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Abstract

In this paper we present symmetry results regarding compactly supported solu-
tions of the 2D steady Euler equations. Assuming that � = {x ∈ R

2 : u(x) �= 0}
is an annular domain, we prove that the streamlines of the flow are circular. We
are also able to remove the topological condition on � if we impose regularity and
nondegeneracy assumptions on u at ∂�. The proof uses the corresponding stream
function solves an elliptic semilinear problem −�φ = f (φ) with ∇φ = 0 at the
boundary. One of the main difficulties in our study is that f is not Lipschitz con-
tinuous near the boundary values. However, f (φ) vanishes at the boundary values
and then we can apply a local symmetry result of F. Brock to conclude. In the case
∂νu �= 0 at ∂� this argument is not possible. In this case we are able to use the
moving plane scheme to show symmetry, despite the possible lack of regularity of
f . We think that such result is interesting in its own right and will be stated and
proved also for higher dimensions. The proof requires the study of maximum prin-
ciples, The Hopf lemma and The Serrin corner lemma for elliptic linear operators
with singular coefficients.
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1. Introduction

In this paper we study stationary solutions of the 2D Euler equations
{
u · ∇u = −∇ p,
div u = 0.

(1.1)

In particular, we are interested in nonzero compactly supported solutions of the
above problem. In dimension 3, the existence or not of such solutions has been an
open problem for many years. In [17] it is proved that if u is a compactly supported
axisymmetric solution of (1.1) with no swirl, then u = 0. Another rigidity result
was given in [4,21] for Beltrami fields of finite energy. However, a general answer
to this question was open until the recent work [9], where a nonzero compactly
supported solution is built. This example has been further improved in [5] where
it is also extended to other fluid equations. A different construction of a solution,
piecewise smooth but discontinuous, has been recently given in [8]

The existence of compactly supported solutions for (1.1) in dimension 2 is a
much simpler question. If ω is the vorticity of the fluid, then

∇ω · u = 0. (1.2)

Let us denote by φ : R → R the corresponding stream function (that is,
u = ∇⊥φ and then �φ = ω). In this way, (1.2) reduces to

∇(�φ) · ∇⊥φ = 0. (1.3)

In other words, the gradient of the stream function and the gradient of its lapla-
cian must be parallel. It is clear that (1.3) is satisfied for any (say, C2) radially sym-
metric function φ with compact support. Of course this is also true if φ = φ1 +φ2,
where φi are radially symmetric functions with respect to points pi ∈ R

2 and with
disjoint support.

Observe, however, that for all such examples the streamlines of the flow are
circular lines (with possibly different centers). One could wonder whether there
exists a compactly supported solution to (1.1) in dimension 2 with noncircular
streamlines. This question is the main motivation of our work.

We could not find in the literature any condition on compactly supported so-
lutions of the 2D Euler equations that leads to radial symmetry. There are some
related results available, though. In [16] radial symmetry is proved for solutions in
bounded domains under constant tangential velocity at the boundary: however this
constant is not allowed to be 0. Another symmetry result is [11] for nonnegative and
compactly supported vorticity, and here the velocity field need not have compact
support (it is an immediate consequence of the divergence theorem that the unique
compactly supported velocity field with nonnegative vorticity is 0).

On the other hand, there are very recent constructions of compactly supported
solutions with noncircular streamlines. In [12] nontrivial patch solutions with three
layers are built; here ω has the form

∑3
i=1 ci1Di for some ci ∈ R and some

domains Di which are perturbations of concentric disks. In the forthcoming paper
[24] a different example is given via a nonradial solution of a semilinear problem
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in a perturbed annulus. In both cases, the solutions are found by using a local
bifurcation argument, and in both cases the velocity fields fail to be C1 in R

2.
Our first result is the following:

Theorem A. Let u : R2 → R
2 be a compactly supported C1 solution of (1.1), and

define � = {x ∈ R
2 : u(x) �= 0}. We assume that

(A1) � is a C0 annular domain, that is, � = G0\G1, where Gi are C0 simply
connected domains and G1 ⊂ G0.

(A2) u is of class C2 in �.

Then � is an annulus and u(x) is a circular vector field. Being more specific,
there exist p ∈ R

2 and 0 < R1 < R2 with � = A(p; R1, R2), and a certain
function V such that

u(x) = V (|x − p|)(x − p)⊥.

Let us emphasize that the regularity condition in assumption (A1) prevents the
appearance of isolated stagnation points. This is a rather typical assumption in
many rigidity results in this fashion, see [13–16]. Moreover, the set � is assumed
to be of annular type. If we impose some regularity and nondegeneracy on ∂�, this
topological requirement can be dropped.

Theorem B. Let u : R2 → R
2 be a compactly supported solution of (1.1), and

define � = {x ∈ R
2 : u(x) �= 0}. Assume that for some integer k � 2,

(B1) � is a Ck connected domain, u ∈ C2(�) and u is of class Ck in a neighbor-
hood of ∂� relative to �.

(B2) ∂ j u
∂ν j = 0 if j < k, and ∂ku

∂νk
�= 0 for all x ∈ ∂�.

Then the assertion of Theorem A holds true.

The first step in the proof of Theorem B is to show that � is an annular domain.
This is based on a topological observation that makes use of the Brouwer degree
and the lack of stagnation points of u in �. We would like to point out that this
observation works also in the framework of [16, Theorem 1.13]. As a consequence,
the result there holds without assuming a priori that � is an annular domain; See
Proposition 2.2 and Remark 2.3 for more details.

Then we are led to Theorem A. In its proof we are largely inspired by the works
of Hamel and Nadirashvili, [13–16]. In particular, Theorem A can be seen as a
version of [16, Theorem 1.13] with a degenerate boundary condition. The main
idea is to show that the stream function φ solves a semilinear equation, and then to
use symmetry results for this kind of problems to conclude.

Let us explain the argument in more detail. First we will show that the level
sets of φ in � are connected curves; this is a consequence of the lack of stagnation
points in �. As a consequence we can show that, up to addition and multiplication
by constants, the stream function φ solves a semilinear elliptic problem,⎧⎨

⎩
−�φ = f (φ), φ ∈ (0, 1) in �,

φ = 0, ∇φ = 0, in ∂G0,

φ = 1, ∇φ = 0, in ∂G1,

(1.4)
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for some continuous function f : [0, 1] → R.
We would like to mention that in [16, Theorem 1.13] one has nonzero constant

Neuman derivative at the boundary. Then, the function f is C1 and one can use
the results of [23,27] to conclude that φ is radially symmetric and � is an annulus.
These results are based on the well-known technique of moving planes, applied to
overdetermined elliptic problems as in [26].

