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A B S T R A C T   

Spectral analysis techniques are valuable tools at the disposal of paleoclimate scientists in their research of 
cyclical phenomena potentially responsible for past climatic fluctuations. Advances in computing and an 
increased availability of climate time series have helped to consolidate this approach. Yet the visual represen
tation of spectral analysis results has not improved at the same pace. Time-frequency analysis aims to identify 
periodic signals that vary over time using 2-D color graphs, depicting spectral bands theoretically discernible 
from the image background. The paleoclimate literature is full of examples such as the continuous wavelet 
analysis, the evolutionary fast Fourier transform (FFT) spectrogram, or even the more recent synchrosqueezing 
transform. Our approach is based on the stack of non-evolutive (assuming stationary behaviour) spectral analysis 
results from thousands of fixed interval time series, previously split from a longer and unevenly spaced (irregular 
sampling) paleoclimate time series. As illustrative examples, the targeted time series are derived from the LR04 
Global Pliocene-Pleistocene Benthic δ18O stack and from the 65 ◦N summer insolation for the last 5.3 Myr, by 
means of the Lomb-Scargle periodogram technique. Enhanced and clearer visualization is achieved through the 
novel incorporation of the terrain analysis techniques: slope, hillshading and color mapping, and posterior 
blending of the individual images, using Python code. The result consists of a high resolution graphical output, 
allowing for better qualitative and quantitative interpretations of the obtained cyclicity, as the code incorporates 
the import of the achieved confidence levels from the spectral technique and the option to obscure the pixels 
under a certain threshold value. The application of terrain analysis techniques on visualization of spectral 
analysis results has the purpose of improving previous graphical representations of paleoclimate time-series, 
especially those time-frequency aspects of the involved phenomena. New developments of our approach may 
be applied to time-frequency analysis directly, supporting present and future paleoclimate studies.   

1. Introduction 

Time series generated from paleoclimate proxy archives (i.e., ice 
cores, speleothems, etc.) often represent non-stationary physical pro
cesses. Therefore, the dominant cyclicities cannot be assumed to be 
constant neither in time scale nor magnitude. Because they vary over 
time, their analysis becomes very sensitive to the time interval of choice. 
Time-frequency analysis can deal with time-varying power spectra 
(evolutive spectral analysis in Berger et al., 1990), where the 
one-dimensional time series as input is transformed into a 
two-dimensional time-frequency representation. Advances in 
computing have led time-frequency analysis techniques like the wavelet 
transform (Torrence and Compo, 1998) to often complement traditional 

techniques —e.g. short-time Fourier transform (STFT) and/or windowed 
Fourier transform (WFT) (see Welch, 1967) —in studies of the vari
ability of series over time. Wavelet analysis may be applied to diverse 
fields, such as ecology (Cazelles et al., 2008), hydrology (Maheswaran 
and Khosa, 2012), paleoecology (Sen et al., 2009), climate variability 
(Azuara et al., 2020) and astronomical forcing (Nie et al., 2008), among 
others. 

One common characteristic of time series from paleoclimate proxies 
is uneven sampling, varying from quasi-regular to highly irregular in
tervals. This circumstance can be overcome by the usage of the 
Lomb–Scargle periodogram (Lomb, 1976; Scargle, 1982; Press et al., 
1992), which can directly use uneven data. Initially, this was a deterrent 
for using wavelet and/or time-frequency analysis (Scargle, 1997; Sen 
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et al., 2009). However, the potential of the wavelet transform to deal 
with unevenly spaced time series has been available (e.g., Foster, 1996), 
and can be applied in paleoclimate research (i.e., Witt and Schumann, 
2005). Another past drawback of the wavelet transform is that it was 
deemed supportive of results from the qualitative standpoint, but quite 
often the lack of statistical significance tests limits the quantitative 
interpretation (Torrence and Compo, 1998), in part because of the 
complexity of the existing methods (Maraun et al., 2007). Luckily, latest 
developments such as the WAVEPAL Python package (Lenoir and 
Crucifix, 2018a, 2018b) have addressed this issue by incorporating 
significance testing against a large choice of background processes. A 
further important and challenging aspect of wavelet implementation is 
the choice of the mother wavelet (Kirby, 2005; Maheswaran and Khosa, 
2012). 

Amongst the software packages that exist today in the time- 
frequency domain for estimating and depicting the cyclicity and vari
ability of paleoclimate time series, we cite here three sound examples for 
reference purposes. Thus, using MATLAB, the so-called Signal Process
ing Toolbox contains several spectral estimators within the time- 
frequency analysis section (https://www.mathworks.com/help/signal/ 
time-frequency-analysis.html). One important estimator is the contin
uous wavelet transform, usually referred as cwt, that has been used for 
instance at describing the eastern African paleoclimate over the last 
~620 kyr (Duesing et al., 2021), or for reconstructing modern 
high-resolution climate in the South China Sea (Zhao et al., 2021). On 
the other hand, the WAVELET Python package (https://github. 
com/guillaumelenoir/WAVEPAL) is able to perform time-frequency 
analysis of irregularly sampled time series using the smoothed Morlet 
wavelet scalogram. The package requires Python 2.x, and it has been 
applied for example to the study of the Mid-to Late-Holocene Mediter
ranean climate variability (Azuara et al., 2020), and the Indian Summer 
Monsoon variability (Reddy and Gandhi, 2022). Last but not least, the 
original wavelet analysis from Torrence and Compo (1998) is available 
in IDL, Fortran, Python and MATLAB programming languages (http 
://atoc.colorado.edu/research/wavelets/). 

All these time-frequency solutions incorporate the generation of the 
corresponding 2D plots of the results, but with the only graphical ca
pabilities of using a color ramp together (in some cases) with the gen
eration of contour lines for the significance levels. The present work may 
challenge the conceptual way by which the results from the above 
software packages are plotted. The framework where our proof of 
concept has been implemented is the group of non-evolutive spectral 
techniques, and one of the advantages of this approach is that the code 
can be easily tuned to work with spectral results from different non- 
evolutive spectral software packages, without requiring the learning 
transition to time-frequency techniques. Future developments may well 
be applied directly to time-frequency visualizations. This paper de
scribes a novel visualization technique that improves the visual repre
sentation of those methods used in the time-frequency analysis so far. 
The code deals with the visualization challenge by importing hundreds 
to thousands of previously estimated power spectrum time series, as if 
they were terrain cross-sections. Each cross-section or transect is 
representative of a unique moment in time. In geosciences, a cross- 
section is simply the intersection of a 3D entity with a plane. The goal 
is to stack the cross-sections from left to right, so that they resemble a 
two-dimensional terrain elevation dataset from the visual point of view, 
therefore enhancing the spectral results when plotted against time and 
frequency. A terrain elevation model, also commonly referred to as a 
Digital Elevation Model (DEM), is no more than the representation of the 
topographic surface of the Earth, depicting ridges, valleys, etc. 

