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Abstract: Colour is a property widely used in many fields to extract information in several ways.
In soil science, colour provides information regarding the chemical and physical characteristics of
soil, such as genesis, composition, and fertility, amongst others. Thus, accurate estimation of soil
colour is essential for many disciplines. To achieve this, experts traditionally rely on comparing
Munsell colour charts with soil samples, which is a laborious process. In this study, we proposed
using artificial neural networks to catalogue soil colour with a two-step classification. Firstly, the hue
variable is estimated, and then the remaining two coordinates, value and chroma. Our experiments
were conducted using three different, common cameras (one digital camera and two mobile phones).
The results of our tests showed a 20% improvement in classification accuracy using the lowest-quality
camera and an average accuracy of over 90%.
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1. Introduction

Pedology is a branch of earth sciences that explores soils in their natural environment.
It involves the study of soil’s chemical and physical features, formation, distribution,
morphology, and classification of bodies within the natural habitat. One of the properties
that provide this kind of information is colour [1,2]. However, accurately estimating the
soil colour is not a trivial task. It may provide valuable information to the expert who
is capable of interpreting it. Based on the colour, an expert can obtain data concerning
the genesis, composition, or even the age of soil and rock surfaces. To do so, the Munsell
colour chart (MCC) is commonly used [3,4]. The MCC is the classical way of estimating
colour information. The technique involves visually comparing soil samples and colour
chips belonging to the MCC [5]. The Munsell charts consist of a list of standard cardboards
arranged by three coordinates: shade or hue (H), lightness or value (V), and intensity or
chroma (C). Thus, the charts are arranged based on the H, and this has five central values:
red (R), yellow (Y), green (G), blue (B) and purple (P). At the same time, we can find
in-between combinations: yellow-red (YR), green-red (GR), and so on.

The MCC has been used in a variety of scenarios. As a result, various methodolo-
gies can be found in the literature. The main issue to be addressed is the uncertainty
caused by the subjectivity of the observer. Marqués et al. [5] used k-nearest neighbour to
analyse colour consistency and quantify soil colour measurements. They conducted their
experiments in a controlled laboratory setting, resulting in a more precise and objective
quantitative soil colour identification. In [6], a method of extracting colour information
from digital images of cultural heritage was presented. The authors adopted multiple
colour spaces (RGB, HSV, and Munsell) to solve their problem. Mancini et al. [7] utilised
sensors and random forest to obtain the Munsell coordinates for soil classification. They
achieved an accuracy and Kappa index of 0.93 in their prediction. Additionally, the authors
of the latter research took into consideration that physical MCC can be affected by time and
dirt. The colours in the charts can fade or change, and dirt and other contaminants may also
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obscure details and potentially cause damage to the surface. As a result, they studied dirty
and old Munsell charts and they found that the prediction accuracy could be reduced due
to the noise in the samples. In [8], the authors used spectroscopy and compared the results
with observed MCC estimates in order to ensure robustness in the process of observation
and data collection. They detected a certain correlation between the spectrophotometer
and the observed measures. They developed a three-factor regression to effectively predict
soil organic carbon based on the colours. Massawe et al. [9] combined digital soil mapping
and machine learning to develop a predictive soil map. They also conducted their analysis
in a laboratory, examining several soil characteristics such as pH, electrical conductivity,
texture, nitrogen, and organic carbon. The classification was performed using a decision
tree model.

Many other studies can be found using different machine learning techniques, such as
decision tree [9–12], random forest [7,13–15], k-nearest neighbour [5,16,17], fuzzy system
(FS) [18,19], artificial neural network (ANN) [20–22], and even deep learning [23], among
others. The latter includes a comprehensive review of the recent advances in computer
vision for soil classification. As can be seen there and in the rest of the mentioned studies,
nearly all the studies were performed in a controlled scenario and using some sophisticated
devices. Additionally, another feature in addition to the colour has been examined, namely
texture. By exploring these methods, we can point out two drawbacks. The first disadvan-
tage is the equipment required to obtain the data. The second one is the scenario, as it is
tedious to collect the data and not be able to extract many conclusions until the samples
are examined in a laboratory. Some solutions using mobile phones have been proposed
to address this problem. For example, Gómez-Robledo et al. [24] utilised a mobile phone
camera to measure soil colour, and their result showed that their models had accuracy
similar to that of a set of observers. They transformed the RGB values into the XYZ space
and again into HVC. Another example can be found in [25], where the authors classified
soil based on smartphone images with colour sensors. The main issue with these method
is that the direct conversion of RGB values does not take into account the sensitivity of
the camera; therefore, the variability in the estimates can be high for the same sample.
Additionally, the incorporation of external gadgets increases the cost of the solution.

