝟖𝟐 .𝟏𝟑𝟏 .303 .139 .𝟒𝟐𝟎 .𝟎𝟖𝟐 .268 .166 .𝟒𝟏𝟕 .𝟏𝟕𝟏 .111 .198
Bupa .𝟐𝟑𝟓 .𝟎𝟒𝟑 .077 .030 .𝟏𝟖𝟕 .𝟎𝟓𝟏 .111 .049 .𝟏𝟕𝟏 .𝟎𝟒𝟐 .118 .048
Contraceptive .𝟑𝟗𝟏 .𝟎𝟓𝟐 .054 .010 .𝟑𝟓𝟖 .𝟎𝟐𝟖 .119 .027 .093 .063 .𝟎𝟗𝟗 .𝟎𝟒𝟕
Heart .𝟐𝟒𝟕 .𝟎𝟒𝟓 .153 .036 .𝟐𝟕𝟕 .𝟎𝟑𝟒 .109 .045 .094 .048 .𝟏𝟏𝟗 .𝟎𝟑𝟕
Ionosphere .363 .125 .𝟑𝟖𝟏 .𝟎𝟔𝟏 .𝟒𝟎𝟏 .𝟎𝟔𝟎 .357 .050 .351 .156 .𝟒𝟎𝟔 .𝟎𝟓𝟏
Iris .204 .060 .𝟐𝟐𝟏 .𝟎𝟒𝟗 .167 .051 .𝟐𝟒𝟔 .𝟎𝟖𝟏 .135 .040 .𝟐𝟐𝟑 .𝟎𝟗𝟎
Monk2 .𝟒𝟐𝟖 .𝟏𝟐𝟐 .091 .071 .𝟑𝟕𝟐 .𝟏𝟐𝟎 .048 .040 .𝟐𝟎𝟖 .𝟏𝟎𝟒 .047 .031
Newthyroid .𝟐𝟕𝟗 .𝟎𝟕𝟏 .150 .051 .𝟐𝟑𝟐 .𝟎𝟓𝟔 .109 .064 .122 .048 .𝟑𝟏𝟐 .𝟎𝟓𝟕
Phoneme∗ .𝟒𝟕𝟐 .𝟏𝟏𝟐 .197 .032 .𝟑𝟗𝟗 .𝟏𝟒𝟔 .074 .053 .127 .102 .𝟏𝟕𝟗 .𝟎𝟔𝟖
Pima .𝟑𝟖𝟐 .𝟎𝟗𝟔 .136 .082 .𝟐𝟕𝟗 .𝟏𝟎𝟔 .138 .088 .129 .095 .𝟏𝟖𝟒 .𝟎𝟗𝟖
Saheart .𝟑𝟏𝟑 .𝟎𝟓𝟓 .062 .019 .𝟑𝟒𝟒 .𝟎𝟐𝟔 .054 .022 .083 .030 .𝟏𝟒𝟏 .𝟎𝟐𝟐
Soybean .𝟓𝟐𝟒 .𝟏𝟔𝟓 .103 .025 .𝟓𝟒𝟐 .𝟏𝟎𝟕 .121 .064 .𝟐𝟒𝟓 .𝟐𝟏𝟎 .051 .050
Spectfheart .186 .096 .𝟐𝟒𝟐 .𝟎𝟒𝟕 .𝟏𝟗𝟒 .𝟏𝟎𝟔 .194 .046 .𝟐𝟗𝟏 .𝟏𝟏𝟕 .120 .039
Tae .𝟐𝟔𝟐 .𝟎𝟒𝟓 .067 .021 .𝟑𝟐𝟎 .𝟎𝟐𝟗 .239 .044 .099 .045 .𝟏𝟏𝟖 .𝟎𝟐𝟐
Titanic∗ .𝟒𝟑𝟑 .𝟎𝟓𝟖 .069 .023 .𝟑𝟒𝟗 .𝟎𝟑𝟐 .164 .051 .121 .091 .𝟏𝟖𝟏 .𝟎𝟑𝟏
Vowel .𝟑𝟔𝟑 .𝟏𝟐𝟕 .108 .030 .𝟑𝟏𝟓 .𝟏𝟔𝟕 .122 .072 .𝟐𝟎𝟔 .𝟏𝟏𝟕 .143 .100
Wdbc .343 .251 .𝟑𝟗𝟕 .𝟏𝟔𝟏 .233 .194 .𝟑𝟑𝟓 .𝟏𝟕𝟖 .𝟐𝟒𝟖 .𝟐𝟕𝟗 .173 .260
Wine .𝟑𝟒𝟓 .𝟏𝟐𝟖 .164 .051 .𝟑𝟏𝟔 .𝟏𝟐𝟗 .162 .046 .145 .109 .𝟑𝟒𝟕 .𝟎𝟖𝟐
Average .𝟑𝟒𝟒 .𝟎𝟗𝟓 .158 .054 .𝟑𝟏𝟗 .𝟎𝟖𝟐 .171 .068 .𝟏𝟕𝟑 .𝟎𝟗𝟕 .166 .075
Table 14: Experimental results for the 𝜖+-indicator obtained by ME-MOEA/D𝐶𝐶 and 3 pre-
vious MO approaches in the 𝐶𝑆15 constraint set.
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Dataset

𝐼𝜖+(⋅, ⋅) ∶ 𝐴 ←ME-MOEA/D𝐶𝐶 for 𝐶𝑆20
𝐵 ←MOEA/D𝐶𝐶 𝐵 ←MOCK 𝐵 ← PESA-II𝐶𝐶

𝐼𝜖+(𝐴, 𝐵) 𝐼𝜖+(𝐵, 𝐴) 𝐼𝜖+(𝐴, 𝐵) 𝐼𝜖+(𝐵, 𝐴) 𝐼𝜖+(𝐴, 𝐵) 𝐼𝜖+(𝐵, 𝐴)
Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD

Appendicitis .𝟐𝟑𝟕 .𝟎𝟐𝟗 .016 .016 .𝟑𝟖𝟎 .𝟎𝟏𝟎 .258 .113 .𝟎𝟗𝟏 .𝟎𝟑𝟏 .042 .012
Banana∗ .𝟑𝟔𝟓 .𝟏𝟐𝟎 .126 .118 .𝟑𝟓𝟎 .𝟏𝟏𝟏 .080 .117 .142 .060 .𝟐𝟑𝟖 .𝟏𝟓𝟑
Breast Cancer .𝟔𝟒𝟎 .𝟐𝟗𝟓 .297 .206 .𝟓𝟖𝟏 .𝟏𝟗𝟒 .146 .139 .𝟔𝟐𝟓 .𝟐𝟗𝟖 .043 .160
Bupa .𝟐𝟔𝟒 .𝟎𝟑𝟕 .051 .033 .𝟐𝟑𝟗 .𝟎𝟐𝟖 .142 .045 .𝟐𝟏𝟐 .𝟎𝟒𝟓 .095 .033
Contraceptive .𝟒𝟒𝟖 .𝟎𝟗𝟕 .052 .012 .𝟒𝟐𝟗 .𝟎𝟕𝟑 .062 .069 .121 .069 .𝟏𝟐𝟔 .𝟎𝟑𝟏
Heart .𝟐𝟗𝟔 .𝟎𝟐𝟖 .154 .046 .𝟑𝟑𝟑 .𝟎𝟐𝟕 .104 .027 .𝟏𝟏𝟑 .𝟎𝟑𝟐 .076 .022
Ionosphere .370 .070 .𝟒𝟑𝟓 .𝟎𝟑𝟖 .𝟒𝟑𝟒 .𝟎𝟑𝟕 .416 .028 .377 .073 .𝟒𝟔𝟔 .𝟎𝟑𝟒
Iris .𝟒𝟖𝟒 .𝟐𝟏𝟑 .259 .119 .𝟒𝟒𝟔 .𝟐𝟐𝟔 .218 .156 .𝟒𝟎𝟒 .𝟐𝟒𝟔 .251 .115
Monk2 .𝟔𝟏𝟒 .𝟎𝟔𝟑 .039 .011 .𝟓𝟐𝟒 .𝟎𝟔𝟏 .045 .041 .𝟐𝟕𝟖 .𝟎𝟗𝟒 .080 .055
Newthyroid .𝟐𝟖𝟑 .𝟏𝟎𝟑 .237 .076 .𝟑𝟏𝟔 .𝟏𝟔𝟓 .185 .071 .214 .193 .𝟒𝟐𝟕 .𝟎𝟖𝟑
Phoneme∗ .𝟓𝟑𝟗 .𝟏𝟏𝟔 .157 .016 .𝟒𝟏𝟗 .𝟏𝟐𝟎 .038 .055 .𝟏𝟗𝟏 .𝟏𝟎𝟑 .103 .089
Pima .𝟒𝟐𝟖 .𝟎𝟔𝟓 .110 .026 .𝟐𝟗𝟖 .𝟎𝟕𝟓 .098 .044 .122 .058 .𝟏𝟑𝟒 .𝟎𝟒𝟑
Saheart .𝟑𝟔𝟒 .𝟎𝟑𝟓 .064 .021 .𝟑𝟒𝟗 .𝟎𝟑𝟓 .030 .020 .𝟏𝟐𝟔 .𝟎𝟓𝟎 .102 .042
Soybean .𝟑𝟖𝟐 .𝟎𝟔𝟗 .183 .079 .𝟒𝟔𝟎 .𝟎𝟔𝟔 .180 .076 .008 .013 .𝟎𝟕𝟗 .𝟎𝟖𝟕
Spectfheart .202 .011 .𝟐𝟓𝟐 .𝟎𝟓𝟓 .𝟐𝟏𝟔 .𝟎𝟒𝟎 .170 .044 .𝟐𝟕𝟑 .𝟎𝟗𝟎 .121 .055
Tae .𝟐𝟐𝟎 .𝟎𝟓𝟐 .053 .024 .𝟐𝟗𝟔 .𝟎𝟐𝟕 .274 .025 .077 .027 .𝟏𝟔𝟗 .𝟎𝟔𝟕
Titanic∗ .𝟒𝟑𝟏 .𝟎𝟏𝟗 .059 .018 .𝟑𝟖𝟑 .𝟎𝟑𝟔 .212 .037 .086 .040 .𝟏𝟗𝟓 .𝟎𝟒𝟔
Vowel .𝟑𝟗𝟕 .𝟎𝟓𝟑 .101 .054 .𝟑𝟑𝟒 .𝟎𝟓𝟑 .071 .060 .𝟐𝟗𝟕 .𝟎𝟑𝟓 .109 .077
Wdbc .𝟒𝟗𝟐 .𝟏𝟎𝟖 .366 .127 .𝟒𝟏𝟖 .𝟏𝟒𝟗 .278 .142 .𝟔𝟎𝟔 .𝟐𝟐𝟓 .000 .000
Wine .𝟒𝟏𝟗 .𝟐𝟒𝟑 .277 .097 .𝟒𝟐𝟕 .𝟐𝟒𝟏 .247 .067 .327 .282 .𝟒𝟖𝟓 .𝟏𝟒𝟒
Average .𝟑𝟗𝟒 .𝟎𝟗𝟏 .164 .060 .𝟑𝟖𝟐 .𝟎𝟖𝟗 .163 .069 .𝟐𝟑𝟒 .𝟏𝟎𝟑 .167 .067
Table 16: Experimental results for the 𝜖+-indicator obtained by ME-MOEA/D𝐶𝐶 and 3 pre-
vious MO approaches in the 𝐶𝑆20 constraint set.
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1 Introduction

Clustering has always been a key research area in machine learning. It is able to provide
valuable insight within the unsupervised learning paradigm, where no information other
than an unlabeled dataset by itself is available for learning. However, background knowl-
edge can be added to the classic clustering framework, leading to better and more accurate
results and moving the problem from the unsupervised learning framework to the machine
learning paradigm known as Semi-Supervised Learning (SSL) [1, 2]. When the background
knowledge is given in the form or constraints, the problem is called Constrained Cluster-
ing (CC). In CC, a set of constraints is used to guide the clustering process, as the resulting
partition of the dataset is required to satisfy as many constraints as possible, in addition to
meeting the proper characteristics of a classic clustering partition. CC has been successfully
applied in many fields of knowledge, among which it is worth mentioning: satellite image
time series [3], storage location assignment in warehouses [4], obstructive sleep apnea anal-
ysis [5], electoral district design [6], lane finding in GPS data [7] and classic benchmark
applications [8, 9].
Many distinctions can be made within the general CC framework. Three main ways to
include constraints into the clustering problem can be found in the literature: cluster-
level [10], instance-level [11] and feature-level CC [12]. CC algorithms commonly use two
main strategies to take constraints into account: (1) in distance-based methods a new met-
ric reflecting the information contained in the constraint set is learned [13, 9, 14], (2) in
clustering-engine adapting constraints are used as hints to guide the clustering process by
modifying the clustering engine to include them [7, 15, 16, 17]. Finally, the concepts of
soft [18] and hard [7] constraints can also be found in the literature. With a hard interpreta-
tion of constraints, methods are forced to output partitions satisfying all constraints, whereas
soft constraints allow output partitions with some unsatisfied constraints. This study is fo-
cused on soft instance-level Must-link (ML) and Cannot-link (CL) constraints, which tell
us if two specific instances of a dataset must be placed in the same or in different clusters,
respectively. Soft constraints pose several general advantages over hard constraints, such as
noise resilience and less computational complexity, while maintaining the advantages con-
sidering background knowledge. A soft interpretation of constraints does not only brings
the advantages mentioned above, but also avoids specific problems related to hierarchical
CC, such as not being able to always provide a full dendrogram and reaching dead-ends in
the dendrogram-building process, as it will be explained in detail in Section 2.3.
Using ML and CL constraints makes the CC problem NP-complete [19]. This is the reason
why approximate methods represent a promising approach to the CC problem. Within the
classic clustering paradigm, two broad categories can be found in the literature: partitional
clustering and hierarchical clustering. In partitional clustering, a partition assigning every
instance from the dataset to a specific cluster from among a fixed number of them is built,
while hierarchical clustering obtains a tree-like hierarchical structure coding a set of parti-
tions that allows the user to choose any cluster granularity between one and the number of
instances in the dataset. Both of them have been applied to many real-world problems [20],
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although when it comes to CC a significant imbalance favoring partitional methods can be
observed; very little work has been done to integrate constraints into hierarchical cluster-
ing methods [15, 21, 22, 23] with respect to the number of existing partitional CC methods,
whose analysiswould require the length of amonograph. Conceptually different approaches
to the CC problem have also been proposed, specially within the metaheuristics field, with
methods ranging from classic metaheuristic approaches [24, 8] to innovative iterated local
search variants [25] or evolutionary multiobjective optimization [26, 27].
In this study we aim to investigate the use of hybrid agglomerative hierarchical cluster-
ing methods for the CC problem, which should combine distance-based techniques and
clustering-engine adapting techniques to address the CC problem. Weighted constraints
can be used to guide the clustering process towards high quality solutions more effectively
than unweighted constraints, although very little work has been done on automatically gen-
erating constraint weights and on integrating them into distance-based CC methods. This
study tackles these open problems. To do so the Three Stages Hybrid Agglomerative Hier-
archical Constrained Clustering (3SHACC) method is proposed. It is a CC method capable
of, given a dataset and a constraint set, obtaining a full dendrogram capturing the fine-grain
manifold structures present in the dataset and integrating constraints into the process. To
do so, it implements three well-defined stages:

1. In the first stage, the relevance of every constraint is determined and a new metric
is built on the basis of the newly weighted constraint set by using a new Distance
Metric Learning (DML) algorithm, which we call Weighted-Learning from Side In-
formation (WLSI). The result of this stage is a metric matrix that allows to measure
distances within the dataset having into account the information contained in the
constraint set.

2. The second stage computes similarities among instances in the dataset attending
to the newly computed distance metric and the pairwise reconstruction coefficient.
The advantages of using both of these measures to determine pairwise similarities
include robustness to noise and less sensitivity to outliers [28]. Overall, this stage
results in a symmetric matrix containing pairwise similarities, which is later used
to determine affinities between clusters and to build a dendrogram. This is the only
stage in 3SHACC provided with tools to handle noise and outliers, which are inher-
ited from the method proposed in [28], where these capabilities are experimentally
proved.

3. Finally, a dendrogram is obtained by running a classic Agglomerative Hierarchi-
cal Clustering (AHC) method with a constraint-biased stepped affinity function
integrating the computed similarities and the information contained in the con-
straint set. Once again constraints are used to guide the clustering process by us-
ing them to influence the clusters merge selection procedure, which is considered
to be the clustering-engine of any AHCmethod and therefore resulting in a directly
constraint-influenced dendrogram.

3



288 Chapter II. Publications

3SHACC mixes two constraint integration models: it computes a new metric on the basis
of constraints which is used to compute pairwise similarities, and it adapts a classic cluster-
ing engine to consider constraints when assigning particular instances to clusters. For this
reason, it should be considered a hybrid method. Our overall proposal extends the work
by [29], where a basic AHC approach to the CC problem was proposed. Even if the basic
drawlines presented in [29] are maintained, 3SHACC offers a mainly new approach to the
CC problem. Automatic constraint weighting and weighted DML are exclusive to the pro-
posal presented in this study, as in [29] the only step previous to the clustering process is a
simple constraint propagation procedure using the Floyd-Warshall algorithm. Another dif-
ference with respect to [29] can be found in the agglomerative hierarchical CC procedure.
In this study, a constraint-influenced affinity function is always applied to select the two
clusters to merge, whereas in [29] a constraint-influenced affinity function can only be ap-
plied under very specific circumstances. Overall, 3SHACC presents several advantages over
previous approaches:

• A completely unsupervised constraint weightingmethod based on classic clustering
techniques is used to generate constraint weights.

• A new semi-supervised DML algorithm that is able to leverage both constraints and
their weights in order to learn a distance metric, in contrast to classic DML algo-
rithms which are incapable of handling weights.

• A reward-style cost function that accounts for satisfied constraints is used to apply
AHC to the dataset and the constraint set, based on the similarities computed on the
basis of the transformed dataset. This cost function allows for a strong influence of
constraints on the dendrogram building process and while avoiding dead-ends, as it
allows constraint violations when needed.