Each spectral profile becomes this way a line of pixels as it would be 
contemplated like in a map (from above the ground). The terrain visu
alization methods that have been integrated in the proposed solution are 
the techniques known as color-relief, hillshade and slope (i.e., Shapiro 
et al., 1993). The color-relief typically uses a set of colors to differentiate 
elevation intervals. The hillshade uses an artificial source of light to 

project the shadows over the landscape based on the terrain variations. 
The slope is generated by using the gradient estimates of the terrain 
dataset to enhance steepness versus flatness. The code allows both a 
qualitative and quantitative analysis of the spectral results, because the 
confidence levels generated by the spectral analysis technique of choice, 
can be imported into the visualization pipeline. Our visualization 
method complements existing time-frequency spectral methods, such as 
the continuous wavelet analysis, because it allows the possibility of 
using traditional estimators of power spectrum, offering a quick and 
effective re-assessment of spectral results. This output when compared 
to those of paleoclimate time series produced by time-frequency domain 
visualizations, offers a higher resolution with greater scientific poten
tial, that ultimately may justify their inclusion as a new visualization 
feature in time-frequency methods. 

2. Methodology 

The code aims for the visualization of thousands of contiguous 
multivariate time series representing power spectral values at different 
frequencies, which are generated from spectral analysis techniques 
outside the time-frequency analysis domain (i.e., non-evolutive Lomb- 
Scargle periodogram), resulting in the type of visualization that one 
would expect from a time-frequency analysis, capable of analyzing the 
whole time series directly. There are three considerations of the visu
alization code to work: (1) the split of the original time series into 
shorter time series with some (constant) degree of overlapping between 
consecutive time intervals, (2) the time window used for the split of the 
time series must be constant, and (3) the output files of the spectral 
technique of choice need to match the structure of two columns space- 
delimited, which will be used as the required input files to the visuali
zation code. However, the presented code has the flexibility to be 
adapted in future releases to meet any other requirements. 

We have tested the code by using irregularly spaced time series, 
common in paleoclimate studies. The interpolation of the data should be 
avoided as it introduces bias (Schulz and Stattegger, 1997; Rehfeld et al., 
2011). Consequently it is recommended to use a spectral method that 
can deal with the uneven series directly, such as the Lomb-Scargle 
periodogram. This technique uses an oversampling ratio of frequencies 
and smoothing, which introduces a loss of degrees of freedom in the 
estimates because the neighbouring frequencies are highly correlated in 
the estimated power spectrum (Press et al., 1992; Pardo-Igúzquiza and 
Rodríguez-Tovar, 2012). The program SLOMBS (Spectral LOMB-Scargle 
periodogram) addresses this bias by using the permutation test to 
evaluate confidence levels, meaning that the Lomb-Scargle periodogram 
is calculated also for a large number (>1000) of random permutations of 
the time series. Thus, SLOMBS uses white noise as the underlying hy
pothesis for evaluating the confidence levels. However, the visualization 
code is independent of the noise model of choice, as it simply displays 
those power spectra values that are above a minimum achieved confi
dence level, previously set by the user, as in the case of SLOMBS using 
white noise as hypothesis. 

In other words, the usage of SLOMBS is not a requirement for running 
the visualization code, and it has been considered as adequate as the 
because the time series to be analyzed are unevenly sampled. Other 
alternatives to deal with unevenly spaced time series can potentially be 
used with our code (i.e. REDFIT in Schulz and Mudelsee (2002)). In its 
current form, the proposed visualization code becomes not applicable to 
those time-frequency analysis software packages that do not meet those 
three pre-requisites. However, there are a number of classical spectral 
techniques (Blackman-Tukey, Thompson multi-taper, etc.) that can 
greatly benefit from this new visualization technique. 

The method is novel in that it assimilates the three dimensions of 
time-varying power spectra —time, period (or frequency) and power — 
in terms of the three dimensions of geographic space, respectively: 
longitude, latitude and elevation. 

The spectral power is treated as the terrain elevation (z axis) or the 
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third geographic dimension. The association between time and longi
tude (x-axis), and between period/frequency and latitude (y-axis) is 
arbitrary, but the key lies in treating the power spectrum as a terrain 
magnitude. The popular technique of wavelet analysis likewise relies on 
this plotting configuration: time in the x-axis, period in the y-axis and 
spectral power in z-scale (as a color pallet). Python is the programming 
language of choice because of its readability (less verbose than other 
languages such as Java), and faster implementation (plenty of available 
material for learning and development resources), but more importantly 
the existence of the opencv-python (cv2) library allowing the handling 
of the terrain images using Python. Its growing usage in the geosciences 
is reflected by the increasing number of papers referring to this pro
gramming language in recent years (i.e., Computers & Geosciences: 30 
studies during 2016, 28 during 2017, 30 during 2018, 29 during 2019, 
46 during 2020, 65 during 2021 and 77 during 2022). 

2.1. Terrain analysis 

Terrain analysis (Wilson and Gallant, 2000) has evolved rapidly 
since the advent of software and computers. The widespread develop
ment of digital elevation models (DEMs) and Geographic Information 
Science (Longley et al., 2015) have made the features of terrain analysis 
accessible to users beyond the domain of geography. The code makes use 
of the slope, hillshading (or relief shading) and color mapping. These 
concepts will be introduced next. 

Slope estimation can be achieved by calculation algorithms (Jones, 
1998) including the so-called average maximum technique (Burrough 
and McDonell, 1998) used in ArcGIS software. Slope represents the 
maximum value among the differences between a cell’s elevation and its 
neighbours’ elevations; this inclination can be expressed in degrees or 
percent rise, hence between zero (flat surface) and 90◦ (vertical surface). 

The second feature, hillshading, is a visualization technique 
commonly applied to DEMs (Horn, 1981) that takes into account the 
effects upon a terrain of a pre-determined illumination source (e.g., 
sunlight). The parameters involved in hillshade calculation are the angle 
of the light source (best practice is to use 315◦ clockwise from the north) 
and the light angle above the horizon (between 0 and 90◦, but typically 
45◦). Similarly, slope maps can generally be converted into a shaded 
slope product by applying a colormap and some vertical exaggeration 
using GIS software (e.g., Global Mapper). Both the shading of the slope 
and the hillshading have the primary purpose of reproducing the natural 
topographic features more realistically. 

Color mapping, in turn, is intended to enhance raster data through 
the application of a set of colors from a pre-determined artificial or 
natural color ramp (Darbyshire and Jenny, 2017). A further area of 
research surrounds the blending of different images into one (Kovesi 
et al., 2014). Thus, blending of the slope, hillshade and colormap can be 
a most striking way of presenting spectral analysis results. 