Thus, as opposed to previously published methods, we attempted to solve the problem
by developing a methodology using an inexpensive device that is accessible to everyone,
i.e., a common camera. As in other studies, we obtained samples by using images taken
by a camera. However, while other researchers used only one device, in order to validate
our solution, we used of three different-quality cameras. Furthermore, we implemented
an artificial neural network to classify the soil samples. The main issue we found with
previous methods is that lower-quality images were not able to provide suitable precision,
while other high-quality cameras could. We propose a two-step classification method: first,
obtain the H coordinate of the MCC; second, take advantage of the H estimate to predict
the remaining two variables, V and C.

2. Methodology
2.1. Dataset and Precedent Studies

The current study continues a research line initiated several years ago; while prior
researchers have examined this problem using alternative methodologies, we evaluated the
efficacy of our novel approach in comparison with a previously established one [20]. This
was motivated by the methodology employed for data collection, including the procedures
for extraction and methods used to eventually obtain each numerical sample. The main
flowchart of the data acquisition is shown in Figure 1.



AgriEngineering 2023, 5 357AgriEngineering 2023, 5, 3 
 

 

RGB values
Image acquisition Image-

segmentation 
algorithm

Classification model

 
Figure 1. Flowchart of data acquisition in previous studies. 
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was utilised to process the output from the three ANNs, resulting in a set of possible Mun-
sell chips. Because we were training three separate models to independently estimate each 
HVC value, a potential issue arose when the models generated nonvalid combinations of 
HVC values. Thus, the key aspect of the method proposed in this study is using additional 
information to reduce the search space and improve the models’ performance. 
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neurons (or nodes), which can process and diffuse information. These networks are 
trained using large sets of labelled data and can be used for a variety of tasks such as 
image recognition, natural language processing, and decision making. ANNs are particu-
larly useful for tasks where the relationship between inputs and outputs is complex and 
not easily defined by a simple rule or equation [26]. 

In the literature, we can find many kinds of ANNs. In feedforward neural network, 
the most basic type of ANN, the information flows in only one direction, from input layers 
to output layers, without any loops. This is also called multilayer perceptron (MLP) and 
is used for various supervised learning tasks such as regression and classification. Recur-
rent neural networks have the ability to maintain an internal state, allowing them to pro-
cess sequential data such as time series, speech, or text. Convolutional neural networks 
(CNNs) are designed to process and analyse grid-like data such as images, video frames, 
and audio spectrograms [27]. 

Although CNNs are commonly used for image-related tasks, we chose to implement 
MLP for this study. Our data representation motivated this decision because we were not 
directly working with images but rather with an image segmentation algorithm that ulti-
mately generates a set of numerical RGB values. This dataset is better suited for MLP 
models. 

2.3. Method 
The proposed methodology is divided into three main stages. The first step involves 
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For this study, all images were manually captured with three devices: two mobile
phones (Nokia C301 and Samsung Galaxy S2) and one digital camera (Canon EOS 1100D).
To ensure accurate colour representation, a reference white was included in each image to
calibrate the camera’s white balance based on the ambient lighting conditions. After that,
an image-segmentation algorithm was used to obtain the RGB values. Specifically, the algo-
rithm processed an image and generated a set of representative pixels from each chip. The
RGB coordinates of these pixels were then retained for use in training a classification model.

In the previously discussed study [20], after obtaining RGB samples, three separate
ANNs were simultaneously trained, one for each HVC coordinate. Then, a fuzzy system
was utilised to process the output from the three ANNs, resulting in a set of possible
Munsell chips. Because we were training three separate models to independently estimate
each HVC value, a potential issue arose when the models generated nonvalid combinations
of HVC values. Thus, the key aspect of the method proposed in this study is using
additional information to reduce the search space and improve the models’ performance.

2.2. Artificial Neural Networks

As we previously stated, in this study, we implemented several ANNs for the soil
classification problem. ANN is a type of machine learning model inspired by the structure
and function of biological neural networks. An ANN consists of layers of interconnected
neurons (or nodes), which can process and diffuse information. These networks are trained
using large sets of labelled data and can be used for a variety of tasks such as image
recognition, natural language processing, and decision making. ANNs are particularly
useful for tasks where the relationship between inputs and outputs is complex and not
easily defined by a simple rule or equation [26].

In the literature, we can find many kinds of ANNs. In feedforward neural network,
the most basic type of ANN, the information flows in only one direction, from input layers
to output layers, without any loops. This is also called multilayer perceptron (MLP) and is
used for various supervised learning tasks such as regression and classification. Recurrent
neural networks have the ability to maintain an internal state, allowing them to process
sequential data such as time series, speech, or text. Convolutional neural networks (CNNs)
are designed to process and analyse grid-like data such as images, video frames, and audio
spectrograms [27].

Although CNNs are commonly used for image-related tasks, we chose to implement
MLP for this study. Our data representation motivated this decision because we were
not directly working with images but rather with an image segmentation algorithm that
ultimately generates a set of numerical RGB values. This dataset is better suited for
MLP models.