To prove the suitability and adaptability of 3SHACC for diverse instances of the CC prob-
lem, 3SHACC is tested over 25 datasets and compared with five classic approaches to the
CC problem and the previous version of 3SHACC presented in [29], which we refer to as
2SHACC. Three constraint sets are generated for every dataset, with incremental level of
constraints-based information, allowing for a scalability comparison in the quality of the
results. Statistical Bayesian testing is later used to validate comparisons and draw our final
conclusions.
The rest of this paper is organized as follows: background related to CC and multiobjective
optimization is introduced in Section 2 and our proposal 3SHACC is described in Section 3.
The experimental setup is explained in Section 4; results and their analysis are discussed in
Sections 5 and 6, respectively; finally, conclusions are presented in Section 7.
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2 Background

In this section, we present the background knowledge concerning AHC (Section 2.1) and
CC (Section 2.2), as well as computational complexity results arising from approaching the
CC problems via AHC (Section 2.3).

2.1 Agglomerative Clustering

Clustering can be defined as the task of grouping the 𝑛 instances of a dataset 𝑋 into 𝑘 clus-
ters. Each instance is described by 𝑢 features. More formally, 𝑋 = {𝑥1,⋯ , 𝑥𝑛}, with the
𝑖th instance noted as 𝑥𝑖 = (𝑥1𝑖 ,⋯ , 𝑥𝑢𝑖 ). A partition 𝐶 = {𝑐1,⋯ , 𝑐𝐾} assigns each instance
to a cluster such that 𝑐𝑖 = {𝑥1𝑖 ,⋯ , 𝑥|𝑐𝑖|𝑖 |𝑥𝑗 ∈ 𝑋, 𝑗 = 1,⋯ , |𝑐𝑖|}. All instances need to be
assigned to a cluster (⋃𝐾

𝑖=0 𝑐𝑖 = 𝑋) and no instance can be assigned to more than one
cluster (𝑐𝑖 ∩ 𝑐𝑗 = ∅ ∀𝑖 ≠ 𝑗). Every partition 𝐶 assigns a label 𝑦𝐶𝑖 to every 𝑥𝑖 such that
𝑦𝐶𝑖 = 𝑙 ⟺ 𝑥𝑖 ∈ 𝑐𝑙. As a result, the list of labels for a given partition 𝑌 𝐶 = {𝑦𝐶1 ,⋯ , 𝑦𝐶𝑛 },
with 𝑦𝐶𝑖 ∈ {1,⋯ , 𝑘}, is obtained. Assigning an instance to a cluster depends on the similar-
ity to the rest of elements in that cluster, and the dissimilarity to the rest of instances of the
dataset. The similarity between two instances can be obtained with some kind of distance
measurement [30].
AHCmethods produce an informative hierarchical structure of clusters called dendrogram.
Partitions as describe above, with a number of clusters ranging from 1 to 𝑛, can always be
obtained from a dendrogram by just selecting a level from its hierarchy and partitioning
the dataset according to its structure. Typically, AHC methods start with a large number
of clusters and iteratively merge them according to some affinity criteria until a stopping
condition is reached. Every merge produces a new level in the hierarchy of the dendrogram.
Formally, given an initial partition with 𝑛𝑐 clusters 𝐶 = {𝑐1,⋯ , 𝑐𝑛𝑐} (usually 𝑛𝑐 = 𝑛), a
traditional agglomerative CC method selects two clusters to merge by applying Equation 1.

{𝑐𝑖, 𝑐𝑗} = argmax
𝑐𝑖 ,𝑐𝑗∈𝐶,𝑖≠𝑗

𝐴(𝑐𝑖, 𝑐𝑗), (1)

with 𝐴(⋅, ⋅) being a function used to determine the affinity between the two clusters given
as arguments. This function needs to be carefully chosen for every problem, as it greatly
affects the result of the clustering process. Some conventional methods to measure affinity
between clusters are worth mentioning, such as single linkage, average linkage and com-
plete linkage [30]. However, different measures are used in out-of-lab applications, as the
manifold structures usually present in real-world datasets can be hardly captured by the
aforementioned classic affinity measures.
To tackle this problem, new AHC algorithms operate on the basis of a structure known as
similarity graph, where nodes represent instances in dataset𝑋 andweighted edges represent
similarities between those instances. Methods such asChameleon [31], GDL [32] or PIC [33]
use similarity graphs to perform AHC. The K-nearest-neighbors (K-NN) graph is commonly
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used by AHC methods as the similarity graph, it is typically built as in Equation 2, where
𝒩𝐾
𝑖 is the set of 𝐾-nearest neighbors of 𝑥𝑖 and 𝜌 is a tradeoff parameter.

𝑆[𝑖,𝑗] = { 𝑒(−
‖𝑥𝑖−𝑥𝑗‖

2
2

𝜌 ) 𝑥𝑗 ∈ 𝒩𝐾
𝑖

0 otherwise
. (2)

2.2 Constrained Clustering

In instance-level Constrained Clustering (CC), a set of constraints is given to guide the clus-
tering process. Constraints consist of pairs of instances that state whether the two instances
must be placed in the same cluster or in different clusters. Better results can be obtained by
integrating these constraints into the clustering process. Constraints can be formalized as
follows:

• Must-link (ML) constraints (𝑥𝑖, 𝑥𝑗) ∈ 𝐶=: instances 𝑥𝑖 and 𝑥𝑗 from 𝑋 must be placed
in the same cluster.

• Cannot-link (CL) constraints (𝑥𝑖, 𝑥𝑗) ∈ 𝐶≠: instances 𝑥𝑖 and 𝑥𝑗 from 𝑋 cannot be
assigned to the same cluster.

In CC, a partition of 𝑘 clusters 𝐶 = {𝑐1,⋯ , 𝑐𝑘} must be found given a dataset 𝑋 and two
constraint sets 𝐶= and 𝐶≠.
ML constraints are reflexive, transitive and symmetric, and therefore they constitute an
equivalence relation. Given constraints (𝑥𝑎, 𝑥𝑏) ∈ 𝐶= and (𝑥𝑏, 𝑥𝑐) ∈ 𝐶= then (𝑥𝑎, 𝑥𝑐) ∈ 𝐶=
is verified. In addition, if 𝑥𝑎 ∈ 𝑐𝑖 and 𝑥𝑏 ∈ 𝑐𝑗 are related by (𝑥𝑎, 𝑥𝑏) ∈ 𝐶=, then (𝑥𝑐, 𝑥𝑑) ∈ 𝐶=
is verified for any 𝑥𝑐 ∈ 𝑐𝑖 and 𝑥𝑑 ∈ 𝑐𝑗 [11].
CL constraints do not constitute an equivalence relation. However, analogously, given 𝑥𝑎 ∈
𝑐𝑖 and 𝑥𝑏 ∈ 𝑐𝑗 , and the constraint (𝑥𝑎, 𝑥𝑏) ∈ 𝐶≠, then it is also true that (𝑥𝑐, 𝑥𝑑) ∈ 𝐶≠ for
any 𝑥𝑐 ∈ 𝑐𝑖 and 𝑥𝑑 ∈ 𝑐𝑗 [11].

2.3 The Feasibility Problem

A relevant aspect to consider is how constraints affect the complexity of the classic clustering
problem. We can formulate the feasibility problem for hierarchical instance-level CC as in
Definition 1 [19].

Definition 1 Feasibility Problem: given a dataset 𝑋 , the constraint sets𝐶≠ and𝐶=, and the
symmetric distancemeasure𝐷(𝑥𝑖, 𝑥𝑗) ≥ 0 for each pair of instances: Can𝑋 be partitioned into
clusters so that all constraints in 𝐶≠ ∪ 𝐶= are satisfied? [19]

Table 1 shows the algorithmic complexity for the feasibility problem for instance-level con-
straints. Please note that Definition 1 does not impose any limits on the value of 𝐾 (the
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number of clusters), which leads tomore relaxed complexities than those found for the non-
hierarchical case. However, the dead-ends problem arises: a hierarchical CC algorithmmay
find scenarios where no merge can be carried out without violating a constraint. Previous
solutions based on the transitive closure of the constraint sets have been proposed to this
problem, although they imply not generating a full dendrogram [19].

Constraints Complexity Dead Ends?
Must-Link P No
Cannot-Link NP-complete Yes
ML and CL NP-complete Yes

Table 1: Feasibility problem complexity [19].

These complexity results show that the feasibility problemwith CL constraints is intractable
and hence CC is intractable too. This can be proven by using a reduction from the One-in-
three 3SAT with positive literals problem, which is NP-complete [34]. For more details on
the complexity of CC see [19].
Regarding the dead-ends problem, a full dendrogram considering constraints can be ob-
tained by switching from a hard interpretation of constraints to a soft one. This means that
every level in the dendrogram tries to satisfy as many constraints as possible, but constraint
violations are allowed in order for the algorithm to never reach a dead-end. This is the main
reason why we focus on soft constraints in this study.

2.4 Distance Metric Learning

The vast majority of methods making up the overall data science algorithms and techniques
corpus use distance measures. They are used to determine similarities between instances
in the dataset from which we want to extract information. Clustering can be found among
these techniques, with the assignation rule from the k-means algorithm being the foun-
dation of the automatic clustering concept [35]. However, there is an infinite number of
distance measures that can be used for this task, and finding the one that better adapts our
dataset is crucial to obtain high quality results in any application. Distance Metric Learning
(DML) arises tomeet this need, with algorithms capable of finding distancemetrics that cap-
ture hidden features or relations in our datasets that standard measures like the Euclidean
distance could miss. Combining DML algorithms and distance-based learning algorithms
results in more complete and adaptive approaches to a wide variety of problems [36].
One of the techniques that has helped developing DML is known as Learning from Side
Information (LSI), sometimes also referred to as Mahalanobis Metric for Clustering [13]. It
directly connects with the SSL paradigm, particularly with the constraint-based SSL area, as
it incorporates side information referring to similar and dissimilar pairs of instances in the
dataset, which can be easily compared with the must-link and cannot-link constraint sets.
Given a pair of examples 𝑥𝑖 and 𝑥𝑗 , LSI can be viewed as a method to bring these instances
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closer if they are similar ((𝑥𝑖, 𝑥𝑗) ∈ 𝐶=) or set themapart if they are dissimilar ((𝑥𝑖, 𝑥𝑗) ∈ 𝐶≠).
Formally, LSI searchs for a positive semidefinite matrix𝑀 ∈ 𝑆𝑑(ℝ)+0 optimizing Equation 3.

min𝑀 ∑(𝑥𝑖 ,𝑥𝑗)∈𝐶=
‖𝑥𝑖 − 𝑥𝑗‖2𝑀

𝑠.𝑡. ∶ ∑(𝑥𝑖 ,𝑥𝑗)∈𝐶≠
‖𝑥𝑖 − 𝑥𝑗‖𝑀 ≥ 1 . (3)

where ‖𝑥𝑖 − 𝑥𝑗‖𝑀 = √(𝑥𝑖 − 𝑥𝑗)𝑇𝑀(𝑥𝑖 − 𝑥𝑗). However, Equation 3 is hard to optimize with
traditional methods, so its authors propose an Equivalent form of it in Equation 4, which
can be optimized using the projected gradient ascent method.

max𝑀 ∑(𝑥𝑖 ,𝑥𝑗)∈𝐶≠
‖𝑥𝑖 − 𝑥𝑗‖𝑀

𝑠.𝑡. ∶ ∑(𝑥𝑖 ,𝑥𝑗)∈𝐶=
‖𝑥𝑖 − 𝑥𝑗‖2𝑀 ≤ 1 . (4)

3 The Proposed Method: 3SHACC

In this section, we describe the Three Stages Hybrid Agglomerative Constrained Cluster-
ing (3SHACC) method. It uses the two constraint integration methods mentioned in the
introduction (distance-based methods and clustering engine-adapting methods) to produce
a partition of a dataset 𝑋 taking into account the constraint sets 𝐶= and 𝐶≠. Three well-
defined phases shape 3SHACC: the first phase is fully devoted to producing a new metric
based on the information contained in the constraint sets; the second phase computes a sim-
ilarity matrix based on the results of the first phase, which is later used in the third phase
to finally produce a partition of the dataset through agglomerative clustering. These three
phases are extensively discussed below.

3.1 Informativity andMetric Matrix Computation

In order for the newmetric to take into account the most relevant information contained in
the constraint sets 𝐶= and 𝐶≠, the informativity matrix 𝑊 ∈ ℝ𝑛×𝑛 can be computed with
respect to any classic clustering procedure 𝒜. To do so, the set of partitions 𝑃 = [𝑝1,⋯ , 𝑝𝛾]
has to be obtained by running𝒜 over 𝑋 𝛾 times. With this, every partition in 𝑃 is defined as
in Section 2.1 with 𝑙𝑖 being the label set associated with partition 𝑝𝑖 and given in the form of
any finite set. The list of label sets is defined as 𝐿 = [𝑙1,⋯ , 𝑙𝛾] with |𝑙𝑖| ≤ |𝑙𝑗 | ∀𝑖 < 𝑗. Then,
every element 𝑤[𝑖,𝑗] from𝑊 is computed as in Equation 5.

𝑤[𝑖,𝑗] =
⎧⎪
⎨⎪
⎩

1
|𝑃|
∑𝛾

𝑞=1 𝟙J𝑦𝑝𝑞𝑖 ≠ 𝑦𝑝𝑞𝑗 K𝑟[𝛾−𝑘+1] (𝑥𝑖, 𝑥𝑗) ∈ 𝐶=
1
|𝑃|
∑𝛾

𝑞=1 𝟙J𝑦𝑝𝑞𝑖 = 𝑦𝑝𝑞𝑗 K𝑟𝑘 (𝑥𝑖, 𝑥𝑗) ∈ 𝐶≠
0 otherwise

, (5)

where 𝟙J⋅K is the indicator function (returns 1 if the predicate given as argument holds and 0
otherwise), and 𝑟 = [𝑟1,⋯ , 𝑟𝑞| 0 < 𝑟𝑖 ≤ 1, 𝑖 = 1,⋯ , 𝑞] is a weighting array with 𝑟𝑖 ≤ 𝑟𝑗 ∀𝑖 <
𝑗. Intuitively, 𝑊 is used to quantify the relevance of every individual constraint under the
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premise that the higher (lower) the number of clusters available to partition a dataset, the
harder it is to violate CL (ML) constraints. This trend can be easily verified by observing
the trivial cases: when 𝑘 = 1 all ML constraints must be satisfied and all CL constraints
are violated, whereas when 𝑘 = 𝑛 all CL constraints are satisfied and all ML constraints
are violated. Bearing this in mind, Equation 5 can be interpreted as a way to emphasize ML
constraints that are violatedwhen |𝑙𝑖| is low (first partitions in 𝑃), andCL constraints that are
violated when |𝑙𝑖| is high (last partitions in 𝑃), as they clearly contain valuable information
that must have an effect on the clustering process. On the other hand, constraints that are
never violated are likely to not contain overall valuable information and their weight would
tend to 0. It should be noted that the procedure described above is completely unsupervised,
since not even the number of clusters 𝑘 in the final partition need be known.
Note that 𝑊 is always computed with respect to a specific classic clustering algorithm 𝒜,
and hence the selection of𝒜 is crucial to the results of this procedure. The intuition on this
lies on identifying the strengths and weaknesses of the algorithm that will be used to obtain
the final partition. For example, if a procedure uses the Euclidean distance to determine
cluster memberships, clusters will tend to be hyper-spherical, and constraints must be used
to guide the procedure away from this trend. To this end, any clustering algorithm using
Euclidean distance (such as classic K-means) can be used as 𝒜 to obtain𝑊 , as constraints
that keep clusters away from the hyper-spherical shape are very likely to have a high weight.
Once the weights matrix𝑊 has been obtained, a new metric 𝑀 ∈ ℝ𝑢×𝑢 is computed. It is
computed by combining the information contained in the dataset 𝑋 and the constraint sets
𝐶= and 𝐶≠, taking into account constraint weights stored in 𝑊 . In order to do so, a new
distance metric learning method based on the classic LSI algorithm [13] is proposed. As it
has been mentioned in Section 2.4, the LSI algorithm is capable of integrating similarity in-
formation into classic DML procedures, producing as result a newmetric that brings similar
instances from 𝑋 (related by ML) closer and separates dissimilar instances (related by CL).
However, no information on the relevance of these similarities can be handled by LSI, so it
cannot take advantage of the information stored in𝑊 . To tackle this issue we propose the
Weighted LSI (WLSI) method, which is able to integrate constraint weights into the DML
process by optimizing Equation 6.

max𝑀 ∑(𝑥𝑖 ,𝑥𝑗)∈𝐶≠
(1 + 𝜀 − 𝑤[𝑖,𝑗])‖𝑥𝑖 − 𝑥𝑗‖𝑀

𝑠.𝑡. ∶ ∑(𝑥𝑖 ,𝑥𝑗)∈𝐶=
(𝑤[𝑖,𝑗] + 𝜀)‖𝑥𝑖 − 𝑥𝑗‖2𝑀 ≤ 1 , (6)

where 𝑀 is the resulting metric and 𝜀 > 0 is the minimum weight a constraint can have.
Intuitively, Equation 6 scales down distances separating instances related by relevant (high-
weighted) CL constraints, so that the transformation to be applied needs to emphasize on
these constraints to optimize Equation 6. At the same time, it separates instances related
by relevant ML constraints so the space transformation needed to bring them together is
larger. Please note that 𝜀must be greater than zero in order for instances (𝑥𝑖, 𝑥𝑗) related by
highly relevant CL constraint (𝑤[𝑖,𝑗] = 1) to not collapse in the same space point (scaled
distance between them (1 + 𝜀 − 𝑤[𝑖,𝑗])‖𝑥𝑖 − 𝑥𝑗‖𝑀 becomes 0), in which case Equation 6 can

9
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not be optimized. The iterated projections method [36] can be used to optimize Equation 6.
Algorithm 1 summarizes the overall weights and metric matrix computation process.

Algorithm 1:Weights and Metric Matrix Computation (First Stage)
Input: Dataset 𝑋 , constraint sets 𝐶= and 𝐶≠, weighting array 𝑟, the list of label sets 𝐿,

number of partitions 𝛾 to be obtained with 𝒜, minimum weight a constraint
can have 𝜀.

