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The quantum effective action of nonminimal vector fields with Abelian or non-Abelian gauge degrees of
freedom in curved spacetime is studied. The Proca or Yang-Mills fields are coupled to a local masslike term
acting in both coordinate and gauge spaces. Pathologies due to gauge invariance in the ultraviolet are
avoided through the introduction of a non-Abelian version of the Stueckelberg field. It is found that the
breaking of gauge invariance induced by the mass term affects only the tree-level part of the effective
action. The ultraviolet divergent part of the effective action to one loop is obtained using the method of
covariant symbols and dimensional regularization. Formulas are given valid for any spacetime dimension
and explicit results are shown for the two-dimensional case. As already happened for a single vector field,
the ultraviolet divergences are local but not of polynomial type.

DOI: 10.1103/PhysRevD.106.105019

I. INTRODUCTION

Vector fields play a prominent role in the Standard Model
of particles, as mediators of gauge interactions. In turn there
is currently a growing interest in the role that various types of
vector fields could play in relativistic gravity and cosmology
[1–9]. As noted in [9], “Imposing the conditions of Lorentz
symmetry, unitarity, locality and a (pseudo-)Riemannian
spacetime, any attempt of modifying gravity inevitably
introduces new dynamical degrees of freedom. They could
be additional scalar, vector or tensor fields.” The subject has
received a further boost with the discovery of ghost-free
consistent nonlinear theories of Proca interactions [10–15].
The crucial issue of the quantum stability of these theories
has been analyzed in [16,17].
In this work, we consider a set of N vector fields in

curved spacetime endowed with Abelian (Proca) and/or
non-Abelian (Yang-Mills) internal degrees of freedom. No
self-interactions are included beyond those implied by the
Yang-Mills structure, but the vector fields are coupled to an
external masslike x-dependent tensor field which is allowed
to arbitrarily mix them [see Eq. (2.1)]. Our focus is on the
proper quantization of such a theory and on the structure of
the quantum fluctuations.

Early work studying the subject of quantum fluctuations
for vectors fields was carried out in [18–21] (see [22–29]
for recent related work). Particular nonminimal couplings
(the minimal case being a standard mass term) were
considered in [30] at the classical level and in [31] at
the quantum level. The quantized theory for general non-
minimal couplings was first studied in [32] for particular
spacetime backgrounds. There it was found that patholo-
gies arise in the quantization of the theory since the mass
term couples effectively as a metric field. Technically the
problem is that the masslike field breaks gauge invariance
but does not suppress the fluctuations in the longitudinal
polarization at large wave numbers. In other words, the
principal symbol of the fluctuation operator is singular.
General backgrounds were considered in [33] solving the
above-mentioned pathology by means of a Stueckelberg
field. In this way, a proper gauge symmetry is present in the
theory and one can proceed through a standard gauge fixing
procedure. However, approximations were introduced in
the analysis of [33] giving rise to a nonlocal result. A full
solution to the problem of computing the ultraviolet (UV)
divergent part of the effective action, within dimensional
regularization, was obtained in [34] using the Schwinger-
DeWitt technique and later in [35] using the method of
covariant symbols, finding perfect concordance in both
calculations. The pathologies identified in [32] translate to
the fact that the UV divergences are local but not poly-
nomial in the masslike external field.
The results just noted refer to a single vector field. Here

we address the case of several vector fields. This allows us
to consider the non-Abelian scenario. In fact, we consider
sets of vector fields organized in Abelian and non-Abelian
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multiplets. We treat the Abelian and non-Abelian versions
simultaneously since the formalism is identical in both
cases. In the absence of a mass term, there would be a
gauge symmetry present in the Lagrangian. This symmetry
is explicitly broken by the mass term. Nevertheless we
obtain the remarkable result that the breaking only affects
the effective action at tree level, while the contributions
from one or more loops are fully gauge invariant. This
results in an important simplification of the calculation.
Another insight comes from the introduction of the
Stueckelberg field in our present non-Abelian setting
(see [36] for a review on this subject). In the Abelian
case, the Stueckelberg field appears through Aμ¼Bμþ∂μϕ.
In this way, a Uð1Þ gauge symmetry arises from
Bμ → Bμ þ ∂μΛ, ϕ → ϕ − Λ. In the non-Abelian case, a
literal translation of this prescription would take the form
Aa
μ ¼ ðBΩÞaμ where Ω refers to a non-Abelian gauge

transformation with parameters ϕa (in Lie algebra of the
gauge group). The resulting theory enjoys a non-Abelian
gauge invariance and one can then proceed to fix the gauge
through the Fadeev-Popov method. Such approach is, in
principle, correct but exceedingly complicated, as the
dependence on ϕa is nonlinear. In particular, this would
imply a reorganization of the loop expansion from the
original theory (field Aa

μ) to that with Ba
μ and ϕa. We

develop a completely different approach where the
Stueckelberg field is introduced linearly also in the non-
Abelian setting.
Once the Stueckelberg field is introduced, the (UV

regulated) quantum theory is no longer pathological and
it is possible to proceed to a systematic computation of its
effective action. Our focus is on the UV part of the effective
action to one-loop order. As already known from the study
of the Abelian case [34,35], the mass term acts as an
effective second metric tensor. In the present case, this is in
fact a non-Abelian effective metric. Presumably, the gen-
eralized Schwinger-DeWitt technique [18] can be adapted
to this situation, but such an approach is not presently
available. Instead here we apply the method of covariant
symbols [37]. This method is simple to use and allows one
to formulate the loop momentum integration while pre-
serving manifest covariance under diffeomorphism and
gauge transformations. Details of the method are provided
below.
The problem studied here is an extension of that already

solved for N ¼ 1 (just one vector field), so some specific
features of that case are inherited in the more general setting
analyzed in this work. In particular, the loop momentum
integrals cannot be written in closed form. For N > 1 this
problem is even worse, as the propagators are now matrices
with respect to the gauge indices. Also for this reason some
contributions to the effective action (see ΓL;0 below) cannot
be expressed in a standard form involving just integration
over x, p, and traces in internal space, and it is necessary to
resort to a parametric form, with integration over one more

parameter. Unfortunately, while the problem is well posed
and themethod fully appropriate to solve it,we have found an
unexpected impediment, namely, the number of terms
obtained for the physically relevant case of four spacetime
dimensions is prohibitively large (at least hundreds of terms
are generated). In view of this, we develop the formulas for
the general case but only present detailed results for two
spacetime dimensions (note that there are noUVdivergences
for odd dimensions within dimensional regularization).
In Sec. II we expose the theory to be analyzed. In Sec. III

the background field approach is introduced for the
effective action. It is shown that its quantum part admits a
gauge-covariant treatment. The effective action to one loop
is constructed, showing its limitations in the UV sector.
Those obstacles are overcome in Sec. IV by introducing the
Stueckelberg field. The nonpathological one-loop effective
action is constructed and then decomposed into various
contributions to be computed subsequently. Section V
introduces some notational conventions. Section VI intro-
duces general considerations to undertake the calculation
and presents explicit results for d ¼ 2. Some nontrivial
symmetries related to metric deformations are also verified.
The actual calculations are worked out in Sec. VII. To this
end, the method of covariant symbols is reviewed first,
and its application to the various contributions is dis-
cussed, including the extraction of the coefficients of the
UV divergence. The conclusions are summarized in
Sec. VIII. The proof of some formulas is provided in
Appendix A. Properties of the operator Zμν and its relation
to R̂μν of [18] are discussed in Appendix B. The canonical
form of ΓS using a basis of standard operators is displayed
in Appendix C. Explicit results for perturbative mass
expansions are presented in Appendix D. Details of the
method of noncovariant symbols, used as a check of the
calculations, are given in Appendix E. Finally, the method
of covariant symbols is illustrated through a sample
computation in Appendix F.

II. FORMULATION OF THE PROBLEM

We consider N real vector fields Âa
μðxÞ, a ¼ 1;…; N in

an Euclidean d-dimensional spacetime with metric gμνðxÞ
and action1

S½Â;M;g�¼
Z

ddx
ffiffiffi
g

p �
1

4
F̂ μν

a F̂ a
μνþ

1

2
Mμν

abÂ
a
μÂ

b
ν

�
; ð2:1Þ

where Mμν
abðxÞ is a positive definite2 local mass term

fulfilling the symmetry condition

Mμν
abðxÞ ¼ Mνμ

baðxÞ: ð2:2Þ

1The ugly notation Âa
μ and F̂ μν

a will soon be traded by Aa
μ

and Fμν.
2As a matrix with indices ðμaÞ and ðνbÞ.
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Coordinate indices are raised, lowered, and contracted with
the metric gμν.
The N fields are organized in n gauge sectors. Each

sector has gauge symmetry of either SUðniÞ or U(1) type
and the full gauge group is the direct product of these.3 The
fields fall in the Lie algebra of the group, i.e., the adjoint
representation, with gauge coupling gi in the gauge sector i.
Without loss of generality, one can choose gi ¼ 1 for the
Abelian factors. Hence, N ¼ P

n
i¼1Ni where Ni ¼ n2i − 1

for an SUðniÞ sector and Ni ¼ 1 for a U(1) one. With a
standard normalization of the fields, the field strength
tensor is

F̂ a
μν ¼ ∂μÂ

a
ν − ∂νÂ

a
μ þ gafabcÂ

b
μÂ

c
ν; ð2:3Þ

where fabc are the structure constants of the gauge group.
Since the gauge group is a direct product, the structure
constants are block diagonal, one block for each gauge
sector, and ga ¼ gi is the coupling of the ith sector (the ga
take a common value within each block). Of course, in a
U(1) sector the structure constant vanishes. The field
strength tensor F̂ a

μνðxÞ is covariant under gauge and
coordinate transformations. The kinetic part of the action
is block diagonal, while the mass term may mix different
gauge sectors.
When all the gauge sectors are of the U(1) type, the

theory is Abelian and reduces to a generalized Proca field
with N flavors. Nevertheless, since all the cases can be
treated within the same scheme, we will refer to the internal
space as gauge space.
Regarding the symmetries, the kinetic term is fully local

gauge invariant but such symmetry is reduced to a global one
by the mass term: the action is invariant underM → MΩ ¼
ΩMΩ−1 for a global transformationΩ in the gauge group. If
some gauge sectors are equivalent, namely, with equal gauge
group SUðniÞ or U(1) and same gi, there is an additional
global symmetry under rotations among those equivalent
sectors, with a corresponding rotation of M. A further
symmetry, special for the case of d ¼ 4 spacetime dimen-
sions, is that of local Weyl-like transformations, namely, the
action is unchanged under the simultaneous replacements
gμνðxÞ → ξðxÞgμνðxÞ and Mμν

abðxÞ → ξ−2ðxÞMμν
abðxÞ.