2.3. Method

The proposed methodology is divided into three main stages. The first step involves
analysing the quality of the data by using correlation analysis. It is important to keep in
mind that the RGB values of an image captured by different devices may vary depending
on the device’s settings and other factors. Moreover, some devices can have different
colour profiles, which can affect the RGB values. As a consequence, a correlation analysis is
first performed because the quality of the images is directly proportional to the correlation
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among RGB points. The second step is adjusting and transforming the data from the images
and preparing the data for modelling. The third and final phase is to model each of the
Munsell colour coordinates.

The current study builds on previous studies [20,21], where a hybrid neuro-fuzzy
approach was proposed to solve the problem at hand. For this solution, ANNs were used to
predict each of the HVC values. Independent ANNs were trained to learn each coordinate,
and then an FS estimated the degree of membership for all the available chips. Although
that solution provided appealing results, it had two drawbacks. First, we had to design an
FS with more than two hundred rules, one per chip. Second, that approach worked properly
for high-quality devices but did not achieve the expected accuracy for poorer-quality ones.
Note that in addition to aiming to solve the problem, we also sought to address issues
stemming from the use of cheaper cameras.

An overview of the methodology is illustrated in Figure 2. We started with a set of
pictures taken by three different devices: a Canon EOS 1100D, which had the best quality
pictures, and two mobile phones with similar features (Nokia C301 and Samsung Galaxy
S2). All the samples were taken on a grey background along with white colour as a reference
in order to address the lighting conditions. These images provided the raw data: a set of
RGB coordinates.
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Figure 2. General flow of the proposed methodology.

To confirm that all the samples represented the same information, we analysed these
RGB values and tested the quality of the information they gathered. They were supposed to
exhibit the same, or very similar, information, but we found that there was high variability
in terms of colour depending on the device. In order to solve this problem, we transformed
the data according to a reference gamut. Because the Canon camera provided the best-
quality images, we selected that one as a reference, so that all the samples were able to have
improved RGB quality. This transformation was performed as illustrated in Figure 3. The
input of the ANN was the RGB values to convert for each device (Nokia and Samsung),
and the ANN predicted the new R′G′B′ coordinates according to the Canon camera.

AgriEngineering 2023, 5, 4 
 

 

first performed because the quality of the images is directly proportional to the correlation 
among RGB points. The second step is adjusting and transforming the data from the im-
ages and preparing the data for modelling. The third and final phase is to model each of 
the Munsell colour coordinates. 

The current study builds on previous studies [20,21], where a hybrid neuro-fuzzy 
approach was proposed to solve the problem at hand. For this solution, ANNs were used 
to predict each of the HVC values. Independent ANNs were trained to learn each coordi-
nate, and then an FS estimated the degree of membership for all the available chips. Alt-
hough that solution provided appealing results, it had two drawbacks. First, we had to 
design an FS with more than two hundred rules, one per chip. Second, that approach 
worked properly for high-quality devices but did not achieve the expected accuracy for 
poorer-quality ones. Note that in addition to aiming to solve the problem, we also sought 
to address issues stemming from the use of cheaper cameras. 

An overview of the methodology is illustrated in Figure 2. We started with a set of 
pictures taken by three different devices: a Canon EOS 1100D, which had the best quality 
pictures, and two mobile phones with similar features (Nokia C301 and Samsung Galaxy 
S2). All the samples were taken on a grey background along with white colour as a refer-
ence in order to address the lighting conditions. These images provided the raw data: a 
set of RGB coordinates. 

Raw data

Analysis and 
quality

Data 
transformation Modelling

Munsell chip  
Figure 2. General flow of the proposed methodology. 

To confirm that all the samples represented the same information, we analysed these 
RGB values and tested the quality of the information they gathered. They were supposed 
to exhibit the same, or very similar, information, but we found that there was high varia-
bility in terms of colour depending on the device. In order to solve this problem, we trans-
formed the data according to a reference gamut. Because the Canon camera provided the 
best-quality images, we selected that one as a reference, so that all the samples were able 
to have improved RGB quality. This transformation was performed as illustrated in Figure 
3. The input of the ANN was the RGB values to convert for each device (Nokia and Sam-
sung), and the ANN predicted the new R′G′B′ coordinates according to the Canon cam-
era. 

R

G

B

R’

G’

B’

 
Figure 3. ANN to compute the new RGB coordinates according to the reference gamut. 

Then, we trained an ANN to compute the hue; after that, we trained another ANN 
to estimate the value and chroma. This decision was made in this order, as the Munsell 
colour charts are distributed in this way: first the H, and then V and C together. In this 
way, we anticipated that the accuracy of the models would increase as the range of possi-
ble solutions reduced. 

We also tested training the ANN, transforming colour space from RGB to hue, satu-
ration, and value (HSV) as this colour space seemed to be more similar to the HCV than 
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Then, we trained an ANN to compute the hue; after that, we trained another ANN
to estimate the value and chroma. This decision was made in this order, as the Munsell
colour charts are distributed in this way: first the H, and then V and C together. In this
way, we anticipated that the accuracy of the models would increase as the range of possible
solutions reduced.