[1] Initialize𝑊 ∈ ℝ𝑛×𝑛 as𝑊 = 0
[2] Initialize 𝑃 as an empty list with length 𝛾

// Build the set of partitions
[3] for 𝑖 ∈ {𝑖,⋯ , 𝛾} do
[4] 𝑝𝑖 ← 𝒜(𝑋, 𝑙𝑖)
[5] end

/* Iterate over 𝑃 to build the weights matrix 𝑊 following Equation 5
*/

[6] for 𝑞 ∈ {1,⋯ , 𝛾} do
[7] for 𝑖 ∈ {1,⋯ , 𝑛} do
[8] for 𝑗 ∈ {1,⋯ , 𝑛} do
[9] if 𝐶=(𝑥𝑖, 𝑥𝑗) ∈ 𝐶= and 𝑦

𝑝𝑞
𝑖 ≠ 𝑦𝑝𝑞𝑗 then

[10] 𝑤[𝑖,𝑗] ← 𝑤[𝑖,𝑗] + 𝑟[𝛾−𝑘+1]
[11] end
[12] if 𝐶≠(𝑥𝑖, 𝑥𝑗) ∈ 𝐶≠ and 𝑦

𝑝𝑞
𝑖 = 𝑦𝑝𝑞𝑗 then

[13] 𝑤[𝑖,𝑗] ← 𝑤[𝑖,𝑗] + 𝑟𝑘
[14] end
[15] end
[16] end
[17] end

/* Compute distance matrix 𝑀 by optimizing Equation 6 with the
iterated projections method. */

[18] 𝑀 ← WLSI(𝑋, 𝐶=, 𝐶≠,𝑊)
[19] return𝑀

3.2 Similarity Matrix Computation

The second stage of our proposal computes the similarity 𝑆 ∈ ℝ𝑛×𝑛 matrix that will be used
later to perform agglomerative clustering. Similarity measures typically used in agglomer-
ative clustering are based on mere pairwise distances. However, this is sensitive to noise
and outliers, even if they are able to reasonably capture the local structure of the data [37].
To avoid these drawbacks we follow the work in [28], where a combination of the pairwise
distances and the reconstruction coefficient is taken as the optimization problem to solve in
order to obtain the similarity matrix 𝑆, which is computed following Equation 7.

10
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min𝑆
‖𝑋−𝑋𝑆‖2𝐹

2
+ 𝜆

2
∑𝑛

𝑖=1∑
𝑛
𝑗=1 ‖𝑥𝑖 − 𝑥𝑗‖2𝑀𝑧[𝑖,𝑗] +

𝛽
2
‖𝑆‖22

s.t. 𝑆𝑇1 = 1, 𝑠[𝑖,𝑖] = 0, 𝑍 = |𝑆|+|𝑆𝑇 |
2

, (7)

where 𝑋 = [𝑥1,⋯ , 𝑥𝑛] ∈ ℝ𝑢×𝑛 is a matrix containing the instances of the dataset in each
column, ‖𝑆‖22 is a regularization term, 𝜆 and 𝛽 are tradeoff parameters, 1 is a column vector of
ones with the needed dimension, and the constraint 𝑍 = (|𝑆|+|𝑆𝑇 |)/2 ensures compatibility
between the two similarities combined in the expression. Note that the operator | ⋅ | gives the
absolute values corresponding to all elements given as arguments and operator ‖⋅‖𝐹 refers to
the Frobenius norm. Thanks to the reconstruction coefficient, the above similarity measure
is robust to noise and outliers [28]. We can rewrite this problem as in Equation 8 by defining
𝐷 as a matrix containing pairwise distances within the dataset, computed according to the
new distance metric𝑀.

min𝑆
‖𝑋−𝑋𝑆‖2𝐹

2
+ 𝜆

2
Tr(𝑍𝐷∘2) + 𝛽

2
‖𝑆‖22

s.t. 𝑆𝑇1 = 1, 𝑠[𝑖,𝑖] = 0
, (8)

where Tr(⋅) refers to the trace of the matrix given as argument and 𝐷∘2 is the squared
Hadamard exponentiation of 𝐷. The mathematical derivation of the optimization scheme
for 𝑆 based on the problem in Equation 7 is analyzed in detail in [28]. It iteratively updates
every row 𝑠𝑖 of matrix 𝑆 separately by applying Equation 9.

𝑤[𝑖,𝑗] = sign(𝑣𝑗) (|𝑣𝑗 | −
𝜆𝑑[𝑗,𝑖]
2 )

+
, (9)

where 𝑠[𝑖,𝑗] is the 𝑗-th element in row 𝑠𝑖 from 𝑆, 𝑑[𝑗,𝑖] is the 𝑗-th of the 𝑖-th column from
matrix 𝐷, and 𝑣𝑗 is the 𝑗-th element from vector 𝑣, which is computed as in Equation 10.

𝑣 = 𝑋𝑇
1 𝑥

𝑥𝑇𝑥 + 𝛽 . (10)

In Equation 10 the term 𝑋1 is computed as 𝑋1 = 𝑋 − (𝑋𝑍 − 𝑥𝑖𝑠𝑖), with 𝑥𝑖 being the 𝑖-th
column (instance) of 𝑋 and 𝑠𝑖 being the 𝑖-th row of matrix 𝑆. Note that when 𝑖 = 𝑗 then
𝑠[𝑖,𝑗] = 0.
Once 𝑆 is obtained, a hard thresholding operator 𝐻𝜇(⋅) is applied to each column. This
operator keeps the 𝜇 largest entries from the column given as argument and sets the rest to 0.
The value of 𝜇 influences the resiliency of the overall proposal to noise and outliers, as it sets
to 0 the lower similarities in 𝑆, effectively removing spurious correlations. Although a high
value of 𝜇 could also remove valuable information, thus a specific tuning step is required to
set its value [28].

11



296 Chapter II. Publications

Lastly, the resulting similarity measure is obtained by computing 𝑆 ← (|𝑆| + |𝑆𝑇 |)/2 and
applying the unit 𝑙2-norm to each column of 𝑆. These steps effectively build a K-NN graph
(with 𝜇 defining the size of the K-NN neighborhood) as described in Section 2.1, except
that in this case the similarity measure is not based only on pairwise distances. Algorithm 2
summarizes the process to obtain the similaritymatrix. The loop in line 5 is shown to always
converge in [28] and its stopping condition is controlled by the Frobenius norm (noted by
‖ ⋅ ‖𝐹) computed over the differences in 𝑆 between two consecutive iterations.

Algorithm 2: Similarity Matrix Computation (Second Stage)
Input: Dataset 𝑋 , distance metric matrix𝑀, tradeoff parameter 𝜆 and 𝛽, thresholding

parameter 𝜇, stopping criteria threshold 𝜖.
[1] Initialize 𝑆 with values in [0, 1] such that 𝑆𝑇1 = 1 and 𝑠[𝑖,𝑖] = 0
[2] Initialize 𝐷 ∈ ℝ𝑛×𝑛 as an empty matrix.

// Compute pairwise distances to obtain 𝐷
[3] for 𝑖 ∈ {𝑖,⋯ , 𝑛} do
[4] for 𝑗 ∈ {𝑗,⋯ , 𝑛} do
[5] 𝑑[𝑖,𝑗] ← ‖𝑥𝑖 − 𝑥𝑗‖𝑀
[6] end
[7] end
[8] 𝐷 ← 𝐷∘2

// Iteratively update 𝑆 until convergence
[9] do
[10] for 𝑖 ∈ {𝑖,⋯ , 𝑛} do
[11] Obtain row 𝑠(𝑡+1)𝑖 following Equation 9 and store it to build 𝑆(𝑡+1)
[12] end
[13] while ‖𝑆 − 𝑆(𝑡+1)‖𝐹 < 𝜖;
[14] Apply the hard thresholding operator 𝐻𝜇(⋅) to each column of 𝑆
[15] Obtain final similarity matrix by computing 𝑆 ← (|𝑆| + |𝑆𝑇 |)/2
[16] Normalize each column of 𝑆 applying the 𝑙2-norm.
[17] return 𝑆

3.3 Agglomerative Constrained Clustering

AHC methods produce an informative hierarchical structure of clusters. They start with
a large (usually 𝑛) initial number of clusters and iteratively merge them by computing the
affinity 𝐴(⋅, ⋅) between every pair of clusters with respect to some criteria. Formally, for an
initial partition 𝐶 = {𝑐1,⋯ , 𝑐𝑛} an agglomerative clustering method tries to find the two
clusters to merge 𝑐𝑖 and 𝑐𝑗 by applying Equation 1, introduced in Section 2.1.
In CC the constraint sets𝐶= and𝐶≠ can be used to bias the affinity towardsmerges violating
the overall smallest possible number of constraints. In order to do so, the infeasibility can be
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formally defined as in Equation 11, which can be interpreted as the number of constraints
violated by a partition.

Infs(𝐶, 𝐶=, 𝐶≠) = ∑
(𝑥𝑖 ,𝑥𝑗)∈𝐶=

𝟙J𝑦𝐶𝑖 ≠ 𝑦𝐶𝑗 K + ∑
(𝑥𝑖 ,𝑥𝑗)∈𝐶≠

𝟙J𝑦𝐶𝑖 = 𝑦𝐶𝑗 K (11)

A reward-style affinity criterion incorporating constraints can be defined as in Equation 12,
where 𝑆𝑐𝑖 ,𝑐𝑗 is a submatrix of 𝑆 containing row indices from 𝑐𝑖 and column indices from 𝑐𝑗 ,
|𝑐𝑖| is the number of elements in cluster 𝑐𝑖, and 𝛼 is a scaling parameter for the reward term.

𝐴(𝑐𝑖, 𝑐𝑗) =
1

|𝑐𝑖|2
1|𝑐𝑖|𝑇𝑆𝑐𝑖 ,𝑐𝑗𝑆𝑐𝑗 ,𝑐𝑖1|𝑐𝑖| +

1
|𝑐𝑗 |2

1|𝑐𝑗 |𝑇𝑆𝑐𝑗 ,𝑐𝑖𝑆𝑐𝑖 ,𝑐𝑗1|𝑐𝑗 |+

(|𝐶=| + |𝐶≠| − Infs({𝐶 − {𝑐𝑗 , 𝑐𝑗}} ∪ {𝑐𝑖 ∪ 𝑐𝑗}, 𝐶=, 𝐶≠)) ∗ 𝛼⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝑅𝑒𝑤𝑎𝑟𝑑

. (12)

The first two terms from the affinity criterion in Equation 12 can be interpreted as the ad-
dition of the input and output degree between the two clusters to merge when 𝑆 is viewed
as a K-NN graph. The rest of the terms define the reward, which is used to incorporate con-
straints into the clustering process. Parameter 𝛼 is used tomake𝐴(𝑐𝑖, 𝑐𝑗) a stepped function,
so that merges violating a lower number of constraints will always have a higher affinity
value. To achieve this, 𝛼 has to be set to an arbitrarily high value, always higher that the
diameter of the dataset. The first argument for the Infs function {𝐶−{𝑐𝑗 , 𝑐𝑗}}∪{𝑐𝑖∪𝑐𝑗} refers
to the partition resulting from the merge of clusters 𝑐𝑖 and 𝑐𝑗 .
Overall, the affinity criterion in Equation 12 can be interpreted as: among all merges violat-
ing the lowest possible number of constraints, choose the one merging the two most similar
clusters. Please note that this affinity criterion directly affects the assignment of instances
to clusters, while previous stages of 3SHACC aim to capture the overall constraint-based
information.

3.4 3SHACC Summary

Algorithm 3 summarizes the overall constrained AHC process. Any kind of reasonable cri-
teria can be used to stop the loop in line 2 from Algorithm 3; although, in cases where 𝑘
is known, the number of clusters in 𝐶 can be used to stop the clustering process by testing
|𝐶| > 𝑘. Note that Algorithm 3 returns a partition, although it can be trivially modified
to return a dendrogram instead by storing the history of all merges carried out during the
clustering process and returning it alongside with the partition 𝐶.
For the sake of efficiency, pairwise affinities can be stored in amatrix𝐺 so they do not have to
be computed in every iteration of the clustering process. Only affinities involving the newly
created cluster need to be computed after every merge and stored in 𝐺.
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Algorithm 3: Constrained Agglomerative Clustering (Third Stage)
Input: Dataset 𝑋 , constraint sets 𝐶= and 𝐶≠, similarity matrix 𝑆, scaling parameter 𝛼.

[1] Assign each instance to a singleton cluster to get initial partition 𝐶 = {𝑐1, 𝑐2,⋯ , 𝑐𝑛}
[2] Initialize affinity matrix 𝐺 computing pairwise affinities
[3] while stopping criteria not met do

/* Select the best two clusters to merge using 𝐴 in Equation 12 */
[4] 𝑐𝑎, 𝑐𝑏 ← argmax𝑖,𝑗 𝐺

/* Merge clusters ↔ Generate new hierarchy level in the dendrogram
*/

[5] 𝐶 ← {𝐶 − {𝑐𝑎, 𝑐𝑏}} ∪ {𝑐𝑎 ∪ 𝑐𝑏}
/* Update affinity matrix 𝐺 computing affinities involving the

newly created cluster */
[6] for 𝑖 ∈ {𝑖,⋯ , |𝐶|} do
[7] 𝐺[𝑎, 𝑖] ← 𝐴(𝑐𝑖, {𝑐𝑎 ∪ 𝑐𝑏})
[8] end
[9] end
[10] return 𝐶

In order for the reader to have a general view of our proposal, Figure 1 shows a pictorial
representation of the overall 3SHACC algorithm.

3.5 On the Computational Complexity of 𝟑SHACC

The computational complexity of each 3SHACC stage can be addressed separately. We as-
sume that the constraint sets are given in the form of a matrix containing 1 in positions
associated with indices relating instances linked byML constraints in the datasets, -1 for the
case of CL constraints and 0 in case of no constraint. This way the constraint sets can be
randomly accessed in constant time. In the following, symbol 𝑇 is always used to refer to
the number of iterations any iterative process is carried out.
The first stage involves running a given algorithm 𝒜 over the dataset 𝑋 a number of times
equal to 𝛾, and therefore the overall complexity of this stage depends on 𝒪(𝒜). For the sake
of simplicity, we assume that 𝒜 is an algorithm with complexity equivalent to the K-means
algorithm, whose classic implementation runs in𝒪(𝑛×𝑢×𝑘×𝑇). As𝒜 has to be run 𝛾 times,
computing matrix 𝑃 requires𝒪(𝑛×𝑢×𝑘×𝑇 ×𝛾) operations (assuming convergence on𝒜).
The informativity matrix𝑊 is also computed in the first stage, which involves iterating over
all possible pairs of instances in𝑋 to check their labels and contrast themwith the constraint
sets. This has to be done for every partition in 𝑃, so this procedure takes𝒪(𝑛2×𝛾) operations.
In WLSI, target functions and gradient computation require𝒪(𝑛2×𝑢2×𝑇) operations, and
eigenvalue decompositions used to ensure𝑀 (computed metric) to be positive semidefinite
require 𝒪(𝑢3 × 𝑇) operations, so WLSI runs in 𝒪((𝑛2 × 𝑢2 + 𝑢3) × 𝑇).
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Figure 1: Diagram summarizing the overall 3SHACC clustering process.

Regarding the second stage, it involves computing pairwise distances according to the new
metric matrix 𝑀, which can be done in 𝒪(𝑑2 × 𝑢) operations. In [28] an in-depth anal-
ysis of the algorithmic complexity for the iterative process used to obtain 𝑆 can be found,
concluding that this procedure can be performed in 𝒪(𝑑2 × 𝑢 × 𝑇) operations.
Finally, computational complexity of the third stage needs to be addressed. For the sake of
simplicity we refer to the number of clusters in 𝐶 as 𝑐 in this analysis. Computing the affin-
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ity between two clusters involves computing the product of two matrices, whose worst case
scenario is found when they are square and is known to be of cubic order. This case corre-
spond to partitions where the number of instances belonging to every cluster is as balanced
as possible (𝑛/𝑐), so this is the case considered in this analysis. The last term in Equation 12
computes the affinity of a given partition, which can be done in 𝒪(𝑛) operations by using
auxiliary matrices. Equation 13 shows puts together all these concepts to present the overall
computational complexity of 𝐴.

𝒪 (2 (𝑛𝑐 )
3
+ 𝑛) . (13)

Firstly, affinity𝐴 is first used to initialize𝐺with pairwise distances. At this point the number
of clusters is known to be 𝑛, as all clusters are singleton (𝑐 = 𝑛). With this, the affinity
criterion has to be computed (𝑛(𝑛 − 1))/2 times, as 𝐴(𝑐𝑖, 𝑐𝑗) = 𝐴(𝑐𝑗 , 𝑐𝑖). Equation 14 shows
the final algorithmic complexity of this procedure, which is 𝒪(𝑛3).

𝑛(𝑛−1)
2

(2 (𝑛
𝑛
)
3
+ 𝑛) = 𝑛2−𝑛

2
(2 + 𝑛) =

2𝑛2+𝑛3−2𝑛−𝑛2

2
∈ 𝒪(𝑛3)

. (14)

Secondly, 𝐴 is used in the clustering iterative process to update matrix 𝐺 after every merge.
This procedure involves carrying out (𝑐 − 1) affinity computations. In the worst case sce-
nario, a complete dendrogram would be obtained, meaning that 𝐺 has to be updated for all
possible values of 𝑐. Equation 15 shows the expression describing the algorithmic complex-
ity of the iterative procedure in charge of obtaining the dendrogram (while loop in line 3
from Algorithm 3). Please note that the summation marked with ∗ is bounded by [0, 𝜋2/6),
which can be taken as constant (𝒪(1)) and therefore does not affect the final complexity.

∑𝑛
𝑐=1(𝑐 − 1) (𝑛

3

𝑐3
+ 𝑛) = 𝑛3

∗
⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴∑𝑛

𝑐=1 (
1
𝑐2
− 1

𝑐3
)+𝑛∑𝑛

𝑐=1(𝑐 − 1) =

𝑛3 + 𝑛∑𝑛−1
𝑐=0 𝑐 = 𝑛3 + 𝑛2(𝑛−1)

2
=

= 𝑛3 + 𝑛3−𝑛2

2
= 𝑛3 + 𝑛3 ∈ 𝒪(𝑛3)

. (15)

Assuming all iterative procedures involved in 3SHACC converge and assuming that 𝑇 can
always be fixed to a maximum number, then the overall algorithmic complexity of 3SHACC
is 𝒪(𝑛3). Please note that the size of the constraint sets 𝐶= and 𝐶≠ is never involved in
the complexity analysis, which makes its runtime completely independent of the amount of
constraint-based information available.
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4 Experimental Setup

A summary of the datasets used in our experiments can be found in Table 2. 25 real-world
datasets and 3 constraint sets for each one of them are used to compare 3SHACC to a clas-
sic set of state-of-the-art representative methods. These datasets can be found at the Keel-
dataset repository1 [38], and at the scikit-learn Python package2 [39].3

Table 2: Summary of datasets used for the experiments.