III. THE EFFECTIVE ACTION

A. The background gauge field

Within the background field approach [38], the field is
split as a background plus a fluctuation, Âa

μðxÞ ¼
Aa
μðxÞ þAa

μðxÞ.
In this approach, the effective action Γ½A;M; g� follows

from

Z ¼ e−Γ½A;M;g� ¼
Z

DAe−S½AþA�þ
R

ddx
ffiffi
g

p
JA; ð3:1Þ

where Aa
μðxÞ is the background field and the current JμaðxÞ

is adjusted so that hAa
μðxÞi ¼ 0. As usual,

JμaðxÞ ¼ 1ffiffiffiffiffiffiffiffiffi
gðxÞp δΓ½A;M; g�

δAa
μðxÞ

: ð3:2Þ

In the background gauge field approach, the field Aa
μðxÞ

transforms homogeneously under local gauge transforma-
tions, the inhomogeneity being saturated by the trans-
formation of Aa

μðxÞ. Correspondingly, the gauge-covariant
derivative relies on Aa

μðxÞ as a gauge connection.
We will use a single covariant derivative ∇μ containing

coordinate and gauge connections [39]. The coordinate
connection is that of Levi-Civita for the metric and the
gauge connection is that of the background field Aa

μ. So, for
instance, for coordinate-scalar and coordinate-vector fields
ϕa and Ba

μ, respectively, both in the adjoint gauge repre-
sentation,

∇μϕ
a ¼ ∂μϕ

a þ gafabcAb
μϕ

c;

∇μBa
ν ¼ ∂μBa

ν − Γλ
μνBa

λ þ gafabcAb
μBc

ν: ð3:3Þ

Throughout, coordinate indices are contracted with the
metric gμν and gauge-vector indices with δab.
The effective action can be split into the classical or tree-

level component S½A� and the quantum correction ΓQ½A�
which contains graphs with one or more loops,

Γ½A� ¼ S½A� þ ΓQ½A�: ð3:4Þ

Here we find a fundamental result given by the following
Theorem.—ΓQ½A� is invariant under local gauge trans-

formations and all the gauge breaking in the effective action
is saturated by the mass term at tree level. That is,

ΓQ½A;M; g� ¼ ΓQ½AΩ;MΩ; g�; ð3:5Þ

where ΩðxÞ is any local gauge transformation, and AΩ and
MΩ are the gauge-transformed fields.
Proof.—The reason is fairly simple. The semiclassical

expansion follows from a Taylor expansion of the action
S½Aþ A� − R

ddx
ffiffiffi
g

p
JA in powers of the fluctuation A.

The zeroth order gives the classical action, and the first
order in A cancels due to the equations of motion, i.e., the
choice of Jμ. The quantum component ΓQ depends only on
terms that are quadratic or higher order in A. The breaking
of gauge invariance would come solely from the mass term
1
2
Mμν

abA
a
μAb

ν but this is covariant since the field Aa
μ trans-

forms homogeneously under gauge transformations.
The property (3.5) is important because it allows us to

use a gauge-covariant formalism for ΓQ.

3More generally, one could take a Lie subgroup of SOðNÞ and
the results and formulas derived in this work hold equally well in
that case.
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B. One-loop effective action

The one-loop effective action follows from the quadratic
part of the action:

Γ1½A� ¼
1

2
logDet1

�
δ2S½Aþ A�

δA2

�����
A¼0

: ð3:6Þ

The subindex 1 in Det1 indicates that the determinant is to
be evaluated in the space AμðxÞ, i.e., of coordinate vectors.
Also, for the gauge degrees of freedom, the determinant is
taken in the adjoint gauge representation space. This is not
explicitly indicated but will be implicit in all formulas as no
other gauge representations will be present.
Therefore, we need to isolate the terms quadratic in A

from the action S½Aþ A�. After the shift Â ¼ Aþ A, the
field strength tensor in Eq. (2.3) becomes

F̂ a
μν ¼ F a

μν þ∇μAa
ν −∇νAa

μ þ gafabcAb
μAc

ν ð3:7Þ

with

F a
μν ¼ ∂μAa

ν − ∂νAa
μ þ gafabcAb

μAc
ν: ð3:8Þ

In the shifted variables, the quadratic part of the kinetic
term of the action takes the form4

Sð2Þkin½A� ¼
Z

ddx
ffiffiffi
g

p �
1

4
ð∇μAa

ν −∇νAa
μÞ2 −

1

2
Fab
μνAa

μAb
ν

�
;

ð3:9Þ

where we have the introduced field strength tensor Fab
μν as

an antisymmetric matrix in gauge space (as well as in
coordinate space)

Fab
μν ≡ gcfacbF c

μν: ð3:10Þ

Note that Fab
μν vanishes in the Abelian sectors.

In what follows, we adopt the convention that covariant
derivatives are indicated by adding new indices to the left,
hence ϕa

μ ≡∇μϕ
a, Ba

μν ≡∇μBa
ν , etc. The only exceptions

to this rule are the operators Zμ1μ2… and ZR
μ1μ2….5 With this

convention,

Sð2Þkin½A� ¼
Z

ddx
ffiffiffi
g

p �
1

4
ðAa

μν −Aa
νμÞ2 −

1

2
Fab
μνAa

μAb
ν

�
:

ð3:11Þ

Using integration by parts and Bianchi identities, the
quadratic part of the kinetic term can be written as (see
Appendix A)

Sð2Þkin½A� ¼
Z

ddx
ffiffiffi
g

p �
1

2
ðAa

μνÞ2 −
1

2
ðAa

μμÞ2

− Fab
μνAa

μAb
ν þ

1

2
RμνAa

μAa
ν

�
; ð3:12Þ

where Rμν is the Ricci tensor. Thus, adding the mass term,

Sð2Þmass½A� ¼
Z

ddx
ffiffiffi
g

p �
1

2
Mμν

abA
a
μAb

ν

�
; ð3:13Þ

the full quadratic Lagrangian controlling the one-loop
fluctuations is

Lð2ÞðxÞ ¼ 1

2
AμK

μν
0 Aν; ð3:14Þ

where

Kμν
0 ¼ −gμν∇2 þ∇μ∇ν − 2Fμν þRμν þMμν: ð3:15Þ

Here, and also in what follows, we use a matrix notation for
the gauge indices, which will be implicit. As advertised, the
Lagrangian Lð2ÞðxÞ is manifestly gauge invariant.
The termþ∇μ∇ν in Kμν

0 is a direct consequence of
gauge invariance of the kinetic energy part of the action
(2.1) and is needed to retain just three polarizations in the
Proca field. While the differential operator K0 needs not be
singular in the presence of a positive definite mass term
Mμν, its principal symbol, i.e., the Oð∇2Þ leading UV
divergent component is singular, since the longitudinal
polarizations are not penalized at large wave numbers.
The fact that the principal symbol is singular introduces
pathologies in the effective action which prevent one from
carrying out an extraction of the UV divergent terms.
In the special case of a standard Proca field, with a

constant scalar mass, the UV divergent part of the effective
action is a polynomial in the mass [18], but this is no longer
so for a nonconstant mass term even in the Abelian case
[34]. This confirms that K0 cannot be directly used as the
fluctuation operator.

IV. THE STUECKELBERG FIELD

A. The non-Abelian Stueckelberg field

In order to bypass the above-mentioned pathologies in
the UV, we will adapt the Stueckelberg approach intro-
duced in [33] (and also applied in [34,35]) for the non-
minimal Proca field to the non-Abelian case. To this end,
we rewrite the partition function as

4We will occasionally place all the coordinate indices as lower
indices when no ambiguity arises. Repeated coordinate indices
are always contracted with the metric gμν.5Some conventions used in this work are summarized in
Sec. V.

L. L. SALCEDO PHYS. REV. D 106, 105019 (2022)

105019-4



Z ¼
Z

DAe−S½AþA�þ
R

ddx
ffiffi
g

p
JA

Z
Dχe−Sgf ½χ�; ð4:1Þ

where Sgf ½χ� can be any action. The partition function is
unchanged as the new factor is just a constant.6 We take a
standard choice

Sgf ½χ� ¼
Z

ddx
ffiffiffi
g

p 1

2
χaχa; ð4:2Þ

where χaðxÞ is a coordinate scalar and a gauge vector (i.e.,
in the adjoint representation).
Subsequently, a change of variables ðA; χÞ → ðB;ϕÞ is

applied in (4.1), where Ba
μðxÞ is a real coordinate-vector and

gauge-vector field and ϕaðxÞ is real coordinate-scalar and
gauge-vector field,

Z ¼
Z

DBDϕJ½B;ϕ�e−S½AþA�−Sgf ½χ�þ
R

ddx
ffiffi
g

p
JA;

J½B;ϕ� ¼ Det

�
∂ðA; χÞ
∂ðB;ϕÞ

�
: ð4:3Þ

By construction, the effective action does not depend on the
detailed choice of gauge-fixing function(al) χ½B;ϕ�, more-
over, the expectation value of any functional written in the
form F½A; χ� is independent of this choice (unless the very
functional F depends on it). This property provides
identities for the gauge-fixing dependence of the expect-
ation values [40].
We choose a linear change of variables. Besides sim-

plicity, the virtue of such a choice is that the loop expansion
in the new variables coincides with that in the old ones.
Specifically, we take

Aa
μ ¼ Ba

μ þ∇μϕ
a; χa ¼ ∇μBa

μ; ð4:4Þ

or, using our notational convention for the covariant
derivatives,

Aa
μ ¼ Ba

μ þ ϕa
μ; χa ¼ Ba

μμ: ð4:5Þ

The corresponding Fadeev-Popov determinant is easily
obtained as (see Appendix A)

J½B;ϕ� ¼ Det0ðδab∇α∇αÞ: ð4:6Þ

The subindex 0 in Det0 indicates that the determinant is to
be evaluated in the ϕa space, i.e., the coordinate-scalar
space. As already noted, the reference to the adjoint gauge
representation is not explicitly displayed, as its presence is
ubiquitous and no other gauge representation will be
needed. With our choice of a linear change of variables,

the determinant J does not depend on the quantum fields B,
ϕ. It depends on Aa

μ and gμν. As usual, the determinant can
be implemented through a complex ghost field with
quadratic action.
It is worth noticing that one could have introduced the

Stueckelberg field in a different manner, to wit, through the
change of variable A ¼ BΩ in Eq. (3.1), where ΩðxÞ is an
arbitrary gauge transformation, and ϕaðxÞ enters through
Ω ¼ eiϕ. In addition, the measure DA is replaced by
DBDΩ.7 In this way, the full theory S½BΩ� becomes gauge
invariant even in the presence of the mass term. Then one
fixes the gauge as usual with the Fadeev-Popov method. A
more involved question is how to introduce the background
gauge machinery. In such alternative approach, the change
of variables from ðA; χÞ to ðB;ϕÞ is not linear and so it
should be considerably more complicated than the method
adopted above. In the Abelian case, the two approaches are
equivalent.

B. The one-loop effective action revisited

The introduction of the gauge-fixing action Sgf ½χ� adds
an irrelevant constant to the effective action. Hence, in
variables ðB;ϕÞ the effective action is just

Γ1½A� ¼
1

2
logDet1þ0

�
δ2ðS½Aþ A� þ Sgf ½χ�Þ

δðB;ϕÞ2
�����

B¼0
ϕ¼0

− logDet0ðδab∇2Þ; ð4:7Þ

where the last term comes from the Fadeev-Popov deter-
minant. The subindex 1þ 0 indicates the direct sum of
coordinate-vector and -scalar spaces.
The kinetic energy term (3.12) in variables ðB;ϕÞ

becomes (see Appendix A)

Sð2Þkin½A� ¼
Z

ddx
ffiffiffi
g

p �
1

2
ðBa

μνÞ2−
1

2
ðBa

μμÞ2−Fab
μνBa

μBb
ν

þ1

2
RμνBa

μBa
ν þFab

μμνϕ
aBb

ν þ
1

2
Fab
μμνϕ

aϕb
ν

�
; ð4:8Þ

while Sgf ½χ� is already quadratic, namely,

Sgf ½χ� ¼
Z

ddx
ffiffiffi
g

p 1

2
ðBa

μμÞ2: ð4:9Þ

This contribution removes the problematic longitudinal
term in the kinetic energy. The price to pay is the
introduction of a kinetic term for ϕ which has a metriclike
coupling to the mass tensor, namely, the last term in

6It does not depend on Aμ
aðxÞ, JμaðxÞ, nor Mμν

abðxÞ. It is also
independent of the metric if no derivatives are involved.