In generating the slope, hillshade and color mapping for the visual
ization purposes of this study, we relied on the open-source (MIT li
cense) tools of the GDAL geospatial library (https://gdal.org/). For the 
specific action of combining the different geospatial layers into the final 
blend, we used the Python library “opencv-python”. 

2.2. Spectral analysis 

Spectral analysis has a long history in paleoclimate research 
—particularly for Quaternary times— and an array of techniques and 
software are available today (Trauth, 2021). It is necessary to remind 
here that the usage of any spectral technique requires enough under
standing of the involved physical phenomena as without a recognizable 
forcing mechanism, the mere detection of spectral peaks can be poten
tially derived from simple repetitions or bias introduced by the meth
odology itself, even when the spectral power at some detected frequency 
is statistically significant. What we describe here resembles the over
lapping segments feature of the time series in the spectrogram method, 

but our code is not restricted to the Fourier-based methods of the 
spectrogram method. Moreover, it offers the possibility of displaying the 
results of any other underlying spectral technique, such as the maximum 
entropy spectral analysis (MESA) (Burg, 1967; Parzen, 1968) and/or the 
Lomb-Scargle periodogram (Lomb, 1976; Scargle, 1982) to cite a few. 

Although one of the aims of the code is to transform non-evolutive 
spectral results into a ‘wavelet’ form style, some thought is required 
before running it, as the code does produce the visualization, but not the 
required spectral time series as inputs that have to be generated inde
pendently of the code. Particularly important in our approach, it is 
deciding on the time window for dividing the original time series into 
fragments or fixed interval time series, because the window size de
termines the maximum period that can be safely recognized on each 
transect. This rule of splitting the original time series into subseries to 
perform sub spectra analysis is known (e.g., Pardo-Igúzquiza and 
Rodríguez-Tovar, 2006), although it is not necessary in time-frequency 
methods (i.e., continuous wavelet analysis), to which our visualization 
code does not apply. 

In the geosciences, uneven time series are common (Pardo-Igúzquiza 
and Rodríguez-Tovar, 2012). In this context, the required step of split
ting the original time series (prior to spectral analysis) into fixed in
tervals will inevitably produce time series having a different number of 
records per generated series, only in the scenario of using uneven time 
series as input to the process. Although this is not a limitation for our 
code, it may stand as an issue for choosing the right spectral method. So, 
regardless of whether the original time series has regular or irregular 
sampling, this point must be addressed when deciding which spectral 
analysis method is best to use. It is mandatory that the number of esti
mated frequencies on each output file from the spectral method is the 
same, because this number represents the y-axis dimension of the 
visualization. Here, the visualization code was tested on multiple reg
ular (containing the same number of frequencies) time series repre
senting power spectra, all obtained from the spectral analysis conducted 
on multiple uneven time series pre-defined with overlapping fixed in
tervals. Additionally, the maximum frequency to be evaluated on each 
transect must be assessed. The so-called “Nyquist frequency” (Shannon, 
1948), is defined as twice the sampling frequency for even time series 
(Papoulis, 1984). For uneven time series other equivalent approxima
tions are available, such as estimating the average sampling or the 
minimum distance (Pardo-Igúzquiza and Rodríguez-Tovar, 2012). Thus, 
there is always a dependency between the sampling ratio and the 
Nyquist limit. From the visualization point of view, this limit or 
maximum frequency may represent the upper limit of the y-axis. 

Another point to be underlined in any spectral analysis interpretation 
is the separation of the significant cyclicities from the noise introduced 
by the methodology itself. This can be achieved by running either 
standard statistical tests or computer-intensive permutation tests (Par
do-Igúzquiza and Rodríguez-Tovar, 2000). Having introduced this factor 
into the code, we have enabled the usage of a second input file —per 
time series file— that contains the achieved confidence level (ACL), 
ranging from 0 to 100 (or from 0.0 to 1.0). Typically, scientific validity is 
secured when confidence levels exceed the values of 90%, 95%, or 99%. 
The code adopts this information as the threshold between the displayed 
power spectrum values and the no-data values. 

Even though the code can deal with different non-evolutive spectral 
techniques, it has been developed for operating with the output files 
produced by the SLOMBS computer software (Pardo-Igúzquiza and 
Rodríguez-Tovar, 2012), which uses the Lomb-Scargle periodogram 
(Pardo-Igúzquiza and Rodríguez-Tovar, 2012, 2013, 2015; Pardo-I
gúzquiza and Dowd, 2020). SLOMBS was integrated by means of the 
Monte Carlo permutation test to evaluate the significance of the regis
tered spectral peaks against a white noise null hypothesis, and it adjusts 
the statistical significance by smoothing the periodogram. This pro
cedure has been applied in cyclostratigraphic analyses of time series 
from core and outcrop data, as it permits characterization of cyclic 
variations mainly related to climate changes at different ranges. 
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Significant peaks in spectral analysis have thereby been recognized, 
involving cycles having time scales longer than those of the Milanko
vitch band (Hernández-Molina et al., 2016), or cycles precisely from the 
Milankovitch frequency band (Durán et al., 2013; Vegas et al., 2013; 
Cantalejo and Pickering, 2015; Hernández-Molina et al., 2016; Lofi 
et al., 2016; Rodríguez-Tovar et al., 2016), cycles belonging to the 
sub-Milankovitch frequency band at millennial-to centennial-scale cy
clicities (Vegas et al., 2013; Jiménez-Espejo et al., 2014; Rodrigo-Gámiz 
et al., 2014, 2018), and even in the range of cycles per year (Durán et al., 
2013; Morgan et al., 2017). The assumption of red noise would operate 
exactly in the same way as the white noise regarding the visualization, 
because the code import the results already generated by the spectral 
technique. 

3. Python code 

The flow of the program is described in Fig. 1. In addition to the main 
steps (points 1 to 4), some previous actions need to be considered 
(Fig. 2). Thus, before running the code, which takes less than a minute 
on a modern computer (using ~2000 input files representing one time 
series each), the input files must be created. They consist primarily of 
time series files containing both the input (step 2 in Fig. 2) and the 
output (step 3 in Fig. 2) of each spectral analysis performed on every 
transect that was split from the original time series. Additionally, tem
plate files are provided with the code (color templates). In our case the 
software was tested using as input the results of the program SLOMBS 
(Pardo-Igúzquiza and Rodríguez-Tovar, 2012). It is possible to use other 
software and/or classical spectral methods, excluding time-frequency 
methods, as long as the output file extensions and the structure of the 
output data files match those of SLOMBS (step 4 in Fig. 2): .prn, .LOM 
and.ACL for the file extensions of the input data, power spectra and 
achieved confidence levels, respectively, each containing two 
space-delimited columns. Thus, for every time series or transect three 
files are needed. One is the time series containing the time and the 
values of the physical variable to be analyzed in the spectral analysis (. 

prn); the second file is the output with the Lomb–Scargle spectrum re
sults (.LOM), which contains the frequencies and the Lomb–Scargle 
periodogram values; and the third file holds the evaluated frequencies 
and the corresponding achieved confidence level results (.ACL). 