However, in our situation f is C1 in (0, 1), but f is not differentiable at 0, 1,
nor even Lipschitz continuous. This is a consequence of the vanishing of u at ∂�.
Moreover, we do not have any information on the monotonicity of f near 0 and 1.

A related result is given in [16, Theorem 1.10] for simply connected domains
with one stagnation point. There f can fail to be Lipschitz at the maximum value,
and the authors are able to apply the moving plane method to obtain symmetry.
However, the argument there is linked to the fact that the stagnation point is unique,
and cannot be translated to our framework.

We emphasize that this is not only a technical question; it is known that in
general the moving plane method fails for non Lipschitz continuous functions, see
for instance [3,10]. Still, there are some symmetry results without monotonicity or
Lipschitz regularity assumptions, that we briefly review below.

A strategy using Pohozaev identities and isoperimetric inequalities was intro-
duced by Lions in [19] (see also [18,25]) but it works only when � is a ball and
f (φ) � 0. Observe that, in our case,∫

�

f (φ) = 0,

and hence f changes sign. Another strategies to deduce symmetry for non-Lipschitz
nonlinearities are the continuous Steiner symmetrization (developed by Brock in
[2,3]) and a careful use of the moving plane method under some conditions on f
(see [7]). In short, they imply that if � is a ball, then φ is radially symmetric in a
countable number or balls or annuli, and we can have plateaus outside.

By theC1 regularity of u we have that Du = 0 on ∂�: from this one obtains that
f (0) = f (1) = 0. Hence the function φ solves the semilinear equation −�φ =
f (φ) in the whole plane R

2. This allows us to use the general local symmetry
results of [2,3]. Since ∇φ does not vanish in �, the existence of plateaus inside �

is excluded and we finish the proof.
It is worth pointing out that the proof works also if � is a punctured simply

connected domain (as in [16, Theorem 1.10]), with almost no changes. This can be
seen as a degenerate case of Theorem A, where G1 is collapsed to a single point.
See Theorem D in Section 6 for details.

We are able to give a symmetry result also in the case ∂νu �= 0 in �, which
would correspond to the case k = 1 in Theorem B. In case u fails to be C1 in R

2,
so the formulation of the result needs to be slightly changed.

Theorem C. Let� ⊂ R
2 aC2 connected and bounded domain and u ∈ C2(�,R2)

a solution of the problem ⎧⎨
⎩
u · ∇u = −∇ p in �,

div u = 0 in �,

u = 0 in ∂�.

(1.5)
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Assume that

(C1) u(x) �= 0 for all x ∈ �.
(C2) ∂νu(x) �= 0 for all x ∈ ∂�.

Then the assertion of Theorem A holds true.

The proof of Theorem C uses the same ideas presented before to conclude that
� is an annular domain and φ solves (1.4), but now φ is defined only in �. As
commented above, f is C1 in (0, 1) but we cannot assure that f is Lipschitz nor
monotone near 0 and 1. Moreover, by assumption (C2), f (0) �= 0, f (1) �= 0.
Hence, if we extend φ as constants outside �, we do not have a solution of a
semilinear equation anymore, and hence the result of [3] is not applicable.

In this case we are able to perform the moving plane technique to conclude
symmetry. The main reason is that we have a good knowledge of the behavior of φ

near the boundary precisely by assumption (C2).
Let us give a short explanation of the idea. Generally speaking, the moving

plane method is based on comparing the function φ with ψ = φ ◦π , where π is the
reflection with respect to an hyperplane intersecting the domain. It turns out that

−�(ψ − φ) + c(x)(ψ − φ) = 0,

where

c(x) =
⎧⎨
⎩

− f (ψ(x)) − f (φ(x))

ψ(x) − φ(x)
if φ(x) �= ψ(x),

0 if φ(x) = ψ(x).

If f is Lipschitz continuous, then c(x) ∈ L∞(�) and we can apply the well-
known properties of the operator −� + c(x). In our case, however, c(x) can be
singular at ∂�. The key observation here is that thanks to (C2) we can control the
singularity of c(x) at ∂�; indeed,

c(x)d(x) ∈ L∞(�),

where d(x) = dist (x, ∂�). In this paper we are able to prove the desired properties
for the operator −� + c(x) for such coefficient c(x). Being more specific, we will
prove weak and strong maximum principles, the Hopf lemma and the Serrin corner
lemma for this kind of operators. With those ingredients in hand, the moving plane
strategy can be applied to prove that � is an annulus and φ is radially symmetric.
We think that this result is of independent interest, and it is stated and proved for
any dimension.

The rest of the paper is organized as follows: In Section 2 we prove that, under
the assumptions of Theorem B or C, � is an annular domain. In Section 3 we show
that the stream function solves a semilinear elliptic problem under overdetermined
boundary conditions. We also complete the proof of Theorems A and B by making
use of [2,3]. The proof of Theorem C needs a study of elliptic operators with
singular coefficients, which is performed in Section 4. In Section 5 we use this
study to apply the moving plane procedure and conclude the proof of Theorem C.
Some final comments and remarks are gathered in Section 6.
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Notation: We define d : � → R
+ as

d(x) = d(x, ∂�) = min{|x − p|, p ∈ ∂�}. (1.6)

At a regular point of ∂� we denote ν the exterior normal unit vector and τ the
tangent unit vector (counterclockwise, for instance).

Given a vector x ∈ R
N , we denote by xi its i-th component. If x = (x1, x2) ∈

R
2 we use the standard notation x⊥ = (−x2, x1).

2. The Set � is an Annular Domain

In this section we prove that, under the assumptions of Theorem B or Theorem C,
the domain � is an annular domain. To start with, let us write

� = G0\ ∪n
i=1 Gi , (2.7)

where Gi are C1 bounded and simply connected domains, Gi ⊂ G0, Gi ∩G j = ∅
if i �= j , i � 1, j � 1. If we denote by �i the boundaries of Gi , we have that

∂� = ∪n
i=0�i .

Observe that the conditions div u = 0 and u = 0 on �i (actually u · ν = 0 on
�i would be enough) readily imply the existence of a stream function, u = ∇⊥φ.
We point out that, under the assumptions of Theorem B, φ is defined in the whole
euclidean plane. Moreover, as commented in the introduction, φ satisfies

∇(�φ) ‖ ∇φ = 0 in �. (2.8)

The assumption (B2) of Theorem B implies that
⎧⎨
⎩

Dju = 0 in ∂� for j < k,
∂ku

∂τ i∂νk−i
= 0 if 1 � i � k,

∂ku

∂νk
�= 0 in ∂�.

