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Abstract
The antispoofing challenges are designed to work on a sin-
gle database, on which we can test our model. The automatic
speaker verification spoofing and countermeasures (ASVspoof)
[1] challenge series is a community-led initiative that aims to
promote the consideration of spoofing and the development of
countermeasures. In general, the idea of analyzing the databases
individually has been the domain approach but this could be
rather misleading. This paper provides a study of the general-
ization capability of antispoofing systems based on neural net-
works by combining different databases for training and testing.
We will try to give a broader vision of the advantages of group-
ing different datasets. We will delve into the ”replay attacks”
on physical data. This type of attack is one of the most difficult
to detect since only a few minutes of audio samples are needed
to impersonate the voice of a genuine speaker and gain access
to the ASV system. To carry out this task, the ASV databases
from ASVspoof-challenge [2], [3],[4] have been chosen and will
be used to have a more concrete and accurate vision of them. We
report results on these databases using different neural network
architectures and set-ups.
Index Terms: Spoofing detection, Deep learning, Antispoof-
ing, Speaker verification

1. Introduction
Speech is becoming a popular modality for human-computer
interaction, thanks to recent advances in the fields of speech
processing and deep learning. With the proliferation of voice
biometric systems, one concern has recently attracted the
attention of the research community: how to protect Automatic
Speaker Verification (ASV) systems against impersonation
attacks performed by malicious users claiming the identity of
enrolled users. Thus, a malicious attacker could gain access to
a system (e.g., a banking application) by claiming the identity
of a genuine user by presenting voice samples of that user to
the authentication system. There are many different types of
spoofing attacks (a comprehensive review on this topic can be
found in [5],[6]), but in this paper, we focus on replay attacks,
as they can be performed even without technical expertise. In
replay attacks (also known as physical access (PA) attacks),[7],
[8], [9] as shown in Figure 1, the impersonator attempts to
bypass the ASV system by presenting voice recordings of
genuine users.

The spoofing attack proves to be one of the most difficult
to detect, due to it can easily be executed, as only a small au-
dio excerpt is required. In addition, the wide availability and
widespread use of cell phones, recording devices, etc. facilitate
the recording and playback of a genuine operator.

Figure 1: Replay attack representation[4].

Anti-spoofing is an identity theft detection technique used
to prevent these impersonation attacks. However, the task of
anti-spoofing is extremely difficult, as it can require a great
deal of effort to distinguish the slightest differences between
recorded and genuine versions.

Currently, the most approach for the detection of spoofing
attacks is based on the use of machine learning [10]. In this
paper we consider two models, a Light Convolutional Neural
Network (LCNN) and a baseline LFCC-LCNN system [8] op-
erating upon Linear Frequency Cepstral Coefficients (LFCC)
which are capable of analyzing voice recordings to determine
whether they are bonafide or spoofed. The main problem we
face is the need to obtain a large enough database to train our
architecture.

As with any machine learning-based task, the question
arises as to how DNN models trained can generalize on other
databases. The efficacy of DNN has been demonstrated in terms
of learning, as can be seen in [11], [12], [13]. We will fo-
cus on evaluating the generalization ability of a state-of-the-
art antispoofing model on unseen spoofing attacks. Our neural
network goes through a supervised learning process, which in-
volves bonafide/spoofing detection. The network will learn the
input-output relationships where the input is an audio sample
to make a coherent distinction between bonafide and spoofed
audio.

To evaluate the capabilities of state-of-the-art, DNN-based
systems to unknown spoofing attacks, we have chosen the
ASVspoof-challenge databases that promote the design of coun-
termeasures to protect automatic speaker verification systems.
In fact, we will work with the datasets released in 2017, 2019
and 2021 editions. We have also combined the 2017 and 2019



databases to determine the relationship between them and to
demonstrate whether significant results can be obtained. The
objective of working with them will be to check how our mod-
els can generalize depending on the database used in the training
and to check if joining databases can achieve a better result.

The structure of this paper is organized as follows. In sec-
tion 2 we describe the elements used to carry out this task, as
well as the database, neural network, and parameters used to
evaluate our model. In section 3, we will show the results ob-
tained and present an analysis and ideas that can be obtained
from them. Finally, in section 4, we present a general conclu-
sion and future works that can be derived from this work.

