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Abstract—The traffic matrix is a useful data structure in net-
work management, monitoring, optimization and traffic forecast.
A recurrent problem is to obtain accurate traffic matrices in real
time from the traffic of a network, specially when this network
is large (e.g., a Tier 1 Internet Service Provider), and without
causing a relevant overhead in network computing, storage and
communication resources. A solution deeply investigated in the
past is the network tomography: the estimation of a traffic
matrix from the volume of traffic traversing the links (a.k.a.
link counts), which measurement implies a minimum overhead.
This estimation entails relevant challenges. In this paper, we
propose the application of the Partial Least Squares method to
this problem. We illustrate the proposal with the Abilene network
dataset, and report promising results in comparison to traditional
methods like General Tomogravity and the Structural Analysis
based on Principal Component Analysis.

Index Terms—traffic matrix, network tomography, link counts,
partial least squares, Abilene data set

I. INTRODUCTION

There is an increasing interest in the development of new
data analysis methods to improve the performance of com-
munication networks by providing them with some level of
autonomy, in tasks like network monitoring, troubleshooting
and optimization [1]. In this context, the measurement of
the volume of network traffic has become a crucial need in
order to accommodate high quality services at a reasonable
investment in technology. A Traffic Matrix (TM) is a widely
used data structure in important network problems such as
resources optimization, planning and monitoring, resilience
analysis, anomaly detection and more [2]. A TM represents
the volume of traffic per interval of time between each pair of
ingress and egress nodes in the network and provides essential
information about the current network state.

The computation of the TM is challenging. A TM can
be directly measured using a traffic flow registering protocol
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such as Netflow [3]. However, this requires a non-negligible
consumption of processing time, storage capacity, and network
bandwidth. An alternative is to estimate the TM, reducing the
overhead. There are several methods that attempt to derive the
TM from link counts, which can be collected via the Simple
Network Management Protocol (SNMP). This is generally
referred to as network tomography, and was proposed two
decades ago [4]. A link count makes reference to the number
of incoming and outcoming packets or bytes in a link of the
network. Unlike Netflow, SNMP neither describes traffic at
flow level nor provides origin-destination (OD) information,
and it is much less resource consuming.

Many techniques for estimating the TM have been proposed,
but these methods are not ideal and new approaches are being
sought. One of the simplest approaches is to use a gravity
model that is based on the probability theory [5]. The General
Tomogravity (GT) approach uses the gravity model and esti-
mates the TM solely from link load data [6]. The Structural
Analysis based on Principal Component Analysis (SA-PCA)
is a predictive technique based on a regression model that
captures the relationship between the link load and the TM
[7]. For this purpose, the origin-destination measurements at
the flow level must be combined with link counts during
a so-called calibration period to build a prediction model.
This calibration entails some challenges. In particular, the
link counts may show a collinear behavior and low signal-to-
noise ratio to accurately estimate the TM. One way to tackle
these problems is to use multivariate methods such as PCA.
However, PCA is not a regression technique and therefore its
application to regression problems is sub-optimal.

In this paper, we propose to use the Partial Least Squares
(PLS) regression method [8] to construct a prediction model
for TM estimation. PLS, a widely developed technique in fields
such as econometrics, psychometrics, and chemometrics, can
be seen as the regression counterpart of PCA, more suited to
the TM estimation problem. To our knowledge, this is the first
application of PLS in this problem.



The rest of the paper is organized as follows. Section II
reviews the principal and recent works on TM estimation.
Section III introduces the GT and SA-PCA TM estimation
approaches. Section IV presents the PLS approach. Section V
introduces the calibration strategy, the Abilene network dataset
and the performance metrics considered in the experimental
part. Section VI presents the evaluation results. Finally, Section
VII draws conclusions and establishes future research plans.

II. RELATED WORK

The main problem in the TM estimation with network
tomography is that the link counts do not provide enough
information to estimate all TM coefficients. One of the strate-
gies developed to improve the TM estimation performance was
based on assumptions. A direct consequence of this approach
is that the estimation results depend on how accurately these
assumptions correspond to reality. An alternative approach to
the one based on assumptions is the use of additional informa-
tion, which unfortunately means an additional overhead. This
approach can be found in the tomogravity method, which is
based on a combination of link counts from the inner network
and the incoming and outgoing traffic counts [6].