(2.9)

Here Dj denotes any derivative of order j . As a consequence,
⎧⎨
⎩

Djφ = 0 in ∂� for j < k + 1,

∂k+1φ

∂τ i∂νk+1−i
= 0 if 1 � i � k + 1,

∂k+1φ

∂νk+1 �= 0 in ∂�.
(2.10)

Instead, under assumption (C2) of Theorem C we have that
⎧⎨
⎩

∇φ = 0 in ∂�,

∂2φ

∂τ i∂ν2−i
= 0 if i = 1, 2,

∂2φ

∂ν2 �= 0 in ∂�.
(2.11)

Let us define

�ε = {x ∈ � : d(x) > ε}.
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Fig. 1. The domain � with, eventually, two holes, and �ε (with dashed boundary). On ∂�ε

the tangential component of u is always different from 0, so the winding number on each
connected component is 1

Then there exists ε0 > 0 such that, for ε ∈ (0, ε0) we have that ∂�ε is C2 and
has n+1 connected components. Moreover, (2.10) or (2.11) implies that the normal
derivative of φ does not vanish on ∂�ε. This, in turn, implies that the tangential
component of u does not vanish in ∂�ε (see Fig. 1):

∂�ε = ∪n
i=0�i (ε) and u · τ �= 0 in ∂�ε. (2.12)

We start with the following general result, that must be well known:

Lemma 2.1. Let � ⊂ R
2 be a C1 simple closed curve and F : � → R

2 a contin-
uous vector field. Assume that F · τ �= 0 in �. Then,

iK (F, �) = 1,

where iK stands for winding number or Poincaré index, see for instance [6, Sub-
section 1.1.2].

Proof. By density we can assume that � is C2. Observe that F(x) · τ(x) preserves
its sign along �; let us assume that F(x) · τ(x) > 0. We define the homotopy:
H : [0, 1] × � → R

2, H(λ, x) = λF(x) + (1 − λ)τ(x). Clearly,

H(λ, x) · τ(x) = λF(x) · τ(x) + (1 − λ) > 0.

Then, by the homotopy invariance of iK , it suffices to compute iK (τ, �).
Assume for simplicity that the length of � is 2π , and define γ : [0, 2π ] → �,

γ (0) = γ (2π) a parametrization with respect to the arc length, γ ′(s) = τ(γ (s)).
Then we can compute the winding number by using [6, Subsection 1.1.2],
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iK (τ, �) = 1

2π

∫ 2π

0
τ(γ (s))⊥ ·

( d

ds
τ(γ (s))

)
ds = 1

2π

∫ 2π

0
γ ′(s)⊥ · γ ′′(s) ds

= 1

2π

∫
�

K (x) dsx = 1,

where K (x) is the curvature of � at the point x . ��
With this lemma in hand we can determine the topology of � as follows:

Proposition 2.2. Under the assumptions of Theorem B or Theorem C, � is an
annular domain, that is, (2.7) holds with n = 1.

Proof. Take ε ∈ (0, ε0) such that (2.12) is satisfied. Recall that u does not vanish
in �, and hence

d(u,�ε, 0) = 0.

Here d(u,�ε, 0) stands for the Brouwer degree of u in �ε. Observe now that, by
(2.12) and Lemma 2.1,

d(u,�ε, 0) = iK (u, �0(ε)) −
n∑

i=1

iK (u, �i (ε)) = 1 − n.

Hence n = 1 and the proof is complete. ��
Remark 2.3. The same ideas apply directly if u · τ �= 0 on ∂�, as in [16, Theorem
1.13]. In this case one does not need to make use of the perturbed domain �ε, and
the computation of the degree of u on �, together with the lack of stagnation points
and Lemma 2.1, implies that n = 1.

3. Proof of Theorems A and B

In view of Proposition 2.2, Theorem B reduces to Theorem A. In this section
we prove that the stream function solves a semilinear elliptic PDE under overde-
termined boundary conditions. This is also true in the setting of Theorem C. Then,
we use the results of [2,3] to complete the proof of Theorem A.

Observe that the stream function φ must be constant on each connected com-
ponent �0, �1. By adding constants or multiplying φ by a constant number, we can
assume that φ = 0 on �0 and φ = 1 on �1.

Proposition 3.1. Under the assumptions of Theorem A or C, there exists f ∈
C1(0, 1) ∩ C[0, 1] such that the function φ satisfies⎧⎨

⎩
−�φ = f (φ), φ ∈ (0, 1) in �,

φ = 0, ∇φ = 0, in �0,

φ = 1, ∇φ = 0, in �1.

(3.13)
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Moreover,

(1) Under the assumptions of Theorem A, φ is defined in R
2 and φ = 1 in G1,

φ = 0 in R2\G0. Moreover, f (0) = f (1) = 0.
(2) Under the assumptions of Theorem C, f (0) < 0 < f (1).

Proof. The proof will be given in several steps.
Step 1. For any c ∈ [0, 1] the level sets φc = {x ∈ � : φ(x) = c} are

continuous curves, which are C2 if c ∈ (0, 1).
Since φ has no critical points in � it is clear that φ0 = �0, φ1 = �1. Given

c ∈ (0, 1), the set φc is C2 from the Implicit Function Theorem. As a consequence,

φc = ∪m
i=1γi ,

where γi are closed C2 curves in �.
We first show that each curve γi contains G0 in its interior, denoted as I (γi ).

Otherwise, the level set φc contains the boundary of I (γi ), and then φ would present
a local maximum or minimum in I (γi ). Recall that this is not possible since ∇φ �= 0
in �.

We now prove that m = 1, that is, φc is connected. Otherwise assume that
γ1 and γ2 are closed curves in φc. Without loss of generality, we can assume
that γ2 ⊂ I (γ1). Then, again, φ would have a local maximum or minimum in
I (γ1)\I (γ2), which is a contradiction. This concludes the proof of Step 1.

Step 2. There exists a continuous function f : [0, 1] → R such that −�φ =
f (φ).

For any c ∈ [0, 1], take x ∈ φc and define f (c) = −�φ(x). First, we briefly
show that f is well defined, that is, it does not depend on the choice of x ∈ φc.