As the visualization code recreates a typical time-frequency analysis 
visualization by using several individual data files that are stacked 
together, it is necessary to split the original time series into smaller —but 
constant— intervals prior to the spectral analysis (step 2 in Fig. 2). The 
spectral analysis is then carried out after the split and before running the 
visualization code. The decision on how to split the original dataset into 
sub-intervals may affect the shape of the output raster generated by the 
code, since the number of pixels in the x-direction of the visualization 
represents the number of analyzed time intervals or input files, while the 
number of pixels in the y-direction reflects the number of evaluated 
frequencies during the spectral analysis, which is assumed to remain 
constant on every spectral analysis run. These two facets (number of 
time series and number of analyzed frequencies) must be balanced such 
that the output raster will have legible dimensions. There is no technical 
limitation regarding the value of these two dimensions, but from a 
practical point of view, the best visual results are obtained when the 
output raster is rectangular (i.e., 2015 time series as width and 500 
frequencies as height makes a ratio of ~4 as per in the case study). The 
number of time series can be larger than the number of analyzed fre
quencies, or vice versa, but always up to a certain limit for avoiding the 
generation of very slim rectangular shapes (i.e., ratio >10). This way, 
the common exercise in paleoclimate research of evaluating a particular 
frequency of interest across time becomes more effective in the pro
duced visualization. 

On the other hand, the percentage of overlapping between consec
utive time series positively affects the time resolution of the visualiza
tion, given that the program uses the mean of each time series interval, 
or center point, for placing every transect at the corresponding time 
value of the x-axis. Therefore, the larger the overlap of time series, the 
smaller the time differences between consecutive pixels across the x- 
axis. The sampling of the original dataset can be uneven before the split, 

Fig. 1. Code flowchart. Prior to running the code one must have the spectral results ready and the configuration parameters set.  
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but each new time subseries should be created using the same constant 
time window. The chosen time window for creating each transect is 
constant to avoid introducing any temporal heterogeneity along the x- 
axis, because this way the derived interpretation on the estimated power 
spectra between consecutive transects is considered to be based on the 
same time window and the same analyzed frequencies. Overall, we 
recommend to separate the subseries by small time steps (e.g., one 
sampling step of the original series) to increase the resolution at 
detecting time-frequency changes in the visualization. This approach 
does not require to interpolate any values, but to use the same original 
time series in the new time subseries. Consequently, in the case of un
evenly spaced time series, the output image has irregular time resolution 
and constant frequency resolution, whereas for evenly spaced time se
ries, both time and frequency resolutions are constant. The handling of 
the irregular time resolution (for uneven time series) is performed by the 
visualization code during the plotting phase (step 4 in Fig. 2), so the 
right values are transferred to the time scale. All the input data files must 
be placed in the folder specified for this purpose in the settings file. 

Once the input data to the code is in place, a few configuration pa
rameters must be set in the settings.py file before running the code (all 
these parameters can be found in Table A1). When the code is run, the 
first module (step 1 in Fig. 1) ‘create_asc’ reads all the.prn, .LOM and. 
ACL input files and generates a 2-D raster file formed by columns (time) 
and rows (frequencies) in ASCII-format raster (.asc file extension). Just 
after the.asc file is generated, a projection file.prj is created, where the 
coordinate system properties are given, so the data becomes geograph
ically enabled and the terrain techniques can be applied. The geographic 
projection is hard-coded into the projection file, meaning there is no 
need for the user to deal with it; the British National Grid (BNG) pro
jection (EPSG:27700) is the one we selected to enable the geographic 
features. The template could be changed to host any other projected 
coordinate system, but there is no evidence that by doing so the visu
alization will be improved. Thus, in the BNG every pixel translates into 
1 m over the Earth’s surface as per the linear unit of this projected co
ordinate system. 

The second module (step 2 in Fig. 1) ‘gdal_steps’, is responsible for 
generating different raster files to be later blended and used as part of 
the visualization. The module owes its name to the usage of GDAL 
(Geospatial Data Abstraction Library) tools, a pre-requisite that needs to 
be installed in the computer where the code is going to be run (code has 
been developed and tested using version 3.0.2 of GDAL). An important 
aspect of the designed pipeline using GDAL is that the size of the raster 

images (matrices) along the process remains unchangeable. So, for 
instance, if the pipeline is run using an input matrix formed by 500 
pixels (representing frequencies) and 2015 pixels (representing time), 
all the subsequent color, slope and hillshade images will have the same 
dimensions. The GDAL tools are called from the Python code, being the 
tools external to the program and installed in the operating system. This 
approach is recommended as it is more versatile than installing GDAL as 
an internal Python library, because in that case the so-called Python 
bindings may need regular maintenance, or they may stop working 
when upgrading either Python or the GDAL tools to a newer version. 

The first raster file to be created by the module is, in fact, the 
translation of the.asc file into GeoTIFF format (.tif) (a in step 2 of Fig. 1). 
The reason behind this transformation is that the spatial properties are 
preserved within the file itself, which is more efficient, reliable and 
convenient for the following steps of the pipeline. Once the data is 
translated into a.tif file, the program will use this file to generate five 
different output files: the color-relief from the data (b in step 2 of Fig. 1), 
the slope from the data (c in step 2 of Fig. 1), the color-relief from the 
slope (d in step 2 of Fig. 1), the hillshade from the data (e in step 2 of 
Fig. 1), and the color-relief from the hillshade (f in step 2 of Fig. 1). The 
calculation methods and/or algorithms used in the generation of the 
color-relief, slope and hillshade images are internal to the GDAL tools. 
According to the online documentation (https://gdal.org/programs/gda 
ldem.html), they were derived from previous work by the U.S. ARMY 
CORPS OF ENGINEERS (Shapiro et al., 1993). 

