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Abstract: Bone effects attributed to bisphenols (BPs) include the inhibition of growth and differentia-
tion. This study analyzes the effect of BPA analogs (BPS, BPF, and BPAF) on the gene expression of the
osteogenic markers RUNX2, osterix (OSX), bone morphogenetic protein-2 (BMP-2), BMP-7, alkaline
phosphatase (ALP), collagen-1 (COL-1), and osteocalcin (OSC). Human osteoblasts were obtained by
primary culture from bone chips harvested during routine dental work in healthy volunteers and
were treated with BPF, BPS, or BPAF for 24 h at doses of 10−5, 10−6, and 10−7 M. Untreated cells
were used as controls. Real-time PCR was used to determine the expression of the osteogenic marker
genes RUNX2, OSX, BMP-2, BMP-7, ALP, COL-1, and OSC. The expression of all studied markers
was inhibited in the presence of each analog; some markers (COL-1; OSC, BMP2) were inhibited at all
three doses and others only at the highest doses (10−5 and 10−6 M). Results obtained for the gene
expression of osteogenic markers reveal an adverse effect of BPA analogs (BPF, BPS, and BPAF) on the
physiology of human osteoblasts. The impact on ALP, COL-1, and OSC synthesis and therefore on
bone matrix formation and mineralization is similar to that observed after exposure to BPA. Further
research is warranted to determine the possible contribution of BP exposure to the development of
bone diseases such as osteoporosis.

Keywords: bisphenol S; bisphenol F; bisphenol AF; osteoblast; gene expression

1. Introduction

The term endocrine disruptor refers to a set of chemicals with a specific effect on
the endocrine system that interferes with receptor-mediated hormone activity. Endocrine-
disrupting chemicals (EDCs) are substances capable of altering cellular metabolism and
causing long-term toxic effects. This group includes molecules of natural origin and
synthetic compounds [1,2]. Bisphenols are compounds that are widely found in nature
as they are used in the manufacture of plastics and resins. Since they are EDCs, they can
imitate or block hormone receptors, altering the concentration and metabolism of hormones
and exerting adverse effects at different levels of the organism [3]. Due to widespread
exposure and concern that BPA was a toxicant affecting, among other areas, reproductive
health, health authorities urged manufacturers to abandon the use of BPA and introduce
similar safer chemicals. BPA analogs (BPF, BPS, and BPAF) were designed to replace BPA
in the manufacture of certain materials and utensils, especially those in contact with food
or used in the home, to avoid the known toxicity of this compound. However, various
studies have found that the toxicity of these analogs is similar to that previously observed
for BPA [4–8].
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BPA has a harmful effect on bone tissue since it can interact via estrogenic receptors
with the two main bone tissue populations, osteoblasts and osteoclasts, possibly com-
promising bone health [1]. BPA inhibits the growth of murine (MC3T3-E1 cell line) [9]
and human fetal (hFOB 1.19 cell line) osteoblasts [10] and human osteoblasts obtained by
primary culture from bone implants [11]. This growth inhibition results from apoptosis
induction, which compromises cell viability in a dose-dependent manner. BPA can also
affect the function of this cell population by inhibiting alkaline phosphatase (ALP) synthesis
and therefore the mineralization process [10–12]. BPA treatment has been found to alter
the gene expression of RUNX2, osterix (OSX), β-catenin, collagen-1 (COL-1), osteocalcin
(OSC), and bone morphogenetic proteins (BMPs) 2 and 7 (BMP-2 and BPM-7) [9–11,13],
and the expression of these osteogenic markers is associated with the differentiation and
maturation and, therefore, functional capacity of osteoblasts [14].

Given that the presence of BPA has been found to modulate the growth and function
of human osteoblasts, the objective of this study was to determine the effect of osteoblast
culture with BPF, BPS, or BPAF on the gene expression of RUNX2, ALP, OSX, COL-1, OSC,
BMP-2, and BMP-7.