Name No. Instances No. Classes No. Features
Appendicitis 106 2 7
Balance 625 3 4
Breast Cancer 569 2 30
Bupa 345 16 5
Ecoli 336 8 7
Glass 214 6 9
Haberman 306 2 3
Hayes Roth 160 3 4
Heart 270 2 13
Ionosphere 351 2 33
Iris 150 3 4
Monk2 432 2 6
Movement Libras 360 15 90
Newthyroid 215 3 5
Pima 768 2 8
Saheart 462 2 9
Segment∗ 693 7 19
Sonar 208 2 60
Soybean 47 4 35
Spectfheart 267 2 44
Tae 151 3 5
Vehicle 846 4 18
Wdbc 569 2 30
Wine 178 3 13
Zoo 101 7 16

Constraint sets can be easily built by having access to the labels of a given dataset. Ground-
truth labels are used as an oracle which is queried with two instances. An ML or CL con-
straint is set between the two instances; depending on whether or not they belong to the

1https://sci2s.ugr.es/keel/category.php?cat=clas
2https://scikit-learn.org/stable/datasets/index.html
3Dataset Segment, marked with ∗, has been undersampled to 30%
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same class (see Section 4.1). Another reason why classification datasets are commonly used
in the CC literature is that the true labels can be used to assess the quality of the results (see
Section 4.2) and therefore an objective ground-truth based comparison can be carried out.
The ARI index is widely used in CC-related literature as the main external validation index
and quality indicator to evaluate the performance of new CC proposals. Please note that the
original ground truth labels always reflect a valid partitioning of the data, as constraints are
randomly allocated but not randomly generated. This means that the pairs of instances on
which constraints are imposed are randomly selected, but the constraint itself is generated
by querying an oracle (the true labels) and placing an ML constraint if the labels of the
instances are equal, or a CL constraint if they are different.

4.1 Constraint Generation

Following the method proposed in [7], three constraint sets are generated for every dataset,
with incremental level of constraint-based information. This method randomly selects two
instances from the dataset to set an ML or CL constraint between the instances attending
to their class membership, in this way the constraint set is built. Table 2 summarizes the
constraint sets generated for every dataset.
The three constraint sets 𝐶𝑆10, 𝐶𝑆15 and 𝐶𝑆20 are associated with a small percentage of the
size of the dataset: 10%, 15% and 20%, respectively. The number of constraints generated for
every constraint set associated with every dataset is obtained by computing the number of
edges in a complete graph with 𝑛𝑓 vertices with the formula (𝑛𝑓(𝑛𝑓 − 1))/2.
The bias introduced by using subsets of labeled data can be avoided by randomly allocating
the constraints as described above, as the risk of biasing the constraint set towards classes
with poor representation is lower. Table 3 displays the number of constraints of each type
obtained for every dataset and constraint set. All these constraint sets can be found here 4.

4.2 Evaluation Method

The Adjusted Rand Index (ARI) can be used to evaluate the quality of the partition obtained
by any given CC method [40]. By using the ARI measure, the degree of similarity of two
partitions for the same dataset can be computed; therefore, if one of these partitions cor-
responds to the true labels—which we have available—, the degree of similarity with the
ground truth can be obtained.
ARI is the corrected-for-chance version of the basic Rand Index, which computes the degree
of agreement between two partitions𝐶1 and𝐶2 of a given dataset𝑋 . 𝐶1 and𝐶2 can be viewed
as collections of 𝑛(𝑛−1)/2 pairwise decisions [41]. For each 𝑥𝑖 and 𝑥𝑗 in𝑋 , they are assigned
to the same cluster or to different clusters by a partition. The number of pairings where 𝑥𝑖 is
in the same cluster as 𝑥𝑗 in both 𝐶1 and 𝐶2 is taken as 𝑎; conversely, 𝑏 represents the number
of pairings where 𝑥𝑖 and 𝑥𝑗 are in different clusters. The degree of similarity between𝐶1 and
𝐶2 is computed as in Equation 16.

4https://drive.google.com/drive/u/1/folders/1sjnPYitey8q9zrPKa_YpFS7iNKTT15QH
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Table 3: Number of constraints used in experiments.

Dataset 𝐶𝑆10 𝐶𝑆15 𝐶𝑆20
ML CL ML CL ML CL

Appendicitis 37 18 76 44 154 77
Balance 841 1112 1846 2525 3324 4426
Breast Cancer 846 750 1954 1701 3292 3149
Bupa 91 504 217 1109 374 1972
Ecoli 147 414 352 923 644 1634
Glass 58 173 138 390 233 670
Haberman 273 192 631 404 1173 718
Hayes Roth 47 73 86 190 177 319
Heart 173 178 436 384 747 684
Ionosphere 338 292 738 640 1357 1128
Iris 28 77 92 161 132 303
Monk2 484 462 1064 1016 1835 1906
Movement Libras 46 584 83 1348 139 2417
Newthyroid 125 106 273 255 488 415
Pima 1572 1354 3601 3069 6443 5338
Saheart 613 468 1281 1134 2368 1910
Segment∗ 377 2038 738 4618 1353 8238
Sonar 106 104 241 255 416 445
Soybean 1 9 11 17 5 40
Spectfheart 230 121 563 257 952 479
Tae 31 89 88 165 164 301
Vehicle 916 2654 1993 6008 3576 10789
Wdbc 864 732 1975 1680 3448 2993
Wine 57 96 105 246 210 420
Zoo 13 42 27 93 53 157
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Rand(𝐶1, 𝐶2) =
𝑎 + 𝑏

𝑛(𝑛 − 1)/2 (16)

Equation 16 can be corrected for chance by taking into account the expected similarity of
all comparisons between partitions specified by the random model to establish a baseline.
Equation (17) shows the expression used to compute ARI.

ARI(𝐶1, 𝐶2) =
Rand(𝐶1, 𝐶2) − Expected Index

Maximum Index − Expected Index , (17)

where Expected Index is the degree of similarity with a randommodel andMaximum Index
is assumed to be 1. With this, it is clear that ARI(𝐶1, 𝐶2) ∈ [−1, 1], with a value close to 1
meaning a high degree of agreement between 𝐶1 and 𝐶2, positive values close to 0 meaning
no agreement, and a value below 0meaning that the Rand(𝐶1, 𝐶2) is less than expectedwhen
comparedwith the results of a randommodel. To summarize: the higher theARI, the greater
the degree of similarity between 𝐶1 and 𝐶2. For more details on ARI, see [40].
The ability of each method to integrate constraints into the clustering process also needs to
be evaluated. To this end, we define the Unsat measure, which, given a partition 𝐶 and the
constraint sets 𝐶= and 𝐶≠, computes the percentage of unsatisfied constraints as in Equa-
tion 18.

Unsat(𝐶, 𝐶=, 𝐶≠) =
Infs(𝐶, 𝐶=, 𝐶≠)
|𝐶=| + |𝐶≠|

, (18)

4.3 Validation of results

An in-depth analysis of the disadvantages of the classic Null Hypothesis Statistical Tests
(NHST) can be found in [42], where a new model is proposed to carry out statistical com-
parisons between two sets of results. In [42], the authors summarize the drawbacks of NHST
as “In a nutshell: NHST do not answer the question we ask”. These drawbacks stem from the
trap of black-and-white thinking, that is: to reject, or not to reject?
Bayesian tests can be used to overcome the drawbacks found in NHST. The Bayesian sign
test is the Bayesian version of the NHST non-parametric sign test. It can be easily used to
compare two sets of results by employing the rNPBST R package in [43]. A general use guide
to Bayesian statistical testing can be found in [44].
The Bayesian sign test obtains the statistical Dirichlet distribution of a parameter 𝜌 accord-
ing to the differences between two sets of results. The number of cases where 𝐴−𝐵 < 0, the
number of cases where no significant differences are found, and the number of cases where
𝐴−𝐵 > 0 are counted to get the distribution of 𝜌. The region of practical equivalence (rope)
[𝑟min, 𝑟max] needs to be defined in order to identify cases where there are no significant dif-
ferences, so that 𝑃(𝐴 ≈ 𝐵) = 𝑃(𝜌 ∈ rope). Finally, the weights of the Dirichlet distribution
are computed so it can be sampled to get triplets with the following form:
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[𝑃(𝜌 < 𝑟min) = 𝑃(𝐴 − 𝐵 < 0), 𝑃(𝜌 ∈ rope), 𝑃(𝜌 > 𝑟max) = 𝑃(𝐴 − 𝐵 > 0)]

4.4 Competing Methods

Our proposal, 3SHACC, is compared with other six previous CC algorithms, including
2SHACC. These methods can be briefly summarized as follows:

• 𝟐SHACC: Two Stages Hybrid Agglomerative Constrained Clustering is presented
in [29]. It uses the Floyd-Warshall algorithm to propagate the information con-
tained in the constraints set over the distance matrix. The updated distance matrix
is used later to determine similarities between clusters. These clusters are generated
through an agglomerative clustering process, in which an alternative constraint-
influenced criterion is used in cases where the information contained in the sim-
ilarity matrix is not enough to select two clusters to merge.

• COPKM: COnstrained Partitional K-means modifies the assignment rule of in-
stances to clusters of the classic K-means algorithm in such a way that an instance
can be assigned to a cluster only if no constraints are violated by the assignment [7].

• LCVQE: The Linear Constrained Vector Quantization Error algorithm introduces
a modification of the cost function of CVQE to make it less computationally com-
plex [45].

• TVClust: Two Views Clustering applies clustering methods on the dataset and the
constraint set separately, and tries to find a consensus between the results [46]. It
makes a soft interpretation of the constraints.

• RDPM: Relation Dirichlet Process - Means can be viewed as an extension of K-
means that includes side information (constraints). It is a deterministic derivation
of the TVClust model. The number of clusters (𝑘) does not need to be specified [46].
PCSKM: The Pairwise Constrained Sparse K-Means algorithm is an extension of the
classic Sparse K-Means algorithm that integrates constraints bymeans of a weighted
penalty term [47].

4.5 Calibration

This section discusses 3SHACC parameters, analyzing their impact on the quality of the
results. Only three of the parameters of 3SHACC have an impact on the results in a way that
is not easy to predict: 𝜆 and 𝛽 (which are the tradeoff parameters for the pairwise distances
and the reconstruction coefficients in the computation of similarity matrix and 𝜇 (which is
the parameter for the hard thresholding operator). The rest of the parameters have very little
impact on the results or are not suitable for optimization. A basic intuition on the influence
of these parameter is given as follows:
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• Parameter 𝜀 represents theminimumweight a constraint can have when computing
the metric matrix 𝑀 with the WLSI procedure. Its value has to be grater than 0 to
prevent instances from collapsing in a single point. A high value for 𝜀 would mask
constraints considered to be truly relevant by WLSI.

• Parameter 𝜖 gives the threshold for the iterative procedure computing 𝑆 to stop. It
is clear that the lower the value, the more stable the values of 𝑆 would be and the
more time-consuming the iterative process would be. The rule to set this parameter
is the closer to 0, the better, taking computational time into account.

• Parameter 𝛼 is used as the scaling parameter for the reward term in the affinity com-
putation. It is left as a parameter so the user can set it to 0 in cases where constraints
must not be taking into account; however, any value grater than 1 would provide the
same results when working with normalized datasets. Datasets must always be nor-
malized when working with the Euclidean distance. Values for 𝛼 between 0 and 1
are nor recommended, as they would interfere with the balance between the reward
term and the affinity term in Equation 12, making it a non-stepped function.

• Parameter𝒜 refers to the algorithm to be used to compute the informativity matrix
𝑊 . It can be any classic clustering algorithm and it has to be selected specifically for
every problem to be solved. We used the K-means algorithm because of the famil-
iarity with it, its efficiency and its simplicity. It is clear that this parameter can not
be optimized via classic optimization methods.

• Parameter 𝑟 gives the array used to compute the informativity matrix. It can be set
on the basis of the confidence in the constraint set. The lower part of the range
should have a value close to 0 when the constraint set is expected to present noise or
inconsistencies.

The influence of 𝛾 in the computation of the informativity matrix 𝑊 can be studied sepa-
rately from the second and the third stage of the 3SHACC method (see Figure 1). It can be
observed in Figures 2a and 2b, which show average results over the 25 datasets used in our
experiments. The highest number of constraints (found in 𝐶𝑆20) is used, so that the effects
of 𝛾 are more notorious. Figure 2a depicts the percentage of constraints that are considered
to be informative as a function of the number of times algorithm 𝒜 is run over the dataset,
given by the value of parameter 𝛾 in the range [1, 50]. The rest of the parameters are set to
fixed values (see Table 4). It can be observed how the percentage of informative constraints
grows as the value of 𝛾 increases, with a tendency towards stabilization (as there is a limited
number of constraints).
The opposite tendency can be observed in Figure 2b, which represents the average informa-
tivity value as function of 𝛾. Contrary towhat can be observed in Figure 2a, the average value
of the informativity matrix decreases and stabilizes as the value of 𝛾 increases. This happens
because constraints found to be informative for a given value of 𝑘may not be so for different
values of 𝑘, which is not fixed by the user but takes values from the range [⌈𝑛/3⌉, ⌈2𝑛/3⌉]. Let
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us remember that the higher the number of cluster available, the easier it is to satisfy CL con-
straints; whereas the lower it is, the easier to satisfy ML constraints. Parameter 𝛾 has te be
fine-tuned for every particular case in out-of-lab applications, therefore, a balance between
the percentage of informative constraints and the average informativity value is found.
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Figure 2: Influence of parameter 𝛾 over the informativity matrix.

Given the strong interdependence between the 𝜆 and 𝛽 tradeoff parameters, an independent
analysis is not suitable for studying their influence over 3SHACC results. A classic optimiza-
tion grid can be used to address this task. The aim of this study is to get the general intuition
on the influence of 𝜆 and 𝛽, rather than carrying out a particularized and in-depth analysis
of these parameters. The 10 smaller datasets (in terms of number of instances) presented in
Table 2 have been selected in order to average results: iris, appendicitis, glass, hayes roth,
heart, newthyroid, sonar, tae, wine and zoo. Figure 3 shows the optimization grid featur-
ing averaged ARI results over the selected datasets for values of 𝜆 and 𝛽 ranging from 0 to
11. The rest of the parameters are assigned fixed values (see Table 4). A clear preference
towards low 𝜆 values and high 𝛽 values can be observed. Let us remember that 𝜆 determines
the weight for the pairwise distances and 𝛽 does so for the similarity matrix 𝑆. These re-
sults can be interpreted as a preference towards high constraint-influenced results, as 𝑆 is
computed on the basis of the metric computed with WLSI, which uses constraints to find
this metric. Please note that, in cases where constraints are not generated from the ground
truth, lower values of 𝛽 would be preferred. Such scenario is not presented in this study,
since there is no noise in the constraints and they are generated from the true labels.
The 𝜇 parameter determines the number of instances to be removed from every column of
the similaritymatrix in the final stage of its computation. It is used to eliminate spurious cor-
relations between pairs of instances, which allows the control over the resiliency of 3SHACC
to noise and outliers. As a summary of ideas: for every instance, the 𝜇 less similar instances
are considered not to be similar. To examine the influence of this parameter over 3SHACC
results, average ARI results have been obtained for the same 10 datasets used in the study of
𝜆 and 𝛽. Values for 𝜇 range from 𝑛/2 to 𝑛/50. Figure 4 shows average ARI values obtained
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Figure 3: ARI results for the 𝜆 and 𝛽 optimization grid.

for the 10 datasets and the values for 𝜇. A tendency towards stabilization around 𝜇 = 𝑛/10
can be observed. The datasets used in our experiments are free of noise and outliers, hence
low values of 𝜇 are expected to be preferred, since there is no spurious correlations in our
data. Such case may not be shown in out-of-lab applications.
These results will be taken into account to fix the parameter of 3SHACC in the experimen-
tal section. Although an in-depth analysis of these parameters have not been performed yet,
these results can be used to guide our intuition to set their value. Please note that the param-
eter settings highly depend on the datasets and the problem to be solved, so that a parameter
tuning step needs to be carried out for every out-of-lab specific application.

4.6 Parameters setting

In order for our experiments to be accurately reproducible, the parameter setups used for
every competing method are described in this section. Table 4 shows a summary of every
parameter needed for 3SHACC, and shows the value used in our experiments for all of them.
A stopping criterion needs to be specified in order for the loop in line 2 from Algorithm 3
to reach an end. For our experiments, the criterion would be the number of different clus-
ters remaining in partition 𝐶. This number decreases in each iteration, as two clusters are
always merged into one cluster in every iteration, eventually reaching a single cluster that
encompasses all instances in dataset 𝑋 . This ensures convergence and allows us to generate
partitions with the optimal number of clusters for comparison purposes, as 𝑘 is known for
all classification datasets used in our experiments.
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Figure 4: Influence of 𝜇 over average ARI results.

3SHACCmakes use of auxiliary procedures such as the iterated projections methods (men-
tioned in Section 3) and some kind of classic clustering method to be used as algorithm 𝒜,
which in this case is the K-means algorithm. Parameters for these procedures are described
in Table 5. The scikit-learn [39] K-means implementation has been used, whose documenta-
tion can be foundhere5. TheWeightedLSImethodhas been included in the pyDML6 package,
taking the implementation of classic LSI as basis. A tutorial on the use of the pyDML package
can be found in [48].
Note that parameter 𝑟 from Table 4 and n_clusters from Table 5 are given in the form of
intervals. This is because 𝛾 values need to be specified for these parameters, as algorithm
𝒜 is run 𝛾 times over dataset 𝑋 . For our experiments, values in array 𝑟 are set by dividing
the interval [0.5, 1] into 𝛾 regular subintervals. As 𝑘 is not known by the 3SHACC method,
the number of clusters given to K-means to perform clustering is not fixed, again, these
values correspond to the interval [⌈𝑛/3⌉, ⌈2𝑛/3⌉] divided into 𝛾 regular subintervals, rounding
up in order for this parameter to be an integer number. This may lead to repeated values,
which does not pose any problem whatsoever. In order to induce variability in the results
of the K-means algorithm, centroids are randomly initialized, and the maximum number of
iterations is set to a random value from the interval [10, 50].

5https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
6https://pydml.readthedocs.io/en/latest/
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Parameter Meaning Value

𝛾 Number of times algorithm 𝒜 is run to compute infor-
mativity matrix𝑊 . 20

𝜀 Minimumweight a constraint can have to computemet-
ric matrix𝑀. 0.1

𝜆 Tradeoff parameter on the influence of pairwise dis-
tances in the computation of similarity matrix 𝑆. 8.5

𝛽 Tradeoff parameter on the influence of reconstruction
coefficients in the computation of similarity matrix 𝑆. 2.5

𝜇 Parameter for the hard thresholding operator 𝐻𝜇(⋅). 𝑛/10

𝜖 Stopping threshold for the iterative procedure comput-
ing similarity matrix 𝑆. 1 × 10−3

𝛼 Scaling parameter for the reward term in pairwise clus-
ters affinity computation function 𝐴. 10000

𝑟 Weighting array used to compute informativity matrix
𝑊 . [0.5, 1]

𝒜 Algorithm to be used as reference to compute informa-
tivity matrix𝑊 . K-means

Table 4: 3SHACC parameters setup.