For the first step, the GDAL tool ‘gdal_translate’ is used (https://gdal. 
org/programs/gdal_translate.html), whereas the GDAL tool ‘gdaldem’ is 
used for the remaining steps, as this sub-program is designed to deal 
specifically with DEMs. The ‘gdal_translate’ command-line instruction 
for translating the.asc file into GeoTIFF format (.tif) is:  

(1) "gdal_translate -of GTiff -a_nodata <nodata> -ot Float32 -a_srs 
EPSG:27700 <input_f> <output_f>” 

The <nodata> in (1) represents the value of the NODATA variable 
from the settings.py file (i.e., − 999), <input_f> the.asc filename and 
<output_f> the.tif filename to be created. Next, the color-relief raster is 
generated using the GeoTIFF created by ‘gdal_translate’ as input, 
together with the provided file as the default color template (.clr), based 
on a sequential list of nine RGB colors. The color template is config
urable, and there is no further requirement, except for the usage of three 
colors as a minimum: white for the no-data values (i.e., − 999), one for 

Fig. 2. Sketch of preparatory actions prior to the spectral analysis, describing the split of the original paleoclimate time series and the output files of the spectral 
analysis, before running the visualization code. 
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the lowest power spectral value and one for the maximum value. Based 
on our experience the higher the number of colors provided the clearer 
the visualization (e.g., nine). The structure of the template consists of 
the power spectral values, followed by the pixel value (0–255) of the red, 
green and blue bands respectively. The output file is a 3-band RGB raster 
file representing the data by means of the color-ramp provided. The 
creation of the color-relief image is achieved in the program by using the 
following GDAL command-line instruction which sits inside the ‘gdal_
steps‘ module:  

(2) "gdaldem color-relief -of GTiff <input_f> <color_path>
<output_f>” 

The <input_f> parameter in (2) corresponds to the raster GeoTIFF 
containing the power spectra values in time (x) and frequency (y) form, 
the <color_path> represents the color template file containing the color- 
ramp, and the <output_f> indicates the filename of the color-relief 
GeoTIFF to be generated as output. It follows the slope raster, whose 
values can vary between 0.0 and 90.0◦ and are stored as a floating-point 

Fig. 3. All GDAL steps contributing to the blending process. Dataset corresponds to the orbitally tuned “LR04” stack time series of benthic δ18O records (Lisiecki and 
Raymo, 2005). Transect d1-d2 represents the power spectral values (a), transect e1-e2 represents the slope values and transect f1-f2 represents the hillshade values. 
Color-relief image (d), slope-shaded image (e), hillshade image (f) and produced final blended image (g) using the default blending parameters of beta1 = 0.1 and 
beta2 = 0.4. The applied achieved confidence level threshold was set this time to 0 for displaying purposes. 
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raster file, followed by the shaded slope, which uses a basic color ramp 
of black (0, 0, 0) for vertical or high slope, and white (255, 255, 255) for 
flat surfaces. This color ramp is also a file (.txt) available in the ‘tem
plates’ folder. The generation of the shaded slope is achieved by 
generating the slope first, followed by applying the color-ramp on it:  

(3) "gdaldem slope -of GTiff <input_f> <slope_f>
(4) "gdaldem color-relief -of GTiff <slope_f> <color_path>

<slopeshade_f>” 

In (3), the <input_f> represents the raster of the power spectra 
values and the <slope_f> the slope raster filename to be generated, 
which is used as input in (4). The <color_path> in (4) is the text file 
containing the color-ramp for the slope and the <slopeshade_f> is the 
shaded slope filename to be created as output. Next step is the hillshade 
generation, followed by the shaded hillshade, using an adjusted color 
ramp which converts the black no-data background of the original 
hillshade into white. Thus, the shaded hillshade uses the dark color just 
for the darkest areas that receive few to zero light from the source. These 
two steps for the hillshade consist of these GDAL instructions:  

(5) "gdaldem hillshade -of GTiff <input_f> <hillshade_f>
(6) "gdaldem color-relief -of GTiff <slope_f> <color_path>

<shaded_hillhade_f>” 

In (5), the <input_f> represents the raster of the power spectra 
values and the <hillshade_f> the hillshade raster filename to be 
generated, which is used as input in (6). The <color_path> in (6) is the 
text file containing the color-ramp for the hillshade and the 
<shaded_hillhade_f> is the shaded hillshade filename to be created as 
output. 

The third module (step 3 in Fig. 1) of the program, the ‘blending’ 
module, uses the opencv-python library to merge the color, the slope 
shaded and the hillshade shaded raster files into a single file. To this end, 
the color image and the slope shaded are blended first, and the resulting 
image is then blended with the hillshade raster file. By default, the color 
image has a weight of 1, and the slope shaded image has a weight of 0.1, 
followed by the hillshade image with a weight of 0.4. In this context the 
weight coefficient is equivalent to opacity. These coefficients can be 
configured in the settings file. All the individual raster files generated 
during the process can be later examined by the user if the 
<REMOVE_TEMP > variable is set to False in the settings file, which 
means that the intermediate files are not removed. 

Each generated image, or step, contributes in a different manner to 
the blended image as illustrated in Fig. 3. Focusing on the component 
parts of the GDAL pipeline, a random transect along the y-axis (constant 
age) for each terrain technique best showcases the relative contribution 
of each applied technique. Thus, the color-relief image (Fig. 3d) uses 
bands of color to effectively enhance differences in the obtained power 
spectra results (Fig. 3a). The default color-ramp using 9 RGB values 
grants the differentiation of the extreme values in the dataset. The 
shaded-slope image (Fig. 3e) is depicted using black tones for high slope 
values and white tones for low slope values. The cross-section on the 
slope raster (Fig. 3b) reveals the contribution of the slope component for 
defining accurately both the spectral peaks or ridges and the valleys, as 
both features have a markedly low slope value. The hillshade image 
(Fig. 3f) eases the visual identification of the elevated areas because they 
are lightened up in their north face, and shadowed in their south face 
(Fig. 3c). The blended image (Fig. 3g) combines all the previous features 
into the same image, aiming for defining the steep spectral peaks plus 
detailing the morphology of all the other spectral results. 

The fourth and last module of the program (step 4 in Fig. 1) is the 
‘plotting’ module. It adds optional graphical features such as axes, ticks, 
labels, titles, and vertical/horizontal lines. This module uses the Python 
library matplotlib; and although it enhances the final plot around the 
blended raster file, it does not alter or modify the blended raster 

produced in step 3, which remains as a separate file in the ‘output’ 
folder. 

4. Results and discussion: case study 

4.1. Orbital forcing and pleistocene glaciation 

The Pleistocene (0.01–2.58 Ma) comprises most of the Quaternary 
period’s history, and it offers numerous examples as potential case 
studies to test our code. It is characterized by the occurrence of glacial 
and interglacial periods provoking both global ice volume increases and 
decreases, as well as the associated sea level oscillations. The Pleistocene 
climate is being investigated and discussed widely. 

The current paradigm to explain the alternations between cold 
glacial periods and warmer interglacial periods was first theorized by 
Milutin Milankovitch (1941) (see also Maslin, 2016, for a review on this 
subject). He postulated that reductions of the solar irradiation reaching 
the Earth’s surface —hence the term orbital forcing— during summer at 
the latitude of 65 ◦N, could potentially lead to an ice age. Today we refer 
to the Milankovitch cycles in the geological record as the precession, 
obliquity and eccentricity cycles. Precession is the combined movement 
of the Earth’s axial precession and the Earth’s apsidal precession; the 
first one (clockwise) is the absolute movement of the Earth’s rotation 
axis describing a cone in space (one cycle takes about 26 kyr) and the 
second one (counterclockwise) is the precession of the Earth’s orbit or 
the precession of the line connecting the apsides of Sun and Earth (one 
cycle takes about 112 kyr). Obliquity is the variation (tilt) of the Earth’s 
axis of rotation; though its current value is about 23.44◦, it can oscillate 
between roughly 22.1 and 24.5◦. Eccentricity is the change in shape of 
the Earth’s orbit from a perfect circle. The length of these astronomical 
cycles may vary (Rodríguez-Tovar, 2014): between 19 and 24 kyr for 
precession (extremes at 14 and 28 kyr), around 41 kyr for obliquity 
(extremes at 28 and 54 kyr) and between 100 and 400 kyr for 
eccentricity. 