7Or just DBDϕ. The two measures DΩ and Dϕ are equiv-
alent. As is well known, the Jacobian of an ultralocal change
of variables such as ∂Ω=∂ϕ has no effect in dimensional
regularization.
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Sð2Þmass½A� ¼
Z

ddx
ffiffiffi
g

p �
1

2
Mμν

abB
a
μBb

ν þMμν
abϕ

a
μBb

ν

þ 1

2
Mμν

abϕ
a
μϕ

b
ν

�
: ð4:10Þ

In summary, the new full quadratic Lagrangian control-
ling the one-loop fluctuations is

Lð2Þ ¼ 1

2
ðB;ϕÞKðB;ϕÞT þ ω�

a∇2ωa: ð4:11Þ

The ghost field ωa is a complex fermionic coordinate-scalar
and gauge-vector field. On the other hand K is a second
order differential operator acting on the space ðB;ϕÞ,

K ¼
�−∇2gμν − 2Fμν þRμν þMμν −Fαα

μ þMμα∇α

Fαα
ν −∇αMαν 1

2
fFαα

β;∇βg −∇αMαβ∇β

�
: ð4:12Þ

The matrix gauge indices are implicit. f; g denotes the
anticommutator.
Note that several differential operators can be read from

the last term in Eq. (4.8), namely, Fαα
β∇β, ∇βFαα

β or
1
2
fFαα

β;∇βg. All of them are equivalent in the ϕ-ϕ sector,
since the matrix Fμν is antisymmetric and the Hilbert space
spanned by ϕa is real. However, the functional integral over
B and ϕ is only related to the determinant of the symmetric
version of K, the one presented in Eq. (4.12).
As expected, after the introduction of the Stueckelberg

field, the principal symbol of the operator K is no longer
singular. Nevertheless, even though the technical problems
have been sorted, the pathologies still will reflect on the
effective action; in particular, one finds that the UV
divergences do not depend polynomially on M, as already
happened in the case N ¼ 1 studied in [34,35].
The leading UV divergent terms, with two derivatives,

are at the diagonal of the matrixK. Particularly problematic
will be the term −∇αMαβ∇β in the ϕ-ϕ sector. Because the
leading divergence in the covariant derivatives is Abelian,
only the symmetric component of Mμν is truly of second
order. Hence, we will introduce the separation of the mass
tensor into symmetric and antisymmetric components,

Mμν
ab ¼ Mμν

ab þQμν
ab; Mμν

ab ¼ Mνμ
ab ¼ Mμν

ba;

Qμν
ab ¼ −Qνμ

ab ¼ −Qμν
ba: ð4:13Þ

It can be noted that Mμν must be positive definite and
should dominate Qμν, which is not. The mass term from Q
is subdivergent since it is of first order in the derivatives.
Indeed, after integration by parts,

Z
ddx

ffiffiffi
g

p 1

2
Qμν

abϕ
a
μϕ

b
ν

¼
Z

ddx
ffiffiffi
g

p �
−
1

2
Qμμν

ab ϕaϕb
ν −

1

4
Qμν

acFcb
μνϕ

aϕb

�
: ð4:14Þ

Then the (symmetric) fluctuation operator K takes the final
form

K¼
�−∇2gμνþYμν −ΦμþMμα∇α

Φν−∇αMαν −∇2
Mþ 1

2
fPβ;∇βgþW

�
; ð4:15Þ

where we have introduced the following shorthand
notation:

Yμν ¼ Mμν − 2Fμν þRμν; Φμ ¼ Fααμ;

Pμ ¼ Fααμ −Qααμ; W ¼ −
1

4
fQμν; Fμνg; ð4:16Þ

as well as

∇2
M ≡∇αMαβ∇β: ð4:17Þ

As already noted, the fieldMμνðxÞ, which was seemingly
UV subdominant in the original action, is in fact UV
dominant in the sector of the field ϕ in K and acts
effectively as a second (inverse) metric. In the Abelian
case (N ¼ 1) such metric is an ordinary one, and even so it
introduced a considerable amount of complication in the
calculation of the effective action in [34,35]. In the setting
discussed in this work, the “effective metric” MμνðxÞ is a
non-Abelian one in gauge space, so we can certainly expect
a higher degree of difficulty in the resources needed to
attack this problem.
From the Lagrangian in Eq. (4.11), the effective action to

one loop is thus

Γ1½A;M; g� ¼ ΓK½A;M; g� þ Γgh½A; g�; ð4:18Þ

with

ΓK½A;M; g� ¼ 1

2
Tr1þ0 logðKÞ;

Γgh½A; g� ¼ −Tr0 logð∇2Þ: ð4:19Þ
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C. Contributions to the effective action

As just said, the effective action can be split into

Γ1 ¼ ΓK þ Γgh: ð4:20Þ

The operator K can be split into UV leading Oð∇2Þ and
subdivergent Oð∇Þ components

K ¼ KL þ KS;

KL ≡ diagð−∇2gμν;−∇2
MÞ: ð4:21Þ

Correspondingly, we also separate the effective action as

ΓK ¼ 1

2
Tr1þ0ðKLð1þ K−1

L KSÞÞ ¼ ΓL þ ΓS; ð4:22Þ

with

ΓL ¼ 1

2
Tr1þ0 logðKLÞ;

ΓS ¼
1

2
Tr1þ0 logð1þ K−1

L KSÞ: ð4:23Þ

The relation TrðlogðABÞÞ ¼ TrðlogðAÞÞ þ TrðlogðBÞÞ is
only guaranteed for sufficiently convergent pseudodiffer-
ential operators A and B. Nevertheless, it is expected to
correctly reproduce the UV divergent terms within dimen-
sional regularization when A and B are both coordinate-
scalar operators.
ΓL can be split further as

ΓL ¼ ΓL;1 þ ΓL;0; ð4:24Þ

with

ΓL;1 ¼
1

2
Tr1 logð−∇2gμνÞ;

ΓL;0 ¼
1

2
Tr0 logð−∇2

MÞ: ð4:25Þ

For the purpose of obtaining the UV divergences of the
effective action, the subdivergent terms can be treated
perturbatively

ΓS ¼
1

2
Tr1þ0 logð1þ K−1

L KSÞ ¼
X∞
n¼1

ΓS;n; ð4:26Þ

where

ΓS;n ¼ −
1

2n
Tr1þ0ðð−K−1

L KSÞnÞ: ð4:27Þ

Since K−1
L KS ¼ Oð∇−1Þ, terms with n > d are UV finite

in d spacetime dimensions. Thus, collecting the various
contributions,

Γdiv
1 ¼ Γdiv

gh þ Γdiv
L;0 þ Γdiv

L;1 þ
Xd
n¼1

Γdiv
S;n: ð4:28Þ

The contributions to Γdiv
1 ½A;M; g� are analyzed in the

following sections, after introducing some notation.

V. SOME NOTATIONAL CONVENTIONS

A. Covariant derivatives

Let us first recall that the covariant derivative operator
∇μ contains all connections (and not only the Christoffel
symbols), and also our convention that covariant deriva-
tives are indicated by adding coordinate indices to the
left, e.g.,

Rρμναβ ≡ ½∇ρ; Rμναβ�; Rλλμ ¼
1

2
Rμ: ð5:1Þ

Here Rμναβ, Rμν, and R denote the Riemann tensor, the
Ricci tensor, and the scalar curvature, respectively.
All quantities in the fluctuation operator K are to be

regarded as operators acting on the vector space spanned by
the fields Bμ and ϕ. Hence ∇μ acts on such quantities
through the commutator. In particular gμν,Mμν, and Fμν are
purely multiplicative operators, which means that they are
ordinary functions (possibly matrices in gauge space).8

B. Operators Zμ1���μn
Wewill make use of the operator Zμν, which is defined as

Zμν ≡ ½∇μ;∇ν�: ð5:2Þ

This operator is multiplicative because its action on a
quantity does not involve derivatives of that quantity; Zμν is
diagonal in x space. However, it is not purely multiplicative
because it acts (is not diagonal) on coordinate indices. For
instance, for a purely multiplicative tensor field Vμν,

½Zμν; Vαβ� ¼ RμναλVλβ þ RμνβλVαλ þ ½Fμν; Vαβ�: ð5:3Þ

The operator Zμν admits a natural separation between
coordinate and gauge actions

Zμν ¼ ZR
μν þ Fμν; ð5:4Þ

where ZR
μν acts only on coordinate indices. As illustrated in

(5.3), the operator ZR
μν acts on every coordinate index

in turn.
Higher order operators Zμ1���μn , with n covariant deriv-

atives, are defined recursively (see Appendix B) so that
they are also multiplicative. Letting I ¼ μ1 � � � μn denote a

8Of class Cð∇; ZÞ in the notation of [37].
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string of coordinate indices, the operators ZI have again a
clean separation between coordinate and gauge

ZI ¼ ZR
I þ FI; ð5:5Þ

and also fulfill

½ZR
I ; Vμ1μ2 � ¼ RIμ1λVλμ2 þ RIμ2λVμ1λ: ð5:6Þ

In fact, these operators are an anti-Hermitian version of the
derivatives of the operator R̂μν of [18]. Specifically,

ZR
α1���αnμν ¼ ∇α1 � � �∇αnR̂μν þ Cα1���αnμν; ð5:7Þ

where the CI are purely multiplicative operators con-
structed with the Riemann tensor,

Cμν ¼ 0;

Cα1���αnμν ¼
1

2
Rλα2α3���αnμνα1λ þ

1

2
Rα1λα3���αnμνα2λ þ � � �

þ 1

2
Rα1���αn−1λμναnλ: ð5:8Þ

Eventually we will need to take traces of operators with a
factor ZR

I on the left. The formulas for the coordinate-scalar
and -vector spaces are, respectively,

tr0ðZR
I OÞ ¼ −tr0ðCIOÞ;

tr1ðZR
I O

μ
νÞ ¼ tr1ððRI

μ
λ − gμλCIÞOλ

νÞ: ð5:9Þ

Further details and proofs are given in Appendix B.

C. Integrals and traces

We will use the shorthand notation

hXix ≡
Z

ddx
ffiffiffi
g

p
X; ð5:10Þ

as well as

hXix;g ≡
Z

ddx
ffiffiffi
g

p
trgðXÞ ¼ htrgðXÞix; ð5:11Þ

where trgðÞ refers to trace over gauge space. In particular
trgð1Þ ¼ N, the dimension of the gauge space is the number
of dynamical real vector fields in the theory.
In addition, for integrals over a momentum variable in

Sec. VII,

hXip ≡ 1ffiffiffi
g

p
Z

ddþ2εp
ð2πÞd X; ð5:12Þ

where dþ 2ε refers to dimensional regularization. We also
use combinations such as hXix;p for hhXipix, etc.

VI. RESULTS FOR ΓDIV
1

A. Results for Γgh and ΓL;1

The contributions Γgh and ΓL;1 to the one-loop effective
action are given by Eqs. (4.19) and (4.25), respectively. The
computation of their UV divergent part is straightforward in
dimension regularization, in dþ 2ε dimensions, using the
identity

Tr logð−∇2Þjdiv ¼
1

ð4πÞd=2
1

ε

Z
ddx

ffiffiffi
g

p
trðbd=2ðxÞÞ; ð6:1Þ

where the trace is taken in the corresponding space and bn
is the nth heat-kernel coefficient of the Laplacian [39]. For
d ¼ 2 and d ¼ 4, the required coefficients are

b1 ¼
1

6
R;

b2 ¼
1

12
Z2
μν þ

1

180
R2
μναβ −

1

180
R2

μν þ
1

72
R2: ð6:2Þ

As they stand, these formulas hold for an arbitrary space
since Zμν takes care of all required curvatures (coordinate,
gauge, or other in more general cases). For the space of
coordinate tensors of rank r in d dimensions (and adjoint
gauge representation), one easily finds

trrðZ2
μνÞ ¼ trrðF2

μνÞ þ trrððZR
μνÞ2Þ

¼ drtrgðF2
μνÞ − rdr−1NR2

μναβ; ð6:3Þ

where as already said trgðÞ denotes the trace over gauge
space. Of course, this result is fully consistent with
Eq. (5.9).
Therefore, for d ¼ 2,

Γdiv
gh ¼ −

1

4πε

�
1

6
R

�
x;g
;

Γdiv
L;1 ¼

1

4πε

�
1

6
R

�
x;g
: ð6:4Þ

These two contributions cancel each other, as they should
in d ¼ 2.
For d ¼ 4,

Γdiv
gh ¼−

1

ð4πÞ2ε
�
1

12
F2
μνþ

1

180
R2
μναβ−

1

180
R2

μνþ
1

72
R2

�
x;g
;