In the setting of Theorem A, due to the lack of regularity of ∂�, we need to treat
separately the cases c = 0 and c = 1. Observe that for any x ∈ ∂�, �φ(x) = 0,
so f (0) = f (1) = 0 is well defined.

For c ∈ (0, 1) (2.8) implies that ∇�φ is parallel to ∇φ. Since φc is connected
and C2, we conclude that �φ is constant on φc. Observe that this holds also for
c = 0 and c = 1 under the setting of Theorem C since, by continuity, (2.8) is
satisfied in �.

By construction, we have that −�φ = f (φ) in �. Let us now show that f
is continuous. Let cn ∈ [0, 1], cn → c. Let xn ∈ φcn ; up to a subsequence we
can assume that xn → x ∈ �. By The continuity of φ, we have that φ(x) = c.
Moreover, by the continuity of �φ, we have that

f (cn) = �φ(xn) → �φ(x) = f (c).

Step 3. The function f is C1 in (0, 1).
This is contained in [13–16]; let us sketch a proof here for the sake of complete-

ness. Let c ∈ (0, 1) and x ∈ φc ⊂ �. For some δ > 0, define σ : (−δ, δ) → �,

{
σ ′(t) = ∇φ(σ(t)), t ∈ (−δ, δ),

σ (0) = x .



   40 Page 10 of 25 Arch. Rational Mech. Anal.          (2023) 247:40 

Since ∇φ(x) �= 0, we have that g′(0) > 0, where g = φ◦σ . By taking a smaller
δ > 0 if necessary and a suitable εi > 0, we have that g : (−δ, δ) → (c−ε1, c+ε2)

is a diffeomorphism. Now we obtain that

f |(c−ε1,c+ε2) = −�φ ◦ σ ◦ g−1.

Since φ is C3 in �, then f |(c−ε1,c+ε2) is C1 function.
Step 4. Conclusion.
Under the assumptions of Theorem A, we already saw in Step 2 that f (0) =

f (1) = 0. Moreover, since u = 0 on R
2\�, we have that φ = 1 in G1 and φ = 0

in R
2\G0.
In the setting of Theorem C, (2.11) holds. As a consequence, for any x ∈ �0,

f (0) = −�φ(x) = −∂2φ

∂ν2 (x) �= 0.

Since φ > 0 in � we conclude that f (0) < 0. Analogously, we can show that
f (1) > 0.

��

3.1. Proof of Theorem A

Let B(0, R) be an euclidean ball containing � and let us consider the function
φ defined in B(0, R). Let us recall that φ = 0 in B(0, R)\{G0} and φ = 1 in G1.
Obviously φ is a nonnegative C2 solution of the problem

{−�φ = f (φ), in B(0, R),

φ = 0 in ∂B(0, R).
(3.14)

Moreover, f is a continuous function and ∇φ(x) �= 0 if x ∈ �. We now apply
the local symmetry results of Brock ([3]). For convenience of the reader, we state
here the result that we need from [3], in a version which is suited for our purposes.

Theorem 3.2. ([3]) Let φ be a nonnegative weak solution of the problem (3.14),
where f is a continuous function. Assume also that the set D = {x ∈ B(0, R) :
0 < φ(x) < sup φ} is an open set and thatφ is C1 in D. Then φ is locally symmetric
in any direction, namely

D = A ∪ S, A =
⋃
k∈K

Ak,

where

(1) K is a countable set,
(2) Ak are disjoint open annuli or balls and φ is radially symmetric and decreasing

in each domain Ak,
(3) ∇φ = 0 on the set S.
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Theorem 3.2 follows from [3, Corollary 7.6 and Theorem 7.2]. Following the
notation of [3], in our case G(x, z) = |z|2 and f2 = f3 = 0. See also [3, Theorem
6.1] for a characterization of local symmetry in any direction.

The proof of Theorem A follows at once from Theorem 3.2. Indeed, in our case
D = �. Recall moreover that ∇φ �= 0 in �, hence S = ∅. Since � is connected
we conclude that the union has only one term, that is, � is an annulus, and φ is
radially symmetric and decreasing.

4. Some Aspects of Linear Elliptic Operators with Singular Coefficients

Let us recall that in the setting of Theorem C, f (0) < 0 < f (1). Therefore, the
argument of the previous section does not work anymore: if we extend the function
φ constantly outside �, we do not get a solution of (3.14).

We are able to conclude in this case by using a moving plane technique. As
commented in the introduction, the main difficulty is that f need not be Lipschitz
continuous at the boundary values. As a consequence, one needs to deal with elliptic
operators with coefficients that are singular at ∂�. The study of such operators is
the scope of this section.

More precisely, we fix a bounded domain � ⊂ R
N (N � 2) with C2 boundary,

and we consider operators of the form

L = −� + c(x). (4.15)

Maximum principles are known to hold for the operator L if c ∈ L p(�) with
p > N/2. However, we are interested in coefficients satysfying

c(x)d(x) ∈ L∞(�).

We have not been able to find an explicit reference on maximum principles for
such operators. In what follows we will be concerned with the operator L acting
on functions defined in subdomains �0 ⊂ � with Lipschitz boundary.

4.1. Principal Eigenvalue and Maximum Principle

Let us define the associated quadratic form

Q : H1
0 (�) → R, Q(ψ) =

∫
�

|∇ψ |2 + c(x)ψ(x)2.

The above expression is well defined thanks to the Hardy inequality, Which we
how recall here:

Hardy inequality: For any bounded domain� ⊂ R
N with C2 boundary, there

exists a constant C > 0 such that.
∫

�

|ψ(x)|2
d(x)2 dx � C

∫
�

|∇ψ(x)|2 dx ∀ ψ ∈ H1
0 (�).
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In particular, the linear map T

T : H1
0 (�) → L2(�), T (ψ) = ψ

d

is well defined and continuous.
The Hardy inequality holds also for Lipschitz domains � (see [22]), but this

will not be used in this paper.
For a Lipschitz domain �0 we say that ω ∈ H1(�0) solves L(ω) � 0 in a weak

sense if for any ψ ∈ H1
0 (�0), ψ � 0,

∫
�0

∇ω · ∇ψ + c(x)ωψ � 0.

The above expression is well defined thanks to the Hardy inequality. Let us
point out moreover that we can define the trace of ψ ∈ H1(�0) as a function in
L2(∂�0), see for instance [20, Theorem 3.37].

The next proposition deals with the first eigenvalue and the weak maximum
principle for this kind of operators, in the spirit of [1].