We also tested training the ANN, transforming colour space from RGB to hue, satura-
tion, and value (HSV) as this colour space seemed to be more similar to the HCV than to
RGB. Nonetheless, as the experiment described in the next section confirms, we did not use
the HSV-based models, using the RGB ones instead.
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3. Experiments

In this study, we conducted a series of experiments to evaluate the performance of our
proposed method. The aim of these experiments was to demonstrate the effectiveness of
the new method in comparison with that of existing approaches. The experiments were
designed to test the proposed method under different scenarios and conditions. The results
of these experiments provide insight into the strengths and limitations of the new approach
and offer guidance for its practical application.

Figure 4 provides a schematic representation of the experimental design. First, a pre-
liminary analysis of the data quality was conducted on the RGB samples obtained from the
images. This was necessary due to the potential variations in image quality and, therefore,
in the information captured, which may have resulted from using different devices.
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Following the confirmation of the variations among our samples, our next objective
was to enhance the data quality by using a reference gamut. To achieve this, we applied two
ANNs: one for mapping the Nokia samples to Canon samples, and the other for mapping
the Samsung samples to the Canon gamut. This produced a significant improvement in
data quality; the dataset was updated with the new values.

In addition to the reference gamut approach, we aimed to further improve the data
representation by converting the RGB coordinates to a different colour space, the HSV
colour space, which is similar to the MCC representation. Once again, if an improvement
was found, the database was updated with the best data representation.

Finally, the highest-quality data were used to train our ANNs. First, we trained the
model to fit the hue; then, using the estimation from the previous step, we trained another
ANN to fit the remaining two coordinates. To complete the validation of the implemented
models, a comparison with previous results was made.

4. Results

This section presents a summary of the most notable findings of our study. As we
mentioned in the previous section, the first step was to analyse the quality of the data.
Table 1 shows the correlation of each channel RGB for each device. At first glance, the
results showed that there was a strong correlation between some of the RGB channels. The
correlation was higher for Canon and Samsung but not for Nokia, which attained lower
correlation statistics. All these correlations can be visually displayed in Figure 5.
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Table 1. Correlation matrix of the RGB values for each device. RC, GC, and BC stand for the RGB
values for Canon, respectively; RN, GN, and BN are the Nokia’s RGB values, respectively; RS, GS and
BS correspond to the RGB values for Samsung, respectively.

RC GC BC RN GN BN RS GS BS

RC 1.0000 0.9449 0.8112 0.4838 0.5059 0.3694 0.9737 0.9422 0.6986
GC 0.9449 1.0000 0.9163 0.4429 0.5382 0.4532 0.8820 0.9881 0.8143
BC 0.8112 0.9163 1.0000 0.3704 0.4866 0.5600 0.7324 0.9010 0.9559
RN 0.4838 0.4429 0.3704 1.0000 0.9555 0.7952 0.4864 0.4766 0.3687
GN 0.5059 0.5382 0.4866 0.9555 1.0000 0.8780 0.4774 0.5655 0.4836
BN 0.3694 0.4532 0.5600 0.7952 0.8780 1.0000 0.3280 0.4835 0.6149
RS 0.9737 0.8820 0.7324 0.4864 0.4774 0.3280 1.0000 0.9005 0.6489
GS 0.9422 0.9881 0.9010 0.4766 0.5655 0.4835 0.9005 1.0000 0.8295
BS 0.6986 0.8143 0.9559 0.3687 0.4836 0.6149 0.6489 0.8295 1.0000
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Figure 5. Representation of the correlation coefficients of the RGB values obtained by each device. 

In order to improve the quality of the data, we designed the reference gamut experi-
ment. We experimented with some ANN parameters in order to find the optimal model. 
Because there were many experiments, we do not describe all of them. As an example, the 
experiment with the number of neurons is shown in Table 2. In this training, we tested 
different values for the number of neurons, and we finally selected the best one. For each 
neuron value, we performed 10 experiments, and we chose the average (see columns from 
3 to 6). In order to obtain a clear picture of our results, column 6 was included: it represents 
the denormalised error. By checking this column, we could examine the variability in the 
estimates in terms of colour. The last two columns illustrate the best test and validation 
metrics during the training process, respectively. 

The progression of these experiments is illustrated in Figure 6. Note that this figure 
does not display the error for the one-neuron case as it was too high. From these two 
graphs, we can see that between 20 and 25 neurons, the ANNs managed to obtain the best 
fit; after that, the variability was not significant. In any case, we selected the best ones and 
stored them for the next step. 

Once we acquired the optimal ANN to change the gamut, we computed the new RGB 
values. The results are illustrated in Table 3. The results evidenced an improvement in the 
quality of the data. However, the correlation with the Nokia device did not increase. Over-
all, the correlations considerably strengthened. 