Γdiv
L;1¼

1

ð4πÞ2ε
�
1

6
F2
μν−

11

360
R2
μναβ−

1

90
R2

μνþ
1

36
R2

�
x;g
:

ð6:5Þ
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B. Results for ΓS

1. Contributions to ΓS

The UV divergent part of ΓS in d dimensions is contained
in

P
d
n¼1 ΓS;n, where ΓS;n is given in Eq. (4.27). The

quantity KL, defined in Eq. (4.21), is homogeneous in ∇
of degree þ2, while KS ≡ K − KL contains terms of
degrees 0 and 1. We will expand ΓS;n in powers of ∇
keeping terms up to Oð∇−4Þ, which is sufficient for Γdiv

1 in
spacetime dimensions d ≤ 4. The trace cyclic property can

be used to collect equivalent terms and also we choose
whenever possible to bring the trace to the scalar-
coordinate space.
Introducing the notation

Δ≡ 1

∇2
; ΔM ≡ 1

∇2
M
; ð6:6Þ

this procedure yields the following expressions:

ΓS;1 ¼ Tr1

�
−
1

2
ΔYμν

�
þ Tr0

�
−
1

2
ΔMW −

1

4
ΔMfPμ;∇μg

�
;

ΓS;2 ¼ Tr1

�
−
1

4
ΔYμαΔYαν

�
þ Tr0

�
1

2
ΔMΦμΔΦμ þ

1

2
ΔM∇μMμνΔMνα∇α

−
1

2
ΔMΦμΔMμν∇ν −

1

2
ΔM∇μMμνΔΦν

−
1

4
ΔMWΔMW −

1

16
ΔMfPμ;∇μgΔMfPν;∇νg −

1

4
ΔMfPμ;∇μgΔMW

�
;

ΓS;3 ¼ Tr0

�
1

2
ΔM∇μMμνΔYναΔMαβ∇β þ

1

2
ΔMWΔM∇μMμνΔMνα∇α þ

1

4
ΔMfPμ;∇μgΔM∇νMναΔMαβ∇β

−
1

4
ΔMfPμ;∇μgΔM∇νMναΔΦα −

1

4
ΔMfPμ;∇μgΔMΦνΔMνα∇α

−
1

8
ΔMWΔMfPμ;∇μgΔMfPν;∇νg −

1

48
ΔMfPμ;∇μgΔMfPν;∇νgΔMfPα;∇αg þOð∇−5Þ

�
;

ΓS;4 ¼ Tr0

�
−
1

4
ΔM∇μMμνΔMνα∇αΔM∇βMβρΔMρσ∇σ þ

1

8
ΔMfPμ;∇μgΔMfPν;∇νgΔM∇αMαβΔMβρ∇ρ

−
1

128
ΔMfPμ;∇μgΔMfPν;∇νgΔMfPα;∇αgΔMfPβ;∇βg þOð∇−5Þ

�
: ð6:7Þ

The functional traces are of the form

TrrðAÞ ¼
Z

ddx
ffiffiffi
g

p
trrðhxjAjxiÞ; r ¼ 0; 1; ð6:8Þ

where d is the spacetime dimension and tr0 or tr1 refer to
the trace over coordinate labels, scalar or vector, respec-
tively, and also include trace over gauge labels. In detail,
the diagonal (in x space) matrix element hxjAjxi is of the
form hx; I0; ajAjx; I; bi, where a, b are gauge labels in the
adjoint representation and I, I0 are coordinate labels. For
Tr0ðÞ these coordinate labels are absent, while for Tr1ðÞ
they are of the type I ¼ μ, I0 ¼ ν.
At this point, one could already attempt the computation

of the functional traces to obtain Γdiv
S . Nevertheless, it is

convenient to first simplify the expressions by bringing the
operators to a canonical form. This is in the same spirit as
the universal functional traces of [18]. The goal is to put
together terms involving powers of ∇ (to wit, ∇μ, Δ, and

ΔM) on one side and the purely multiplicative terms on
another. That is, bring the various operators in (6.7) to the
form

A ¼
X
n

OnAn; ð6:9Þ

where On form a basis of pseudodifferential operators and
An are purely multiplicative operators. We have chosen to
put the latter on the right-hand side. Thus, for the diagonal
matrix elements,

hx;I0;ajAjx;I;bi¼
X
n;c

hx;I0;ajOnjx;I;ciðAnðxÞÞcb; ð6:10Þ

or just hxjAjxi ¼ P
nhxjOnjxiAnðxÞ. The coefficients An

do not modify the UV degree of divergence of the term,
which is controlled by On, so the hardest work is comput-
ing hxjOnjxi.
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To obtain the expansion in Eq. (6.9), we apply the following commutation identities:

½∇μ; XI� ¼ XμI;

½Δ; XI� ¼ ΔðXμμI − 2∇μXμIÞΔ;

½Δ;∇μ� ¼ Δ
�
2∇νZμν −∇νRμν þ Zννμ þ

1

4
Rμ

�
Δ;

½ΔM;∇μ� ¼ ΔMð∇α∇βMμαβ −∇αMβμβα þ∇αMαβZμβ þ Zμα∇βMαβ − ZμαMββαÞΔM;

½Δ; ZR
I � ¼ Δð∇μRνIμν − 2∇μZR

μI þ ZR
μμIÞΔ;

½ΔM; ZR
I � ¼ ΔM

�
∇μMμνðRαIνα − 2ZR

νIÞ þMμν

�
ZR
μνI −

1

2
RμαIνα −

1

2
RαμIνα

�
þMμμν

�
ZR
νI −

1

2
RαIνα

��
ΔM: ð6:11Þ

In these formulas I ¼ μ1 � � � μn represents any (possibly
empty) string of coordinate indices (e.g., αβ) and μI the
new string adding μ to the left (e.g., μαβ). XI represents a
purely multiplicative operator, that is, any coordinate tensor
(in particular, may be a coordinate scalar) and a matrix in
gauge space, not involving ∇μ nor ZR

I .
The usefulness of the commutation relations (6.11) is

that the true degree of UV divergence of the operator on the
left-hand side is actually smaller than the nominal one. So,
for instance, ½Δ; XI� would be nominally of Oð∇−2Þ, while
this commutator is actually of order Oð∇−3Þ. Note that ZI

and ZR
I count as degreeOð∇0Þ as they do not add to the UV

degree of divergence of a term, as follows from the property
in Eq. (B4).
A very conspicuous and relevant absence in the list of

commutators is the combination ½ΔM; XI�. This is not in the
list because that commutator is still of Oð∇−2Þ unless
½XI;Mμν� ¼ 0. This absence prevents one from putting
together all terms involving ∇ and is a consequence of the
non-Abelian character of the theory.
For ΓS, the operators required in the basis are

ðO1Þμ ¼ ΔM∇μ; O2 ¼ ΔM;

ðO3Þμν ¼ ΔMΔ∇μ∇ν; ðO4½X�Þμν ¼ ΔMXΔM∇μ∇ν;

ðO5Þμ ¼ ΔMΔ∇μ; ðO6Þμνα ¼ ΔMΔ2∇μ∇ν∇α;

ðO7½X�Þμ ¼ ΔMXΔM∇μ; ðO8½X�Þμνα ¼ ΔMXΔMΔ∇μ∇ν∇α;

ðO9½X;X0�Þμνα ¼ ΔMXΔMX0ΔM∇μ∇ν∇α; O10 ¼ ΔMΔ;

ðO11Þμν ¼ ΔMΔ2∇μ∇ν; ðO12Þμναβ ¼ ΔMΔ3∇μ∇ν∇α∇β;

O13½X� ¼ ΔMXΔM; ðO14½X�Þμν ¼ ΔMXΔMΔ∇μ∇ν;

ðO15½X�Þμναβ ¼ ΔMXΔMΔ2∇μ∇ν∇α∇β; ðO16½X;X0�Þμν ¼ ΔMXΔMX0ΔM∇μ∇ν;

ðO17½X;X0�Þμναβ ¼ ΔMXΔMX0ΔMΔ∇μ∇ν∇α∇β; ðO18½X;X0; X00�Þμναβ ¼ ΔMXΔMX0ΔMX00ΔM∇μ∇ν∇α∇β;

O19 ¼ Δ; O20 ¼ Δ2:

ð6:12Þ

Here X, X0, and X00 are arbitrary purely multiplicative
operators, possibly with coordinate indices. The presence
of operators in the basis with such insertions of purely
multiplicative operators is a direct consequence of ½ΔM; X�
being ofOð∇−2Þ in the non-Abelian case. Nevertheless, the
computation of the diagonal matrix elements of the
operators On can be done for generic X, X0, and X00.
The operatorsO1–O18 are required for the terms Tr0ðÞ of

ΓS in d ¼ 4 dimensions, O19 and O20 appear in the terms
Tr1ðÞ. The explicit expansion of the operators in ΓS,
Eq. (6.7), in the basis (6.12) is presented in Appendix C.

The traces indicated in Eq. (6.7) can then be obtained
from

TrrðAÞ ¼
�X

n

trrðhxjOnjxiAnðxÞÞ
�

x
; r ¼ 0; 1: ð6:13Þ

The diagonal matrix elements of the operatorsOn can be
regarded as a generalization of the well-known “universal
functional traces” introduced in [18] and computed there
using a Schwinger-DeWitt technique. The same technique
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was adapted in [34] for the Abelian case, where Mμν acts
effectively as a second metric. Our problem involves
considerably more complicated operators since now such
effective metric is gauge non-Abelian. We will use the
method of covariant symbols, already applied in [35] in the
Abelian setting. Of course, it would be interesting to adapt
the Schwinger-DeWitt approach to the present non-
Abelian case.

2. Γdiv
S in d = 2

Details of the calculation of the divergent part of the
diagonal matrix elements will be given in Sec. VII.
However, from the data displayed in Table I, we already
anticipate that the number of terms contributing to Γdiv

S is
very large for d ¼ 4 (namely, 265 terms fromO1, 123 from
O4, etc). In view of this, wewill only display explicit results
for d ¼ 2.
In d ¼ 2, Eq. (6.7) reduces to

ΓS;1¼Tr1

�
−
1

2
ΔYμν

�
þTr0

�
−
1

2
ΔMW−

1

4
ΔMfPμ;∇μg

�
;

ΓS;2¼Tr0

�
1

2
ΔM∇μMμνΔMνα∇α

−
1

16
ΔMfPμ;∇μgΔMfPν;∇νgþOð∇−3Þ

�
: ð6:14Þ

This can be rewritten using the basis of operators On in
Eq. (6.12) (see Appendix C),

ΓS;1¼Tr1

�
−
1

2
O19Yμν

�
þTr0

�
−
1

2
O2W−

1

2
ðO1ÞμPμ

þ1

4
O2PμμþOð∇−3Þ

�
;

ΓS;2¼Tr0

�
1

2
ðO3ÞμνMμαMαν−

1

4
ðO4½Pμ�ÞμνPνþOð∇−3Þ

�
:

ð6:15Þ
Details of the calculation are given in Sec. VII B. The

result is9

Γdiv
S;1¼

1

4πε

�
−
1

2
Yμμ−

1

2
N̂MWþ1

4
N̂MPμμ

−
1

2
N̂MMμνN̂MMμαβN̂MPλk̂νk̂αk̂βk̂λ

þ1

2
N̂MMμαβN̂MMμνN̂MPλk̂νk̂αk̂βk̂λ

�
x;g;ang

;

Γdiv
S;2¼

1

4πε

�
1

2
N̂MMμαMανk̂μk̂ν−

1

4
N̂MPμN̂MPνk̂μk̂ν

�
x;g;ang

:

ð6:16Þ

Here k̂μ is a normalized momentum variable, gμνk̂μk̂ν ¼ 1,
whereas

N̂M ≡ ðk̂μk̂νMμνÞ−1: ð6:17Þ

The symbol hiang denotes angular average over k̂μ,

hXiang ≡ Γðd=2Þ
2πd=2

Z
dd−1Ωk̂X: ð6:18Þ

This average is to be applied together with hix;g, already
introduced in Sec. V C.
Equation (6.16) is our final result for Γdiv

S in d ¼ 2. The
expression for d ¼ 4 is qualitatively similar, but consid-
erably longer. Further perturbative results are given in
Appendix D.
While the angular averages in Eq. (6.16) cannot be

evaluated in closed form in general, they are perfectly
convergent and well defined. In any case, these integrals
introduce a wild local but nonpolynomial dependence on
the fieldMμν

abðxÞ in the divergent part of the effective action,
implying that the UV divergences cannot be removed by
polynomial counterterms, rendering the theory not renor-
malizable in a standard sense. This was true already when
N ¼ 1, the Abelian case studied in [32–35].