2. Methodology
2.1. Procedure

The general procedure followed has been to parameterize the
training signals of an ASVspoof challenge dataset to train a
DNN with them. Then, that DNN is evaluated with another test
dataset to obtain a decision matrix. We will focus on physical
access attacks. We will discuss and expose them according to
[14], [15] and perform a treatment on them based on the study
reported in [16]. To carry out the evaluation process, we fol-
lowed the same procedure for the different datasets used in this
paper (ASVspoof 2017, ASVspoof 2019 and ASVspoof 2021).
We evaluated two alternative spectral representations of the
speech signals for anti-spoofing. First, we computed Short-
Time Fourier Transform (STFT) features computed from 25 ms
windows (using the Blackman window function) with 15 ms
overlap. Also, Linear Frequency Cepstral Coefficients (LFCC)
features were computed from 20 ms Hanning windows with 10
ms overlap.

2.2. Datasets

We evaluate the proposed anti-spoofing system on physical ac-
cess (PA) attacks using the ASVspoof challenge databases from
the 2017, 2019 and 2021 editions. This challenge is based on
RedDots [17] project. We have chosen them because is a widely
known challenge with a lot of information about the conditions
under which the databases were created. They are authentic
replay signals obtained in actual conditions changing the envi-
ronment, using different microphones, speakers, and rooms. In
the following, we provide more details about each database.

The replay attacks of the ASVspoof 2017 version were gen-
erated using 3 different quality categories (low, medium, high)
of recording and playback devices. This dataset is designed
to have a smaller number of recordings per session with more
sessions of shorter duration in each one. One of the goals is
to collect 52 sessions per speaker, one session each week, for
one year. In this regard, each session is limited to two minutes.
The composition of the sentences used for a recording session is
shown in Table 1. This database was collected using mid- and,
high-end smartphones and professional recorders (see [18] for
more details).

Spoofed utterances are the result of the replay and recording
of authentic utterances using a variety of heterogeneous devices
and acoustic environments. The latter is intended to simulate
false utterance replay attacks [19] [20].

The structure of the ASVSpoof physical-access database is
summarized in Table 2. The dataset includes a total of 9 differ-
ent replay configurations, comprising 3 categories of recording
distances between the attacker and the speaker, and 3 categories
of speaker quality. This scenario conforms as much as possible

Table 1: Structure of the ASVspoof 2017 physical access data
corpus divided by training, development, and evaluation sets
[3].

Subset Speaker
Replay

Sessions

Replay

Config

Utterances

Bonafide Replay

Training 10 6 3 1507 1507

Development 8 10 10 760 950

Evaluation 24 161 57 1298 12008

Total 42 177 61 3565 14465

Table 2: Structure of the ASVspoof 2019 physical access data
corpus divided by training, development, and evaluation sets
[2].

Speakers Utterances

Subset Male Female Bonafide Spoof

Training 8 12 5400 48600

Development 8 12 5400 24300

Evaluation 21 27 18090 116640

Total 37 51 28890 189540

to the ISO definition of presentation attacks [21]. The 2019 edi-
tion is the first to focus on countermeasures for the three main
types of attacks, i.e., those derived from text-to-speech (TTS),
voice conversion (VC) and identity replay attacks. In addition,
it is composed of simulated attacks with pre-recorded impulse
responses. While the training and development sets contain
spoofing attacks generated with the same algorithms/conditions
(designated as known attacks), the evaluation data was gener-
ated with different randomly acoustic and replay configurations,
(designated as unknown attacks).

Finally, the ASVSpoof 2021 database contains only evalu-
ation data for the PA task, i.e. no training data is provided with
this database. For this task, the ASVspoof 2019 training data
along with other external datasets are normally employed. The
ASVspoof 2021 PA evaluation data comprises real bonafide and
replayed samples similar to the ASVspoof 2017 database, but
with a better-controlled design. Recordings are made in nine
rooms in which three different types of microphones are placed
at each of six different distances between the speaker and the
ASV. Recordings are made with a total of 18 microphones si-
multaneously. Thus, there are 162 (9 × 3 × 6) different evalua-
tion environments.

2.3. AntiSpoofing Systems and Neural networks

The goal of anti spoofing systems is to avoid being fooled by
spoofing attacks. This is done by maximizing the decision prob-
ability of the legitimate class and discarding the spoofing class.
In this work, we evaluate two DNN-based front-ends for ex-
tracting embedding vectors [22] from the audio signals, in par-
ticular, two alternative implementations of the Light Convolu-
tional Neural Network (LCNN), which has been shown to pro-
vide state-of-the-art results for anti-spoofing [23], were eval-
uated. These two architectures are described in detail in the
following.