  

Figure 5. Representation of the correlation coefficients of the RGB values obtained by each device.

In order to improve the quality of the data, we designed the reference gamut experi-
ment. We experimented with some ANN parameters in order to find the optimal model.
Because there were many experiments, we do not describe all of them. As an example, the
experiment with the number of neurons is shown in Table 2. In this training, we tested
different values for the number of neurons, and we finally selected the best one. For each
neuron value, we performed 10 experiments, and we chose the average (see columns from
3 to 6). In order to obtain a clear picture of our results, column 6 was included: it represents
the denormalised error. By checking this column, we could examine the variability in the
estimates in terms of colour. The last two columns illustrate the best test and validation
metrics during the training process, respectively.
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Table 2. Experiments for the reference gamut modelling.

Device Neurons Train Test Validation Denorm.
Validation

Min.
Test

Min.
Validation

Nokia 1 0.02669 0.02680 0.02620 1703.1960 0.02438 0.02312
5 0.00167 0.00175 0.00167 108.43533 0.00127 0.00111

10 0.00086 0.00092 0.00099 64.18800 0.00065 0.00072
15 0.00075 0.00079 0.00077 49.87453 0.00061 0.00059
20 0.00068 0.00074 0.00079 51.64453 0.00059 0.00060
25 0.00069 0.00086 0.00075 48.96067 0.00065 0.00060
30 0.00060 0.00076 0.00075 49.04147 0.00050 0.00049
35 0.00059 0.00076 0.00081 52.91627 0.00056 0.00054
40 0.00062 0.00078 0.00071 46.10627 0.00059 0.00058
45 0.00053 0.00075 0.00083 53.89320 0.00058 0.00055
50 0.00056 0.00077 0.00082 53.50213 0.00059 0.00062

Samsung 1 0.00441 0.00436 0.00444 289.00307 0.00381 0.00395
5 0.00103 0.00113 0.00100 64.83067 0.00089 0.00071

10 0.00085 0.00091 0.00086 55.68960 0.00068 0.00061
15 0.00079 0.00080 0.00087 56.35720 0.00069 0.00065
20 0.00064 0.00074 0.00079 51.57760 0.00044 0.00057
25 0.00060 0.00070 0.00073 47.49813 0.00054 0.00055
30 0.00055 0.00081 0.00082 53.25147 0.00051 0.00055
35 0.00054 0.00080 0.00073 47.49560 0.00061 0.00054
40 0.00054 0.00075 0.00072 47.13880 0.00060 0.00045
45 0.00053 0.00078 0.00080 51.73093 0.00062 0.00045
50 0.00052 0.00076 0.00075 48.97707 0.00055 0.00053

The progression of these experiments is illustrated in Figure 6. Note that this figure
does not display the error for the one-neuron case as it was too high. From these two
graphs, we can see that between 20 and 25 neurons, the ANNs managed to obtain the best
fit; after that, the variability was not significant. In any case, we selected the best ones and
stored them for the next step.
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Figure 6. Evolution of the error according to the number of neurons for the (a) Nokia-to-Canon and
(b) Samsung-to-Canon ANN to change the gamut.

Once we acquired the optimal ANN to change the gamut, we computed the new RGB
values. The results are illustrated in Table 3. The results evidenced an improvement in
the quality of the data. However, the correlation with the Nokia device did not increase.
Overall, the correlations considerably strengthened.
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Table 3. Correlation matrix of the new RGB values after the change of gamut. The correlations that
increased from those in Table 1 are indicated in bold.

RC GC BC RN GN BN RS GS BS

RC 1.0000 0.9449 0.8112 0.9950 0.9426 0.8129 0.9949 0.9450 0.8127
GC 0.9449 1.0000 0.9163 0.9441 0.9961 0.9151 0.9441 0.9950 0.9153
BC 0.8112 0.9163 1.0000 0.8102 0.9115 0.9920 0.8076 0.9090 0.9893
RN 0.9950 0.9441 0.8102 1.0000 0.9474 0.8174 0.9931 0.9464 0.8143
GN 0.9426 0.9961 0.9115 0.9474 1.0000 0.9184 0.9440 0.9953 0.9153
BN 0.8129 0.9151 0.9920 0.8174 0.9184 1.0000 0.8121 0.9131 0.9902
RS 0.9949 0.9441 0.8076 0.9931 0.9440 0.8121 1.0000 0.9499 0.8172
GS 0.9450 0.9950 0.9090 0.9464 0.9953 0.9131 0.9499 1.0000 0.9191
BS 0.8127 0.9153 0.9893 0.8143 0.9153 0.9902 0.8172 0.9191 1.0000

RC, GC, and BC stand for the RGB values for Canon, respectively; RN, GN, and BN are the Nokia’s RGB values,
respectively; RS, GS, and BS correspond to the RGB values for Samsung, respectively.