C. Results for ΓL;0

1. Preliminaries

The remaining contribution to the effective action is ΓL;0,

ΓL;0 ¼
1

2
Tr0 logð−∇2

MÞ ¼
1

2
Tr0 logð−∇αMαβ∇βÞ: ð6:19Þ

This is the effective action of a scalar field with action

SL;0 ¼
Z

ddx
ffiffiffi
g

p 1

2
ϕa
μM

μν
abϕ

b
ν : ð6:20Þ

TABLE I. For the various operators in Eq. (6.12), the second
column displays the UV divergence degree, while the columns
labeled with −2;−4;−6 show the number of terms of each degree
in the expansion of the diagonal matrix element of the operator.

Operator Degree −2 −4 −6

O1 −1 2 265
O2 −2 1 11 3303
O3 −2 1 44
O4 −2 1 123
O5;6 −3 2
O7;8 −3 6
O9 −3 12
O10-18 −4 1
O19 −2 1 1
O20 −4 1

9Note that Yμμ ¼ Mμμ þR, Pμμ ¼ 1
2
½Fμν; Qμν�.
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In the special case of N ¼ 1, that is, when there is no gauge
sector (the case considered in [32–35]), one can combine
gμν and Mαβ into a new metric g̃μν, namely,

ffiffiffi
g

p
Mμν ¼ffiffiffĩ

g
p

g̃μν [34,41], in such a way that

SL;0 ¼
Z

ddx
ffiffiffĩ
g

p 1

2
ϕμg̃μνϕν ðN ¼ 1Þ: ð6:21Þ

Hence, ΓL;0 ¼ 1
2
Tr0 logð−∇̃2Þ and the heat-kernel result

(6.1) immediately applies. Note that this method works in
any spacetime dimension except d ¼ 2, since in that case
detð ffiffiffĩ

g
p

g̃μνÞ≡ 1.
Unfortunately, no such simplification takes place for

N > 1. In fact the situation is even worse, namely, Γdiv
L;0

does not admit a standard form, like that displayed in
Eq. (7.18). By definition, we say that the terms in an
expansion of a diagonal matrix element hxjOjxi adopt a
“standard form” when all the pieces are covariant with no
“free” ∇μ operators (all ∇μ are in the form ½∇μ; �) and only
remains to carry out a momentum integration. Also, labeled
operators [42] are not permitted in a standard form. The
momentum integration can be traded by another parameter,
e.g., a proper time as in a Schwinger parametrization.
While a standard form can always be achieved for matrix

elements of the type hxjfð∇; XÞjxi (X being purely
multiplicative operators) when the dependence on ∇μ is
of rational type, this is not guaranteed for more general
functions f. However, it is often the case that a standard
form exists for a pseudodifferential operator of the type
logðf̂Þwith f̂ a differential operator. Awell-known instance
of standard form for a Trlog is that found by Chan (for flat
spacetime to fourth order in a derivative expansion) [43]. To
second order,

Tr logð−∇2
μþXÞ

¼
�Z

ddk
ð2πÞd

�
− logðNCÞþ

k2

d
½∇μ;NC�2þOð∇4Þ

��
x;g
;

NC≡ ðk2þXÞ−1: ð6:22Þ

Extensions of this formula exist to sixth order [44], also for
curved spacetime [45] and for finite temperature [46]. Yet
the techniques applied in those cases cannot be translated to
evaluating ΓL;0 because in the present case what plays the
role of a metric, Mμν, is actually a nontrivial matrix in
gauge space and appears already in the leading term
logðkμkνMμνÞ. The obstruction to a standard form does
not depend on the method used to compute the effective
action; it is intrinsic to ΓL;0 in the non-Abelian case.

2. Special case of separable mass term

Here we mention the special case of a mass term
separable in coordinate and gauge spaces, that is,

Mμν
abðxÞ ¼ TabðxÞGμνðxÞ: ð6:23Þ

The fluctuation operator can then be written as

∇αMαβ∇β ¼ ∇αTGαβ∇β ¼ T∇αGαβ∇β þ TαGαβ∇β

¼ Tð∇2
G þ Lα∇αÞ; ð6:24Þ

where we have defined

∇2
G ≡∇αGαβ∇β; Lμ ≡ T−1TνGνμ: ð6:25Þ

Now, the factor TðxÞ can be dropped from Trðlogð−∇2
MÞÞ,

being ultralocal (carries no derivative operators), hence

ΓL;0 ¼
1

2
Tr0 logð−∇2

G − Lα∇αÞ

¼ 1

2
Tr0 logð−∇2

GÞ þ
1

2
Tr0 logð1þ ΔGLα∇αÞ; ð6:26Þ

with ΔG ¼ 1=∇2
G. The first term is just like ΓL;0 of the

Abelian case N ¼ 1 (with Gμν instead of Mμν). The second
term can be expanded in powers of ΔGLα∇α, similarly as
done for ΓS in (4.26). So this contribution does admit a
standard form.
It is noteworthy that there is an ambiguity in the

separation (6.23) of the Weyl-transformation type, namely,

GμνðxÞ→ λðxÞGμνðxÞ; TabðxÞ→ λ−1ðxÞTabðxÞ; ð6:27Þ

where λðxÞ is local but both scalar coordinate and gauge
singlet. Such ambiguity can be used to fix some gauge
condition on GμνðxÞ or TabðxÞ, or as a check of the
calculation, since the sum of the two terms in (6.26) should
be λ independent.
We do not pursue the subject of the separable mass case

any further in this work.

3. Method of contour integration

Coming back to the case of a general mass termMμν
abðxÞ,

to deal with the logarithm we follow here the approach of
introducing a parametric integral. This is based on the
observation that a standard form would easily follow for a
rational function instead of the log.
The contour integration method is based on the identity

ΓL;0 ¼
Z
γ

dz
2πi

logðzÞ 1
2
Tr0

�
1

zþ∇2
M

�
; ð6:28Þ

where the path γ is meant to enclose counterclockwise the
spectrum of −∇2

M. More precisely, the path γ on the z
complex plane starts at −∞ toward the origin just above the
negative real semiaxis, encircles z ¼ 0 clockwise, and goes
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back to −∞ just below the negative real semiaxis.10 Hence,
introducing a convenient notation,

hXiz ≡
Z
γ

dz
2πi

logðzÞX; O0
2 ≡ 1

zþ∇2
M
; ð6:29Þ

we can express Eq. (6.28) as

ΓL;0 ¼
�
1

2
Tr0ðO0

2Þ
�

z
: ð6:30Þ

The calculation of the diagonal matrix element hxjO0
2jxi

is formally identical to that of hxjO2jxi; unfortunately, the
presence of the z integration implies that the relevant
quantity hO0

2iz ¼ logð−∇2
MÞ is actually of degree Oð∇0Þ

instead of Oð∇−2Þ. Hence, the amount of work required to
evaluate hxjhO0

2izjxi is similar to that of hxjO2jxi for dþ 2

dimensions to achieve the same degree of UV divergence
(see Sec. VII C).
The convergence problem would not improve if instead

of a z integration the sought-for rational dependence on ∇μ

was obtained through the variation of ΓL;0 under a
deformation of Mμν,

δΓL;0 ¼
1

2
Tr0ðΔM∇μδMμν∇νÞ; ð6:31Þ

as this requires one to evaluate hxjΔM∇μ∇νjxi, which is
still of Oð∇0Þ.

4. ΓL;0 in d = 2

Once again, the number of terms is prohibitively large in
d ¼ 4 [it requires O2 to Oðp−6Þ in Table I] and we present
results for d ¼ 2. The calculation gives

Γdiv
L;0 ¼

1

4πε

�
−N̂MMμνN̂MMμαβN̂MMρσN̂MMρληN̂Mk̂νk̂αk̂βk̂σ k̂λk̂η − N̂MMμναN̂MMμβN̂MMρσλN̂MMρηN̂Mk̂νk̂αk̂βk̂σ k̂λk̂η

þ 1

2
N̂MMμνN̂MMμαβN̂MMαρσN̂Mk̂νk̂βk̂ρk̂σ −

1

2
N̂MMμνN̂MMααβN̂MMμρσN̂Mk̂νk̂βk̂ρk̂σ

þ 1

2
N̂MMμναN̂MMβμρN̂MMβσN̂Mk̂νk̂αk̂ρk̂σ −

1

2
N̂MMμναN̂MMββρN̂MMμσN̂Mk̂νk̂αk̂ρk̂σ

−
1

2
N̂MMμνN̂MMαβN̂MMμρN̂MRk̂νk̂αk̂βk̂ρ þ

1

2
N̂MMμμνN̂MMααβN̂Mk̂νk̂β −

1

2
N̂MMμνFμαN̂MMαβN̂Mk̂νk̂β

−
1

2
N̂MMμνN̂MFμαMαβN̂Mk̂νk̂β þ

1

3
N̂MMμνN̂MMμαN̂MRk̂νk̂α þ

1

24
N̂MMμμN̂MR

�
x;g;ang;z

: ð6:32Þ

In this formula N̂M ≡ ð−zþ k̂μk̂νMμνÞ−1. Besides integra-
tion over x, trace over gauge space, and angular average, an
integral over z, as defined in Eq. (6.29), is applied.
Integration by parts with respect to x has been used to

have at most one covariant derivative on Mμν. Also the
following two-dimensional identities have been used:

Rμναβ ¼
1

2
ðgμαgνβ − gμβgναÞR;

Rμν ¼
1

2
gμνR: ð6:33Þ

In addition, integration by parts identities in momentum
space have been applied to bring the expression to a
manifestly Hermitian form.
Perturbative expansions are presented in Appendix D.

5. Verification of metric-related symmetries in ΓL;0

The Weyl-like transformation noted at the end of Sec. II,
gμνðxÞ→ξðxÞgμνðxÞ, Mμν

abðxÞ→ξ−2ðxÞMμν
abðxÞ, is a sym-

metry of the full action only in d ¼ 4. However, in any
spacetime dimension, ΓL;0 has a large symmetry as this term
only depends on the pair ðgμν;MμνÞ through the combinationffiffiffi
g

p
Mμν

ab. This follows from (6.20) since ϕa are coordinate
scalars and so ϕa

μ does not depend on the metric tensor.
It is convenient to distinguish two types of symmetry

transformations leaving invariant ΓL;0, which will be called
“transverse” and “longitudinal,” respectively,

(i) A transverse transformation corresponds to leaving
Mμν intact, while gμν changes arbitrarily but keepingffiffiffi
g

p
invariant, thus preserving the volume element.

(ii) A longitudinal transformation corresponds to the
simultaneous change

gμνðxÞ → ξðxÞgμνðxÞ;
Mμν

abðxÞ → ξ−d=2ðxÞMμν
abðxÞ; ð6:34Þ

in d spacetime dimensions.