A few decades after the initial theory was formulated, researchers 
were able to test and link the paleoclimate record with the insolation 
input (Hays et al., 1976; Imbrie et al., 1992), including the exposure of 
further scientific issues. The visual representation of some of these issues 
will be the target of our case study. We selected the ‘100 kyr problem’ 
(Raymo and Nisancioglu, 2003), the ’Milankovitch 41 kyr problem’ 
(Raymo and Nisancioglu, 2003), the ‘eccentricity myth’ (Maslin and 
Ridgwell, 2005) and the ‘late Pliocene-early Pleistocene 100 kyr prob
lem’ (Nie et al., 2008) to show the utility of our code at presenting a 
clearer picture of the variations in insolation input over time. Although 
research on the Pleistocene climate has progressed since those pioneer 
works, the issues remain largely unresolved, as we explain below. 

All four of these issues are interrelated. Assuming that the occurrence 
of glacial-interglacial periods is controlled primarily by changes in the 
Earth’s orbital parameters (Hays et al., 1976) and that both the 23 kyr 
(precession) and 41 kyr (obliquity) cycles were found to be direct re
sponses (linear) to high-latitude summer insolation forcing (Imbrie 
et al., 1992), the ‘100 kyr problem’ is the absence of an astronomical 
(Milankovitch) explanation for the observed 100 kyr cyclicity of the 
glacial-interglacial cycles after 0.8 Ma (Raymo and Nisancioglu, 2003). 
It has been suggested that this 100 kyr cyclicity was caused by internal 
mechanisms operating within the climate system (Imbrie et al., 1992). 
For example, the timing of the terminations of the 100 kyr glacial pe
riods was successfully modelled by astronomical variations and CO2 
concentrations (Berger et al., 1999). Precisely, the ‘eccentricity myth’ 
represents the view that the ‘100 kyr problem’ is in fact an artifact of 
spectral analysis, and therefore it is unlikely that the astronomical ec
centricity cycle is the main driver of the observed 100 kyr 
glacial-interglacial periods in the Pleistocene. In turn, the ’Milankovitch 
41 kyr problem’ evokes the fact that the global ice volume between 0.8 
and 3 Ma varied predominantly at the 41 kyr obliquity period, without 
substantial evidence for the 23 kyr precession period. These two 
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different orbital forcing scenarios —the ‘100-kyr world’ and the ’41-kyr 
world’— are separated by the Mid-Pleistocene transition (MPT), 
implying a change in the dominant frequency and mean ice volume, but 
also a higher contrast between warm and cold periods (Maslin and 
Ridgwell, 2005). Finally, the ‘late Pliocene-early Pleistocene 100 kyr 
problem’ (Nie et al., 2008), refers to the amplitude and phasing 
mismatch between eccentricity and the ice volume, as well as other 
paleoclimatic proxy records, between 1 and 3 Ma. 

Recent research suggests that obliquity still dominates the ‘100-kyr 
world’, the sequence of interglacials simply being the deglaciation 
response when a certain summer insolation threshold was exceeded, 
which did not happen in every obliquity cycle (Tzedakis et al., 2017). 
The importance of obliquity in the pacing of the Pleistocene glacial 
terminations during the ‘100-kyr world’ has been corroborated in spe
leothems (Bajo et al., 2020). Overall, the causes for the MPT, which 

changed the cyclicity of the glacial cycles from 41 kyr to 100 kyr, are still 
under scrutiny (Berends et al., 2021). Furthermore, it is now predicted 
that the influence of Milankovitch cycles on Earth’s climate may be 
delayed (Maslin, 2016) or even suppressed in the future in the context of 
current climate change (Caccamo and Magazù, 2021). 

4.2. Implementation and results 

Three different time series were used to illustrate the code capabil
ities with regard to these paleoclimate issues. One is the 5.3-Myr stack of 
benthic δ 18O records (Fig. 4a and b), known as the “LR04” stack, built 
from 57 global sites and orbitally tuned (Lisiecki and Raymo, 2005). 
Also, a second version of the “LR04” stack but untuned (Lisiecki, 2010) 
has been used for testing with a different spectral resolution (reducing 
the number of evaluated frequencies in the y-axis). The third is the 

Fig. 4. Time series visualization and Lomb-Scargle spectral results on two datasets: a-c) orbitally tuned “LR04” stack time series of benthic δ 18O records (Lisiecki and 
Raymo, 2005); d-f) mean daily insolation on June 21 at 65 ◦N using La2004 orbital solution (Laskar et al., 2004). 
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computed mean daily insolation on the 21st of June at 65 ◦N, and for the 
same period and time intervals of those in the “LR04” stack (Fig. 4d and 
e), which was obtained using the La2004 orbital solution (Laskar et al., 
2004). The insolation dataset was generated to match the irregular time 
units of the LR04 stack dataset so all the visualizations can be compared 
along the x-axis (time). 

As the primary objective of the case study is to illustrate the evolu
tion of the Milankovitch cycles in the context of the exposed scientific 
issues, especially across the Pliocene-Pleistocene boundary, the choice 
of these datasets is well aligned to that goal. Yet, the visualization code 
relies on the quality of the dataset to be analyzed using spectral analysis. 

The first step was to identify the Milankovitch cycles in two of the 
original time series. The estimation of the Lomb-Scargle periodogram 
was conducted on both the entire “LR04” stack dataset (Fig. 4c) and the 
entire daily insolation dataset (Fig. 4f), to test the assumption of sta
tionarity and the detection capabilities of the spectral method over the 
last 5 Myr. No detrending was applied to the original time series prior to 
spectral analysis. SLOMBS uses the underlying hypothesis of white noise 
because of its permutation test as the chosen Monte Carlo evaluation 
method (Pardo-Igúzquiza and Rodríguez-Tovar, 2012), and this resulted 
in positive detection of the obliquity and precession Milankovitch cycles 
for the tuned “LR04” stack and the insolation datasets. For the afore
mentioned 100 kyr cycle during the Pleistocene it was only detected in 
the “LR04” stack dataset, all above the 95% level of achieved confi
dence. The 400 kyr cycle has not been detected in the analyzed 
Plio-Pleistocene interval, likely caused by the suppression of the climatic 
response to the long eccentricity cycle by the 100 kyr ice-sheet dynamics 
(De Boer et al., 2014). 