Another strategy is to create a prediction model between the
counts and the TM. For this purpose, Netflow measurements
(or the like) should be collected during the calibration process.
Nevertheless, the derivation of the predictive model is not
straightforward as there are numerical problems related to the
fact that the link count information is insufficient to estimate
the TM. Collinearity between the link counts contributes to this
problem. Lakhina et al. proposed the use of PCA to reduce the
dimension of the traffic matrix estimation problem, which in
turn reduces the related problems [9]. Another proposal is to
use a deep learning architecture [10]. Yang et al. introduced
a method to improve the accuracy of the estimation based
on the sparsity of TM and a grey predictive model [11].
Zhou et al. proposed an estimation method called MNETME,
which consists of a Moore-Penrose inverse based neural net-
work approach combined with an expectation maximization
approach [12].

An alternative trend to TM estimation is to reduce the TM
measurement overhead by, for example, using partial direct
measurements. This is a problem very similar to the link
count estimate (the network tomography) and there are similar
difficulties too. Zhou et al. proposed a method based on multi-
Gaussian models and Bayesian inference to estimate the miss-
ing traffic data [13]. The idea of measuring a small number
of OD flows at a time, where the measured OD flows change
in time and are randomly selected, was proposed [14]. Nie
proposed an compressive sensing measurement model based
on a stochastic Bernoulli matrix and partial measurements of
the TM [15].

The search for new methods that could increase the effi-
ciency and effectiveness of TM measurements continues to
this day. Recently, there has also been some work on TM
estimation in the Software Defined Networking (SDN) area.
Polverini et al. defined an effective criterion based on a flow

spread concept that allows to select the optimum set of OD
flows to be measured in SDN [16]. Other performance im-
provements for TM estimation were introduced in references
[17]–[19].

Our work lies on the group of methods that create a
prediction model between link counts and the TM. We use
the PLS technique to create this model. PLS is a regression
technique that is very efficient in prediction tasks in highly
multivariate problems.

III. TRAFFIC MATRIX ESTIMATION BASED ON
GT AND SA-PCA

A TM can be represented as a temporal series of matrices
denoted as Xt. Each matrix Xt in the series has dimension
n × n, where n is the number of ingress/egress nodes in the
network. Let each element of Xt in row i and column j be
denoted xi,j

t , and contain the volume of traffic between the
OD pair {i, j} at time interval t. As we mentioned in Section
1, the TM can be directly obtained using Netflow, which stores
flow-level data. For the sake of simplicity of notation, we drop
the suffix t in the remaining unless necessary.

Let us denote x as the column vectorized form of X, and
y as the column vector with bytes/packets counts for the L
link interfaces of the network at a certain sample interval t.
We can regress x on y to create a prediction model for the
former, so that in future time we only need to measure y to
estimate x, reducing the overhead.

The estimation of x from y can be improved by introducing
first-principles information in the prediction model. For in-
stance, one extensively used result is the so-called tomography
relationship between the TM and the link counts using routing
information [4]. The expression is as follows:

y = Ax (1)

where A is the routing matrix. When non-bifurcating routing
is imposed, A is a binary matrix where each element ai,j

equals to 1 if the traffic of the i-th OD pair is routed through
the j-th link in the network. In large-scale IP networks, the
number of links L is often much lower than the number of
OD pairs N = n2. For this reason, obtaining x from y is an
under-determined problem.

The Gravity model assumes that the volume of traffic
between two nodes is proportional to the traffic entering
through the ingress node and the traffic leaving through the
egress node. Authors in [6] define the Generalized Gravity
model as the extension of the Gravity model where specific
network characteristics are considered. In particular, they
consider large ISPs with non-bifurcating connections between
networks clients and with other, peer networks. The Tomo-
gravity model is based on the combination of the Gravity
model and tomography relationship [6], [20], [21]. The TM
estimate is initialized with the Gravity model using the link
counts. Then, the estimate is re-adjusted using the Moore-
Penrose pseudo-inverse to minimize the network tomography
equivalence ||Ax − y||, where ||.|| is the L2 norm of a



vector. Depending on whether the Simple Gravity model or
the Generalized Gravity model is used to estimate the initial
solution, the resulting model is called Simple Tomogravity or
General Tomogravity, respectively.

Using pairs of measurements of x and y collected in
coincident time intervals t = 1, ..., T , we can establish a data-
driven predictive model. This model can be used to infer the
value of future TMs only from the link counts, reducing the
overhead. Let us denote1 X as a T × N matrix containing
T instances of x measurements in the rows, and Y a T × L
matrix with the corresponding set of y measurements in the
same intervals. The relationship between X and Y can be
established with a purely data-driven approach using a linear
regression model as follows:

X = YB+ F (2)

where B is the matrix of regression coefficients and F is the
residual matrix.