10The ζ function result would follow from understanding
logðzÞ as − dz−s

ds at s ¼ 0 in the sense of analytical continuation
in the s variable, taking the derivative with respect to s only after
the TrðÞ has been computed [47].
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We have checked that both symmetries are fulfilled by
the expression in Eq. (6.32). It is sufficient to consider
the infinitesimal case.11 For transverse transformations, the
first order variations are

δgμν ¼ ωμν with ωλ
λ ¼ 0;

δMμν ¼ δpμ ¼ δFμν ¼ δNM ¼ 0;

δMα
μν ¼ 1

2
ðωα

μ
λ þ ωλ

μ
α − ωμ

αλÞMλν

þ 1

2
ðωα

ν
λ þ ωλ

ν
α − ων

αλÞMμλ;

δðgμνRÞ ¼ ωλ
μλν þ ωλ

νλμ − ωλ
λμν ðd ¼ 2Þ: ð6:35Þ

It should be noted that the metric does not appear explicitly
anywhere in Eq. (7.21), and the metric is only contained in
Rμν

α
β, Rμν, and the covariant derivatives. This is because

the same is true for the covariant symbols of ∇μ and the
multiplicative operators, and no explicit metric appears
in the original expression of O0

2. After using the two-
dimensional identities (6.33) the metric does enter in
Eq. (7.22) in the combination gμνR. In d ¼ 2, the variation
of this quantity depends only on derivatives of ωμν. Also
note that the integral hix;p does not contain a net

ffiffiffi
g

p
. When

the above first order variations are applied to (7.22), and
after integration by parts in x space to remove terms with
ωμναβ (two derivatives), one obtains an expression which
vanishes upon integration by parts in p space. We have
checked this to third order in an expansion of the type
Mμν ¼ m2gμν þHμν in powers ofHμν. The integration over
z plays no role in the cancellation of terms.
For first order longitudinal variations, one has instead (in

d ¼ 2),

δgμν ¼ wgμν; δpμ ¼ δFμν ¼ 0; δMμν ¼ −wMμν;

δMα
μν ¼ −wMα

μν þ 1

2
wλgμαMλν þ 1

2
wλgναMμλ

−
1

2
wμMα

ν −
1

2
wνMμ

α;

δðgμνRÞ ¼ −wλ
λ: ð6:36Þ

The terms with w without a covariant derivative correspond
to global transformations. It is easy to verify that (7.22)
remains invariant under global longitudinal transformations
by applying the simultaneous rescaling z → ξ−1z (which in
turn implies NM → ξNM or δNM ¼ wNM). Therefore, it is
only necessary to keep terms with wμ and wμν in the
variation of (7.22). After variation and integration by parts
in x to remove terms with wμν (two derivatives), one finds
that the result cancels upon integration over p. Once again

we have checked this through third order in an expansion in
powers of Hμν.
The cancellation of transverse and longitudinal varia-

tions of the effective action is a highly nontrivial check
of Eq. (6.32).

VII. COMPUTATION OF THE DIAGONAL
MATRIX ELEMENTS

A. Method of covariant symbols

The diagonal matrix elements can be computed using the
method of covariant symbols. This method was introduced
in [48] for flat spacetime and extended to curved spacetime
in [37] where it is described in great detail. It has also been
extended to finite temperature in [46,49]. A summary can
be found in [35] (Sec. III. 4 and Appendix B). Nevertheless,
as the method is not widely known, and to have a more self-
contained work, we give some details here.
For an operator Ô, constructed with ∇μ plus some

purely multiplicative fields, such as those in the basis
(6.12), its covariant symbol will be denoted Ō. This
quantity is obtained by applying two successive similarity
transformations12

Ō ≔ e−
1
2
f∇μ;∂μge−ξαpαÔeξ

βpβe
1
2
f∇ν;∂νgjξμ¼0: ð7:1Þ

Here f; g denotes the anticommutator, ξμ are the Riemann
coordinates corresponding to the affine connection in ∇μ

located at the point x where the diagonal matrix element
hxjÔjxi will be evaluated, pμ is a momentum variable, and
∂
μ ≡ ∂=∂pμ. For convenience, we use a purely imaginary
variable, pμ ¼ ikμ, k ∈ Rd but ddp≡ ddk. This definition
of covariant symbols holds for ∇μ having any affine
connections (e.g., with torsion); here we assume the
Levi-Civita connection for the coordinate indices, plus
the gauge connection.
The original operator Ô acts only in x space (and

possibly in some internal space), while its covariant symbol
Ō acts both on x and p spaces. The first remarkable
property of Ō is that this operator is multiplicative with
respect to x (although not with respect to p). This means
that it commutes with functions of x which are coordinate
scalar and gauge singlet.
The second important property of themap Ô ↦ Ō is that,

being a similarity transformation, it is a faithful algebra
homomorphism (which also preserves Hermiticity).
Therefore, the covariant symbol of a pseudodifferential
operator of the type fð∇μ; XÞ is simply fð∇̄μ; X̄Þ. This
implies that it is sufficient to obtain (once and for all) the
covariant symbol of a few basic blocks and, once this is
done, there is no need to go back to the original definition in
Eq. (7.1). For instance,

11Here we need to refer to results to be established in
Sec. VII C. 12This formula is schematic, see full construction in [37].
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∇̄μ ¼ pμ −
1

4
fZαμ; ∂αg þ

1

12
f½Zαμ; pβ�; ∂α∂βg þOðp−2Þ;

X̄ ¼ X − Xα∂
α þ 1

2!
Xαβ∂

α
∂
β þOðp−3Þ;

Z̄μν ¼ Zμν −
1

2
fZαμν; ∂αg þOðp−2Þ: ð7:2Þ

Extensive formulas can be found in [35,37]. As advertised,
explicit∇μ are no longer present and the covariant symbol is
a multiplicative operator. The expressions take the form of
an expansion in powers of ∇=p, i.e., with terms ordered by
the number of covariant derivatives or equivalently by
powers of pμ [counting ∂μ asOðp−1Þ]. Here X is any purely
multiplicative operator (i.e., not containing∇μ norZR

I ), so in
particular,

M̄μν ¼ Mμν −Mαμν∂
α þ 1

2!
Mαβμν∂

α
∂
β þOðp−3Þ: ð7:3Þ

And, of course, Z̄μν ¼ ½∇̄μ; ∇̄ν� is verified.
It might seem that Zμν or Zαμν would commute with pλ or

∂
λ in Eq. (7.2), but in fact this is not so. Since pμ and ∂

μ

carry coordinate indices, Eq. (B4) applies and one has
instead

½Zμν; pα� ¼ Rμναβpβ; ½Zμν; ∂α� ¼ Rμναβ∂
β: ð7:4Þ

Equations (7.2) are written so that the Hermiticity proper-
ties are manifest. Note that the metric does not appear in the
covariant symbols of ∇μ or X; in fact, those formulas hold
for a completely arbitrary torsionless connection.13 The
concrete connection will show up through the action of Zμν,
as in Eq. (5.9). In our case, we have also ḡμν ¼ gμν since∇μ

is metric preserving.
The last important property of the covariant symbols to

be noted is their relation with diagonal matrix elements,

hxjÔjxi ¼ 1ffiffiffi
g

p
Z

ddp
ð2πÞd Ō1: ð7:5Þ

Here the object 1 (which is usually not written explicitly) is
the function identically equal to 1 in momentum space. In
practice, this means that the operator ∂μ in Ō vanishes when
it is placed on the right. On the other hand, ∂μ is also zero
when placed on the left due to the integral over pμ.
The quantity Ō1 (with all the ∂

μ already canceled by
moving them to the right) is just a function of x and p and is
closer to the standard definition of the symbol of a
pseudodifferential operator. Hence, the function Ō1 (multi-
plicative with respect to pμ) is what is needed to obtain the
diagonal matrix elements, but the full covariant symbol Ō
is the object carrying a faithful algebra representation.

If instead of Eq. (7.1) only the first similarity trans-
formation is applied, Ô ↦ e−ξ

αpαÔeξ
βpβ , one obtains

fð∇; XÞ ↦ fð∇þ p;XÞ, and the result is the method of
noncovariant symbols,

hxjfð∇; XÞjxi ¼ 1ffiffiffi
g

p
Z

ddp
ð2πÞd fð∇þ p; XÞ: ð7:6Þ

The integrand is not a multiplicative operator (nor mani-
festly covariant) but it becomes so after integration over pμ.
What the additional similarity transformation achieves in
Eq. (7.1) is precisely to have an integrand which is
manifestly covariant by systematically applying integration
by parts in p space. Further details on the method of
noncovariant symbols are given in Appendix E.
The manifest covariance of Ō (and hence Ō1) follows

from using Riemann coordinates at x (rather than the Synge
function as in the Schwinger-DeWitt approach), so the
method of covariant symbols is suited to computing
diagonal matrix elements (within a derivative expansion
approach), but not for nondiagonal matrix elements. On the
other hand, the method makes no assumptions on Ô so it
works equally well even for a pseudo-Laplacian like ∇2

M
with a “metric” which is non-Abelian.
We will illustrate the use of the method of covariant

symbols below, but its application is straightforward. Ō is
obtained from fð∇; XÞ ↦ fð∇̄; X̄Þ, and ∇̄μ, X̄ are taken
from the already compiled tables to the required order. The
quantity Ō so obtained contains only purely multiplicative
operators (covariant derivatives of X), plus Zμ1���μn , pμ

and ∂
μ.

The natural next step is to remove all ∂μ by moving them
to the right where they vanish, acting on all dependence on
pμ. In doing so the commutator between Zμ1���μn and ∂

μ has
to be applied. This generates some Riemann tensors. One
can also choose to move some of the ∂μ to the left (where
they also vanish) if this produces a smaller number of
terms. The two choices are related through integration by
parts in momentum space.
Since pμ does not commute with Zμ1���μn , in order to carry

out the momentum integration it will be convenient to move
all the Zμ1���μn together, to the right (or to the left) using their
commutation relations. This produces more coordinate
curvatures and also gauge curvatures Fμν. All these
manipulations produce a diagonal matrix element which
does not assume a particular vector space for the action of
the operator Ô. The concrete space is used when the
operators Zμ1���μn are removed after its action is evaluated,
as in Eq. (5.9).
Once the ∂μ have been eliminated and all the Zμ1���μn are

together (or eliminated) it only remains to carry out the
momentum integration, if possible. When the nonpolyno-
mial dependence on pμ comes from a single (and Abelian)
metric, the integrals can often be obtained explicitly.13In this sense ∇̄μ or X̄ are truly universal.
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If there are two metrics gμν and Mμν (and even more so
when the latter is non-Abelian), the integrals cannot be
evaluated in closed form in general. In this case, one should
be aware of ambiguities in the final expression due to
integration by parts in momentum space. Complicated
expressions can occasionally reach a simpler form through
integration by parts in pμ. For this reason, the numbers
quoted in Table I are upper bounds.
An explicit application of the method of the covariant

symbols to illustrate the procedure just described is dis-
played in Appendix F, by computing one of the universal
functional traces of [18].
In what follows, we proceed to give details of the

calculation of Γdiv
S and Γdiv

L;0.