The second step was the split of the time series into smaller time 
series for all three datasets. It was decided to use a moving window of 
500 kyr —with one sampling record or step of separation (varying in the 
original series between 1 and 5 kyr) between consecutive time series— 
to generate 2015 fixed interval time series from the original datasets. 
This choice was motivated by a conservative approach regarding the 
cycle identification: one-fifth of the length of the series. This interval 
allows the potential detection of the 100 kyr cyclicity because its length 
can be contained within the chosen window up to 5 times, where the 
stationarity assumption was made at orbital time scales. 

The choice of input parameters for SLOMBS is based on published 
recommendations (Pardo-Igúzquiza and Rodríguez-Tovar, 2012). The 
highest frequency to evaluate should not be higher than the “Nyquist 
frequency” or its equivalent for unevenly spaced time series. The num
ber of frequencies in the interval represents the pursued level of detail 
for the obtained power spectra. The number of permutations should be 
at least ten times the number of evaluated frequencies. But more 
importantly, a more consistent estimator is obtained by smoothing the 
periodogram, and the number of smoothing terms can be increased to 
ensure a neater detection of the main signals, while limiting the 
appearance of less prominent spectral peaks. 

The input parameters chosen for every run of SLOMBS were the same 
for the tuned “LR04” and insolation datasets: 0.06 as the highest fre
quency to evaluate (~16.6 kyr), 500 as the number of frequencies in the 
interval, 5000 as the number of permutations, and 30 as the number of 
smoothing terms (selecting linear smoothing as option). In regard to the 
maximum frequency to be analyzed, it is in fact larger than the average 
sampling of ~2.5 kyr for the “LR04” stack, or equivalent “Nyquist fre
quency”, granting the detection of cycles larger than 16.66 kyr. The 400 
kyr or long-eccentricity cycle (f = 0.0025) was theoretically in the 
detection range of the conducted spectral analysis (500 frequencies 
between 0.0 and 0.06 per transect) but outside the recommended safe
guard of one fifth of the length of the series (400 kyr cycle can be 
potentially contained as many as 1.25 times in the 500 kyr window). In 
any case, the identification of the 400 kyr cycle has not been obtained 
(Fig. 5). 

These shorter time series contain the original values; no detrending 
or transformation was performed based on our previous results on the 

entire series. The achieved detection of the Milankovitch cycles (Figs. 4 
and 5) granted the aimed visualization capabilities of our code. How
ever, one alternative is applying some type of detrending on the original 
time series and perform the spectral analysis on the resulting time series. 
For example, applying a moving average technique for smoothing the 
time series, may enhance the frequencies in the lowest part of the 
spectrum. If the user is interested in the highest frequencies of the 
spectrum, a possibility is subtracting the smoothed time series to the 
original time series, and perform the spectral analysis on the obtained 
residuals. 

For visualization purposes, the center or middle point of each time 
series segment was considered the value to be represented on the x-axis 
(time axis) as per our methodology. Given that all datasets have time 
units expressed in kyr and all have uneven sampling (varying between 1 
kyr and 5 kyr), the visualization will inevitably have more resolution 
towards the left of the image, and less to the right, because the time 
resolution of the data set improved towards the present. As the visual
ization does not perform any interpolation between transects along the 
x-axis, the time ticks on the x-axis unequivocally reflect this heteroge
neity, and the labels have been adjusted accordingly. The total number 
of time series analyzed was identical for all three datasets, being 2015 
each (6045 total). 

For the untuned version of the “LR04” dataset, we changed the 
setting to a value of 250 for the number of frequencies to evaluate and to 
a value of 2500 for the number of permutations. The aim was to assess 
the visualization output by reducing the resolution along the y-axis, but 
also to test the detection of Milankovitch cycles on the untuned version 
of the “LR04” stack. 

The spectral analysis on every time series segment generated a .LOM 
extension file (Lomb-Scargle spectrum) and an .ACL extension file 
(Achieved confidence level) that are inputs to the visualization code. 
Based on these parameters, the output images had a width of 2015 pixels 
and a height of 500 pixels for the tuned “LR04” stack and insolation 
datasets, and a width of 2015 pixels and a height of 250 pixels for the 
untuned “LR04” stack version. After spectral analysis on the 6045 (3 ×
2015) time series was completed, the visualization code was run four 
times to produce the four visualizations: “Summer insolation at 65 ◦N on 
June 21 Power Spectra” without restrictions on the minimum ACL 
parameter (Fig. 5a); the same visualization but imposing a minimum 
value of ACL (above 95%) for displaying the power spectrum (Fig. 5b); 
the orbitally tuned “LR04 Global Pliocene-Pleistocene Benthic δ18O 
Stack Power Spectra” imposing a minimum value of ACL (above 95%) 
for displaying the power spectrum (Fig. 5c); and the untuned “LR04 
Global Pliocene-Pleistocene Benthic δ18O Stack Power Spectra” 
imposing a minimum value of ACL (above 95%) for displaying the power 
spectrum (Fig. 5d). 

The generation of the image with no minimum ACL requirement 
(Fig. 5a) was to prove that the code can effectively suppress the display 
of any undesired value for the achieved confidence levels and/or to deal 
with multiple scenarios on this regard (from 0 to 100%). Any power 
spectral value below the set threshold is represented using the white 
color (Fig. 5b, c and 5d). 

Focusing on the visualization results with the minimum requirement 
of 95% of ACL, the insolation dataset plot (Fig. 5b) contains a very 
strong signal in the precession band (19–23 kyr), followed by obliquity 
(41 kyr). There is no record of the short-eccentricity signal (about 100 
kyr, with major components around 97 and 127 kyr) in the power 
spectrum for the estimated Earth’s received insolation (using the Laskar 
et al., 2004 solution), which was known to be weak (i.e., Imbrie et al., 
1992), although it could have been targeted by the usage of a specific 
band-pass filter (Nie et al., 2008) to enhance its detection. 