2. Results

Quantitative RT-PCR (q-RT-PCR) results for the gene expression of osteoblasts after
24 h of culture with BPS, BPF, and BPAF at doses 10−5, 10−6, and 10−7 M were compared
with results for untreated control cells.

2.1. RUNX2

RUNX2 gene expression was significantly and dose-dependently reduced by treatment
with each BP (BPF, BPS, or BPAF) at each dose except for BPAF, which produced no
significant change in expression at the lowest dose (10−7 M) (Figure 1).
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Figure 1. Expression of RUNX2 in primary human osteoblasts treated for 24 h with bisphenol S,
F, and AF (10−7, 10−6, or 10−5 M). The assay was performed in triplicate with each of the three
primary human osteoblast cell lines. Data are expressed as percentage expression with respect to
control ± standard deviation. Significant differences * p < 0.05; ** p < 0.001.

2.2. BMP-2 and BMP-7

Gene expression of both BMP2 and BMP7 was significantly and dose-dependently
decreased by treatment with each BP at each dose except for the lowest dose of BPS
(10−7 M), which produced no significant change in expression (Figure 2).
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Figure 2. Expression of BMP2 (A) and BMP7 (B) in primary human osteoblasts treated for 24 h with
bisphenol S, F, and AF (10−7, 10−6, or 10−5 M). The assay was performed in triplicate with each of the
three primary human osteoblast cell lines. Data are expressed as percentage expression with respect
to control ± standard deviation. Significant differences * p < 0.05; ** p < 0.001.

2.3. OSX

OSX gene expression was significantly and dose-dependently reduced by treatment
with each dose of each BP except for BPAF, which had no significant effect at any
dose (Figure 3).
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Figure 3. Expression of OSX in primary human osteoblasts treated for 24 h with bisphenol S, F, and AF
(10−7, 10−6, or 10−5 M). The assay was performed in triplicate with each of the three primary human
osteoblast cell lines. Data are expressed as percentage expression with respect to control ± standard
deviation. Significant differences * p < 0.05; ** p < 0.001.

2.4. ALP

ALP gene expression was significantly and dose-dependently reduced by treatment
with each dose of BPF and BPS, but was only significantly decreased by treatment with the
highest dose of BPAF (Figure 4).

2.5. OSC

OSC gene expression was significantly and dose-dependently decreased by each BP at
each dose (Figure 5).

2.6. COL-1

Col-1 gene expression was significantly and dose-dependently reduced by treatment
with each dose of BPF and BPS, but BPAF produced a significant change in expression at
the higher doses only (10−5, and 10−6 M) (Figure 6).
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deviation. Significant differences * p < 0.05; ** p < 0.001.
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Figure 6. Expression of Col-1 in primary human osteoblasts treated for 24 h with bisphenol S,
F, and AF (10−7, 10−6, or 10−5 M). The assay was performed in triplicate with each of the three
primary human osteoblast cell lines. Data are expressed as percentage expression with respect to
control ± standard deviation. Significant differences * p < 0.05; ** p < 0.001.

3. Discussion

In this study, human osteoblasts cultured for 24 h in the presence of BPA analogs (BPF,
BPS, or BPAF) underwent significant changes in the gene expression of RUNX2, OXS, OSC,
ALP, COL-1, BMP-2, and BMP-7, which are osteogenic markers with key roles in osteoblast
maturation and function [15–17]. Culture with these BPA analogs was found to inhibit the
expression of these markers in a dose-dependent manner.

