The role of window length and shift in complex-domain DNN-based speech
enhancement

Celia Garcia-Ruiz', Juan Manuel Martin-Doiias®, Angel M. Gémez*

! Dpt. Signal Theory, Telematics and Communications, University of Granada, Spain
2 Fundacién Vicomtech, Basque Research and Technology Alliance (BRTA),
Mikeletegi 57, 20009 Donostia-San Sebastidn (Spain)

{cgr14 , amgg}@ugr .es, jmmartin@vicomtech.org

Abstract

Deep learning techniques have widely been applied to
speech enhancement as they show outstanding modeling capa-
bilities that are needed for proper speech-noise separation. In
contrast to other end-to-end approaches, masking-based meth-
ods consider speech spectra as input to the deep neural network,
providing spectral masks for noise removal or attenuation. In
these approaches, the Short-Time Fourier Transform (STFT)
and, particularly, the parameters used for the analysis/synthesis
window, plays an important role which is often neglected. In
this paper, we analyze the effects of window length and shift
on a complex-domain convolutional-recurrent neural network
(DCCRN) which is able to provide, separately, magnitude and
phase corrections. Different perceptual quality and intelligibil-
ity objective metrics are used to assess its performance. As a re-
sult, we have observed that phase corrections have an increased
impact with shorter window sizes. Similarly, as window overlap
increases, phase takes more relevance than magnitude spectrum
in speech enhancement.

Index Terms: Speech enhancement, Deep neural network,
Short Time Fourier Transform, Complex spectral masking

1. Introduction

The ubiquitous use of voice-based services, fostered by the
spread use of smartphones, smart-TVs or home assistant de-
vices, often results in acquired signals contaminated with acous-
tical noise. This noise causes a reduction of the speech qual-
ity and intelligibility, making speech enhancement a necessity.
Classical approaches based on statistical signal processing [1],
such as spectral-subtractive, statistical modeling or subspace al-
gorithms, were first introduced to deal with acoustical noise.
Weiss et al. [2] were pioneers in proposing the first spectral-
subtractive algorithm based on signal correlation, and later [3]]
based on the Fourier transform. Some statistical techniques as
the maximum-likelihood estimation or Wiener filter were pro-
posed to approximate the Fourier transform of clean speech,
given the noisy signal [4]], as well as statistics of superior order
applied to Wiener filtering were suggested in [S]] afterwards.
At the present time, Deep Neural Network (DNN) based
techniques have dominated the speech enhancement area due
to their excellent modeling capabilities and performance in
speech-noise separation tasks. In general, approaches based
on DNNSs can be divided into those that only consider the time
domain, providing an end-to-end solution, and those which in-
stead consider a transformed time-frequency domain, applying
spectral masking methods [6]. Nonetheless, there exist other
approaches which explore alternative domains learned by the
DNN itself [7]. In end-to-end solutions, DNNs are applied as

black boxes in which process is carried out directly in the time
domain without computing any intermediate features [8].

In contrast, spectral masking approaches make use of
the Short-Time Fourier Transform (STFT) to obtain a time-
frequency representation of the signal which is employed as
input to the DNN architecture, while a mask for that representa-
tion is obtained as output [9]]. Since spectra are complex-valued,
magnitude of the spectra was often used instead. However, due
to the relevance of the phase-spectrum [10], complex-valued
DNNSs have been proposed to cope with the full spectrum [11]].
This way, the provided mask aims to correct both magnitude
and phase.

In this paper we focus on these complex-valued spectral
masking approaches. In particular, we are interested in the role
that the STFT transform plays in them. As suggested by other
authors [12]], the STFT analysis window, particularly, the win-
dow length and shift considered, can have a noticeable effect
on the DNN performance which is often neglected. Motivated
by this, the aim of the paper is to carry out an in-depth anal-
ysis of the role of the STFT parameters in complex spectral
masking. To this end, we have implemented a recently pro-
posed complex-valued DNN, the so-called DCCRN [11]] and
have trained it considering not only several window lengths but
also different shifts. Then, we have assessed the performance
of the network when correcting the magnitude spectra only, the
phase only and the complete spectra with a variety of objective
metrics, involving perceptual and intelligibility ones.

The rest of this paper is organized as follows: in Section[2}
we describe the methodology and the signal processing pipeline
employed. Section [3]details the experimental framework while
Section[d]is devoted to the experimental results. Finally, in Sec-
tion [5] we summarize the conclusions of this paper.

2. Spectral-domain processing

In this paper we have considered the additive noise model, given
by z(n) = s(n)+r(n), where z(n), s(n) and r(n) are, respec-
tively, the contaminated signal, clean speech and noise. Signals
are processed in the spectral domain by means of three key ele-
ments: spectral analysis, masking and overlap and add. Figure
[[] depicts a diagram of the speech processing pipeline followed
in this paper.