Method name Parameters name and values

K-means
n_clusters = [⌈𝑛/3⌉, ⌈2𝑛/3⌉];
max_iter = rand([10, 50]);
init = ``random''

Weighted LSI

eta0 = 0.1;
max_iter = 1000;
max_proj_iter = 5000;
itproj_err = 1 × 10−5;
err = 1 × 10−5;
weights_thresh = 0.1;

Table 5: Auxiliary procedures parameters setup.

Finally, Table 6 describes parameter setup for the previous approaches mentioned in Sec-
tion 4.4. A Python implementation for these methods can be found at GitHub7. In all cases
the value for 𝑘 is equal to the number of classes displayed in Table 2.

7https://github.com/GermangUgr/TFG/tree/master/Software
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Method name Parameters name and values

2SHACC 𝜆 = 2; 𝛽 = 0.5; 𝜖 = 10−3;
max_it = 200

COPKM
max_iter = 300;
tolerance = 1 ∗ 10−4;
init_mode = ``rand''

LCVQE max_iter = 300;
initial_centroids = ∅

RDPM

max_iter = 300;
𝜉0 = 0.1; 𝜉rate = 1;
𝜆 is calculated on the basis of the
mean distances in the dataset.

TVClust max_iter = 300; 𝛼0 = 1.2
stop_threshold = 5 ∗ 10−4

PCSKM
max_iter = 300; tol = 1 ∗ 10−4;
sparsity = 1.1;
init_centroids = []

Table 6: Classic methods parameters setup.

Since our goal is not to optimize parameters in a case-by-case basis, but to get the fairest and
most general comparison possible, wehavenot included a parameter fine-tuning step for any
competingmethod, including our proposal 3SHACC.Also, the high number of datasets used
in our experiments makes tuning each parameter specifically for each dataset unfeasible
in a reasonable time. Parameters for the state-of-the-art methods have been set following
the guidelines of the authors, and 3SHACC parameters are set by taking into account the
preliminary experimentation carried out in Section 4.5. The final purpose of this work is
to provide a fair comparison between algorithms, assessing their robustness in a common
environment with multiple datasets.
All our experiments have been carried out in the Hercules computing server of the Univer-
sity of Granada, which features 19 computing nodes with two 2.2 GHz Intel®Xeon Silver
4214 processor, 256 GB of RAM, a 6 TB SATA2 HDD and a 1 TB SSD in each node. Two
Gigabit Ethernet internal nets are used to interconnect nodes. Ubuntu 20 LTS is installed in
each node.

5 Experimental Results

In this section experimental results are reported. For the sake of readability, all the tables
have been moved to Appendix A. Tables 7 to 12 display results obtained by our proposal
3SHACC and the six previous approaches for all 25 datasets and the three constraint sets
𝐶𝑆10, 𝐶𝑆15, 𝐶𝑆20 generated for every one of them. Given that all methods compared in
this study rely on non-deterministic procedures to different extents, variations in the results
can be found between different runs. Every method is run 30 times for every dataset and
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constraint set to mitigate the effects these non-deterministic procedures could have on the
results. This makes a total of 15750 experiments. In all tables, the “Avg.” column shows av-
erage results for every comparedmethod in every dataset, while the “SD” column shows the
Standard Deviation. Please note that the only non-deterministic procedure involved in our
proposal 3SHACC is the K-means algorithm used for the computation of the informativity
matrix𝑊 , which affects final partition results indirectly, so it is not surprising that standard
deviations for our proposal 3SHACC are found to be consistently 0 for all our experiments.
Please note that some of the COPKM results are missing. This is due to the inconsistency of
this method to produce results, as it is highly dependent on the order in which constraints
and instances are explored and may reach dead ends. COPKM may not be able to find a
solution for a given constraint set, even if this solution always exists, as constraints are gen-
erated on the basis of the true labels and no noise is introduced in the constraint set. This
is a major drawback of the COPKM method, and cases where COPKM does not output a
partition are considered to produce the worst benchmark values for plotting and averaging
purposes.
Figures 5, 6 and 7 are used to compare average results for all methods, and we refer to them
as average plots. They allow for a quick view of the distribution of ARI results achieved by
each method within the ARI output range [−1, 1], with black marks representing average
results for each method.
The results obtained by every method for the 𝐶𝑆10 constraint set generated for every dataset
are presented in Tables 7 and 8 (in Appendix A). These results display strong evidence of
3SHACC representing a consistent improvement in average results over all other methods
compared, as it is able to achieve optimal results in up to four cases. Let us remember that
an ARI value of 1 indicates a perfect match with the true labels of a given dataset. It can also
be observed how our proposal presents one of the lower standard deviation (computed over
average results) among all methods compared in this table, suggesting evidence of improve-
ments on reliability over the six classic approaches to CC. Figure 5 offers a very clear visual
representation of the above: the black bar, which represents average results, is significantly
higher for our proposal.
The results obtained for the 𝐶𝑆15 constraint set are presented in Tables 9 and 10 (in Ap-
pendix A). 3SHACC continues to outperform all other methods, even increasing the ad-
vantage over them and achieving optimal results in 13 datasets. This is indicative of a
proper constraint integration scheme for the base agglomerative clustering process. It is also
worth noting how all methods are able to scale the quality of the results with the amount
of constraint-based information available, with 3SHACC being the one capable of leverag-
ing this information the best, as it scales the quality of the results at a higher rate than its
six competitors, followed by the most recent of them —PCSKM. This can be observed in
Figure 6, where the upward movement of all black bars is quite noticeable. Regarding the
standard deviation, the conclusions obtained from Tables 7 and 8 are reinforced by results
displayed in Tables 9 and 10.
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Figure 5: CS10 comparative average plot.

In Tables 11 and 12 (in Appendix A), featuring results obtained for the 𝐶𝑆20 constraint set,
the scaling tendency observed in previous tables remains. Once again, our proposal out-
performs classic methods, achieving near-optimal average results, as it can be observed in
Figure 7, where all red bars congregate near the top (optimal ARI value). In general, tenden-
cies observed from Tables 7 and 8 to Table 9 and 10 are also validated by Tables 11 and 12,
including the scaling capabilities of PCSKM.
Figure 8a visually summarizes overall results obtained by the seven methods compared.
We can observe how 3SHACC consistently achieves the best average results, representing
a reliable improvement over all other methods compared. 3SHACC is capable of scaling the
quality of the results with the amount of constraint-based information available, as well as
keeping standard deviation in its results under reasonable values. This is strong evidence
of 3SHACC being able to incorporate constraints into the clustering process regularly and
with remarkable effectiveness, as the quality of the results obtained for individual datasets
never decreases when the size of the constraint sets increases.
Figure 8b shows a clear comparison for the overall number of optimal results obtained by
each method compared. Again, it is 3SHACC the one obtaining the best results in terms
of number of optimal solutions. Please note how the number of optimal results obtained
for the Unsat measure is consistently higher than the one obtained for the ARI measure for
every method, meaning that satisfying all constraints does not always lead to the optimal
solution.

29



314 Chapter II. Publications

−1.0

−0.5

0.0

0.5

1.0

3SHACC 2SHACC COPKM LCVQE RDPM TVClust PCSKM

Figure 6: CS15 comparative average plot.
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Figure 7: CS20 comparative average plot.
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6 Statistical Analysis of Results

An empirical analysis comparing all ARI results obtained by every method—25 datasets in
combination with 3 constraint sets for a total of 75 results—can be performed by using the
Bayesian signed-rank test. This test is similar to the Bayesian sign test described in Sec-
tion 4.3, with the only difference being that it sorts (ranks) differences by absolute values
when obtaining the Dirichlet distribution of the parameter 𝜌. Keeping in mind the notation
introduced in Section 4.3, we take the results obtained by a given classic method as sample
𝐴, and the results obtained by 3SHACC as sample 𝐵. Since ARI is a measure to maximize, a
higher value for 𝑃(𝜌 < 𝑟min) = 𝑃(𝐴−𝐵 < 0)would give the advantage to 3SHACC, whereas
a high value for 𝑃(𝜌 > 𝑟max) = 𝑃(𝐴 − 𝐵 > 0) would mean the opposite. The rope area has
been set to rope = [−0.02, 0.02], following the guidelines in [44].
A very illustrative visual representation of the results obtained by the Bayesian signed-rank
test can be created. When the result distribution has been sampled, it can be represented
in the form of a heatmap by plotting every triplet in it as a point in barycentric coordinates
in an equilateral triangle. To do so, each triplet value is associated with each of the three
vertices of the triangle; the higher the value, the closer it is to its associated vertex. Values
of every triplet must add up to one, as they describe a probability distribution, so all triplets
lie within the triangle.
Figure 9 shows heatmaps comparing our proposal with all other six competing methods
in a 1vs1 style, taking into account all 75 results obtained for each comparison and with
color indicating the density of points in a given region: yellow represents high density and
red is used for low density. We can observe how there is not a single triplet represented
in the top region of any heatmap. This means that the Bayesian signed-rank test assigns
a very low probability to our proposal being equivalent to any other method. In general
terms, all heatmaps point to the same conclusion: there is statistical evidence of our proposal
3SHACC being different to all other methods compared, with these difference being in favor
of 3SHACC.
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Figure 9: Heatmaps comparing 3SHACC with all other compared methods.
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7 Conclusions

In this paper, the Three Stages Hierarchical Agglomerative Constrained Clustering
(3SHACC)method is proposed. It approaches the CC problem by combining distance-based
methods and clustering engine-adapting methods. 3SHACC implements procedures to de-
termine the relevance of individual constraints in a given set of constraints. This relevance is
quantified and later used in the distance-based phase by the newly proposed distancemetric
learning methodWLSI (Weighted Learning from Side Information), which is also proposed
in this paper. Finally, 3SHACC performs agglomerative clustering by taking into account
both similarities on a pairwise basis and the overall number of violated constraints.
3SHACC is compared with a total of six previous approaches to the CC problem over a total
of 25 classification datasets and 3 constraint sets generated for each one of them, including
2SHACC, which is the basis of 3SHACC. These constraint sets are generated with incre-
mental levels of constraint-based information, which allows for a study on the scalability
of solution quality with respect to this parameter. The experimental results show 3SHACC
represents a consistent improvement in average performance over classic approaches to CC
and over its predecessor 2SHACC in both measures analyzed—ARI and Unsat. They also
constitute strong evidence of 3SHACC being able to scale the quality of the results with the
amount of constraint-based information available to a higher extent than classic approaches.
These conclusions are supported by the Bayesian signed-rank test, which assigns a signif-
icantly higher probability to our proposal being better on average than any other method
presented in this study.
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A Experimental Results - Tables

This appendix presents result tables for the clustering quality comparison. Tables 7, 9 and 11
show results for ARI measure. Tables 8, 10 and 12 present results for Unsat measure. All
these tables are referenced and analyzed in Section 5.

ARI Results for 𝐂𝐒𝟏𝟎
Dataset 3SHACC 2SHACC COPKM LCVQE RDPM TVClust PCSKM

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD
Appendicitis .018 .000 .𝟔𝟑𝟔 .𝟎𝟎𝟎 - - .257 .000 .322 .087 .106 .227 .152 .181
Balance 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .004 .000 - - .606 .036 .235 .053 .921 .080 .544 .126
Breast Cancer 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .657 .000 .000 1.00 .903 .000 .859 .048 .023 .049 .594 .308
Bupa .𝟐𝟐𝟖 .𝟎𝟎𝟎 .020 .000 .188 .018 .031 .005 .074 .039 .065 .024 .049 .016
Ecoli .𝟕𝟔𝟖 .𝟎𝟎𝟎 .495 .000 .577 .043 .492 .082 .451 .145 .502 .105 .494 .113
Glass .228 .000 .160 .000 .209 .028 .191 .010 .257 .021 .221 .070 .𝟐𝟔𝟐 .𝟎𝟖𝟓
Haberman .𝟗𝟓𝟗 .𝟎𝟎𝟎 .143 .000 - - -.002 .000 .169 .223 .416 .031 .298 .211
Hayes Roth .024 .000 -.007 .000 - - .073 .044 .𝟎𝟖𝟏 .𝟎𝟑𝟕 .063 .028 .014 .017
Heart .𝟖𝟒𝟑 .𝟎𝟎𝟎 .750 .000 - - .603 .000 .197 .061 .216 .254 .192 .151
Ionosphere .𝟗𝟕𝟕 .𝟎𝟎𝟎 .856 .000 -.807 .580 .342 .000 .195 .061 .000 .000 .157 .149
Iris .𝟗𝟒𝟏 .𝟎𝟎𝟎 .558 .000 .297 .849 .868 .000 .626 .088 .516 .051 .756 .147
Monk2 .𝟗𝟗𝟏 .𝟎𝟎𝟎 .686 .000 - - .699 .004 .023 .007 .336 .439 .409 .278
Mov. Libras .352 .000 .𝟑𝟕𝟒 .𝟎𝟎𝟎 .289 .020 .308 .015 .276 .028 .000 .000 .196 .020
Newthyroid 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .153 .000 -.802 .595 .937 .000 .715 .099 .743 .134 .832 .206
Pima 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .892 .000 -.600 .800 .027 .000 .878 .062 .799 .391 .298 .333
Saheart .𝟗𝟖𝟑 .𝟎𝟎𝟎 .454 .000 - - .072 .000 .078 .043 .685 .334 .285 .229
Segment∗ .𝟖𝟔𝟖 .𝟎𝟎𝟎 .798 .000 - - .558 .051 .385 .094 .173 .123 .332 .046
Sonar .𝟖𝟏𝟔 .𝟎𝟎𝟎 .364 .000 - - .032 .002 .018 .014 .000 .000 .429 .267
Soybean -.036 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .798 .251 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .822 .086 .000 .000 .658 .187
Spectfheart .𝟖𝟖𝟓 .𝟎𝟎𝟎 .024 .000 - - .002 .000 -.093 .035 .000 .000 .037 .030
Tae .𝟏𝟕𝟏 .𝟎𝟎𝟎 .010 .000 - - .116 .007 .052 .022 .050 .010 .022 .026
Vehicle .𝟗𝟗𝟒 .𝟎𝟎𝟎 .606 .000 - - .080 .002 .120 .025 .317 .120 .025 .014
Wdbc .993 .000 .883 .000 .𝟗𝟗𝟑 .𝟎𝟎𝟎 .𝟗𝟗𝟑 .𝟎𝟎𝟎 .906 .055 .000 .000 .495 .245
Wine 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .505 .000 - - .982 .000 .725 .086 .356 .104 .451 .136
Zoo .437 .000 .𝟖𝟖𝟎 .𝟎𝟎𝟎 .677 .085 .669 .106 .708 .076 .332 .121 .454 .113
Average .𝟔𝟗𝟖 .𝟑𝟕𝟐 .476 .326 -.447 .702 .434 .361 .363 .312 .274 .278 .337 .229

Table 7: Experimental results for the ARI measure obtained by 3SHACC and 6 previous
approaches in the 𝐶𝑆10 constraint set.
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Unsat Results for 𝐂𝐒𝟏𝟎
Dataset 3SHACC 2SHACC COPKM LCVQE RDPM TVClust PCSKM

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD
Appendicitis 10.90 0.00 16.36 0.00 - - 21.81 0.00 32.72 5.07 38.54 10.96 𝟖.𝟓𝟒 𝟐.𝟕𝟎
Balance 𝟎.𝟎𝟎 𝟎.𝟎𝟎 56.47 0.00 - - 14.71 1.86 27.91 2.35 1.55 1.77 9.97 3.03
Breast Cancer 𝟎.𝟎𝟎 𝟎.𝟎𝟎 16.60 0.00 50.00 50.00 4.07 0.00 4.74 1.82 45.99 2.30 11.96 9.15
Bupa 𝟎.𝟎𝟎 𝟎.𝟎𝟎 17.64 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 7.96 0.75 13.76 3.10 21.71 8.16 4.60 0.48
Ecoli 0.17 0.00 3.03 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 6.59 1.26 15.84 6.46 17.04 5.85 2.74 0.98
Glass 𝟎.𝟎𝟎 𝟎.𝟎𝟎 7.79 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 13.76 1.23 30.73 4.14 28.52 2.92 5.54 1.25
Haberman 𝟎.𝟐𝟏 𝟎.𝟎𝟎 38.92 0.00 - - 37.20 0.00 30.90 11.92 19.22 1.82 13.97 5.31
Hayes Roth 𝟓.𝟖𝟑 𝟎.𝟎𝟎 26.66 0.00 - - 14.50 4.93 27.83 3.12 29.58 8.03 7.25 1.23
Heart 𝟐.𝟓𝟔 𝟎.𝟎𝟎 8.26 0.00 - - 14.81 0.00 36.09 4.10 36.92 14.75 15.98 3.28
Ionosphere 𝟎.𝟑𝟏 𝟎.𝟎𝟎 3.96 0.00 90.00 30.00 27.46 0.00 34.52 3.68 46.34 0.00 18.69 3.75
Iris 𝟎.𝟎𝟎 𝟎.𝟎𝟎 21.90 0.00 30.00 45.82 2.85 0.00 14.00 5.65 18.66 3.16 3.61 2.16
Monk2 𝟎.𝟎𝟎 𝟎.𝟎𝟎 10.35 0.00 - - 11.20 0.00 46.14 0.81 32.56 22.17 13.03 7.14
Mov. Libras 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.47 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 2.09 0.51 11.63 1.36 92.69 0.00 0.60 0.23
Newthyroid 𝟎.𝟎𝟎 𝟎.𝟎𝟎 40.26 0.00 90.00 30.00 0.86 0.00 8.31 2.47 8.26 5.03 2.12 2.92
Pima 𝟎.𝟎𝟎 𝟎.𝟎𝟎 4.95 0.00 80.00 40.00 46.03 0.00 3.30 1.75 9.64 19.02 23.24 11.11
Saheart 𝟎.𝟎𝟎 𝟎.𝟎𝟎 19.14 0.00 - - 39.31 0.00 42.14 2.73 11.69 16.30 20.16 7.26
Segment∗ 𝟎.𝟖𝟕 𝟎.𝟎𝟎 3.18 0.00 - - 6.93 1.09 19.11 4.70 39.40 15.77 5.20 0.51
Sonar 𝟏.𝟗𝟎 𝟎.𝟎𝟎 12.38 0.00 - - 32.38 0.00 40.14 2.33 49.52 0.00 6.09 4.92
Soybean 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 2.00 6.00 90.00 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎
Spectfheart 𝟎.𝟐𝟖 𝟎.𝟎𝟎 28.20 0.00 - - 33.90 0.00 41.28 2.52 34.47 0.00 18.49 0.92
Tae 7.50 0.00 61.66 0.00 - - 14.08 0.25 48.75 8.55 47.91 8.69 𝟔.𝟖𝟑 𝟐.𝟏𝟑
Vehicle 𝟎.𝟎𝟎 𝟎.𝟎𝟎 16.86 0.00 - - 30.38 0.08 29.66 4.21 26.76 4.99 16.18 0.43
Wdbc 𝟎.𝟎𝟎 𝟎.𝟎𝟎 5.95 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 3.46 2.63 45.86 0.00 14.88 7.34
Wine 𝟎.𝟎𝟎 𝟎.𝟎𝟎 9.15 0.00 - - 𝟎.𝟎𝟎 𝟎.𝟎𝟎 8.62 3.15 23.79 8.33 5.42 1.37
Zoo 𝟎.𝟎𝟎 𝟎.𝟎𝟎 1.81 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 5.81 2.27 21.09 4.46 0.18 0.54
Average 𝟏.𝟐𝟐 𝟐.𝟕𝟎 17.28 16.40 65.60 44.00 15.31 13.96 23.18 14.73 33.51 21.52 9.41 6.67