The architecture of the anti-spoofing system is shown in
Figure 2. The baseline LFCC-LCNN system will be briefly de-



Figure 2: Bonafide/Spoof detection and identity vector extrac-
tion (blue color).

scribed in section 2.4.1. A context of W frames is used to obtain
the spectral features of the input signal that are fed into the sys-
tem. Then, the CNN [24] provides one deep feature vector per
window, and the entire deep features vector of the considered
utterance is processed by a state-of-art anti-spoofing system
that was adapted from a previous work: a Light Convolutional
Neural Network (LCNN), detailed in Section 2.4.2, which has
shown to be very effective in detecting spoofed speech. LCNN
computes an embedding vector for the whole utterance. This
vector will be known as the “spoofing identity vector” and pro-
vides more discriminative information for spoofing detection
than the raw speech features.

In this architecture the convolutional neural network acts as
a frame-level deep feature extractor, providing a feature vector
for each window of W frames. For this purpose, the CNN is
trained to classify the input data as either bonafide or spoof.

After deep feature extraction, each utterance is represented
by a single spoofing identity vector depicted in Figure 2 in blue.
Finally, we use these vectors to make the final detection deci-
sion. To carry out this classification, we use Linear Discrimina-
tion Analysis (LDA). This metric assumes that each class can
be modeled as a multivariate Gaussian as N(x|µk,

∑
k) naive.

For a sample x, the LDA model [25] uses the covariance∑
k and mean µk of each class k and the dimension of the

identity vector p. The goal of LDA is to find a linear trans-
formation that maximizes the distance between classes while
minimizing the dispersion within each class. In this case, LDA
assigns a genuine speech confidence score to each utterance,
which is then used for binary decision (spoof or genuine) dur-
ing the evaluation.

2.3.1. System 1 - Baseline

A CNN is composed of multiple layers that enable the network
to learn high-level abstract features from massive input data.
Most CNNs have a deep multilayer structure with a large num-
ber of filter weights that increases the computational cost and
the risk of overfitting. For this reason, we propose a Light Con-
volutional Neural Network, which can learn feature represen-
tations, even with a small number of training samples, and can
achieve high accuracy due to its simple but sufficient modeling
capability to learn deep features from speech inputs.

The first implementation is the one included with the AS-
spooch 2021 challenge. The baseline LFCC-LCNN [26] system
operates upon Linear Frequency Cepstral Coefficients (LFCC)
features feeding a LCNN. This system is applied to data with

Table 3: System 2 - LCNN architecture.

LCCN

Layer Type Filter/Stride
Output

Channels

Layer 1
Conv

MaxPool

5x5/1x1

2x2/2x2

16

8

Layer 2

Conv

Conv

MaxPool

1x1/1x1

3x3/1x1

2x2/2x2

16

24

12

Layer 3

Conv

Conv

MaxPool

1x1/1x1

3x3/1x1

2x2/2x2

32

32

16

Layer 4

Conv

Conv

MaxPool

1x1/1x1

3x3/1x1

2x2/2x2

32

16

8

Layer 5

Conv

Conv

MaxPool

1x1/1x1

3x3/1x1

2x2/2x2

16

16

8

- FC1 - 128

- FC2 - 2

a maximum frequency of 8 kHz for the PA task using a 1024-
point Fourier transform and 70 filters.
The back-end is based on the LCNN reported in [27], but incor-
porates Long Short-Term Memory (LSTM) layers and average
pooling. It is composed of 5 layers, combining convolution2d
and normalization processes, then applying a 2x2 maxpooling
matrix. Finally, we implement a 0.7 dropout operation used to
reduce the risk of overfitting.
To perform the training process, we used a batch size of 64,
a learning rate of 3·10−5 with a decay of 0.5. A softmax ac-
tivation function is applied to produce two-class predictions:
bonafide or spoof.

2.3.2. System 2 - Light Convolutional Neural Network

The second network is an alternative implementation of the
LCNN architecture, as depicted in Table 3, showing a sum-
mary of the LCNN architecture used. In this model, we apply
T=400 frames and 864 filters to compute the STFT. The net-
work consists of 5 layers, where each one has different light
convolutional layers followed by a Maxpooling operation. This
vector is then fed into a Fully Connected Layer (FC1) to obtain
an utterances-level spoofing identity vector of 128 components.
The proposed deep feature extractor was trained using the Adam
optimizer with a learning rate of 3·10−4 and a weight decay of
0.001. We used a batch size of 64 to train and evaluate. Also,
batch normalization is applied to increase the stability and con-
vergence of the training process. To avoid overfitting, a dropout
of 0.7 was applied on the fully connected layer.

Finally, we evaluate using LDA, which provides us with
a final score indicating whether the utterance is bonafide or
spoofed.