Mesenchymal cell-based osteogenic differentiation is regulated by various transcrip-
tional factors (e.g., RUNX-2/Cbfa, BMP, and OSX) that are essential for regulating the
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genes involved in the production of bone extracellular matrix proteins (e.g., ALP, COL-I,
bone sialoprotein [BSP], OSC, and osteopontin [OPN]) and for inducing bone mineral-
ization [18–20]. RUNX-2/Cbfa, BMP, and OSX genes participate in the formation and
differentiation of osteoblasts by activating signals that favor the production of molecules
closely related to bone metabolism [17,21]. Each stage of osteoblast functional differentia-
tion (proliferation, bone matrix synthesis, and mineralization) is associated with certain
cell markers [19]. Specifically, OSX and RUNX2 are expressed in immature osteoblasts
and maintain their expression throughout the osteogenic lineage [20,22], while BMP-2 and
BMP-7 are both related to osteoblast formation and differentiation [23–26], and the major
inhibition of their expression can halt the differentiation process [27]. In the present study,
the presence of BPF, BPS, or BPAF was found to inhibit the gene expression of BMP-2,
BMP-7, RUNX2, and OSX.

The comparison with published findings on the expression of osteogenic markers by
human osteoblasts cultured in the presence of BPA [11] shows that culture with BPS has
similar effects but that culture with BPF inhibits a larger number of osteogenic markers at
all three doses (10−5, 10−6, and 10−7 M). In the case of BPAF, higher doses are required
to alter the expression of these osteogenic markers, while the expression of OSX is not
changed at any of the three doses assayed. Given the functional involvement of these
markers in the osteoblast lineage, not only BPA but also its analogs BPF, BPS, and BPAF
may compromise osteoblast differentiation and maturation. This could have undesirable
repercussions on the complex process of bone development, as these markers play a crucial
role in the molecular mechanism of osteogenesis.

The observation of a decrease in the expression of RUNX2, OXS, and BPMs in human
osteoblasts cultured in the presence of BPF, BPS, or BPAF helps to explain the reduced
expression of the osteogenic markers ALP, OSC, and COL-1, which play a major role
in the formation and mineralization of the bone tissue extracellular matrix. ALP is a
metalloenzyme that hydrolyzes monophosphate esters at alkaline pH (8–10), thereby
releasing the inorganic phosphorus required for bone mineralization [28]. ALP is expressed
at an early stage of osteoblast differentiation, being present on the cell surface and in bone
matrix vesicles. Its expression is subsequently reduced during osteoblast maturation, when
other genes (e.g., OSC) are upregulated [29]. OSC is a late gene expression that encodes the
homonymous peptide hormone synthesized by osteoblasts, which is the main non-collagen
bone tissue protein. It contributes to bone conformation and mineralization by favoring the
ordered deposit of minerals through regulation of the amount and size of hydroxyapatite
crystals. Hence, the main function of OSC is the regulation of matrix synthesis [30,31].
Finally, COL-1, which is the most abundant protein in the bone matrix, is synthetized
by mature osteoblasts and plays a structural role. Its expression is observed in nodules
mineralized in vitro and mainly in the mature matrix of bone in vivo. COL-1 is considered
an osteoblast-specific marker, despite being expressed by cells that are not of osteogenic
lineage [32].

Bone remodeling is an active process crucial to adult bone homeostasis that involves
a balanced coordination of bone formation and resorption to maintain bone mass and
systemic mineral homeostasis. Therefore, the balance of this process guarantees bone
health, and any factor that alters it, whether endogenous or exogenous, compromises
bone health. Under normal conditions, 5–10% of the total bone is renewed every year. In
bone remodeling, the osteoclasts resorb a certain amount of bone and the osteoblasts form
the osteoid matrix and mineralize it to fill the cavity previously created. It is therefore a
complex process in which cellular and molecular components are closely associated. The
cells closely involved (osteoclasts, preosteoblasts, and osteoblasts) are governed by a series
of molecular signals that will allow the normal functioning of the bone and the maintenance
of bone mass. When this process loses its balance, bone pathology appears, either by excess
(osteopetrosis) or by defect (osteoporosis) [33,34].