The SA-PCA method employs PCA to provide an estimate
for B from the tomography relationship in Eq. (1). PCA trans-
forms a matrix into a number of uncorrelated linear combina-
tions of the original variables, each combination orthogonal to
the rest. These linear combinations are obtained to maximize
variance, and are referred to as Principal Components (PCs).
These PCs capture most of the information in a matrix, and
allow to overcome inversion problems. A version of PCA
is based on the Singular Value Decomposition (SVD) and
follows:

X = USVT +E (3)

where S is a AxA diagonal matrix with the singular values of
X, for A the number of PCs, U is a TxA matrix that contains
the eigenvectors of X ·XT , V is a NxA matrix that contains
the eigenvectors of XT ·X, and E is the residual matrix. The
number of PCs can be selected by cross-validation [23].

Let us extend the tomography relationship to the time-series
matrices:

Y = XAT +G (4)

The combination of Eqs. (4) and (3) yields:

Y = USVTAT +H (5)

where H combines the error terms of PCA and the tomography
relationship. Let us rename Q = SVTAT . Using the pseudo-
inverse of this matrix leads to the regression term of SA-PCA:

BSP = Q+SVT (6)

1The underline notation is often used for 3-way arrays or tensors, which is
suitable given X can also be seen as a time-wise unfolded matrix [22] with
three modes: time intervals × ingress/egress nodes × ingress/egress nodes.

IV. PARTIAL LEAST SQUARES FOR TRAFFIC MATRIX
ESTIMATION

The least-squares solution for B in Eq. (2) is:

BLS = (YTY)−1YTX (7)

which may suffer from numerical problems if the inversion
is ill-conditioned, or be even unfeasible if YTY is rank-
deficient. Additionally, this solution does not take into account
the tomography relationship. However, by definition, BLS

minimizes the Frobenious norm of the error F in Eq. (2).
A well-known solution to the numerical problems in least

squares is the PLS regression method [8]. The PLS model,
particularized to the problem under study, can be stated as
follows:

Y = TPT + Fy (8)

X = TQT + Fx (9)

where T is the T ×A score matrix, for A now the number of
LVs, P and Q are the L×A and N×A loading matrices, and
Fy and Fx are the T ×L and T ×N residual matrices of Y
and X, respectively2. This can be re-arranged into a regression
equation as follows:

X = YB̂PLS + Fx (10)

with:
B̂PLS = W(PT ·W)−1QT (11)

where W is the N ×A matrix of weights.
A PLS model can be obtained, among others, using the

kernel algorithm [25], NIPALS [26] or SIMPLS [27]. Cross-
validation can be used to determine the optimum A.

V. MATERIALS AND METHODS

In this section, we present the calibration strategy, the
dataset and performance metrics used in the experimentation.

A. Calibration strategy

A predictive model in a time series tends to reduce perfor-
mance in time. In order to maintain an adequate performance
of the predictive model between the links and the TM, we can
define a strategy to re-calibrate the model after fixed periods of
time, every 4t sampling times. The re-calibration is based on
Ct samples, in which we need to measure both the TM and the
links traffic. In the remaining 4t−Ct sampling times of each
period of time, the TM is estimated but not measured. If, for
example, the combination Ct = 2 and 4t = 72 is selected, in
2 samples out of every 72 we measure both the TM (through,
e.g., Netflow) and the links traffic, and in the remaining 70
we only measure the latter. We use this calibration strategy in
SA-PCA and PLS.

2Note that an alternative and equivalent expression for the PLS model
makes use of slightly different scores and an additional inner regression
parameter [24].



Fig. 1. SRE (a), TRE (b) and OVH (c) evolutions of all the possible Ct and 4t combinations (x-axis) versus GT and offline PLS.

B. Dataset

The Abilene network data [28] has been widely used in the
TM estimation area to test the performance of new algorithms.
The dataset was formed in 2004 by 24 weeks of traffic
(X01-X24 files) and contains 144 OD pairs. The Abilene
network includes 54 links classified into three categories:
internal, inbound and outbound. In our research, we only
considered internal links. Due to some time discontinuity in
the measurements we used 20 weeks of the total of 24. In
order to validate the PLS-based TM estimation, the dataset
was divided into two subsets: one for calibration and one for
testing the results. The calibration set consisted of the first ten
weeks and was used to select the optimal calibration strategy.
The last ten weeks were used to evaluate the performance of
the selected algorithm.

C. Performance metrics

We used several metrics to evaluate the proposed method:
the Temporal Relative Error (TRE), the Spatial Relative Er-
ror (SRE) [29] and the information overhead. The TRE(t)
computes the average sum-of-squares error between the true
TM Xt and its estimate X̂t at time t, using any of the
aforementioned methods. The SRE(k) computes the average
sum-of-squares error between the true traffic and its estimate
at the k-th flow. The overhead (OVH) refers to the amount
of information (in bytes) that has to be sent through the
network to the collector station. The combination of TRE and
SRE allows to understand the estimation error in the time
and OD pair dimension, respectively. The combination of the
error metrics with the OVH allows us to assess methods as a
trade-off between the estimation performance and the network
overhead, which is relevant for real practice.