B. Calculation of Γdiv
S in d = 2

The starting point is Eq. (6.15). Applying the covariant
symbols formula (7.5),

hxjÔjxi ¼ hŌip ð7:7Þ

[with hip defined in Eq. (5.12) and the 1 is implicit)], one
has14

ΓS;1 ¼
�
tr1

�
−
1

2
Ō19Yμν

�

þ tr0

�
−
1

2
Ō2W −

1

2
ðŌ1ÞμPμ

þ 1

4
Ō2Pμμ þOðp−3Þ

��
x;p

;

ΓS;2 ¼
�
tr0

�
1

2
ðŌ3ÞμνMμαMαν

−
1

4
ðO4½Pμ�ÞμνPν þOðp−3Þ

��
x;p

: ð7:8Þ

Since ∇̄μ ¼ OðpμÞ, while for multiplicative operators X̄ ¼
Oð1Þ for large pμ, the terms Oð∇−nÞ in Ô become Oðp−nÞ
in Ō.
Within dimensional regularization hp−nip vanishes for

all n with the exception n ¼ d. Hence, we need to isolate
terms 1=p2 in d ¼ 2, and in particular more UV convergent
terms can be neglected.
Of the basic operators present in the formula, O2;3;4;19,

are of Oð∇−2Þ. Therefore, the covariant symbols of the
latter only require the leading terms of the building blocks,

∇̄μ ¼ pμ þOðp−1Þ; Δ̄ ¼ −Ng þOðp−3Þ;
Δ̄M ¼ −NM þOðp−3Þ; X̄ ¼ X þOðp−1Þ; ð7:9Þ

where X is any purely multiplicative operator. Here we have
introduced the definitions

Ng ≡ ð−gμνpμpνÞ−1; NM ≡ ð−MμνpμpνÞ−1: ð7:10Þ

Note that NM is a matrix in gauge space. This produces

Ō2 ¼ −NM þOðp−3Þ;
Ō3 ¼ NMNgpμpν þOðp−3Þ;

O4½X�μν ¼ NMXNMpμpν þOðp−3Þ;
O19 ¼ −Ng þOðp−3Þ: ð7:11Þ

The terms shown explicitly are homogeneous of
degree p−2.
The remaining operator O1 is Oð∇−1Þ and its covariant

symbol Oðp−1Þ. To isolate the 1=p2 term we have to
take one more term in the expansion. The expansion in
(7.2) is effectively in powers of ∇=p, so terms with one
more covariant derivative are needed. Note that in this
counting Zμ1;…;μn counts as Oð∇nÞ. From its definition
ðO1Þλ ≡ ΔM∇λ, one obtains

ðŌ1Þλ ¼ Δ̄M∇̄λ; ð7:12Þ

with

Δ̄M ¼ ð∇̄μM̄μν∇̄νÞ−1: ð7:13Þ

The expansion of ∇̄λ in Eq. (7.9) is already sufficient, but
Δ̄M needs to be expanded to order 1=p3 which in turn
requires M̄μν to order 1=p,

Δ̄M ¼ ðpμðMμν −Mαμν∂
αÞpν þOð1ÞÞ−1

¼ −NM þ NMpμMνμα∂
νpαNM þOðp−4Þ: ð7:14Þ

Therefore,

ðŌ1Þλ ¼ −NMpλ þ NMpμMνμα∂
νpαNMpλ þOðp−3Þ:

ð7:15Þ

To the order needed, the operators Ō2;3;4;19 do not
have any ∂

μ, hence they already coincide with Ōn1. For
Ō1 the momentum derivatives can be moved to the right
using

½∂μ; pν� ¼ δμν ; ½∂μ; NM� ¼ 2pνNMMμνNM: ð7:16Þ

14For a multiplicative X, hxjOXjxi ¼ hxjOjxiXðxÞ, consis-
tently hŌX̄ip ¼ hŌipXðxÞ since X̄ − X contains ∂

μ but not pμ

[see Eq. (7.2)], and such terms vanish inside hip.
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In this way,15

ðŌ1Þλ1 ¼ −NMpλ − NMMμμνNMpλpν

− 2NMMμνNMMμαβNMpλpνpαpβ

þOðp−3Þ: ð7:17Þ

The first term is homogeneous of degree 1=p and the two
other explicit terms are homogeneous of degree 1=p2. The
first term vanishes within momentum integration due to
parity. For the same reason, all odd order terms have been
omitted in Table I. In any case, only the contributions 1=pd

are relevant in d dimensions for Γdiv
1 .

No operators ZI appear in the expansions of Ō1;2;3;4;19 to
the order required in Eq. (7.8). The most UV divergent
operator isO1 ¼ Oð∇−1Þ, so its leading term is 1=p and the
term relevant in d ¼ 2, 1=p2, comes from contributions of
the type ∇=p2, while ZI needs at least two covariant
derivatives.
Operators ZI do appear in d ¼ 4. Just as ∂μ, the operators

ZR
I have to be resolved before having a useful expression for

hxjOnjxi. To this end, the operators ZR
I can be moved to the

left or to the right, using their commutation relations noted in
(B4), including (7.4). In accordance with the choice in
Eq. (6.9), where the multiplicative operators An have been
placed at the right, ZR

I should be moved to the left. This
allows one to apply the rules in Eq. (5.9) (see Appendix B).
It remains to insert in Eq. (7.8) the various expressions

for Ōn1 just obtained. In the resulting expression, the terms
involving Pμ in ΓS;1 are not manifestly Hermitian. This can
be fixed by applying integration by parts in p and x
spaces16 as well as the trace cyclic property. This gives,

Γdiv
S;1¼

�
1

2
NgYμμþ

1

2
NMW−

1

4
NMPμμ

þ1

2
NMMμνNMMμαβNMPλpνpαpβpλ

−
1

2
NMMμαβNMMμνNMPλpνpαpβpλ

�
x;p;g

;

Γdiv
S;2¼

�
1

2
NgNMMμαMανpμpν−

1

4
NMPμNMPνpμpν

�
x;p;g

:

ð7:18Þ

The integrand is a homogeneous function of p of degree
−2. It only remains to extract the 1=ε coefficient to isolate
the UV divergent contributions. The details are given in

Sec. VII D. An application of the rules provided there
immediately produces the result quoted in Eq. (6.16).
In Eq. (7.17) there is one term of degree p−1 and two

terms of degree p−2. Table I shows the number of terms of
each degree for the diagonal matrix elements of the
operators On. Only even orders are displayed since odd
orders vanish upon integration over pμ in any parity
preserving regularization, such as dimensional regulariza-
tion. For a given operator, the number of terms increases
rapidly with (minus) the degree. Nevertheless, the number
of terms displayed in the table is an upper bound; this
number is subject to variations due to various identities
which allow one to write a given expression in different
forms. Such identities include integration by parts in
momentum space and reordering of the covariant deriva-
tives acting on a tensor due to the Jacobi identity,

½∇μ; ½∇ν; X�� ¼ ½∇ν; ½∇μ; X�� þ ½Zμν; X�: ð7:19Þ

Furthermore, integration by parts in x space and trace cyclic
property is allowed within the functional trace operations
Tr0;1 in Eq. (6.13). We have not attempted a systematic
minimization of the number of terms as there is no practical
procedure to do this, and in any case we do not expect a
significant reduction in the length of the expressions. An
exception is the operator O2 at p−4 which is used below,
Eq. (7.21), in the computation of ΓL;0, in Sec. VI C 4.
Nevertheless, it should be noted that, recently, important

progress has been achieved in the counting and classifica-
tion of allowed independent terms in effective field theo-
ries, through the construction of Hilbert series of the
operator basis [50]. In this technique, the basic blocks
(fields or composite operators) plus their symmetrized
derivatives are identified with representations of the
d-dimensional conformal group.17 Computation of the
Clebsch-Gordan series then allows one to obtain generating
functions for basis operators and count them. The key point
is that both equation of motion as well as integration by part
identities are automatically accounted for, in addition to
spacetime and internal group symmetries. The method has
been successfully applied to pure Einstein relativity and
also to general relativity combined with the Standard
Model of particle physics [51]. The adaptation of the
Hilbert series technique to obtain basis of operators in
diagonal matrix elements and the effective action contri-
butions as those displayed in Eqs. (7.18) or (7.22) would be
extremely interesting, and more so in d ¼ 4 where the
number of terms becomes huge. Serious complications
arise due to the presence of an additional momentum
variable, with its own integration by parts identities, and
also the existence of constraints relating some of the
building blocks, such as Mμν and NM. No attempt will
be made here to adapt the promising technique of Hilbert

15Actually, for convenience here ∂μ has been moved to the left
(and then removed) so the rhs differs from Ō1 by terms which
vanish upon momentum integration.

16As shown in Appendix C of [35], pμ can be treated as a
constant when integrating by parts in x space, when ∇μ and ZR

I
are no longer present. 17Alternatively, cohomological techniques can be applied [50].
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series to working with covariant symbols; we defer such a
study to future work.

C. Calculation of Γdiv
L;0 in d = 2

Because of the similarity between the operators O0
2 and

O2, the expression of their diagonal matrix elements are
identical when written in terms of NM, with the only
proviso of using the new definition

NM ¼ ð−z −MμνpμpνÞ−1 ð7:20Þ

for O0
2, instead of that in (7.10).

The UV divergent terms in ΓL;0 must have exactly d
covariant derivatives. The operator O0

2 is of UV degree
Oð∇−2Þ, so the leading term in O0

2 is Oðp−2Þ and no
derivatives. Since one still needs to expand its covariant
symbol to d covariant derivatives, the order p−d−2∇d is
needed. The proper divergence Oðp−dÞ is only recovered
after integration over z, a parameter of dimension
squared mass.
We present results only for the case d ¼ 2. For the terms

of order exactly p−4, the calculation gives the following
result:

hxjO0
2jxið−4Þ ¼

�
4NMMμνNMMμαβNMMρσλNMMρηNMpνpαpβpσpλpη þ 2NMMμνNMMμαβNMMρρσNMpνpαpβpσ

þ 2NMMμμνNMMαβρNMMασNMpνpβpρpσ þ NMMμνNMMμαβρNMMασNMpνpβpρpσ

þ NMMμνNMMαμβρNMMασNMpνpβpρpσ þ
2

3
NMMμνNMMαβNMMρσNMRμαρλpνpβpσpλ

−
2

3
NMMμνNMMαβNMMρσNMRμλαρpνpβpσpλ þ NMMμμνNMMααβNMpνpβ

− NMMμνFμαNMMαβNMpνpβ − NMMμνNMFμαMαβNMpνpβ −
1

6
NMMμνNMRμν

�
p
: ð7:21Þ

The expression obtained after applying the method of
covariant symbols has been simplified by using integration
by parts in momentum space, also achieving a manifest
Hermitian form (since O2 is Hermitian).

It can be noted that the expression in (7.21) holds for
arbitrary d. For d ¼ 2, one can use the identities in (6.33).
Alsowe integrate bypartswith respect tox to have atmost one
covariant derivative onMμν. This gives for the effective action

Γdiv
L;0 ¼

1

2

�
− 2NMMμνNMMμαβNMMρσNMMρληNMpνpαpβpσpλpη − 2NMMμναNMMμβNMMρσλNMMρηNMpνpαpβpσpλpη

−NMMμνNMMμαβNMMαρσNMpνpβpρpσ þNMMμνNMMααβNMMμρσNMpνpβpρpσ

−NMMμναNMMβμρNMMβσNMpνpαpρpσ þNMMμναNMMββρNMMμσNMpνpαpρpσ

þNMMμνNMMαβNMMμρNMRpνpαpβpρ þNMMμμνNMMααβNMpνpβ −NMMμνFμαNMMαβNMpνpβ

−NMMμνNMFμαMαβNMpνpβ þ
2

3
NMMμνNMMμαNMRpνpα −

1

12
NMMμμNMR

�
x;p;g;z

: ð7:22Þ

One could apply further the trace cyclic property and also
the identity NMMμνNMpμpν ¼ −NM − zN2

M in one of
the terms, but no simplification would be achieved. The
final step is to extract the 1=ε coefficient from the radial
part of the momentum integral, as described in the next
subsection. This procedure yields the expression quoted in
Eq. (6.32).