Proposition 4.1. The following assertions hold true:

(1) For any Lipschitz domain �0 ⊂ �, the eigenvalue

λ1(�0) = inf{Q(ψ) : ψ ∈ H1
0 (�0),

∫
�0

|ψ |2 = 1}

is achieved.
(2) The corresponding eigenfunction φ1 is strictly positive (or negative) and is C1,α

locally in �0, for any α < 1. In particular the first eigenvalue is simple.
(3) There exists r > 0 such that for any q ∈ ∂� and any Lipschitz domain �0 ⊂

B(q, r) ∩ � we have that λ1(�0) > 0.
(4) If λ1(�0) > 0 and ω ∈ H1(�0) satisfies that ω � 0 in ∂�0 and L(ω) � 0 in

a weak sense, then ω � 0. If moreover ω is a C1 function in �0, then either
ω > 0 in �0 or ω = 0.

Proof. In order to prove (1), take ψn a minimizing sequence for λ1(�0). Up to a
subsequence we can assume that ψn ⇀ ψ , and then ψn → ψ and c(x)ψn ⇀ c(x)ψ
in L2(�). As a consequence,

lim inf
n→+∞

∫
�

|∇ψn|2 �
∫

�

|∇ψ |2,
∫

�

ψ2
n →

∫
�

ψ2,

∫
�

c(x)ψ2
n =

∫
�

(c(x)ψn)ψn →
∫

�

c(x)ψ2.

In order to prove (2), observe that φ1 is a weak solution of the problem

− �φ1 = −c(x)φ1(x) + λ1φ1(x). (4.16)

The C1,α
loc regularity of φ1 follows from local regularity estimates (take into

account that c(x) ∈ L∞
loc(�)).
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We now prove that φ1 is positive. Observe that |φ1| is also a minimizer for Q,
and hence it is also a weak solution of the problem (4.16). If φ1 changes sign, the
function (φ1)

+ = 1
2 (|φ1| + φ1) is a nontrivial solution.

Hence, it suffices to deal with the case of nonnegative solutions that are equal
to 0 at some point in �. However this is impossible by the classical maximum
principle since c(x) belongs to L∞ in the interior of �.

The positivity of the eigenfunction implies also that the eigenvalue is simple.
Indeed, givenφ1 andφ2 two different eigenfunctions, let us take a nontrivial function
φ = μ1φ1 + μ2φ2, where μi ∈ R are such that

∫
�

φ = 0. But φ cannot change
sign, which implies that φ = 0, that is, φ1 and φ2 are proportional.

We now prove (3). By making use of the Hardy inequality, if ψ ∈ H1
0 (�0),

∫
�0

c(x)|ψ(x)|2 dx � ‖c(·)d(·)‖L∞
∫

�0

|ψ(x)|2
d(x)

dx

� ‖c(·)d(·)‖L∞r
∫

�

|ψ(x)|2
d(x)2 dx

� ‖c(·)d(·)‖L∞C r
∫

�

|∇ψ(x)|2 dx .

It suffices to take r such that ‖c(·)d(·)‖L∞C r < 1 to conclude.
We now prove (4). Take ω− = max{−ω, 0} which belongs to H1

0 (�) by the
boundary assumption on ω. We test the weak inequality L(ω) � 0 against ω−, and
obtain that

Q(ω−) � 0.

Since λ1(�0) > 0, we conclude that ω− = 0. If now ω is of class C1 and is
not 0, then ω > 0 by the usual maximum principle (recall, again, that inside � the
coefficient c(x) is in L∞). This concludes the proof. ��

4.2. Hopf Lemma and Serrin Corner Lemma

In order to prove the Hopf lemma and the Serrin corner lemma for singular
elliptic operators, we will use the following comparison functions (Fig. 2):

Lemma 4.2. Given N ∈ N, C > 0 and r > 0, there exists r0 > 0 and two
nonnegative C∞ solutions ψ1 and ψ2 of the problems

⎧⎪⎪⎨
⎪⎪⎩

−�ψ1(x) + C

r − |x |ψ1(x) � 0 if x ∈ A(0; r0, r),

ψ1(x) = 0, ∂νψ1(x) = −1. |x | = r.

(4.17)

⎧⎪⎪⎨
⎪⎪⎩

−�ψ2(x) + C

r − |x |ψ2(x) � 0 if x ∈ A+(0; r0, r),

ψ2(x) = 0 if |x | = r or x1 = 0

(4.18)
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P

η

Fig. 2. The function ψ2 vanishes in the bold lines and is positive in the rest of the domain.
At p its gradient vanishes but its second derivative along η is positive

Here A(0; r0, r) = {x ∈ R
N , |x | ∈ (r0, r)} and A+(0; r0, r) = A(0; r0, r)∩{x1 >

0}. Moreover, ∇ψ2(p) = 0, but

∂2ψ2

∂η2 (p) > 0 for all p with p1 = 0 and |p| = r.

Here η is any vector entering the domain non-tangentially, that is, η · p < 0 and
η1 > 0.

Proof. We first prove the following:
Claim: Given m ∈ N, C > 0, r > 0, there exists r0 ∈ (0, r) and ρ ∈

C∞([r0, r ]) such that
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−ρ′′(t) − (m − 1)
ρ′(t)
t

+ C

r − t
ρ(t) � 0 if t ∈ [r0, r),

ρ(t) > 0 if t ∈ [r0, r),

ρ(r) = 0, ρ′(r) = −1.

(4.19)

We just give a explicit definition of ρ : R+ → R:

ρ(t) = (r − t) +
(m − 1

t
+ 2C

) (r − t)2

2
.

Observe that ρ(t) > 0 if t < r , ρ(r) = 0, ρ′(r) = −1 and ρ′′(r) = m−1
r + 2C .

Define

c(t) =
(
ρ′′(t) + (m − 1)

ρ′(t)
t

) (r − t)

ρ(t)
.



Arch. Rational Mech. Anal.          (2023) 247:40 Page 15 of 25    40 

By definition, we have that

− ρ′′(t) − (m − 1)
ρ′(t)
t

+ c(t)
ρ(t)

r − t
= 0. (4.20)

Observe also that

lim
t→r

ρ(t)

r − t
= −ρ′(1) = 1.

As a consequence, taking limits in (4.20), we conclude that

lim
t→r

c(t) = 2C.

It suffices to take r0 ∈ (0, r) such that c(t) > C for all t ∈ (r0, r) to conclude
the proof of the claim.