The transformed RGB values were used to train our ANN with seven outputs, which
were Ok

H, where k ∈ [1, 7] represents the H to be predicted. Before presenting the test
battery for this stage, we fixed the parameters of the networks to examine whether a colour
space change would influence the performance of our networks. These results are gathered
in Table 4.

Table 4. Comparison between the RGB and HSV approaches to obtain hue.

Device Space C1 C2 C3 C4 C5 C6 C7

Canon RGB 0.9517 0.9078 0.9208 0.9330 0.9412 0.9393 0.9578
HSV 0.9204 0.8473 0.8595 0.8962 0.9380 0.9370 0.9666

Nokia RGB 0.9044 0.8454 0.8656 0.8540 0.8641 0.8811 0.9452
HSV 0.7977 0.7153 0.7740 0.7635 0.7857 0.8813 0.9366

Samsung RGB 0.9092 0.8450 0.8628 0.8576 0.8588 0.8790 0.9227
HSV 0.9048 0.7737 0.7210 0.6307 0.5922 0.6609 0.6071

Bold text indicates the best accuracy between the RGB and HSV of each device. C1 . . . C7 are each of the seven
charts evaluated.

The series of experiments with all the configurations tested are provided in Table 5.
Each cell represents the mean of 10 executions. To easily refer to each cell of the table, we
used this notation, Ckd, where k is the number of the chart, and d is the device.

Table 5. Battery of experiments to compute the hue value.

Device N C1 C2 C3 C4 C5 C6 C7

Canon 1 0.99184 0.98456 0 0 0.99603 0 1
5 0.91429 0.92278 0.90909 0.67347 0.94841 0.96774 0.97235
10 0.87347 0.88803 0.91775 0.89388 0.90476 0.96313 0.98618
15 0.93469 0.91892 0.85714 0.91429 0.96032 0.96313 0.97696
20 0.93061 0.89575 0.88312 0.92653 0.93651 0.98157 0.97696
25 0.94694 0.90347 0.93506 0.93061 0.96825 0.95853 0.97235
30 0.95918 0.90734 0.8961 0.92245 0.96032 0.97235 0.98618
35 0.9551 0.92278 0.92208 0.91429 0.96032 0.96774 0.95853
40 0.96327 0.89961 0.89177 0.90612 0.96032 0.9447 0.98157
45 0.94694 0.91892 0.90909 0.94694 0.96825 0.97235 0.98157
50 0.97143 0.91506 0.90909 0.9102 0.96032 0.97696 0.97235

Nokia 1 0.97959 0.97683 0 0.04081 0.30159 0.98157 0.90783
5 0.93878 0.79151 0.28139 0.79184 0.67063 0.69585 0.98157
10 0.85714 0.86873 0.78788 0.8 0.75794 0.82488 0.91705
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Table 5. Cont.

Device N C1 C2 C3 C4 C5 C6 C7

15 0.90204 0.84556 0.80952 0.63265 0.7381 0.89862 0.89401
20 0.90204 0.88031 0.69264 0.78367 0.78968 0.87097 0.94931
25 0.92245 0.84556 0.73593 0.73061 0.7619 0.89862 0.91705
30 0.8449 0.83784 0.8355 0.77959 0.72619 0.82488 0.95392
35 0.86122 0.87645 0.81818 0.77143 0.80159 0.8341 0.94009
40 0.90204 0.86873 0.7013 0.82857 0.79365 0.87558 0.94009
45 0.86939 0.8417 0.85281 0.76327 0.74603 0.88018 0.9447
50 0.90204 0.88803 0.82684 0.64082 0.75794 0.80184 0.96774

Samsung 1 0.91837 0.94595 0 0 0.1746 0.94931 0.85714
5 0.89796 0.85328 0.02164 0.72245 0.65873 0.71889 0.93548
10 0.84082 0.79537 0.54545 0.63673 0.72222 0.77419 0.85714
15 0.86531 0.82625 0.59307 0.71837 0.63095 0.75115 0.93088
20 0.82449 0.88803 0.61472 0.70204 0.7619 0.84332 0.86175
25 0.85306 0.91506 0.58874 0.75102 0.72619 0.7235 0.93088
30 0.82449 0.87645 0.58874 0.69796 0.7619 0.80645 0.90323
35 0.89388 0.85328 0.61905 0.66122 0.71429 0.77419 0.89862
40 0.88163 0.92278 0.58009 0.68571 0.69444 0.86175 0.90783
45 0.87347 0.90347 0.68398 0.70612 0.74603 0.82949 0.88479
50 0.86939 0.88417 0.58874 0.62449 0.77381 0.75576 0.9447

In bold, the best configuration for each chart. C1 . . . C7 are each of the seven charts evaluated.