VI. EXPERIMENTS AND RESULTS

In this section, the performance evaluation results are
presented. In a first step, we used the first 10 weeks of

data to select the configuration (calibration strategy) in PLS.
The remaining data is used to evaluate the performance and
compare PLS with GT and SA-PCA.

A. PLS model selection: First ten weeks

The mean performance values of the different calibration
strategies in PLS and for the first ten weeks are shown
in Fig. 1. For the sake of a fair comparison, we select
a PLS calibration strategy with a similar overhead to GT
(OVHGT = 18144 samples ∗ 54 links = 979776 Bps)3. The
closest overhead value is the one given by the combination
Ct = 1 and 4t = 6 (marked as a red filled circle in the
figure). The blue solid line represents the performance of the
variants of PLS, for each possible combination of the values
of Ct and 4t. We can see that as the overhead increases, the
SRE and TRE decrease. We compare these results with the one
of GT, and the hypothetical (but not useful in practice) PLS
model calibrated with all sampling times (i.e., for Ct = 4t).
We call this a PLS offline model, and it represents the optimal
achievable performance in PLS in terms of SRE and TRE. We
can see that the selected model (red circle) clearly outperforms
GT in terms of SRE, approaching the performance of the PLS
offline model. In the case of TRE, the three methods provide
a similar result.

B. Performance evaluation: Last ten weeks

Once the parameters of the algorithm had been selected,
they were applied on the second half of the dataset to compare
the performance of the methods. In this case, we included
GT, SA-PCA and PLS, the latter two for the configuration
Ct = 1 and 4t = 6 and their corresponding offline versions
(Ct = 4t). Recall that offline versions are used to show the
limit of achievable performance, but they cannot be used in
practice. The numerical results can be found in Table I. We

3Later on, we will choose a SA-PCA variant with the same overhead



can see that for a similar overhead, PLS outperforms the other
methods.

TABLE I
PERFORMANCE RESULTS

Calibration TRE SRE OVH
GT – 0.4474 0.8456 979796
SA-PCA Ct = 1, 4t = 6 0.4748 0.5789 943488
PLS Ct = 1, 4t = 6 0.4172 0.5713 943488
SA-PCA offline 0.4780 0.5697 2939328
PLS offline 0.3971 0.5146 2939328

VII. CONCLUSIONS

In this paper, we present for the first time the application
of Partial Least Squares to the problem of estimation of the
traffic matrix using a tomography approach. We also propose
a model calibration strategy to find a compromise between
network overhead associated to traffic matrix measurements
and estimation performance. A reduction in overhead can be
advantageous when implementing the proposed methodology
in a real network. Our approach inherits the advantages and
disadvantages of the tomography approach: we reduce the
overhead to compute the traffic matrix at the cost of intro-
ducing some estimation error. The results of the experiments
show that our method generally outperforms state of the art
approaches in terms of accuracy of estimation for the same
overhead. This approach may still be improved by including
first principle results in the estimation model. In future work,
we plan to verify the method on other network deployments
and technologies, in particular in Software Defined Networks.

REFERENCES

[1] H. Song, F. Qin, P. Martinez-Julia, L. Ciavaglia, and A. Wang, “Network
Telemetry Framework,” Internet Engineering Task Force, Internet-Draft
draft-ietf-opsawg-ntf-07, Feb. 2021, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-ntf-07

[2] P. Tune and M. Roughan, “Internet traffic matrices: A primer,” Recent
Advances in Networking, 2013.

[3] Cisco Systems, “Introduction to Cisco IOS ® NetFlow,” White Paper,
2012.

[4] Y. Vardi, “Network Tomography: Estimating source-destination traffic
intensities from link data,” Journal of the American Statistical Associa-
tion, vol. 91, pp. 365–377, 1996.

[5] M. Roughan, “Simplifying the synthesis of internet traf-
fic matrices,” SIGCOMM Computer Communication Review,
vol. 35, no. 5, p. 93–96, Oct. 2005. [Online]. Available:
https://doi.org/10.1145/1096536.1096551

[6] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg,
“Fast accurate computation of large-scale ip traffic matrices
from link loads,” SIGMETRICS Performance Evaluation Review,
vol. 31, no. 1, p. 206–217, Jun. 2003. [Online]. Available:
https://doi.org/10.1145/885651.781053

[7] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D.
Kolaczyk, and N. Taft, “Structural analysis of network
traffic flows,” ACM SIGMETRICS Performance Evaluation
Review, vol. 32, no. 1, p. 61, 2004. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1012888.1005697
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