2.1. Spectral analysis

The STFT is widely used to obtain a time-frequency represen-
tation of signals [10]. In practice, frequency w is preferred to
be discrete, being the Discrete Fourier Transform (DFT) then
applied. As a result, a spectral representation is obtained per
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Figure 1: Spectral domain DNN-based processing pipeline.

frame as follows, € e

M-1
X(Lk) = > @(UH +nyw(n)e 5, )

n=0

where k is the frequency index (representing bins of i—}r
radians per sample), { the frame index, = (n) the input signal and
w(n) the analysis window. As can be noted, z(n) is segmented
in overlapped frames of length M and shift H.

The number of frequency bins is lower-bounded by the win-
dow length M (k = 0,..., M — 1) which is often chosen as a
power of two to allow a fast DFT computation via Fast Fourier
Transform (FFT). However, in this paper we apply zero padding
to keep constant the number of bins, K, despite the window
length used. This is because the number of the DNN param-
eters varies with the input size and we want to ensure a fair
comparison across them.

2.2. Masking and speech synthesis

The masking process is carried out frame-by-frame. It consists
of applying the estimated time-frequency mask M(k, [), which
can also be defined in polar coordinates as M = |M|e/?™, to
the noisy spectrum X(k, 1) (alternatively, X = |X|e/?X). Sub-
sequently, we can correct magnitude, phase or both as follows
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where © stands for element-wise multiplication and S is the
resulting estimated speech spectra. Time-domain signal §(n) is
approximated from S(k, 1) by means of the widely known Over-
lap and Add (OLA) method [13]]. Here, it must be remarked
the possible irreversibly of a modified STFT [14], the effects

of which could be enhanced or alleviated by the window length
and shift chosen.

3. Experimental framework
3.1. Speech database

DNN models have been trained and tested on a simulated noisy
dataset that uses clean speech from the TIMIT database [15].
This customized dataset is intended for speech enhancement
evaluation. It consists of utterances randomly selected from the
630 speakers included in the TIMIT database. Utterances from
the same speaker are downsampled to 16 kHz and concatenated
so that the resulting signal’s length is between 7 and 11 seconds,
as recommended for speech evaluation [[16]. A total of 200, 50
and 50 length-adjusted utterances are used for the training, val-
idation and testing datasets respectively. Same number of male
and female speakers are included in all sets while no speaker
is repeated across them. Additive noise is then added to each
set at SNRs from -5 to 20 dB in steps of 5db. For the training
and validation sets, the noise types considered are bus station,
restaurant, car and quiet street. Same ones are included in the
test set but extended with subway station, cafe, bus and busy
street noises in order to check the performance under unseen
noise types. All of them are own recorded and in-house curated
noises. Noise recordings are split for training, validation and
test sets so that no signal excerpt is repeated across them. In to-
tal, 4800 utterances are used for training (= 13.3 hours), 1200
for validation and 2400 for testing.

3.2. DCCRN architecture

The neural network implemented in this paper is the Deep
Complex Convolutional Recurrent Network (DCCRN) from
[[LL]. This network consists of a causal Convolutional Encoder-
Decoder (CED) architecture with two Long Short-Term Mem-
ory (LSTM) layers between the encoder and the decoder, so
that the temporal dependencies can be modeled. The DCCRN
is essentially an extension of a Convolutional Recurrent Net-
work (CRN) that includes a common complex part computation
instead of considering two isolated real and imaginary parts. In
particular, the elements CNN, batch normalization layer in en-
coder/decoder and LSTM of CRN are complex-valued.

3.3. Training

The network is trained to estimate the mask M(k, ) which is
then applied to enhance the noisy spectra. The Scale-Invariant
Signal-Distortion Ratio (SI-SDR), which evaluates the distor-
tion in the time domain ignoring general attenuation effects [[17]
[[18], is used as loss function [[17]. To this end, the output mask
is applied and time-domain signal is synthesized by means of
the OLA method (see Section 2.2). The resulting enhanced
speech signal is then compared with the clean signal by using
the aforementioned loss.

To address the aim of this paper, we have considered dif-
ferent window lengths of 512, 256 and 128 samples along with
shifts of 256, 128, 64 and 16 samples. Since the sampling fre-
quency is Fs = 16kH z, these window sizes correspond to 32
ms, 16 ms and 8 ms, respectively. The number of DFT bins is
fixed to K = 257 (spectral symmetry of real time-signals is
accounted here) independently of the window size (see Section
[21). The window type chosen for the STFT analysis and syn-
thesis is the square-root Hanning window, while the minimum
frame overlap considered is 50% (e.g. a 256 shift cannot be



Table 1: Performance results of the speech enhancement assessed by SDR, PESQ, ViSQOL, 2f-model, ESTOI and STGI metrics (gain
with respect to noisy speech). First column (a) groups the results from a complete spectrum correction, the second one (b) those from
to magnitude-only correction and the last one (c) from phase-only. Horizontal axis refers to the window shifts considered. Blue, orange
and grey plots correspond to 512-, 256- and 128- sample window lengths, respectively. Confidence intervals at 95% are included as a
color band for each line.

(a) Full compensation (b) Magnitude-only (c) Phase-only
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used with a 256 window length).

DCCRNS are trained with the ADAM optimization algo-
rithm [19] with a batch size is of 10 utterances, a learning rate
of 107 and a dropout factor of 0.5. We have also applied early
stopping with a patience of 20 epochs (i.e. training is stopped
after 20 epochs with no improvement in the validation set).