Figure 7 depicts an illustrative example to better interpret the information in Table 5.
Note that some of the first points (one and five neurons) were omitted in this figure to
clearly visualise the evolution of the experiments. In the table we can discern the best
configurations for each of the charts. Notice that the first row was skipped, highlighting
that the ANNs were not generalising properly.
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Figure 7. Illustrative example of the evaluation of neurons for the Canon device. The colours repre-
sent the mean accuracy of the ANN from green (the best learned chart) to red (the worst). 
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Figure 7. Illustrative example of the evaluation of neurons for the Canon device. The colours
represent the mean accuracy of the ANN from green (the best learned chart) to red (the worst).

Having selected the best model to predict the hue, the last stage in our study was to
predict the remaining two variables, value and chroma. By following the same process as
in the rest of the experiments, we obtained the results provided in Table 6.
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Table 6. Results of the estimation of the value and chroma.

Canon Nokia Samsung

Neurons Value Chroma Value Chroma Value Chroma

1 0.9787 0.9756 0.9396 0.7942 0.9313 0.8135
5 0.9795 0.9743 0.9404 0.7956 0.9336 0.8132

10 0.9801 0.9744 0.9394 0.7947 0.9345 0.8112
15 0.9782 0.9749 0.9398 0.7975 0.9318 0.8163
20 0.9797 0.9740 0.9394 0.7969 0.9304 0.8105
25 0.9791 0.9741 0.9375 0.7942 0.9321 0.8163
30 0.9786 0.9756 0.9370 0.7864 0.9315 0.8105
35 0.9794 0.9769 0.9392 0.7943 0.9322 0.8115
40 0.9796 0.9735 0.9384 0.7962 0.9340 0.8163
45 0.9784 0.9739 0.9391 0.7962 0.9361 0.8165
50 0.9791 0.9747 0.9355 0.7937 0.9310 0.8082

Finally, in order to validate our method, we compared the results attained in this
method with those of previously published methods. To do so, we constructed Table 7,
which contains the best accuracy accomplished for each chart [19]. The general improve-
ment provided by our method is clearly seen in this table.

Table 7. Performance comparison between our new method and the best results obtained by previous
methods [19].

Device Method C1 C2 C3 C4 C5 C6 C7

Canon New 0.9918 0.9846 0.9567 0.9674 0.9960 0.9862 1.0000
Previous 0.8857 0.9167 0.9677 0.9459 0.9355 0.9697 0.9714

Nokia New 0.9796 0.9768 0.8528 0.8286 0.8373 0.9816 0.9816
Previous 0.7286 0.6389 0.8871 0.8108 0.8065 0.9091 0.6000

Samsung New 0.9306 0.9460 0.7143 0.7714 0.8095 0.9493 0.9493
Previous 0.8143 0.6944 0.7419 0.7973 0.5968 0.7273 0.7429

5. Discussion

The results of the correlation analysis presented in Table 1 provide some intriguing
insights. We observed a strong correlation between the RGB channels in our data when
focusing on the small 3× 3 matrices of each device. For instance, the R channel of the Canon
device had a strong correlation with the G and B channels, although the correlation with the
B channel was slightly weaker. Additionally, we detected a strong correlation between the
Canon and Samsung devices. This may have been attributed to a minimal loss of quality
in the images captured by these devices. This correlation could be separately observed in
each of their RGB variables, i.e., the correlation between RC and RS was very strong, as
well as between GS and GC, and so on. Nonetheless, this pattern was not observed in the
Nokia mobile phone, which had considerably lower correlation statistics, with the highest
correlation being 0.6.

The reference gamut test in Table 2 provides some conclusions. Firstly, our models were
correctly trained without overfitting, as the training and validation/test errors followed a
similar trend. Secondly, we observed a steady tendency as the number of neurons increased,
with a slight fall in the first values and a gradual rise or stagnation as they increased. Thirdly,
if we take a look at the last two columns, there is a certain stability because there is no
marked drop between the average errors. Additionally, in most cases, the best models
presented similar or lower test and validation errors than the average training, suggesting
that the ANNs achieved promising results.

Table 3 analyses the new RGB coordinates provided by the reference gamut. Most of
the cells are in bold, as the correlation among devices increased, meaning that the quality
of the data improved. The RGBC maintained the same values as there was no change in
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the gamut for the Canon camera. What is striking in this table is cell (GN, RN), as it is the
only case where the correlation weakened. Interestingly, the RGBN compared with itself
did not intensify the correlation as it did with the rest of the devices. However, overall, the
correlations considerably strengthened.

We can see in Table 4 how most of the charts for any device presented better results in
the RGB colour space, and the difference in most cases was substantial. Surprisingly, only
two charts adapted better and only with a minor difference: C7 for the Canon camera and
C6 for the Nokia mobile phone. Furthermore, a closer inspection of this table shows how
the Samsung device achieved the worst accuracy when using the HSV space. This finding
was unexpected, as this method was applied to enhance the performance of lower-quality
images, but we obtained the opposite effect. In light of these results, we ruled out this
approach and continued to find the optimal configuration to obtain a hue variable with the
RGB inputs.