The changes in the gene expression of ALP, COL-1, and OSC in culture with the
three BPs under study suggest that these compounds have a negative impact on the bone
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extracellular matrix, similar to the reported effects of BPA at osteoblast level. This effect on
the expression of these markers is closely related to the inhibition of mineralization and
ALP activity observed in human osteoblasts cultured in osteogenic medium in the presence
of BPA [11]. Human exposure to bisphenols is widespread in the general population and
specifically in workers handling these substances [35]. The ubiquity of BPs indicates that
this exposure occurs through food intake, drinking water, by contact of skin with thermal
paper, or by dust inhalation [36–39]. It has been observed that 75% of 267 foods tested
had bisphenols in concentrations ranging from 0.10 ng/g fresh weight to 1130 ng/g fresh
weight [38]. Moreover, the presence of these bisphenols has been determined in human
urine, serum and breast milk samples [40–43]. The reported presence of BPA analogs in
human biological samples, coupled with the close structural similarity to BPA, suggests
a possible adverse effect on the organism, as described for BPA, which has already been
documented in other tissues. In this regard, our findings suggest that lifetime exposure to
BPs could represent a possible risk factor for the development of osteoporosis, a disease of
increasing prevalence [44]. Given the importance of the potential risks of exposure to these
BPs, it is necessary to study in depth the impact of these molecules on bone tissue, both
in vitro and in vivo.

4. Materials and Methods
4.1. Chemicals

BPF, BPS, and BPAF were obtained from Sigma-Aldrich (St. Louis, MO, USA) and
dissolved in dimethyl sulfoxide (DMSO) to a final DMSO concentration of ≤0.05%.

4.2. Isolated and Primary Culture of Human Osteoblasts

Primary human osteoblasts were obtained from trabecular bone chips harvested dur-
ing routine mandibular osteotomy or third molar extraction in healthy individuals at
the Clinic of the School of Odontology at our university. Three patients were recruited
for this trial from which three primary human osteoblasts cell lines were established.
All individuals signed their informed consent to participation in the study, which was
approved by the university research ethics committee (Reg. No. 523/CEIH/2018). Os-
teoblasts were isolated, characterized, and cultured as described by García-Martínez et al.
(2011) and Melguizo-Rodríguez et al. (2018) [45,46]. Bone fragments were washed thor-
oughly in phosphate-buffered saline solution (PBS, pH 7.4) and were seeded onto culture
dishes (Falcon Labware, Oxford, UK). They were covered with complete culture medium
[Dulbecco’s-modified Eagle medium (DMEM; Invitrogen Gibco Cell Culture Products,
Carlsbad, CA, USA) supplemented with 100 IU/mL penicillin (Lab ERN SA, Barcelona,
Spain), 50 µg/mL gentamicin (Laboratorios Normon SA, Madrid, Spain), 2.5 µg/mL
amphotericin B (Sigma, St. Louis, MO, USA), 1% glutamine (Sigma, St. Louis, MO,
USA), 2% HEPES (Sigma, St. Louis, MO, USA), and 20% fetal bovine serum (FBS; Gibco,
Paisley, UK)].

Cells were kept in a humidified atmosphere of 95% air and 5% CO2 and at 37 ◦C. After
reaching confluence (2–3 weeks), cells were detached from the culture flask with a solution
of 0.05% trypsin (Sigma, St. Louis, MO, USA) and 0.02% ethylene-diamine tetraacetic acid
(EDTA; Sigma, St. Louis, MO, USA) and were washed and suspended in complete culture
medium with 20% FBS.

4.3. Treatments

Osteoblasts obtained were treated for 24 h with BPS, BPF, or BPAF (Sigma-Aldrich) at
doses of 10−5, 10−6, or 10−7 M; untreated cells were used as controls.

4.4. Effect of BPF, BPS, and BPAF on the Gene Expression of Human Osteoblasts

Real-time polymerase chain reaction (RT-PCR) was used to determine the effect of
BPs on the gene expression of cultured human osteoblasts. After 24 h of culture with
the BP at the corresponding dose, an 0.05% trypsin–EDTA solution (Sigma) was used to
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detach the cells. The Qiagen RNeasy kit (Qiagen Inc., Hilden, Germany) was used for
mRNA extraction in accordance with kit instructions. The amount of mRNA extracted was
measured by UV spectrophotometry at 260 nm (Eppendorf AG, Hamburg, Germany), and
contamination with proteins was determined according to the 260/280 ratio. Next, 1 µg
mRNA from osteoblasts cultured with each BP at each dose was brought to a total volume
of 40 µL and reverse-transcribed to cDNA and amplified by PCR using the iScriptTM

cDNA Synthesis Kit (Bio-Rad laboratories, Hercules, CA, USA) in accordance with the
manufacturer’s instructions [47].