Table 8: Experimental results for the Unsat measure obtained by 3SHACC and 6 previous
approaches in the 𝐶𝑆10 constraint set.
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ARI Results for 𝐂𝐒𝟏𝟓
Dataset 3SHACC 2SHACC COPKM LCVQE RDPM TVClust PCSKM

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD
Appendicitis .𝟗𝟓𝟕 .𝟎𝟎𝟎 -.070 .000 - - .443 .000 .265 .144 .050 .166 .587 .304
Balance 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .004 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .612 .025 .509 .136 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .907 .121
Breast Cancer 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .435 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .965 .000 .971 .021 .015 .040 𝟏.𝟎𝟎 .𝟎𝟎𝟎
Bupa .𝟔𝟏𝟏 .𝟎𝟎𝟎 .008 .000 .585 .008 .042 .008 .150 .046 .120 .071 .169 .096
Ecoli .𝟗𝟒𝟕 .𝟎𝟎𝟎 .673 .000 - - .643 .051 .757 .034 .692 .155 .686 .112
Glass .𝟕𝟗𝟕 .𝟎𝟎𝟎 .423 .000 - - .221 .018 .284 .029 .209 .072 .483 .117
Haberman 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.004 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.002 .000 .708 .267 .986 .000 .547 .297
Hayes Roth .𝟔𝟓𝟎 .𝟎𝟎𝟎 .024 .000 - - .042 .022 .088 .035 .124 .067 .063 .045
Heart 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .970 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .687 .000 .213 .072 .333 .389 .689 .440
Ionosphere 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .656 .000 .319 .067 .000 .000 .827 .350
Iris 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .549 .000 - - .980 .000 .797 .137 .785 .211 .759 .169
Monk2 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .991 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .725 .000 .037 .009 .416 .479 .901 .298
Mov. Libras .𝟒𝟏𝟏 .𝟎𝟎𝟎 .328 .000 - - .304 .018 .271 .032 .000 .000 .210 .022
Newthyroid 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .250 .000 -.400 .917 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .982 .019 .876 .186 .918 .155
Pima 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .521 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .017 .000 .937 .057 .804 .391 .904 .288
Saheart 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .729 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.001 .000 .230 .108 .767 .372 .799 .399
Segment∗ .𝟗𝟗𝟕 .𝟎𝟎𝟎 .917 .000 - - .706 .041 .488 .044 .178 .036 .117 .034
Sonar .𝟗𝟖𝟏 .𝟎𝟎𝟎 .003 .000 - - .590 .000 .016 .020 .000 .000 .796 .308
Soybean .523 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .200 .980 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .862 .110 .000 .000 .639 .165
Spectfheart 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .901 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .010 .013 .008 .246 .000 .000 .362 .188
Tae .𝟓𝟒𝟖 .𝟎𝟎𝟎 .051 .000 - - .103 .000 .068 .032 .058 .014 .046 .024
Vehicle 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .250 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .066 .001 .314 .096 .354 .154 .086 .038
Wdbc 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .792 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .972 .000 .947 .036 .108 .288 .999 .003
Wine .983 .000 .295 .000 - - 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .723 .094 .391 .132 .397 .206
Zoo .813 .000 .𝟗𝟎𝟗 .𝟎𝟎𝟎 .697 .126 .683 .111 .735 .085 .361 .193 .499 .133
Average .𝟖𝟖𝟗 .𝟏𝟖𝟐 .478 .378 .083 .935 .498 .375 .467 .334 .345 .341 .576 .310

Table 9: Experimental results for the ARI measure obtained by 3SHACC and 6 previous
approaches in the 𝐶𝑆15 constraint set.
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Unsat Results for 𝐂𝐒𝟏𝟓
Dataset 3SHACC 2SHACC COPKM LCVQE RDPM TVClust PCSKM

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD
Appendicitis 𝟎.𝟎𝟎 𝟎.𝟎𝟎 53.33 0.00 - - 19.16 0.00 29.25 7.09 40.75 11.14 6.08 5.97
Balance 𝟎.𝟎𝟎 𝟎.𝟎𝟎 57.35 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 16.56 1.22 17.61 5.24 𝟎.𝟎𝟎 𝟎.𝟎𝟎 2.78 3.70
Breast Cancer 𝟎.𝟎𝟎 𝟎.𝟎𝟎 27.57 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 1.91 0.00 1.06 0.72 46.17 1.78 𝟎.𝟎𝟎 𝟎.𝟎𝟎
Bupa 𝟎.𝟎𝟎 𝟎.𝟎𝟎 33.40 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 12.11 0.56 12.31 1.73 15.46 3.64 5.93 1.00
Ecoli 𝟎.𝟎𝟎 𝟎.𝟎𝟎 4.62 0.00 - - 8.60 1.14 6.76 1.43 10.99 8.08 3.60 1.46
Glass 𝟎.𝟎𝟎 𝟎.𝟎𝟎 12.68 0.00 - - 18.92 1.96 21.26 6.10 31.53 4.92 5.05 1.21
Haberman 𝟎.𝟎𝟎 𝟎.𝟎𝟎 39.03 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 46.28 0.00 9.94 10.47 0.19 0.00 13.85 9.46
Hayes Roth 𝟒.𝟑𝟒 𝟎.𝟎𝟎 50.36 0.00 - - 30.25 2.24 29.85 3.62 29.20 7.79 10.76 1.22
Heart 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.97 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 11.82 0.00 35.64 4.89 31.14 18.84 9.37 13.51
Ionosphere 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 15.53 0.00 32.38 3.60 46.44 0.00 5.52 11.18
Iris 𝟎.𝟎𝟎 𝟎.𝟎𝟎 23.32 0.00 - - 𝟎.𝟎𝟎 𝟎.𝟎𝟎 7.74 8.17 8.18 9.93 4.98 3.46
Monk2 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.28 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 12.78 0.00 45.48 1.01 28.56 23.49 3.22 9.66
Mov. Libras 𝟎.𝟔𝟐 𝟎.𝟎𝟎 7.89 0.00 - - 3.94 0.34 9.71 1.33 94.20 0.00 1.23 0.25
Newthyroid 𝟎.𝟎𝟎 𝟎.𝟎𝟎 38.25 0.00 70.00 45.82 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.39 0.47 5.34 9.46 1.70 2.91
Pima 𝟎.𝟎𝟎 𝟎.𝟎𝟎 23.31 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 48.84 0.00 1.78 1.73 9.65 19.31 3.77 11.33
Saheart 𝟎.𝟎𝟎 𝟎.𝟎𝟎 12.29 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 50.51 0.00 33.61 5.15 11.39 18.44 6.99 13.91
Segment∗ 𝟎.𝟎𝟎 𝟎.𝟎𝟎 1.60 0.00 - - 5.98 1.44 12.96 1.60 37.70 6.12 9.18 0.43
Sonar 𝟎.𝟎𝟎 𝟎.𝟎𝟎 49.59 0.00 - - 20.56 0.00 41.69 2.26 51.41 0.00 4.61 8.35
Soybean 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 40.00 48.99 𝟎.𝟎𝟎 𝟎.𝟎𝟎 6.07 4.24 60.71 0.00 2.14 1.75
Spectfheart 𝟎.𝟎𝟎 𝟎.𝟎𝟎 3.41 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 41.26 0.41 37.22 8.61 31.34 0.00 18.02 5.27
Tae 𝟔.𝟕𝟏 𝟎.𝟎𝟎 48.61 0.00 - - 33.59 0.00 39.92 7.82 44.66 3.18 13.00 1.12
Vehicle 𝟎.𝟎𝟎 𝟎.𝟎𝟎 41.77 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 34.84 0.07 19.98 2.86 27.25 6.35 20.46 1.02
Wdbc 𝟎.𝟎𝟎 𝟎.𝟎𝟎 10.17 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 1.01 0.00 2.06 1.35 41.22 13.09 0.06 0.13
Wine 𝟎.𝟎𝟎 𝟎.𝟎𝟎 34.47 0.00 - - 𝟎.𝟎𝟎 𝟎.𝟎𝟎 7.37 1.86 28.43 9.54 8.49 3.18
Zoo 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 4.00 1.04 7.00 3.61 20.91 8.64 1.66 0.91
Average 𝟎.𝟒𝟔 𝟏.𝟓𝟑 22.97 19.69 44.40 47.84 17.54 16.25 18.76 14.29 30.11 20.85 6.50 5.24

Table 10: Experimental results for the Unsat measure obtained by 3SHACC and 6 previous
approaches in the 𝐶𝑆15 constraint set.

38



Pub. 4 - 3SHACC 323

ARI Results for 𝐂𝐒𝟐𝟎
Dataset 3SHACC 2SHACC COPKM LCVQE RDPM TVClust PCSKM

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD
Appendicitis 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.040 .000 - - .117 .000 .459 .097 .158 .282 .690 .381
Balance 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .174 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .774 .056 .947 .093 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .974 .079
Breast Cancer 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .455 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .992 .007 .194 .389 𝟏.𝟎𝟎 .𝟎𝟎𝟎
Bupa .817 .000 .020 .000 .𝟖𝟒𝟒 .𝟎𝟎𝟕 .032 .006 .334 .110 .400 .083 .402 .151
Ecoli .𝟗𝟖𝟖 .𝟎𝟎𝟎 .980 .000 - - .536 .060 .832 .034 .746 .134 .848 .057
Glass .𝟗𝟒𝟓 .𝟎𝟎𝟎 .172 .000 - - .259 .035 .417 .123 .241 .133 .679 .140
Haberman 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.015 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.002 .000 .879 .129 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .999 .004
Hayes Roth .978 .000 .153 .000 .𝟗𝟗𝟎 .𝟎𝟎𝟖 .026 .020 .128 .045 .303 .360 .103 .090
Heart 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .857 .000 .515 .176 .502 .454 𝟏.𝟎𝟎 .𝟎𝟎𝟎
Ionosphere 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .007 .000 .490 .086 .000 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎
Iris 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .558 .000 - - .886 .000 .837 .203 .597 .141 .752 .167
Monk2 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .925 .009 .077 .032 .727 .423 𝟏.𝟎𝟎 .𝟎𝟎𝟎
Mov. Libras .𝟔𝟔𝟐 .𝟎𝟎𝟎 .165 .000 - - .304 .020 .291 .030 .000 .000 .191 .027
Newthyroid 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .104 .000 -.400 .917 .968 .000 .992 .014 .871 .169 .980 .026
Pima 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .917 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .043 .000 .997 .002 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎
Saheart 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .639 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.001 .000 .853 .020 .803 .394 𝟏.𝟎𝟎 .𝟎𝟎𝟎
Segment∗ 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .925 .000 .200 .980 .641 .051 .675 .073 .286 .122 .064 .036
Sonar 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 - - -.003 .001 .244 .210 .000 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎
Soybean .159 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .118 .925 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .829 .114 .000 .000 .569 .245
Spectfheart 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .592 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 -.004 .001 .197 .438 .000 .000 .879 .282
Tae .𝟖𝟒𝟗 .𝟎𝟎𝟎 .027 .000 - - .048 .007 .069 .042 .055 .034 .066 .068
Vehicle 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .547 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .072 .003 .802 .146 .539 .132 .963 .111
Wdbc 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .717 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .995 .005 .000 .000 𝟏.𝟎𝟎 .𝟎𝟎𝟎
Wine 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .577 .000 -.800 .600 𝟏.𝟎𝟎 .𝟎𝟎𝟎 .772 .060 .600 .232 .674 .320
Zoo .𝟗𝟕𝟕 .𝟎𝟎𝟎 .968 .000 .846 .090 .777 .140 .740 .073 .350 .113 .515 .128
Average .𝟗𝟑𝟓 .𝟏𝟕𝟔 .546 .385 .232 .893 .450 .416 .615 .312 .415 .348 .734 .324

Table 11: Experimental results for the ARI measure obtained by 3SHACC and 6 previous
approaches in the 𝐶𝑆20 constraint set.
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Unsat Results for 𝐂𝐒𝟐𝟎
Dataset 3SHACC 2SHACC COPKM LCVQE RDPM TVClust PCSKM

Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD Avg. SD
Appendicitis 𝟎.𝟎𝟎 𝟎.𝟎𝟎 40.69 0.00 - - 41.12 0.00 19.91 3.16 32.38 11.22 8.09 10.23
Balance 𝟎.𝟎𝟎 𝟎.𝟎𝟎 45.53 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 10.65 2.63 1.88 3.62 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.93 2.79
Breast Cancer 𝟎.𝟎𝟎 𝟎.𝟎𝟎 26.92 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.30 0.26 39.37 19.02 𝟎.𝟎𝟎 𝟎.𝟎𝟎
Bupa 𝟎.𝟎𝟎 𝟎.𝟎𝟎 30.47 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 15.35 0.36 8.52 1.69 11.87 4.03 4.86 1.55
Ecoli 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.13 0.00 - - 12.85 1.70 4.17 0.89 8.72 7.39 2.31 0.97
Glass 𝟎.𝟎𝟎 𝟎.𝟎𝟎 29.45 0.00 - - 20.47 2.46 16.58 8.62 31.62 8.52 3.89 2.48
Haberman 𝟎.𝟎𝟎 𝟎.𝟎𝟎 48.59 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 47.96 0.00 4.32 5.06 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.05 0.17
Hayes Roth 0.20 0.00 38.10 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 35.32 1.67 29.37 2.11 29.45 17.81 18.14 2.47
Heart 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 6.70 0.00 20.47 8.61 24.83 22.58 𝟎.𝟎𝟎 𝟎.𝟎𝟎
Ionosphere 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 48.65 0.00 24.42 4.44 45.39 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎
Iris 𝟎.𝟎𝟎 𝟎.𝟎𝟎 24.13 0.00 - - 3.67 0.00 5.21 7.85 19.49 7.81 5.72 4.06
Monk2 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 3.37 0.44 42.20 1.81 13.49 20.90 𝟎.𝟎𝟎 𝟎.𝟎𝟎
Mov. Libras 𝟎.𝟕𝟎 𝟎.𝟎𝟎 27.30 0.00 - - 4.89 0.38 9.89 0.88 94.56 0.00 1.67 0.13
Newthyroid 𝟎.𝟎𝟎 𝟎.𝟎𝟎 44.07 0.00 70.00 45.82 2.10 0.00 0.29 0.49 5.62 7.69 0.56 0.80
Pima 𝟎.𝟎𝟎 𝟎.𝟎𝟎 4.08 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 47.78 0.00 0.05 0.05 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎
Saheart 𝟎.𝟎𝟎 𝟎.𝟎𝟎 17.48 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 49.11 0.00 6.28 0.58 9.28 18.56 𝟎.𝟎𝟎 𝟎.𝟎𝟎
Segment∗ 𝟎.𝟎𝟎 𝟎.𝟎𝟎 1.70 0.00 40.00 48.99 8.18 1.55 7.61 2.42 31.59 11.41 12.13 0.57
Sonar 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 - - 47.54 0.61 31.26 9.17 51.68 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎
Soybean 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 40.00 48.99 𝟎.𝟎𝟎 𝟎.𝟎𝟎 2.00 2.09 88.88 0.00 0.44 1.33
Spectfheart 𝟎.𝟎𝟎 𝟎.𝟎𝟎 19.49 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 51.82 0.67 30.07 16.49 33.47 0.00 4.47 10.49
Tae 𝟏.𝟕𝟐 𝟎.𝟎𝟎 53.33 0.00 - - 40.71 0.45 39.37 7.69 46.96 5.74 19.31 1.48
Vehicle 𝐷𝑜𝟎.𝟎𝟎 𝟎.𝟎𝟎 20.52 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 35.01 0.24 5.92 4.38 21.17 7.06 0.98 2.95
Wdbc 𝟎.𝟎𝟎 𝟎.𝟎𝟎 13.25 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 0.19 0.15 46.46 0.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎
Wine 𝟎.𝟎𝟎 𝟎.𝟎𝟎 22.22 0.00 90.00 30.00 𝟎.𝟎𝟎 𝟎.𝟎𝟎 6.15 1.61 18.07 10.92 7.25 6.74
Zoo 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 𝟎.𝟎𝟎 3.09 2.20 7.66 2.05 24.28 5.14 3.66 1.12
Average 𝟎.𝟏𝟎 𝟎.𝟑𝟓 20.30 17.51 37.60 45.10 21.45 19.72 12.96 12.69 29.15 23.80 3.78 5.38

Table 12: Experimental results for the Unsat measure obtained by 3SHACC and 6 previous
approaches in the 𝐶𝑆20 constraint set.
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1 Introduction