The function ψ1 can be easily defined as ψ1(x) = ρ(|x |), where ρ is the function
given in the claim with m = N . Clearly, ψ1 satisfies the thesis of the lemma.

We define the function ψ2 as

ψ2(x) = x1ρ̃(|x |),
where now ρ̃ is the function given by the claim with m = N + 2. Observe that

�ψ2 = x1

(
ρ̃′′(|x |) + (N − 1)

ρ̃′(|x |)
|x |

)
+ 2ρ̃′(|x |) x1

|x |
= x1

(
ρ̃′′(|x |) + (m − 1)

ρ̃′(|x |)
|x |

)
� C

r − |x |ψ2(x).

Fix a point p such that p1 = 0, |p| = r . Since ψ2 vanishes for x1 = 0 or |x | = r ,
∇ψ2(p) = 0. We now compute the second derivatives of ψ2 at p.

It is clear, from direct computation, that if j �= 1, k �= 1,

∂2ψ2

∂x j∂xk
= x1

∂2
(
ρ̃(|x |))

∂x j∂xk
⇒ ∂2ψ2

∂x j∂xk
(p) = 0.

Moreover,

∂x1ψ2(x) = ρ̃(|x |) + x2
1
ρ̃′(|x |)

|x | .

From this we have that

∂2ψ2

∂x2
1

= ρ′(|x |) x1

|x | + ∂x1

(
x2

1
ρ̃′(|x |)

|x |
)

⇒ ∂2ψ2

∂x2
1

(p) = 0.

Moreover, if j �= 1,

∂2ψ2

∂x j∂x1
= ρ′(|x |) x j|x | + x2

1∂x j

( ρ̃′(|x |)
|x |

)
⇒

∂2ψ2

∂x j∂x1
(p) = − p j

r
.
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Then we conclude by computing.

∂2ψ2

∂η2 (p) =
N∑
j=2

∂ψ2

∂x1∂x j
(p)η1η j =

N∑
j=2

− p j

r
η1η j = −1

r
(p · η)η1 > 0.

��
We now state the version of the Hopf lemma that is suited to our purposes.

Proposition 4.3. (Hopf lemma for singular operators)Let� ⊂ R
N be aC2 domain,

and c(x) satisfying that c(x)d(x) ∈ L∞(�). Let Br ⊂ � be a ball of radius r > 0,
and ω ∈ C1(Br ) solving

−�ω + c(x)ω � 0

in a weak sense. Assume that

(1) ω � 0 in Br ;
(2) ω(p) = 0 for some p ∈ ∂Br .

Then

either ∂νω(p) < 0 or ω = 0 in Br

Proof. If p /∈ ∂�, the conclusion follows from the usual Hopf lemma, since c(x)
belongs to L∞ in the interior of �. We focus on the case p ∈ ∂�. Observe that
we can assume, by taking a smaller ball if necessary, that the radius r is such that
λ1(Br ) > 0 according to Proposition 4.1, (3). If ω is not identically equal to 0, by
Proposition 4.1, (4) we have that ω > 0 in Br . Let us assume for simplicity that the
center of Br is the origin. Take now ψ1 as in Lemma 4.2 with C = ‖c(·)d(·)‖L∞ .
Since ω > 0 in Br , we can take ε > 0 small enough such that εψ1(x) < ω(x) if
|x | = r0.

Our intention is to compare εψ1 with ω. Let us point out that d(x) � r − |x | in
Br . Recall the definition of the operator L in (4.15), and taking into account (4.17),
we have that

L(ψ1) � 0,

in A(0; r0, r). Then we conclude that ω − εψ1 satisfies

L(ω − εψ1) � 0 in A(0; r0, r),

with ω − εψ1 � 0 in ∂A(0; r0, r).
By Proposition 4.1, (4), we have that ω � εψ1. As a consequence, ∂νω(p) �

−ε. ��
Finally we state and prove a version of the Serrin corner lemma ([26, Section

4, Lemma 2]), adapted to our setting.
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Proposition 4.4. (Serrin corner lemma for singular operators) Let � ⊂ R
N be a

C2 domain, and c(x) satisfying that c(x)d(x) ∈ L∞(�). Let Br ⊂ � be a ball of
radius r > 0, and B+

r a half ball. We can assume, without loss of generality, that

B+
r = {x ∈ R

N : |x | < r, x1 > 0}.

Let ω ∈ C2(B+
r ) be a weak solution of the inequality

−�ω + c(x)ω � 0

Assume that

(1) ω � 0 in B+
r ;

(2) ω(p) = 0 for some p ∈ ∂Br ∩ {x1 = 0};
(3) ∇ω(p) = 0.

Then

either
∂2ω

∂η2 (p) > 0 or ω = 0 in B+
r ,

where η ∈ R
N is any unit vector with η1 > 0, p · η < 0.

Proof. If p /∈ ∂�, the conclusion follows from the usual Serrin lemma (see [26,
Section 4, Lemma 2]), since c(x) belongs to L∞ in the interior of �. We focus on
the case p ∈ ∂�. Observe that we can assume, by taking a smaller ball if necessary,
that the radius r is such that λ1(B+

r ) > 0 according to Proposition 4.1, (3). If ω is
not identically equal to 0, by Proposition 4.1, (4) we have that ω > 0 in B+

r .
Take now ψ2 as in Lemma 4.2 with C = ‖c(·)d(·)‖L∞ .
At this point, recall that we are assuming ω > 0 in B+

r , and observe that if
ω(q) = 0 for some q ∈ Br ∩ {x1 = 0}, then ∂x1ω(q) > 0 by the classical Hopf
lemma. As a consequence, there exists ε > 0 such that εψ2 � ω in ∂A+(0; r0, r).

We now compare εψ2 withω. Let us point out thatd(x) � r−|x | in A+(0; r0, r).
Moreover, by (4.18),

L(ψ1) � 0

in A+(0; r0, r). Then we conclude that ω − εψ1 satisfies

L(ω − εψ2) � 0 in A+(0; r0, r),

with ω − εψ2 � 0 in ∂A+(0; r0, r).
By Proposition 4.1, (4), we have that ω � εψ2. Recall now that ∇ω(p) =

∇ψ2(p) = 0. Define the function: κ(t) = ω(p + tη) − εψ2(p + tη). Clearly,
κ(t) � 0 for t > 0, κ(0) = 0 and κ ′(0) = 0. Hence κ ′′(0) � 0, which implies that

∂2ω

∂η2 (p) � ε
∂2ψ2

∂η2 (p) > 0.