3.4. Evaluation

We have evaluated the resulting enhanced signals in terms of
perceptual quality and intelligibility by using several objective
metrics. All of these metrics consider the clean speech signal
(i.e. intrusive metrics) to provide a score, while higher scores
mean better quality and/or intelligibility.

3.4.1. Perceptual quality

Three different metrics has been used to quantify the perceptual
quality of the speech signal in this paper: Perceptual Evalua-
tion of Speech Quality (PESQ), Virtual Speech Quality Objec-
tive Listener (ViSQOL) and the 2f-model. The PESQ algorithm
was proposed with the objective of providing an estimation of
narrowband speech quality in [16]. Later on, it was extended
to deal with wideband speech signals too. Alternatively, the
ViSQOL metric was introduced in [20] and it is an objective
measure centered in modeling the human speech quality per-
ception of the signals. It provides an alternative and more recent
model to assess the speech quality.

Finally, the 2f-model [21] evaluates the noticed quality of
audio signals by means of an auditory model. As such, it evalu-
ates the quality of audio signals, not only speech. It is based on
two Model Output Variables (MOVs) of an audio quality assess-
ment method called PEAQ [22]. The results from [23] suggest
that this method is the best correlated with speech quality scores
provided by real listeners in multiple databases.

3.4.2. Intelligibility

Intelligibility metrics correlate with the percentage of words
that a native speaker would be able to correctly identify in the
audio signal. In this paper, we have considered two intelligi-
bility metrics: the Extended Short-Time Objective Intelligibil-
ity (ESTOI) [24] and the Spectro-Temporal Glimpsing Index
(STGI).

The ESTOI metric is a well known monaural intelligibility
prediction algorithm of speech contaminated by noise signals
with a time-domain weighting. The STGI is a measure of intel-
ligibility based on the detection of glimpses in short-time seg-
ments. While ESTOI is a fairly established method, STGI is a
recent metric which shows higher correlation in recent subjec-
tive experiments [25]. Moreover, STGI can be employed not
only with additive uncorrelated noise but also in a broad range
of degradation conditions such as modulated noise, noise reduc-
tion processing or reverberation.

4. Experimental results

Performance results achieved by the DCCRN networks in terms
of the aforementioned metrics are depicted in Table [I] These
are expressed as a gain with respect to their noisy speech coun-
terpart (in absolute terms) of the mean value across all tested
SNRs. Each column shows the results obtained by a complete
spectrum enhancement (2), and by magnitude (3) and by phase
estimation only @) across different window shifts and sizes
(blue, orange and gray colors). Confidence intervals at 95%

are also shown as colored bands.

In general, similar tendencies are observed along all the
metrics considered, although these seem more evident over per-
ceptual ones (PESQ, ViSQOL and 2f-Model). As expected,
performing a complete spectrum enhancement leads to better
and more consistent results. Despite the complete spectrum en-
hancement does not seem severely affected by the window size
and shift employed, slightly better results across all the metrics
are obtained when shorter window shifts are considered. On the
other hand, a completely different behavior is observed when
magnitude-only or phase-only corrections are considered. Thus,
as can be noted, phase corrections benefit from shorter window
lengths, whereas worse results are obtained with magnitude-
only compensation. This is particularly noticeable when win-
dow length reduces from 512 to 256 (32 to 16 ms). These results
are also in accordance with the findings shown [[12].

Regarding to window shift, it can be observed that, when
only the spectra magnitude is compensated, a longer frame
overlap (i.e. shorter shift) negatively affects speech enhance-
ment. This could be explained by the limitations predicted in
[[14] with respect to the modified STFT inversion. Thus, in-
consistencies across overlapped segments could make the time-
domain signal estimation harder. On the contrary, decreasing
window shift leads to improvements when phase-only is cor-
rected. This effect is very noticeable with a long window size
(32 ms) while seems erratic with short ones (8 ms). Accord-
ing to these results, we can argue that some kind of balance is
achieved when both magnitude and phase are corrected (com-
plete spectrum enhancement) under longer frame overlapping,
leading to marginally better results.

5. Conclusions and future work

In this paper we have evaluated the effect of window size and
shift in spectral domain DNN-based speech enhancement. A
masking approach with a complex-valued DNN has been used
for signal denoising. The time-frequency complex mask pro-
vided by the network has been applied to enhance magnitude-
only, phase-only and the complete spectra independently, in or-
der to assess the role of the STFT window size and shift under
such approach. To this end, multiple perceptual quality and in-
telligibility objective metrics have been employed. From the
results, it can be concluded that window size and shift parame-
ters of the STFT transform play a notable role when training a
neural network, particularly when only magnitude is corrected.
Surprisingly, phase-only enhancement can provide competitive
results with respect to magnitude-only correction when shorter
frame shifts are chosen.

As future work, other complex-valued DNN networks will
be tested to further confirm these conclusions. In addition, it
would be interesting to replicate our analysis when a spectral-
domain function loss is used for the DNN training instead of
SI-SDR.
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