The results for the orbitally tuned “LR04” stack power spectra 
(Fig. 5c) clearly delineate a strong 100 kyr cyclicity for most of the last 1 
Myr, and a strong obliquity signal at 41 kyr for the last 5 Myr. The results 
show no detection of the 400 kyr cycle (long-eccentricity). The preces
sion signal is very weak in the tuned “LR04” time series. In the same 
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Fig. 5. Visualization outputs from the Python code. a) Summer insolation at 65 ◦N on June 21 Power Spectra without restrictions on the minimum ACL parameter; b) 
Summer insolation at 65 ◦N on June 21 Power Spectra imposing a minimum value of ACL above 95%; c) Orbitally tuned LR04 Global Pliocene-Pleistocene Benthic 
δ18O Stack Power Spectra imposing a minimum value of ACL above 95%; d) Untuned LR04 Global Pliocene-Pleistocene Benthic δ18O Stack Power Spectra imposing a 
minimum value of ACL above 95%; e) The LR04 stack using continuous wavelet transform (LR05 in Thakur et al., 2013); f) The LR04 stack using synchrosqueezing 
time-periodicity decomposition (LR05 in Thakur et al., 2013). 
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benthic stack, two intervals are well identified in the visualization in the 
100 kyr band: one with a strong response to forcing (at 2.3–3.0 Ma) and 
another one having a weak response (at 1.3–1.8 Ma). These intervals 
were previously identified (Nie et al., 2008). The paleoclimate frame
works referred to as the ‘100 kyr problem’, the ’Milankovitch 41 kyr 
problem’, the ‘eccentricity myth’ and the ‘late Pliocene-early Pleistocene 
100 kyr problem’ have been included for visual reference in Fig. 5c. 

The plot of the untuned “LR04” stack (Fig. 5d) has on purpose less 
resolution on the y-axis (250 pixels). This translates into the display of 
more blurred features becoming generally less sharp than for the tuned 
dataset version (500 pixels). In any case, the two datasets display almost 
identical spectral bands around the 100 and 41 kyr cyclicities. 

The dominance of the 100 kyr band is clearly visible after approxi
mately 0.69 Ma in both tuned and untuned “LR04” versions. Further
more, the high resolution of the tuned “LR04” stack allows two new 
graphical features to be introduced in the paleoclimate discussion, 
which are less evident in the lower resolution dataset. One feature 
around the 100 kyr band consists of a broad bimodal characteristic be
tween roughly 0.69 and 1.13 Ma, crossing the MPT boundary (Fig. 5c). 
Less evident is a second similar feature in the Pliocene, although this 
time the Y-SHAPED characteristic looks inverted. The second feature is 
located roughly between 1.82 and 2.58 Ma (both features have been 
drawn as black lines in Fig. 5c). To put these two visual findings by our 
code into context, we have brought together two published plots that use 
the same stack and for the last 2.5 Ma (referred as “LR05" in Thakur et al. 
(2013)); one using the continuous wavelet transform (Fig. 5e) and the 
other one using the synchrosqueezing time-periodicity decomposition 
(Fig. 5f). The synchrosqueezing method has given good results in the 
time-frequency domain using seismic data (i.e., Wang et al., 2014). In 
Fig. 5e and f, the first Y-SHAPED feature of the 100 kyr band 
(~0.69–1.13 Ma) can be identified in a similar position as in our visu
alization. However, it is the continuous wavelet transform method 
where this is more evident (Fig. 5e), as the synchrosqueezing method 
displays many other similar ridges. The second feature (~1.82–2.58 Ma) 
is not evident in these two plots. The granularity of the referred two 
methods does not allow a better visual analysis, because of the chosen 
grayscale color to display the results and poor resolution of the graphical 
output. 

Research on Plio-Pleistocene climate evolution using a flexible 
change point detection algorithm with sinusoidal models (Ruggieri 
et al., 2009) postulated that important regime changes can be obtained 
at 0.78 Ma and 2.7 Ma in the “LR04” dataset, being the other relevant 
change points at 1.03, 1.2 and 2.45 Ma. All these ages are close to, or 
within, the depicted Y-SHAPED features in our visualization. On this 
regard, if considering that the suppression of the 100-kyr glacial cycles 
during the ’41-kyr world’ is caused by strong precession forcing dis
rupting the internal carbon-cycle responses and/or climate feedbacks 

(Lisiecki, 2010), the existence of the Y-SHAPED features can potentially 
expose the timings where these regime changes gradually shift from one 
state to another. In another similar context, looking at a detailed work 
on insolation forcing leading to interglacials (Tzedakis et al., 2017), the 
timings of the Y-SHAPED features at 0.69, 1.13, 1.82 and 2.58 Ma 
closely match the age values of insolation maxima described at 0.694, 
1.115, 1.811 and 2.59 Ma, that have been categorised in the indicated 
study as reaching interglacial thresholds. There are, however, some 
other relatively close peaks in caloric summer insolation in the study, 
that are associated with continued interglacial or interstadial status. A 
close view of the spectral time-frequency evolution using the “LR04” 
dataset for 0.25–1 Ma (Fig. 6) exposes well the building-up and/or the 
initiation of the climate events associated with the important 100 kyr 
cycle during the Pleistocene. 

These findings show the potential benefits of applying the exposed 
visualization method on top of spectral analysis using paleoclimate time 
series. Yet, the paleoclimate origin and/or forcing mechanism of these 
new features are beyond the scope of this paper. To further test the 
usefulness of the proposed visualization on this and/or other aspects of 
the Quaternary climate research, we recommend expanding its usage 
using different spectral methods and other paleoclimate time series. 

5. Conclusions 

The code developed and described here was successfully applied on a 
major paleoclimate issue: the Pleistocene glaciations. The obtained 
high-resolution visualization of the Milankovitch cycles across the last 5 
Myr validates our novel approach. The potential of the code ultimately 
relies on the resolution of the time series used, as well as on the capa
bilities of the chosen spectral analysis technique, but the code alone can 
improve and refine previous visualizations and their associated in
terpretations. We also consider this code useful for validating the results 
derived from time-frequency techniques, such as the wavelet, helping to 
refine and/or calibrate them, thus providing more accurate results and 
derived interpretations. 

The Python code, hosted in the GitHub platform, guarantees easy 
access and future updates, while enabling research collaboration. 
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Fig. 6. Visualization of the spectral results from the 
tuned LR04 stack dataset between 0.25 and 1 Ma, 
using the same parameters as in Fig. 5c but upgrading 
the ACL from 95% to 99%. The figure includes both 
the main 100 and 41 kyr cyclicities (frequencies on 
the left axis) and the stadial-interstadial variations 
from the LR04 stack time-series (δ18O values on the 
right axis). The tentative start of the dominance of the 
100 kyr cyclicity is shown by the location of the Y- 
SHAPED feature revealed in this present work.   
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Code availability section 

Name of the code: spectral-analysis-visualization-method (MIT 
license). 

Developer: José Sanchez-Morales (josesanmor@correo.ugr.es; jose. 
chez.morales@gmail.com). 

Hardware requirements: Any platform where GDAL utilities are 
installed (https://gdal.org/). 

Program language: tested with Python 3.7.0 on Windows 10. 
Software required:  

- Python 3 with NumPy (v1.21.2), matplotlib (v3.1.2) and opencv- 
python (v4.6.0)  

- GDAL library tools (tested with v.3.0.2) installed in the computer 
machine (no need as Python library) 

Program size: ~400 KB (without data samples). 
The source code is available for downloading at the link: https://gith 

ub.com/jose-sanchez-morales/spectral-analysis-visualization-method. 
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