Clustering constitutes a key research area in the unsupervised learning paradigm, where
no information on how data should be handled is available. It can be viewed as the task
of grouping instances from a dataset into groups (or clusters), with the aim to extract new
information from them [1]. From the classic K-means algorithm to the newer proposals [2],
clustering has been applied to many problems, such as time series monitoring [3], COVID-
19 medical image segmentation [4] and regular image segmentation [5], noisy speech pro-
cessing [6] or band selection in hyperspectral images [7]. Background knowledge can be
integrated into the classic clustering framework, thus reframing it into the semi-supervised
learning paradigm [8, 9], where partial or incomplete information about the dataset is given
to the perform clustering.
When additional information is given in the form of constraints, the constrained cluster-
ing problem arises. Constraints can be understood in three main ways: cluster-level [10],
instance-level pairwise (or simply pairwise) [11] and feature-level constrained cluster-
ing [12]. This study focuses on pairwise constraints, which indicate whether two specific
instances of a dataset must be placed in the same or in different clusters, resulting in Must-
link (ML) and Cannot-link (CL) constraints, respectively. Constrained clustering has been
applied in a variety of real world problems before, such as: satellite image time series [13],
storage location assignment in warehouses [14], obstructive sleep apnea analysis [15] or
electoral district design [16]. Recent studies and proposals, such as [17], prove the growing
interest in the area of constrained clustering.
Recently, a new type of background knowledge coming from the supervised learning
paradigm has been integrated into unsupervised learning. Monotonic classification is a par-
ticular case of supervised learning where classes are a set of ordered categories and clas-
sification models must respect monotonicity constraints among instances based on their
descriptive features. This means that, if an instance 𝑥𝑖 has greater feature values than those
of instance 𝑥𝑗 , its assigned class must also be higher (greater) in the ordering than that of
𝑥𝑗 [18]. Considering the classic example of house pricing: for two houses in the same neigh-
borhood, the bigger ones are constrained to have higher prices than smaller houseswhen the
rest of the features of the houses are similar [19]. This defines an order relationship between
houses (instances) based on the value of their features, therefore models predicting house
prices must take this into account to produce accurate results. Monotonicity constraints are
a type of background knowledge that can be used to produce more accurate predictive mod-
els [20], and has been successfully applied in real world problem such as fraudulent firm
classification [21], real-time dynamic malware detection [22], or learning activities analysis
based on students’ opinion surveys [23]. Additionally, a recent study from The Alan Tur-
ing Institute states that considering underlying data monotonicity in data science/machine
learning models leads to fairer applications [24].
In [18] a methodology to perform clustering in the presence of monotonicity information
(ordered clustering) is proposedwithin theMulti Criteria DecisionAid (MCDA) framework.
It is done by defining a distance measure based on the concept of preference, which is later

2



Pub. 5 - PCKM-Mono 333

explained in detail (Section 2.3), and whose basic concept relies on comparing instances
from the dataset, discriminating feature-level comparative relationships. This results in a
distance measure that produces ordered labeling in terms of monotonicity, understanding it
as in the monotonic classification models which have previously been described.
This study addresses the fusion of the two types of background knowledgementioned above:
pairwise constraints and monotonicity constraints. It extends a previous study by the same
authors [25] in both the theoretical background of the proposedmethod and the testing of its
capabilities. A real-world application is also presented in this study, addressing the Shang-
hai Ranking ofWorldUniversities (SRWU) dataset from anewperspective. A previous study
which combines monotonicity constraints and cluster-size constraints (capacitated cluster-
ing) can be found in [26], where researchers are motivated by the existence of problems in
which both types of background knowledge is available. This constitutes evidence in favor
of the interest in the combination of different types of background knowledge, as there are
real-world problems in which background knowledge is given in a heterogeneous fashion.
Following this trend, our research is motivated by the existence of real-world problems in
which monotonicity constraints and pairwise constraints are available, such as the SRWU
partitioning problem. To the best of our knowledge, there is no previous research on this
topic, as models to perform ordered clustering have emerged very recently. In this study, the
logical relationship betweenmonotonic classification and ordered clustering is tackled, pro-
ducing themonotonic clustering paradigm, inwhich pairwise constraints are later included,
resulting in Monotonic Constrained Clustering (MCC). An expectation-minimization (EM)
scheme is proposed to optimize a hybrid objective function which fuses both monotonicity
and pairwise constraints. The proposed hybrid objective function is composed of a mono-
tonic distance metric and a penalty term for pairwise constraints violations. The overall
proposed optimizationmethod forMCC is coined as Pairwise ConstrainedK-Means -Mono-
tonic (PCKM-Mono).
The rest of this study is organized as follows: background concerning classic clustering,
pairwise constrained clustering, monotonic classification and ordered clustering, which is
presented in Section 2 andwhose content is later used in Section 3 to introduce the proposed
MCC method. Once the experimental setup used to carry out our experiments is presented
in Section 4, Sections 5 and 6 report and analyze the experimental results obtained by the
proposed method. A real-world case of study is carried out in Section 7, where our proposal
is used to perform clustering on the SRWUdataset and compare the results obtained by other
methods in the same task. Lastly, our conclusions are discussed in Section 8.

2 Background

As stated before, partitional clustering is the action of grouping instances of a dataset into 𝑘
clusters. A dataset 𝑋 = {𝑥1,⋯ , 𝑥𝑛} contains 𝑛 instances, each one described by 𝑢 features.
The 𝑖th instance from 𝑋 is noted as 𝑥𝑖 = (𝑥[𝑖,1],⋯ , 𝑥[𝑖,𝑢]). The goal of a clustering algorithm
is to assign a class label 𝑙𝑖 to each instance in 𝑋 . The result is a list of labels 𝐿 = [𝑙1,⋯ , 𝑙𝑛],
with 𝑙𝑖 ∈ {1,⋯ , 𝑘} ∀𝑖 ∈ {1,⋯ , 𝑛}, that effectively splits 𝑋 into 𝑘 non-overlapping clusters 𝑐𝑖
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to form a partition called 𝐶 = {𝑐1,⋯ , 𝑐𝐾}. The label associated with a given cluster 𝑐𝑖 can be
accessed as 𝑙(𝑐𝑖). The cluster membership of every instance is determined by the similarity
of the instance to the rest of instances in the same cluster, and the dissimilarity to instances
in other clusters. Many types of distance measurements can be used to determine pairwise
similarities [27].

2.1 Constrained Clustering

In real world applications, it is common to have some information about the analyzed
datasets, even if this information is not given in the form of labels. In pairwise constrained
clustering, a set of constraints is given to guide the clustering process. Constraints involve
pairs of instances, indicating whether they must or must not belong to the same cluster;
thus, two types of pairwise constraints can be formalized:

• Must-link (ML) constraints 𝐶=(𝑥𝑖, 𝑥𝑗): instances 𝑥𝑖 and 𝑥𝑗 from 𝑋 must be placed in
the same cluster.

• Cannot-link (CL) constraints 𝐶≠(𝑥𝑖, 𝑥𝑗): instances 𝑥𝑖 and 𝑥𝑗 from 𝑋 cannot be as-
signed to the same cluster.

It is known that ML constraints are transitive, reflexive and symmetrical, and therefore they
constitute an equivalence relationship. This is not the case for CL constraints; however, they
can be chained to deduce new ML constraints [28]. Pairwise constraints can be enforced in
two ways: hard [28] and soft [29] constraints. The former must necessarily be satisfied in
the output partition of any algorithm which makes use of them, while the latter are inter-
preted as strong suggestions by the algorithm but can be only partially satisfied in the output
partition.
In CC (Constrained Clustering), the goal is to find a partition (clustering) of 𝑘 clusters such
that 𝐶 = {𝑐1,⋯ , 𝑐𝑘} of 𝑋 , ideally satisfying all constraints (in hard CC) or as many con-
straints as possible (in soft CC). The classic clustering requirements also have to be observed:
it must be fulfilled that the sum of instances in each cluster 𝑐𝑖 is equal to the number of in-
stances in 𝑋 , which has been defined as 𝑛 = |𝑋| = ∑𝑘

𝑖=1 |𝑐𝑖|.

2.2 Monotonicity Constraints in Classification

Monotonicity constraints were originally integrated into the supervised learning classifica-
tion task, leading to monotonic classification. It can be viewed as a special case of standard
classification where the classes constitute a set of ordered categories. Monotonic classifi-
cation models must respect monotonicity constraints between the feature values of the in-
stances and their class labels [20].
Formally, monotonic classification aims to predict the class label 𝑦𝑖 from an instance 𝑥𝑖 with
𝑦 ∈ 𝒴 = {𝑙1,⋯ , 𝑙𝑚}. The categories in𝒴 are arranged in an order relation≺ such as 𝑙1 ≺ 𝑙2 ≺
⋯ ≺ 𝑙𝑚. In doing so, features and class labels aremonotonically constrained by the problem
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background knowledge i.e. 𝑥𝑖 ⪰ 𝑥𝑗 → 𝑓(𝑥𝑖) ≥ 𝑓(𝑥𝑗) where 𝑥𝑖 ⪰ 𝑥𝑗 implies that all features
in 𝑥𝑖 compare to features in 𝑥𝑗 with operator ≥, this is: 𝑥𝑖,𝑞 ≥ 𝑥𝑗,𝑞 ∀𝑞 ∈ {1,⋯ , 𝑢} [30]. This
given relationship between instances referred as dominance. In this case 𝑥1 dominates 𝑥2.
The goal ofmonotonic classification is to build a classifier that does not violatemonotonicity
constraints (pairwise dominance relationships). The result is a monotonic classifier [20].
Much in the same way as it is done with constrained clustering methods, a distinction can
be done in monotonic classifiers: soft monotonic models try to minimize the number of
monotonic constrains violation, while hard monotonic models always produce monotonic
predictions (never violate monotonic constraints) [19].

2.3 Partially Ordered Data Clustering in MCDA

In [18] the monotonicity constraints are integrated into unsupervised learning to pro-
duce the ordered clustering framework. Particularly, they are integrated into the MCDA
paradigm, which is a subfield of operational research that concerns the structuring and
solving decision problems including multiple criteria [31]. To do so, the classic symmet-
rical notion of distance in pattern recognition is replaced with the asymmetrical notion of
preference from theMCDA paradigm. The preference of an instance over another evaluates
the global advantages of the former over the latter with respect to some preference criteria.
The notion of preference can be seen as a decomposition of a distance measure, taking into
account the sign of the differences. To cluster instances in an MCDA context, the similarity
between every pair of instances is evaluated in terms of preferences taking all the other al-
ternatives into account. With this in mind, two instances are similar if they are preferred to
or by the same set of instances. To formalize these concepts, let us consider the weighted 𝐿1
distance (for the maximization case and without loss of generality) as in Equation 1, which
can be simplified as in Equation 2, with 𝑤𝑑 ∈ [0, 1] being the weight assigned to the 𝑑th
feature.

𝐿1(𝑥𝑖, 𝑥𝑗) =
𝑢
∑
𝑑=1

𝑤𝑑|𝑥[𝑖,𝑑] − 𝑥[𝑗,𝑑]|. (1)

𝐿1(𝑥𝑖, 𝑥𝑗) =
𝑢
∑

𝑑∶𝑥[𝑖,𝑑]>𝑥[𝑗,𝑑]
𝑤𝑑𝑥[𝑖,𝑑] − 𝑤𝑑𝑥[𝑗,𝑑] +

𝑢
∑

𝑑∶𝑥[𝑗,𝑑]>𝑥[𝑖,𝑑]
𝑤𝑑𝑥[𝑗,𝑑] − 𝑤𝑑𝑥[𝑖,𝑑]. (2)

Subsequently, let us define the preference of 𝑥𝑖 over 𝑥𝑗 as in Equation 3. To put this into
words, 𝑟(𝑥𝑖, 𝑥𝑗) quantifies the sum of differences between 𝑥𝑖 and 𝑥𝑗 limited to the features
in which 𝑥𝑖 has higher (lower) values than 𝑥𝑗 for the maximization (minimization) case.
Intuitively, the preference 𝑟(𝑥𝑖, 𝑥𝑗) indicates the cumulative quantified value of the advan-
tage of 𝑥𝑖 over 𝑥𝑗 . Please note that, as it has already been mentioned, the preference is not
symmetrical: 𝑟(𝑥𝑖, 𝑥𝑗) ≠ 𝑟(𝑥𝑗 , 𝑥𝑖) in most cases.
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𝑟(𝑥𝑖, 𝑥𝑗) =
𝑢
∑

𝑑∶𝑥[𝑖,𝑑]>𝑥[𝑗,𝑑]
𝑤𝑑𝑥[𝑖,𝑑] − 𝑤𝑑𝑥[𝑗,𝑑]. (3)

Finally, note that the weighted 𝐿1 distance between two instances can always be expressed
as in Equation 4. This decomposition can be done the same way for any 𝐿𝑝 distance.

𝐿1(𝑥𝑖, 𝑥𝑗) = 𝑟(𝑥𝑖, 𝑥𝑗) + 𝑟(𝑥𝑗 , 𝑥𝑖). (4)

3 The Proposal: Pairwise Constrained Monotonic Clustering

In this study, the combination of pairwise constraints and monotonicity constraints is in-
vestigated. Bearing in mind all formal concepts from monotonic classification and ordered
clustering (from Section 2), establishing a logical relation between the concepts of dom-
inance and preference is straightforward. This is: if an instance 𝑥𝑖 dominates 𝑥𝑗 , then
it is also true that instance 𝑥𝑖 is preferred over 𝑥𝑗 (for uniform weights). More formally:
𝑥𝑖 ⪰ 𝑥𝑗 → 𝑟(𝑥𝑖, 𝑥𝑗) ≥ 𝑟(𝑥𝑗 , 𝑥𝑖). This way, any distance 𝐿𝑝 defined as in Equation 4 can
be used to measure distances in clustering methods for them to produce output partition
satisfying monotonicity constraints. This new clustering paradigm is coined as monotonic
clustering.
To perform pairwise constrained monotonic clustering, an Expectation-Minimization (EM)
optimization scheme is used, along with a hybrid objective function which takes into ac-
count both pairwise constraints and monotonicity constraints. To this end, a distance mea-
sure designed on the basis of the definition of preference (originally used in ordered clus-
tering), and a pairwise constraint-based penalty term are combined to produce the already
mentioned function. We named this approach Pairwise Constrained K-Means - Monotonic
(PCKM-Mono).
The EM optimization scheme is widely used in the literature to approach clustering prob-
lems ranging from classic clustering problems to constrained clustering [32] andmonotonic
clustering [18]. Two steps build the EM optimization scheme: (1) in the Expectation step (E
step), given a set of cluster representatives (centroids) {𝜇1,⋯ , 𝜇𝐾}, every instance 𝑥𝑖 is as-
signed to the cluster 𝑐𝑗 that minimizes its contribution to the objective function, computed
with respect to the cluster representatives; (2) in the Minimization step (M step), the cluster
representatives {𝜇1,⋯ , 𝜇𝐾} are reestimated for the current cluster assignment {𝑐1,⋯ , 𝑐𝐾}
to minimize the objective function. The EM optimization scheme iterates between these
two steps until some convergence criteria are met. With this in mind, two elements need
to be defined in order to apply the EM scheme to the constrained monotonic problem: the
objective function and the centroid computation criteria.

Cost function. The cost function of the proposed PCKM-Mono algorithm combines two
main elements: a monotonic distance measure (proposed in [18]) and a pairwise constraint-
based penalty term. Equation 5 defines the hybrid objective function optimized by PCKM-
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Mono, where 𝟙J⋅K is the indicator function (returns 1 if the predicate given as argument
holds, and 0 otherwise), and 𝜇𝑘 is the centroid associated with cluster 𝑘. The first term in
Equation 5 is a preference-based distance metric, while the other two terms refer to the cost
of violating CL and ML constraints (the penalty term), respectively. Please note that the
first term of Equation 5 produces completely stratified clusters when applied alone, which
would produce perfectly monotonic partitions. However, this is not a desirable result in
most real-world problems, as will be proved in Section 5.

𝐽𝑃𝐶𝐾𝑀𝑀 = 1
𝐾
∑𝐾

𝑘=1∑𝑥𝑖∈𝑐𝑘
|(𝑟(𝑥𝑖, 𝜇𝑘) − 𝑟(𝜇𝑘, 𝑥𝑖))|+

∑(𝑥𝑖 ,𝑥𝑗)∈𝐶=
𝟙J𝑙𝑖 ≠ 𝑙𝑗K +∑(𝑥𝑖 ,𝑥𝑗)∈𝐶≠

𝟙J𝑙𝑖 = 𝑙𝑗K . (5)

This cost function can be translated into an assignation rule as in Equation 6, which can be
intuitively interpreted as: assign each instance to its closest (preferred) cluster among those
where it produces the least violated constraints.

𝑥𝑖 ∈ 𝑐ℎ∗ if ℎ∗ = argminℎ (|∑
𝑢
𝑗=1(𝑥[𝑖,𝑗] − 𝜇[ℎ,𝑗])|+

∑𝑥𝑗∶(𝑥𝑖 ,𝑥𝑗)∈𝐶=
𝟙J𝑙(𝑐ℎ) ≠ 𝑙𝑗K +∑𝑥𝑗∶(𝑥𝑖 ,𝑥𝑗)∈𝐶≠

𝟙J𝑙(𝑐ℎ) = 𝑙𝑗K) . (6)

Centroid update rule. Regarding the computation of the centroid for every cluster after
the E step, it is done by following its traditional form: every centroid is computed as the
average of all instances which belong to the cluster it represents. This can be formalized as
in Equation 7.

𝜇𝑖 =
1
|𝑐𝑖|

∑
𝑥𝑖∈𝑐𝑖

𝑥𝑖 (7)

The overall PCKM-Mono optimization procedure is summarized in Algorithm 1. It is clear
that the proposedmethod is soft constrained for both pairwise constraints andmonotonicity
constraints.

4 Experimental Setup and Calibration

In order to evaluate the capabilities of our proposal and compare its performance with pre-
vious methods, monotonic datasets need to be used. In [19] a list of 12 monotonic datasets
is used to test the capabilities of monotonic methods. These are the datasets used in our
experiments, which can be found in the Keel-dataset repository1 [33] and are used in recent
research concerning monotonic classification [34]. Three constraint sets with incremental
levels of constraint-based information are generated for each dataset. Since the Euclidean

1https://sci2s.ugr.es/keel/category.php?cat=clas
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Algorithm 1: Pairwise Constrained K-Means - Monotonic (PCKM-Mono)
Input: Dataset 𝑋 , constraint sets 𝐶= and 𝐶≠, the number of clusters 𝐾.
Output: Partition 𝐶 of 𝐾 non-overlapping clusters.