Table 5 presents several noteworthy observations. Firstly, if we examine the first row
for each device (the experiments with one neuron), we can see that several charts had an
accuracy of zero, indicating that the ANN was unable to correctly classify those charts.
These included C3C, C4C, C6C, C3N, C3S, and C4S. It is interesting how in none of the
10 experiments were these charts successfully classified. Additionally, if we closely observe
the table, C3N, C4N, C5N, and C5S present values very close to zero. This is because, in
these cases, some of the executions took these charts into account. Therefore, there were
two charts, C3 and C4, that repeated the pattern in the three devices, and another one, C5,
was found in the two mobile phones. This finding could be trivial, provided we had an
unbalanced dataset; however, this is not what occurred here. These outcomes can be seen
in Figure 6, which shows a relatively high variability as there is not a clear peak in nearly
none of the cases. Chart 7 presents one of the steadiest tendencies. It obtained a good
accuracy with a few neurons (five), and the performance wavered around 0.98618 for all
of the tests. This also occurred with 30 neurons. C6 and C5 displayed similar behaviour.
By observing C1, we can see how its performance improved as the number of neurons
grew. For the rest of the devices, we observed a more oscillating behaviour, fluctuating
around the accuracy obtained with 10–20 neurons, but none of them showing an increasing
or decreasing trend. To solve our problem, we selected those configurations that provided
better accuracy on average, i.e., with the seven charts. This is the main reason we could not
accept the models with one neuron, despite achieving the highest accuracy in some charts,
on average, they classified with an accuracy of ~55%.

After modelling the hue variable, if we check Table 6, we can confirm that the extra
information provided by H significantly improved the estimations of the remaining two
features, V and C. At first glance, what stands out in that table is the low variability in the
results: they are all very close to one another, as opposed to the hue modelling. Hence, we
can confirm the validity of our method with these robust outcomes. As expected, the best
model was obtained using the images from the Canon camera for both V and C. Nokia was
able to obtain the second-best accuracy for V and the last in terms of C. We found that CN
and CS achieved an accuracy well below 0.9 due to being lower-quality devices and having
the most unbalanced features.

From the final comparison presented in Table 7, we found that the proposed method
outperformed previous methods on average by 4.4% with Canon, 19.6% with Nokia, and
18.7% with Samsung. Interestingly, not all charts received the best score; the proposed
method did not outperform the others on some charts, such as C3 for all the devices and
C4S. This could be an area for future research, where a combination of solutions is sued.
Overall, the results validate the proposed method, specifically highlighting the improved
performance on the Nokia device, which was previously known to have the worst accuracy
due to the quality of its images.

Finally, while our primary goal was to provide a comprehensive methodology for
building models from scratch using widely available and affordable devices, this approach
also has a notable limitation: it cannot be directly compared with other solutions due to
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the differences in the data- and image-processing techniques used. As such, exploring
new approaches that involve using publicly available datasets and adapting them to our
methodology is an avenue for future research.

6. Conclusions

The purpose of this study was to develop a model for soil classification based on colour
analysis and the Munsell colour chart. The current method used by most soil scientists,
which relies on personal criteria and visual examination using Munsell charts, was found
to be subjective and dependent on the observer. A two-stage implementation of artificial
neural networks was proposed to solve this problem. The dataset was built using photos
taken from three different devices, Canon, Nokia, and Samsung, each with different camera
quality. The first stage of the model focused on finding the hue variable using the RGB
values of the photo, and the second stage used the estimated hue values and the RGB
data to compute the remaining two coordinates, value and chroma. Experiments were
conducted to improve the categorisation of soil, and the best camera was used as a reference
gamut. The model was able to outperform previous method with an improvement of nearly
20% in accuracy for the poorer-quality device and an average above 90% in all cases.

Thus, this study provides a solution to the subjective and observer-dependent nature
of current soil classification methods. The proposed two-stage implementation of artificial
neural networks proved to be an effective approach to improve soil categorisation, with an
average accuracy above 90% in all cases.

This study also highlighted the potential for future research in exploring different
colour spaces and implementing a fuzzy system to calculate RGB values to address uncer-
tainty and variability caused by certain devices. Additionally, incorporating public datasets
and adopting our methodology with other authors’ solutions is an interesting research line
to follow.
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Abbreviations

ANN Artificial Neural Network
B Blue
BC Blue–Canon
BG Blue-Green
BN Blue–Nokia
BS Blue–Samsung
C Chroma
FS Fuzzy System
G Green
GC Green–Canon
GN Green–Nokia
GS Green–Samsung
GY Green-Yellow
H Hue
HVC Hue, Value, and Chroma
MCC Munsell Colour Chart
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P Purple
PB Purple-Blue
R Red
RC Red–Canon
RGB Red, Green, and Blue
RN Red–Nokia
RP Red-Purple
RS Red–Samsung
V Value
Y Yellow
YR Yellow-Red
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