RT-PCR primers were designed using the NCBI nucleotide library and Primer3 design
to detect mRNA of Runx-2, OSX, ALP, OSC, Col-I, BMP-2, or BMP-7 (Table 1). Ubiquitin C
(UBC), peptidylprolyl isomerase A (PPIA), and ribosomal protein S13 (RPS13) were used
as stable housekeeping genes to normalize the results [48].

Table 1. Primer sequences for the amplification of osteoblasts’ cDNA by RT-PCR.

Gene Sense Primer Antisense Primer

RUNX-2 5′-TGGTTAATCTCCGCAGGTCAC-3′ 5′-ACTGTGCTGAAGAGGCTGTTTG-3′

BMP-2 5′-TCGAAATTCCCCGTGACCAG-3′ 5′-CCACTTCCACCACGAATCCA-3′

BMP-7 5′-CTGGTCTTTGTCTGCAGTGG-3′ 5′-GTACCCCTCAACAAGGCTTC-3′

OSX 5′-TGCCTAGAAGCCCTGAGAAA-3′ 5′-TTTAACTTGGGGCCTTGAGA-3′

ALP 5′-CCAACGTGGCTAAGAATGTCATC-3′ 5′-TGGGCATTGGTGTTGTACGTC-3′

OSC 5′-CCATGAGAGCCCTCACACTCC-3′ 5′-GGTCAGCCAACTCGTCACAGTC-3′

COL-I 5′-AGAACTGGTACATCAGCAAG-3′ 5′-GAGTTTACAGGAAGCAGACA-3′

Quantitative RT-PCR (q-RT-PCR) was performed with the SsoFastTM EvaGreen® Su-
permix Kit (Bio-Rad laboratories), placing cDNA samples in 96-well microplates and using
IQ5-Cycler (Bio-Rad laboratories) to amplify the genetic information. More than 40 cycles
were performed with annealing temperatures ranging from 60 to 65 ◦C and an elongation
temperature of 72 ◦C. PCR reactions were performed in a total volume of 20 µL, including
5 µL from cDNA samples and 2 µL from the primer. Standard curves were constructed for
each gene by plotting Ct values against log cDNA dilution. Nonspecific PCR products and
primer dimers were then excluded by creating a melting profile and performing agarose
gel electrophoresis. mRNA concentrations for each gene were expressed as ng of mRNA
per average ng of housekeeping mRNA [49]. This assay was performed in triplicate.

4.5. Statistical Analysis

mRNA levels were expressed as means ± SD. The normality of variable distributions
was checked with the Kolmogorov–Smirnov test. Data were analyzed using ANOVA with
Bonferroni corrections for multiple comparisons. Three cell lines of primary culture human
osteoblasts were employed for all experiments, performing at least three experiments in
all assays. SPSS 22.0 (IBM, Chicago, IL, USA) was used for data analyses, with p < 0.05
considered to be significant in all tests.

5. Conclusions

This in vitro study demonstrates that BPA analogs (BPF, BPS, and BPAF) exert adverse
effects on the expression of osteogenic markers involved in bone development and may
inhibit the formation and mineralization of the bone matrix, with a potentially negative
impact on the biomechanical properties of bone. The effects observed for these BPA analogs
(BPF, BPS, and BPAF) were not substantively different from those previously reported for
BPA itself, suggesting that the utilization of these analogs should be subject to comparable
supervision and control measures. Further research is warranted to determine the possible
contribution of BP exposure to the development of bone diseases such as osteoporosis.
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