[1] Initialize centroids {𝜇1,⋯ , 𝜇𝐾} randomly
[2] do

// Expectation Step
[3] for 𝑖 ∈ {𝑖,⋯ , 𝑛} do
[4] Assign each instance 𝑥𝑖 to cluster ℎ∗ following Equation 6.
[5] end

// Minimization Step
[6] for 𝑖 ∈ {𝑖,⋯ , 𝐾} do
[7] 𝜇𝑖 =

1
|𝑐𝑖|

∑𝑥𝑖∈𝑐𝑖
𝑥𝑖

[8] end
[9] while not converged;
[10] return 𝐶

distance is used to measure pairwise distances in all compared algorithms, a standardiza-
tion procedure is applied to all datasets. No other preprocessing step is performed on the
datasets.
Constraints are generated following the method in [28]. Three constraint sets are generated
for every datasets, namely: 𝐶𝑆10, 𝐶𝑆15 and 𝐶𝑆20. Each constraint set is associated with a
small percentage of the size of the dataset: 10%, 15% and 20%, respectively. The formula
(𝑛𝑓(𝑛𝑓−1))/2 tells us howmany artificial constraints will be created for each constraint set,
with 𝑛𝑓 being the fraction of the size of the dataset associatedwith each of these percentages.
Table 1 displays a summary of all datasets and constraint sets used in our experiments.

4.1 Evaluation Method and Validation of Results

Given the hybrid nature of our proposal, different features of the obtained partitions results
have to be inspected to assess their quality in terms of different measures. The Adjusted
Rand Index (ARI) will be used to measure the overall degree of agreement between the ob-
tained partitions and the ground truth [35]. The Rand Index measures the degree of agree-
ment of two partitions 𝐶1 and 𝐶2 for the same given dataset 𝑋 , with 𝐶1 and 𝐶2 viewed as col-
lections of 𝑛(𝑛− 1)/2 pairwise decisions. This measure is corrected for chance to obtain the
ARI. Formore details on ARI, see [35]. An ARI value of 1 indicates total agreement between
𝐶1 and 𝐶2, while -1 means total disagreement. The quality with respect to the monotonic-
ity of the obtained partition can be measured with the Non-Monotonic Index (NMI), which
measures the degree to which monotonicity constraints are violated. It is defined as the rate
of violations of monotonicity divided by the total number of examples in a dataset [36]. Fi-
nally, the Unsatmeasure is used to evaluate the quality of the results from the point of view
of constrained clustering. Unsat is computed as the rate of violated constraints in a given
partition [37].
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Dataset Instances Classes Features 𝐶𝑆10 𝐶𝑆15 𝐶𝑆20
ML CL ML CL ML CL

Artiset 899 10 2 494 3422 1240 7671 2061 13870
Balance 625 3 4 832 1059 1799 2479 3332 4418
BostonHousing4CL 506 4 13 284 941 686 2089 1266 3784
Car 1728 4 6 7961 6745 18167 15244 32076 27264
ERA 1000 9 4 676 4274 1562 9613 2760 17140
ESL 488 9 4 216 912 521 2107 949 3707
LEV 1000 5 4 1381 3569 3174 8001 5692 14208
MachineCPU 209 4 6 41 149 99 366 205 615
Qualitative Bankruptcy 250 2 6 35 147 153 344 322 617
SWD 1000 4 10 1566 3384 3674 7501 6583 13317
Windsor Housing 546 2 11 915 516 2105 1135 3827 2059
Wisconsin 683 2 9 1273 1005 2834 2317 5146 4034

Table 1: Datasets and Constraint Sets Summary

Bayesian statistical tests are used in order to validate the results (which will be presented
in Section 5), instead of using the classic Null Hypothesis Statistical Tests (NHST), whose
disadvantages are analyzed in [38], where a new statistical comparative framework is also
proposed. The Bayesian version of the frequentist non-parametric sign test is used in this
study. In the Bayesian sign test, the statistical distribution of a given parameter 𝜌 is obtained
according to the differences between two sets of results, assuming it is a Dirichlet distribu-
tion. To do so, the Bayesian sign test proceeds as follows: the number of times that𝐴−𝐵 < 0,
the number of timeswhere there are no significant differences, and the number of times that
𝐴 − 𝐵 > 0, then the weights of the Dirichlet distribution are iteratively updated and finally
sampled to obtain a large sample of the distribution. In order to identify cases where there
are no significant differences, the region of practical equivalence (rope) [𝑟min, 𝑟max] is de-
fined, so that 𝑃(𝐴 ≈ 𝐵) = 𝑃(𝜌 ∈ rope). The result of this process is a set of triplets with the
form described in Equation 8. The rNPBST R package is employed to apply the test, whose
documentation and guide can be found in [39].

[𝑃(𝜌 < 𝑟min) = 𝑃(𝐴 − 𝐵 < 0), 𝑃(𝜌 ∈ rope)𝑃(𝜌 > 𝑟max) = 𝑃(𝐴 − 𝐵 > 0)] . (8)

4.2 Calibration

To demonstrate the capabilities of the proposed PCKM-Mono algorithm, it is comparedwith
four other previousEM-style clustering algorithms, including the only existing purelymono-
tonic clustering algorithm, two purely constrained clustering algorithms (including themost
recent one), and a classic clustering algorithm:

9
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• P𝟐Clust: The first approach to monotonic clustering. It modifies the distance mea-
sure used in the expectation step of the EM scheme to produce purely monotonic
partitions. Monotonicity constraints are never violated in partitions produced by
P2Clust [18], thus it is a hard constrained method for monotonicity constraints. It
does not consider pairwise constraints, therefore it is purely monotonic.

• COP-Kmeans: COnstrained Partitional K-means constitutes the first approach to
constrained clustering [28]. It is taken as the baseline comparison for any con-
strained clustering method. To integrate constraints into the clustering process, it
modifies the assignment rule of instances to a cluster in such a way that no con-
straints can be violated. The algorithm halts when a dead-end is reached. It pro-
duces partitions which satisfy all constraints when it does not arrive at dead-ends,
thus it is a hard constrainedmethod for pairwise constraints. It a purely constrained
clustering algorithm.

• Kmeans: The original Kmeans algorithm proposed in [40]. Neither pairwise con-
straints nor monotonicity constraints are considered in Kmeans.

• PCSKMeans: The Pairwise Constrained Sparse K-Means algorithm is an extension
of the classic Sparse K-Means algorithm that integrates constraints by means of a
weighted penalty term [32]. It constitutes the most recent EM-style approach to
constrained clustering.

Regarding the parameter setup, all algorithms use an EM scheme to find a partition of the
datasets, thus sharingmany of their parameters. The 𝑘 parameter, which indicates the num-
ber of clusters of the output partition is always set to the number of classes for every dataset
(in Table 1). The maximum number of iterations allowed before convergence is set to 100
in all cases. The convergence criterion is centroid shifting: the EM optimization procedure
is considered to have converged when average centroid shifting is less than 10−4. Random
centroid initialization is used for all algorithms. The P2Clust algorithm allows us to param-
eterize the computation of its internal 𝛼 coefficient; this parameter is set to 1.1. The sparsity
level of the PCSKMeans algorithm is set to 1.1. All parameters have been set by following
the guidelines of the authors, and PCKM-Mono parameters have been decided upon pre-
liminary experimentation. The final purpose of this work is to provide a fair comparison
between algorithms, assessing their robustness in a common environment with multiple
datasets.

5 Experimental Results

The experimental results obtained for all datasets and constraint sets are presented in this
section. Since non-deterministic procedures are present in every compared method (such
as the random initialization of centroids), the average results of 50 runs are presented in
Tables 2, 3 and 4, aiming tomitigate the effects that stochastic procedures may cause. Please
note that, in cases where the COP-Kmeans algorithm is not able to produce a partition, we

10
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assign that particular run the worst possible benchmark values. Cases where no result is
reported are cases in which COP-Kmeans was never able to produce an output partition.
Let us remember that ARI is a maximization external quality index, while NMI and Unsat
are both for minimization.
Two types of diagrams are used to visualize the numerical results contained in the tables. On
the one hand, Figures 1, 3 and 5 are used to compare average results for constraint sets𝐶𝑆10,
𝐶𝑆15, 𝐶𝑆20, respectively. They are referred to as violinplots. They allow for a quick view of
the distribution of results achieved by each method, as they contain a boxplot in addition to
the outer violinplot. On the other hand, Figures 2, 4 and 6 are used to show detailed results
for every method and every dataset. They can be used to understand how every methods
behaves in every dataset, bringing to light their strengths and weaknesses.
By examining the results, it seems obvious that the proposed algorithm, PCKM-Mono, is
able to find a balance between constraint satisfaction and the monotonicity of the output
partition. Clearly P2Clust, which is a purely monotonic algorithm, always produces the best
results with respect to NMI, as shown in Figures 1b, 3b, and 5b. Similarly, Figures 1a, 3a,
and 5a show how purely constrained clustering algorithms (COP-Kmeans and PCSKMeans)
produce the best results with respect to Unsat. However, PCKM-Mono is able to produce
the best average ARI results (see Figures 1c, 3c, and 5c), while also achieving better NMI
results than purely constrained clustering algorithms, and better Unsat results than purely
monotonic clustering algorithms. This is indicative of the viability of the combination of
pairwise and monotonic constraints to solve benchmark problems in both areas; moreover,
it provides evidence in favor of the proposed EM optimization scheme, which is simple but
can be, nonetheless, suitable for this task.
Some of the particular numerical results are worth noting, for example: the COP-Kmeans
algorithm achieves near-optimum results for the CS10 constraint set. The reason for this
being that, the lower the number of constraints, the easier it is for the algorithm to find
a feasible partition, which is usually a very accurate partition in the case of COP-Kmeans.
With regard to the results obtained by PCKM-Mono for Unsat and NMI, both are observed
to be stable with the increasing amount of constraint based information, while the ARI is
observed to scale with it (although not in a consistent manner). Please note that, the results
obtained by Kmeans and P2Clust are practically identical, independently of the constraint
set, which is a virtually average result, as they are not affected at all by constraints.

11
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Figure 1: Comparative violinplots for the results obtained with CS10. Figures 1a, 1b, and 1c
show the results obtained for the Unsat, NMI, and ARI measures, respectively.
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Figure 2: Comparative radarplots for the results obtained with CS10 in every dataset. Fig-
ures 2a, 2b, and 2c show the results obtained for the Unsat, NMI, and ARImeasures, respec-
tively. (Color legend in Figure 2c is valid for Figures 2a and 2b.)
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Figure 3: Comparative violinplots for the results obtained with CS15. Figures 3a, 3b, and 3c
show the results obtained for the Unsat, NMI, and ARI measures, respectively.
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Figure 4: Comparative radarplots for the results obtained with CS15 in every dataset. Fig-
ures 4a, 4b, and 4c show the results obtained for the Unsat, NMI, and ARImeasures, respec-
tively. (Color legend in Figure 4c is valid for Figures 4a and 4b.)
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Figure 5: Comparative violinplots for the results obtained with CS20. Figures 5a, 5b, and 5c
show the results obtained for the Unsat, NMI, and ARI measures, respectively.
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Figure 6: Comparative radarplots for the results obtained with CS20 in every dataset. Fig-
ures 6a, 6b, and 6c show the results obtained for the Unsat, NMI, and ARImeasures, respec-
tively. (Color legend in Figure 6c is valid for Figures 6a and 6b.)
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6 Statistical Analysis of Results

In contrast with NHST, it is possible to create illustrative graphical representations of the
results of the Bayesian sign test. To do so, the obtained distribution is sampled to obtain
a set of triplets, which are interpreted as barycentric coordinates in an equilateral triangle,
thus producing a cloud of points with varying density. This is known as a heatmap. Figure 7
shows heatmaps which compare the proposed method PCKM-Mono with the rest of the
benchmarked methods for the three measures obtained: ARI, NMI and Unsat. The region
of practical equivalence is set to 𝑟𝑜𝑝𝑒 = [−0.02, 0.02] for ARI, and to 𝑟𝑜𝑝𝑒 = [−0.01, 0.01] for
NMI and Unsat, following the guidelines in [41]. The results produced by PCKM-Mono are
always taken as 𝐵 in 8, and𝐴 represents the set of results obtained by the comparedmethod.
Please note that, as ARI is a measure to maximize, a cloud of points located in the region of
the map corresponding to MPCK-Means would indicate statistically significant differences
between the twomethods in favor ofMPCK-Means. The opposite situation is found for NMI
and Unsat.
All heatmaps reinforce the conclusions obtained in the Experimental Results Section 5. It
is clear that PCKM-Mono represents a statistically significant improvement over all com-
pared method with respect to ARI, except for the comparison against PCSKMeans, which
is the most debated one with a slight advantage for PCSKMeans. Heatmap 7d gives the
general advantage to PCSKMeans for the ARI measure, but not by a wide margin, indicat-
ing no significant differences in some cases and advantage of PCKM-Mono in a significant
portion of the experiments. When it comes to the comparison concerning NMI, and Un-
sat, conclusions remain unchanged. Heatmap 7e confirms the indisputable superiority of
purely monotonic algorithms with respect to NMI. However, 7l reveals no statistically sig-
nificant differences between PCKM-Mono and PCSKMeans with respect to Unsat, and 7j
an advantage of PCKM-Mono over COP-Kmeans for the same measure. With this in mind,
it is reasonable to assert that, for the experiments conducted in this study, the proposed
PCKM-Mono algorithm has the same or better capabilities than previous CC algorithms to
include constraints into the clustering process. Please note that, even if PCKM-Mono and
PCSKMeans feature disputed results for the ARI measure, PCKM-Mono is indisputably su-
perior to PCSKMeans for NMI and statistically similar to PCSKMeans regarding the Unsat
measure, thus it is fair to claim an advantage of PCKM-Mono over PCSKMeans in the gen-
eral case.

7 A case of study: The Shanghai Ranking dataset

In this section we assess the applicability of our proposal for a real-world problem. The
Shanghai Ranking of World Universities (SRWU) dataset has been used before to test the
capabilities of monotonic clustering methods, e.g. in [18] the top 100 institutions are used
to test the P2Clust method. In our experiments we used the dataset available in this kaggle
repository 2, which contains the SWRU results for years 2005 to 2015. Only the results from
the year 2015 are used in our experiments. In our dataset, institutions are ranked from best

2https://www.kaggle.com/code/saurav9786/eda-for-university-ranking/data?select=shanghaiData.csv
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Figure 7: Heatmaps 7a to 7l compare the proposed method PCKM-Mono to the other four
compared methods: P2Clust, COP-Kmeans, Kmeans and PCSKMeans, respectively, from
left to right in every row. The first row compares the results for the ARImeasure, the second
row does so for NMI and the third is for Unsat.

to worst in chunks of size 50 for the first 100 institutions and in chunks of size 100 for the
rest of them, generating a total of 7 classes for the 500 institution in the dataset. Our goal
is to cluster the dataset so that institutions ranked in the same chunk appear in the same
cluster in the final partition.
Originally, the dataset has 9 features, although some of them do not provide any valuable
information for clustering methods and thus they can be removed, such as the institution
name or its national rank. The dataset has 6 features after removing the useless ones, and
can be visualized in the pairplot in Figure 8. Observing Figure 8, it seems clear that the
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SRWU is in fact a monotonic dataset, an therefore, it is has to be addressed with monotonic
methods. However, there are some exceptions to this monotonicity. In fact, if we compute
the NMI value for the true partition of the dataset, we obtain a value of 0.07 as a result,
which indicates that the monotonicity is broken by some instances. This is the reason why
constraints can help improve the results, as if the dataset was purely monotonic, a method
like P2Clust, which is hard constrained for monotonicity constraints, could solve it more
accurately.
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Figure 8: Pairplot for the Shanghai Ranking of world universities dataset

Scaling, standardization and missing values imputation (basic Knn imputer) steps are per-
formed before applying all 5 clustering methods considered in this study to the dataset. Fig-
ure 9 shows the results obtained by all method for the three quality measures and with in-
creasing values for 𝑛 in the formula (𝑛𝑓(𝑛𝑓 − 1))/2, and thus, generating increasing levels
of constraint-based information. This is conducted to observe how the results scale with
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the number of available constraints. Constraints are generated as it is done for benchmark
datasets (see Section 4).
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Figure 9: Scatterplot 9a compares ARI results obtained by all five method compared in this
study. Figures 9b and 9c do so for the Unsat and NMI measures respectively.

In Figure 9a it can be clearly observed that PCKM-Mono represents the best option to gen-
erate scaling quality results for the SRWU partitioning problem. It is followed by the purely
monotonic P2Clust method, which maintains stable results, as it does not consider con-
straints. It is also interesting to note how COP-Kmeans scale the results even by a greater
factor than PCKM-Mono, although achievingworse results, as it cannot deal with themono-
tonicity of the data.
Regarding the results for Unsat, presented in Figure 9b, we can observe how Unsat values
produced by PCKM-Mono scale inversely proportional with respect to the number of con-
straints. This is indicative of constraints helping the clustering process to find the true shape
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of the cluster, therefore making it easier for the method to satisfy a higher number of them.
The rest of the methods maintain a stable Unsat, with COP-Kmeans always producing a
value of 0 for this measure (as it can never generate partitions which violate any constraint)
and with PCSKMeans featuring the worse value for it. This is indicative of the method not
being suitable at all for the problem, as even non-constrained non-monotonic methods such
as Kmeans are able to obtain better Unsat results.
In Figure 9cwe can observe one of themost interesting effects of constraints. Please note that
NMI results for PCKM-Mono decline as the number of constraints increases. The interpre-
tation of this result can be counterintuitive, as one could expect it to decrease. However, the
NMI is actually shifting towards the NMI value produced by the true labels of SRWU (0, 07),
thus being more accurate in practice. With regard to non-constrained methods, they main-
tain an stable NMI value (as expected), with P2Clust always producing an NMI of 0, as it can
never generate partitions which violate monotonicity. For the non-monotonic constrained
clustering methods, it can be observed that the influence of constraints in COP-Kmeans is
enough to divert clusters from the hyperspherical shape produced by the Euclidean distance,
and thus generating an acceptable NMI value, which is not the case for PCSKMeans.
All of these results are in favor of the hypothesis of pairwise constraints and monotonic-
ity constraints benefiting from each other when combined. Please note that, PCKM-Mono
would produce the same NMI values as P2Cust if it were not for pairwise constraints, which
have proved to divert the method from this trend and towards more accurate NMI results.

8 Conclusion

In this study, the first method which addresses Monotonic Constrained Clustering (MCC)
is proposed: Pairwise Constrained K-Means - Monotonic (PCKM-Mono). An expectation-
minimization scheme is used to locally optimize a hybrid objective function, integrating a
monotonic distance metric and a pairwise constraint-based penalty term. The experimental
results obtained from a variety of datasets and their following statistical analysis confirm
the viability of the proposed method when compared with purely monotonic and purely
pairwise constrained clustering techniques. Even if PCKM-Mono obtains results similar to
those obtained by previous approaches for specific monotonicity and pairwise constraint
satisfaction, there is strong statistical evidence in favor of PCKM-Mono regarding general
clustering quality measures.
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