��
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5. Radial Symmetry of C3 Solutions to Overdetermined Elliptic Equations
with Non-Lipschitz Nonlinearity: Conclusion of the Proof of Theorem C

In this section we prove the following result:

Theorem 5.1. Let N ∈ N, � ⊂ R
N a C2 domain,

� = G0\G1, (5.21)

whereGi arebounded simply connecteddomains andG1 ⊂ G0. Let f ∈ C([0, 1])∩
C1(0, 1) and φ ∈ C3(�) be a solution of the overdetermined problem

⎧⎨
⎩

−�φ = f (φ), φ ∈ (0, 1) in �,

φ = 0, ∂νφ = c0, in ∂G0,

φ = 1, ∂νφ = c1, in ∂G1.

(5.22)

If ci = 0 we also assume that f (i) �= 0, i = 0, 1. Then φ is a radially symmetric
function with respect to a point p ∈ R

2 and Gi = B(p, Ri ), R1 > R0 > 0.
Moreover, φ is strictly radially decreasing.

In view of Proposition 3.1, Theorem C follows inmediately from Theorem 5.1.
We point out that Theorem 5.1 is a version of the result of [23] (see also [27])

where f is not necessary Lipschitz continuous around the values 0, 1. In exchange,
we ask the solution to be C3 up to the boundary, and also f (i) �= 0 if ci = 0.

The next lemma is a crucial ingredient in the implementation of the moving
plane method in this framework, together with the results of Section 4.

Lemma 5.2. Under the assumptions of Theorem 5.1, there exists C > 0 such that

| f (φ(x)) − f (φ(y))| � C

min{d(x), d(y)} |φ(x) − φ(y)| ∀x, y ∈ �.

Proof. The proof is done in several steps.
Step 1: There exists c > 0 and a neighborhood of ∂� such that

|∇φ(x)| � c d(x). (5.23)

If ci �= 0 for i = 0 and/or i = 1, the claim readily follows in a neighborhood
of �i . Instead, if ci = 0, we have that

ci = 0 ⇒ ∇φ(x) = 0 ∀x ∈ ∂�i ⇒ ∂2φ

∂ν2 (x) = �φ(x) = − f (i) �= 0 ∀x ∈ �i .

With this we conclude the proof of step 1.
Step 2: There exists C > 0 such that

| f ′(φ(x))| � C

d(x)
∀ x ∈ �. (5.24)

where d(x) is defined in (1.6).
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Let us fix ε > 0 sufficiently small and denote Nε a tubular neighborhood of
∂�,

Nε = {p ∈ � : d(p) � ε}, �ε = �\Nε.

If x ∈ �ε then 1 − δ � φ(x) � δ for some δ > 0, and hence (5.24) follows
from the Lipschitz continuity of f (t) in [δ, 1 − δ]. If instead x belongs to Nε, we
can use estimate (5.23) and the C3 regularity of φ, to conclude.

|∇�φ(x)| = | f ′(φ(x))||∇φ(x)| � c d(x)| f ′(φ(x))|.
From this (5.24) follows.
Step 3: Conclusion.
Take now x , y two points in �. If both points belong to �ε, then both φ(x),

φ(y) belong to the an interval [δ, 1 − δ], for some δ > 0. Since f (t) is Lipschitz
continuous in [δ, 1 − δ], we are done.

Let us assume now that at least one of the points belongs to Nε, and take
r = 1

2 min{d(x), d(y)} � ε/2. Clearly, x, y ∈ �r and �r is path connected if we
have chosen ε sufficiently small. Then, there exists a curve

γ : [0, 1] → �, γ (0) = x, γ (1) = y, and d(γ (t)) > r ∀ t ∈ [0, 1].
We now use the mean value theorem

f (φ(x)) − f (φ(y)) = f ′(c)(φ(x) − φ(y))

for some c between φ(x) and φ(y). By continuity, there exists ξ ∈ [0, 1] such that
φ(γ (ξ)) = c. We now use (5.24) to conclude.

| f (φ(x)) − f (φ(y))| = | f ′(φ(γ (ξ))| |φ(x) − φ(y)| � C

r
|φ(x) − φ(y)|.

This finishes the proof of the lemma. ��
Proof of Theorem 5.1. As commented previously, the proof follows from the mov-
ing plane argument.The argument can be summarized as follows: denoting by
π the reflection with respect to a hyperplane, Lemma 5.2 implies that w(x) =
φ(π(x)) − φ(x) solves an equation L(w) = 0, where L is an operator of the class
studied in Section 4. In view of Propositions 4.1, 4.3, 4.4, one can perform the
moving plane argument in the spirit of [26].

The proof follows the same argument as [23, Theorem 3], so we will be sketchy.
For the sake of clarity in the presentation, let us extend φ by 1 in G1. We fix one
direction, say x1, and define

λ̄ = max{x1 : x ∈ �}.
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For any λ ∈ R, we define

Hλ = {x1 = λ}, H+
λ = {x1 > λ}, H−

λ = {x1 < λ}
G±

i,λ = Gi ∩ H±
λ , �±

λ = � ∩ H±
λ ,

�±
i,λ = �i ∩ H±

λ .

We also denote by πλ the reflection with respect to Hλ. Let us define

I = {μ ∈ R : ∀λ � μ, πλ(G
+
i,λ ∪ �+

i,λ) ⊂ Gi ,

(−1)iν1(p) > 0 ∀p ∈ �i ∩ Hλ, i = 1, 2}.
Recall that ν1(p) is the first component of the normal unitary vector exterior

to �. Observe that I is bounded from below and that λ̄ ∈ I trivially. Roughly
speaking, the set I represents the values of λ for which the reflected caps of Gi

remain strictly insde Gi .
We denote by μ∗ the infimum of I , and clearly μ∗ < λ̄. We also define the

closed set

J = {λ ∈ I : φ ◦ πλ(x) � φ(x) ∀ x ∈ G+
0,λ}.

We claim that there exists ε > 0 such that (λ̄ − ε, λ̄) ⊂ J . This is the so-called
initial step in the proof of [23, Theorem 3] (see in particular Case 2). This is evident
if c0 �= 0; if c0 = 0, we have that

∂2φ

∂ν2 (x) = �φ(x) = − f (0) > 0.

This readily implies the claim.
Denote by λ∗ the minimum of J , that obviously satisfies λ∗ � μ∗.
We now claim that λ∗ = μ∗. Indeed, the assumption λ∗ > μ∗ gives a contra-

diction exactly as in [23]. Observe that the contradiction is based on the maximum
principle and the Hopf lemma on balls B with B ⊂ �. In this case, f (φ) does not
take the extremal values 0 and 1, and hence it is Lipschitz. Then one can use the
standard procedure of the moving planes to obtain a contradiction.