2.3.3. Metrics

We used the Equal Error Rate (EER) [28], which is the point
where the false acceptance rate and false rejection rate are
equal, as the primary metric. We also report the results in terms
of the minimum normalized tandem Detection Cost Function



Table 4: Decision matrix. ASVspoof Physical access evaluation
scenarios in terms of EER (%) and t-DCF.

System 1-Baseline System 2-LCNN

Train Eval t-DCF EER(%) t-DCF EER(%)

2017

2017 0.884 42.70 0.335 12.83

2019 0.925 43.14 0.999 52.85

2021 0.969 38.47 0.989 39.74

2019

2017 0.761 34.28 0.856 56.61

2019 0.098 3.76 0.167 6.30

2021 0.999 45.14 0.988 40.22

2017+2019

2017 0.614 26.21 0.851 32.71

2019 0.141 5.32 0.150 5.90

2021 0.997 48.21 0.999 42.12

(t-DCF)[29]. This method extends the conventional DCF used
in ASV research to scenarios involving spoofing attacks.

3. Results
In this section, the performance of the tested approaches across
the different databases introduced in the previous section is re-
ported.

Table 4 shows the performance metrics obtained by both
anti-spoofing systems as a function of the dataset used for train-
ing and the dataset used for evaluation. For training, we eval-
uated either using the training data included with the 2017 or
2019 databases alone or a combination of both (2017+2019).
For evaluation, we only used the test sets defined for each
database independently.

Due to changes introduced in the databases for the differ-
ent ASV challenges, when we mix different sets of training and
evaluation data corresponding to different years, the results we
obtain are notably worse than those obtained by training and
evaluating in the same year. Thus, we even reach an EER result
of 52%. This result arises from performing training with the
2017 dataset and evaluation with the 2019 on System 2-LCNN.
This can be explained because the 2017 dataset is the small-
est dataset. Therefore, generalization is more difficult for our
model.

The most remarkable result is obtained when we train our
model by joining the 2017 and the 2019 datasets and evaluating
with the 2019 dataset, where we get 5.9% in EER and 0.1497
in t-DCF. This means that by adding some different audio sam-
ples from the 2017 ASVspoof challenge to the 2019 ASVspoof
challenge, we get better results than individually. Another result
that proves this is obtained using the joint training (2017+2019)
of the System 1 - Baseline network and evaluation in 2017, im-
proving the results from 34% to 26%. In this case, the Anti-
spoofing system seems to generalize better.

We do not obtain favorable results when we evaluate the
2021 dataset. This can be explained by the fact that the evalu-
ation set is too large compared to the training and development
set, which implies that our model fails to adapt and generalize
correctly.

In Table 5 we can see the average EER results for each
dataset. This allows us to observe which database gives better
results in training and validation independently. That is, we can

Table 5: Average EER values for the training and evaluation
processes.

EER Measure (%)

Dataset LCNN LFCC-LCNN

Train

2017 35.09 43.08

2019 34.36 27.12

2017+2019 26.95 24.75

Eval

2017 34.03 34.43

2019 21.66 17.4

2021 40.67 43.93

observe which training set performs best for training a model
independently of the set with which it is to be evaluated later
and which set is best for evaluating, independently of which
database a model has been trained with.
In order to analyze which dataset is better for training, the mean
has been calculated over the EER results from the 3 evaluations
(2017, 2019 and 2021) obtained from the same training set. In
the case of evaluation, the mean has been calculated with the
EER of each training dataset (2017, 2019 and 2017+2019), all
evaluated from the same dataset.

By comparing EERs, it can be seen that the best results are
obtained by training both systems with the data from the joint
databases, (2017 + 2019). On the other hand, it is observed
that the worst results appear when we evaluate using the 2021
dataset. This may be because the 2021 evaluation set contains
45 Giga bytes of audio, which is more than twice as much as
each training set. A possible solution to improve this result
would be to allocate a higher percentage of audio from the full
set to the training and development process so that our model
can perform better generalization.

4. Conclusions and future work
In this paper, we have studied the relationship between different
datasets used in three well-known ASVspoof challenge series,
showing that there may be relevant results that could be being
ignored.

We have highlighted the limitations of recently proposed
databases for anti-spoofing challenges in assessing the actual
ability of DNN networks to generalize with new data. Thus,
anti-spoofing solutions with reasonably high EER scores may
naturally fail when presented with unseen spoofing attacks.

In future work it would be worthwhile to investigate the re-
sult of combining a larger number of databases, coming from
other challenges. Other anti-spoofing systems such as the
Gated Recurrent Convolutional Neural Network (GRCNN) [30]
should be tested in order to check their generalization capabili-
ties with unseen attacks.
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