Let us now focus on the extremal value λ∗ = μ∗. Since this value is fixed from
now on, and for the sake of clarity, we drop the subscript λ in the notation of what
follows. Observe that w = φ ◦ π − φ � 0 in G+

0 , and moreover

L(w) = 0 in G+
0 \π(G−

1 ),

where L = −� + c(x), so

c(x) =
⎧⎨
⎩

− f (φ(π(x))) − f (φ(x))

φ(π(x)) − φ(x)
if φ(π(x)) �= φ(x),

0 if φ(π(x)) = φ(x).

By Lemma 5.2,

|c(x)| � C

min{d(x), d(π(x))} . (5.25)

Since μ∗ is the infimum of I we have that π(G+
i ) ⊂ Gi , i = 0, 1, but at least

one of the following alternatives is satisfied:
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(1) Internal tangency. There exists p ∈ �+
i such that π(p) ∈ �i , i = 0 or i = 1.

(2) Orthogonality of �i and H . There exists p ∈ �i ∩ H such that ν1(p) = 0,
i = 0 or i = 1.

We treat each of these cases separately.
Case 1: Internal tangency. Assume that we have internal tangency at a point

p ∈ �+
1 , for instance. By the overdetermined boundary condition,

∂νw(p) = 0. (5.26)

By C2 regularity, we can take a ball Br of radius r in � tangent to � at p. We can
shrink that ball such that Br ∈ G+

0 \π(G−
1 ). In other words, Br ⊂ �∩π(�). From

this, we have that

d(x) � r − |x |, d(π(x)) � r − |x | for any x ∈ Br . (5.27)

From (5.25), we conclude that:

|c(x)| � C

r − |x | in Br . (5.28)

We now apply Proposition 4.3 to the domain Br together with (5.26) to conclude that
w = 0 in Br . The unique continuation principle implies that w = 0 in G+

0 \π(G−
1 ),

which implies that � is symmetric with respect to H . Moreover, φ|H+ is decreasing
in x1.

If the internal tangency occurs at a point p ∈ �+
0 , one can reason in an analogous

manner.
Case 2: Orthogonality of �i and H . Let us now consider the case of a certain

point p ∈ �0 ∩ H with ν1(0) = 0. Reasoning as in [26, pages 307-308], we
conclude that the second order derivatives of w at p are zero:

D2w(p) = 0. (5.29)

By C2 regularity, we can take a ball Br of radius r in � tangent to � at p. We
can shrink that ball such that B+

r ∈ G+
0 \π(G−

1 ). In particular, Br ∈ � ∩ π(�). As
a consequence, also here (5.27) is satisfied, and then the estimate (5.28) holds. We
now apply Proposition 4.4 to the domain Br and B+

r : taking into account (5.29) we
conclude that w = 0 in B+

r . As in the previous case, the unique continuation prin-
ciple implies that � is symmetric with respect to H . Moreover, φ|H+ is decreasing
in x1.

If the point p belongs to �1 ∩ H one can reason in an analogous manner.
In both cases, we conclude that � is symmetric with respect to the x1 direction.

Since the direction x1 is arbitrary and can be replaced by any other, we conclude
that � is radially symmetric with respect to a point and φ is radially decreasing. ��
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6. Further Comments and Remarks

In this last section we just give some comments on the results presented in
this paper. The first observation is that, under the assumptions of Theorem C, the
nonlinear term f given by Proposition 3.1 need not be Lipschitz near the extremal
values 0, 1. Let us give such an example. Take φ(x) = |x |2(2 − |x |)2 defined in
the annulus A(0; 1, 2) ⊂ R

2. It can be checked that −�φ = f (φ), with

f : [0, 1] → R, f (t) = 4(4
√
s +

√
1 − √

s − 3).

Observe that f is not differentiable at 0, 1, butu = (∇φ)⊥ satisfies all conditions
of Theorem C.

In the setting of Theorems A or B we can assure that f is never Lipschitz
continuous near 0 or 1. Recall that in such case we have f (0) = 0, f (1) = 0, and
φ solves (3.14). But φ is constant in sets with non-empty interior, and this would
be impossible if f were Lipschitz continuous, by the maximum principle.

As commented in the introduction, Theorem A can be adapted to treat the case
in which � is a punctured simply connected domain. Indeed, We have the following
result:

Theorem D. Let u : R2 → R
2 be a compactly supported C1 solution of (1.1), and

define � = {x ∈ R
2 : u(x) �= 0}. We assume that

(D1) � = G0\{q}, where G0 is a C2 simply connected domain and q ∈ G0.
(D2) u is of class C2 in �.

Then there exists R > 0 such that � = B(q, R)\{p} and u(x) is a circular
vector field. Being more specific, there exist a certain function V such that

u(x) = V (|x − q|)(x − q)⊥.

For the proof, one can just follow the arguments of Section 3, replacing �1 with
{q} in the notation. In the Step 1 of Proposition 3.1, φc are closed and connected
C1 curves only for c ∈ [0, 1), and φ1 = {q}. Then we conclude the existence of a
function f ∈ C1(0, 1) ∩ C[0, 1] with

{−�φ = f (φ), φ ∈ (0, 1] in G0,

φ = 0, ∇φ = 0, in �0.
(6.30)

Moreover φ is defined in R
2, φ = 0 in R

2\G0 and f (0) = 0. This allows us to
apply Theorem 3.2 to conclude.

In Section 5 we have proved a symmetry result for overdetermined elliptic prob-
lems defined in a annular domain. The main novelty with respect to [23,27] is that
f is not assumed to be Lipschitz continous on the boundary values. Of course
the same ideas apply also in the framework of [26], and we obtain the following
theorem:
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Theorem 6.1. Let � ⊂ R
N be a C2 domain, f ∈ C([0,+∞)) ∩ C1(0,+∞) and

φ ∈ C3(�) be a solution of the overdetermined problem
{−�φ = f (φ), φ > 0 in �,

φ = 0, ∂νφ = c0, in ∂�.
(6.31)

If c = 0 we also assume that f (0) �= 0. Then � = B(p, R) and φ is a radially
symmetric function with respect to p. Moreover, φ is strictly radially decreasing.

The proof follows exactly the same guidelines as in Theorem 5.1, with the
obvious modifications.
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