D. Extraction of the UV divergent component

Let us consider first the case when the parameter z is not
present, as in Eq. (7.18). Once the operators ∂μ and ZR

I have

been removed, the structure of a general term Ōn to be
integrated over pμ is a sum of products with factors NM,
Ng, and pμ, as well as pμ-independent multiplicative
operators MI , RI , FI, etc. Hence, the momentum integral
affects only terms of the form

Nn
gðNMÞa1b1 ���ðNMÞambmpμ1 ���pμ2j≡Nn

gN
⊗m
M p⊗2j: ð7:23Þ

This monomial is homogeneous in pμ with degree
2ðj − n −mÞ.
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We are only interested in the UV divergent part and to
extract it we will use dimensional regularization, namely, in
dþ 2ε dimensions with ε → 0−. For the UV divergent part,
d can be used instead of dþ 2ε in the UV-finite contri-
butions. Within dimensional regularization, the integral

Im;j
d ¼ 1ffiffiffi

g
p

Z
ddþ2εp
ð2πÞd Nn

gN
⊗m
M p⊗2j ð7:24Þ

vanishes unless d ¼ 2ðnþm − jÞ, which is assumed in
what follows.
Recalling that pμ ¼ ikμ and ddpμ ≡ ddkμ,

Im;j
d ¼ ð−1Þj 1ffiffiffi

g
p

Z
ddþ2εkμ
ð2πÞd Nn

gN
⊗m
M k⊗2j: ð7:25Þ

Let us introduce a standard tetrad field eAμ ðxÞ,

gμν ¼ eAμeBν δAB; eAμe
μ
B ¼ δAB; ð7:26Þ

in such a way that

kμ ¼ eAμkA; ddkμ ¼
ffiffiffi
g

p
ddkA;

Ng ¼
1

k2A
; NM ¼ 1

kAkBMAB ; ð7:27Þ

thus

ðIm;j
d Þμ1���μ2j ¼ ðIm;j

d ÞA1���A2j
eA1
μ1 � � � eA2j

μ2j ;

ðIm;j
d ÞA1���A2j

¼ ð−1Þj
Z

ddþ2εkA
ð2πÞd Nn

gN
⊗m
M k⊗2j

A : ð7:28Þ

The UV divergence comes from the radial part of the
integral, hence we introduce spherical coordinates,

kA ¼ kk̂A; k ¼
ffiffiffiffiffi
k2A

q
¼ N−1=2

g ; k̂2A ¼ 1: ð7:29Þ

This allows one to separate the integral into radial and
angular average factors,

Im;j
d ¼ ð−1Þj

ð4πÞd=2
2

Γðd=2Þ IεÎ
m;j
d ; ð7:30Þ

where the angular average is

Îm;j
d ¼ Γðd=2Þ

2πd=2

Z
dd−1Ωk̂N̂

⊗m
M k̂⊗2j

A ≡ hN̂⊗m
M k̂⊗2j

A iang;

N̂M ≡ 1

k̂Ak̂BMAB
¼ NM=Ng; ð7:31Þ

and Iε is the radial part (introducing a cutoff mass m0 to
avoid a trivial infrared divergence for negative ε), and using
the condition 2ðnþm − jÞ ¼ d,

Iε ¼
Z

∞

m0

dkk2ε−1 ¼ −
m2ε

0

2ε
¼ −

1

2ε
þOð1Þ: ð7:32Þ

In summary, for the UV divergent part, one obtains

Im;j;div
d ¼ 1

ð4πÞd=2Γðd=2Þ
1

ε
ð−1Þjþ1Îm;j

d : ð7:33Þ

As noted, the angular averages Îm;j
d are perfectly UV

convergent and well defined, but they cannot be written
in closed form in general.
The analysis is similar for ΓL;0, which involves an

additional integration over z. As mentioned, in this case
and for d ¼ 2, the relevant terms are of order p−4, and to
extract the UV divergent part one must integrate over z and
pμ. The point can be elucidated following the steps shown
above (for d ¼ 2), noting that now NM contains z:

hp⊗2jN⊗ð2þjÞ
M iz;p ¼

1ffiffiffi
g

p
Z

d2þ2εp
ð2πÞ2

Z
γ

dz
2πi

× logðzÞp⊗2j

�
1

−z−Mμνpμpν

�
⊗ð2þjÞ

¼ ð−1Þj
Z

∞

m0

dkk2jþ1þ2ε

Z
dΩ
ð2πÞ2

Z
γ

dz
2πi

× logðzÞk̂⊗2j

�
1

−zþ k2Mμνk̂μk̂ν

�
⊗ð2þjÞ

:

ð7:34Þ

Applying the rescaling z → zk2 and noting that the induced
term with logðk2Þ vanishes since no singularities are
enclosed by the path γ in the z complex plane,

hp⊗2jN⊗ð2þjÞ
M iz;p ¼ ð−1Þjþ1

m2ε
0

2ε

Z
dΩ
ð2πÞ2

Z
γ

dz
2πi

× logðzÞk̂⊗2j

�
1

−zþMμνk̂μk̂ν

�
⊗ð2þjÞ

¼ ð−1Þjþ1

4πε
hk̂⊗2jN̂⊗ð2þjÞ

M iang;z þOð1Þ;
ð7:35Þ

where N̂M ¼ ð−zþMμνk̂μk̂νÞ−1. Applying this angular
average in Eq. (7.22) yields Eq. (6.32).

VIII. SUMMARY AND CONCLUSIONS

In this work we have addressed the problem of quantiz-
ing a system of, in general, non-Abelian vector fields with a
completely general local nonminimal mass term coupling
all of them. The case of N Abelian fields is a particular
instance in our formulation. We make use of a background
field approach. A remarkable result is that, although the
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mass term breaks gauge invariance, the effective action is
fully gauge (as well as coordinate) invariant beyond tree
level, Eq. (3.5). The technical problems present in the
original theory (namely, the UV region is blind to the mass
term and so requires some type of gauge fixing) are
satisfactorily removed by introducing a non-Abelian
Stueckelberg field, Eqs. (4.1) and (4.4). This is done after
background and fluctuation fields have been separated and
the Stueckelberg field only affects the latter. This auxiliary
field is introduced linearly so that the loop structure of the
original theory is preserved. As a consequence, the com-
putation of the UV divergent part of the effective action to
one loop can be carried out systematically preserving
coordinate and gauge symmetries during the calculation.
To this end, we apply dimensional regularization and the
method of covariant symbols. This produces terms which
are local, i.e., they contain a finite number derivatives of the
external fields (no more than d in d spacetime dimensions),
however, they are not polynomial with respect to the mass
term, a fact already observed in the simpler case of a single
vector field. The one-loop effective action is expressed in
Eq. (4.28) as a sum of four terms, Γgh defined in (4.19), ΓL;1

and ΓL;0 in (4.25), and ΓS in (4.26) [and expanded in
Eq. (6.7)]. The formalism is developed for arbitrary
spacetime dimensions and we present explicit results for the
two-dimensional case. Regrettably in the four-dimensional
case too many terms are produced (even selecting particular
settings, such as purely Abelian, flat spacetime, or pertur-
bative expansions) so their explicit expression would be of
little practical use. The explicit two-dimensional results for
the UV divergent component are displayed in (6.4) for Γgh

and ΓL;1, in (6.16) for ΓS, and in (6.32) for ΓL;0. Checks
have been applied to the results of the calculation.
Particularly stringent are the tests related to invariance
with respect to metric transformations in Sec. VI C 5.
Perturbative results are also presented in Appendix D.
Although not explicitly discussed in the text, we have
repeated most of the calculations of diagonal matrix
elements using the method of noncovariant symbols
[37,46] to find an identical result, modulo integration by
parts in momentum space. In some cases, the latter method
has produced shorter expressions. Details of the noncovar-
iant method are discussed in Appendix E.
As already pointed out, the nonminimal masslike cou-

pling discussed in this work (or also its Abelian version)
respects locality but introduces terms in the effective action
which are nonpolynomial in the field MμνðxÞ. All current
efforts for an effective field theory description of general
relativity or the Standard Model of particles, or both (e.g.,
[51]), naturally assume an expansion in local and poly-
nomial operators over some power of the cutoff (a new-
physics scale), OαðxÞ=Λn, consistent with the renormali-
zation group analysis of Wilson [52]. In this light, the
analyses presented in [34,35] and in this work should
indicate that a nonminimal coupling of the type Eq. (2.1)

can be ruled out in vector field theories, also in the non-
Abelian setting. If the presence of such nonminimal
coupling could not be prevented through some mechanism
(such as the requirement of strict gauge invariance), one
would be impelled to assume a much larger class of
effective field theories, including local but nonpolynomial
operators. On the other hand, even in that case, reexpan-
sions as that in Appendix D would bring the expression
again to the standard form, requiring only local and
polynomial composite operators, provided that the scale
m can be interpreted as a proper cutoff of the theory and a
separation of the type Mμν ¼ m2gμν þHμν is somehow
natural.
The fluctuation operator in Eq. (4.15) is a rather involved

one, due to the presence of a non-Abelian field Mμν

coupling like a metric in the ϕ sector. Chan’s method or
even the Schwinger-DeWitt technique are not readily
available to deal with such term. Yet the formalism of
covariant symbols could be applied also to ΓL;0, upon
introduction of a parametric form to remove the logarithm.
In fact, the method of covariant symbols is a practical and
easy-to-use tool to obtain diagonal matrix elements of local
operators fð∇; XÞ, provided the dependence on ∇ is of
rational type. This latter requirement follows from the fact
that, in practice, the covariant symbols are only obtained as
an expansion in powers of∇=p. It can also be noted that the
covariant symbols depend only on the connection; the
presence of a metric is not required, as the Riemann
coordinates can be defined directly from the connection
[53]. The method can be used to obtain not only the
counterterms but also covariant derivative expansions of the
effective action itself [45,54,55]. In particular, the treatment
of fermionic modes in curved spacetime poses no special
problems once the spin connection is included in the
covariant derivative [56]. The extension of the method
for finite temperature also exists [46,49] (but not yet for
temperature and curvature at the same time). The method of
covariant symbols should apply whenever the generalized
Schwinger-DeWitt technique applies, so it can be used as
an alternative approach in the analysis of quantum field
theories in curved spacetime, effective field theories
involving gravity, or in the study of the newly developed
Proca theories noted in the Introduction.

ACKNOWLEDGMENTS

I thank C. Garcia-Recio for suggestions on the manu-
script and A. O. Barvinsky for critical remarks. This work
has been partially supported by MCIN/AEI/10.13039/
501100011033 under Grant No. PID2020–114767GB-
I00, by the Junta de Andalucía (Grant No. FQM-225),
by the FEDER/Junta de Andalucía-Consejería de
Economía y Conocimiento 2014-2020 Operational
Program under Grant No. A-FQM-178-UGR18, and by the
Consejería de Conocimiento, Investigación y Universidad,

L. L. SALCEDO PHYS. REV. D 106, 105019 (2022)

105019-20



Junta de Andalucía and European Regional Development
Fund (ERDF), Ref. SOMM17/6105/UGR.

APPENDIX A: DERIVATION
OF SOME FORMULAS

1. Derivation of Eq. (3.12)

Applying integration by parts in the first term in (3.11)
[using the notation of (5.10)],

1

4
hðAa

μν −Aa
νμÞ2ix

¼ 1

2
hðAa

μνÞ2 −Aa
μνAa

νμix ¼
1

2
hðAa

μνÞ2 þAa
νAa

μνμix

¼ 1

2
hðAa

μνÞ2 þAa
νAa

νμμ þAa
νZab

μνAb
μix

¼ 1

2
hðAa

μνÞ2 −Aa
ννAa

μμ þAa
νðFab

μνAb
μ þ RμνμαAa

αÞix

¼ 1

2
hðAa

μνÞ2 − ðAa
μμÞ2 − Fab

μνAa
μAb

ν þRμαAa
αÞix: ðA1Þ

Added to the other term in (3.11), h− 1
2
Fab
μνAa

μAb
νi, pro-

duces (3.12).

2. Derivation of Eq. (4.6)

From the change of variables

Aa
μ ¼ Ba

μ þ ϕa
μ; χa ¼ Ba

μμ; ðA2Þ

one obtains

∂ðAa
μ; χaÞ

∂ðBb
ν ;ϕbÞ ¼

�
δabgμν δab∇μ

δab∇ν 0

�
ðA3Þ

(with rows for the numerator and columns for the denom-
inator). More conveniently, doing the change of variables in
two steps ðB;ϕÞ → ðA;ϕÞ → ðA; χÞ,

∂ðAa
μ; χaÞ

∂ðBb
ν ;ϕbÞ ¼

∂ðAa
μ; χaÞ

∂ðAc
λ;ϕ

cÞ
∂ðAc

λ;ϕ
cÞ

∂ðBb
ν ;ϕbÞ ; ðA4Þ

using χa ¼ Aa
μμ − ϕa

μμ in the first factor, produces

�
δabgμν δab∇μ

δab∇ν 0

�

¼
�
δacgμλ 0

δac∇λ −δac∇2

��
δcbgλν δcb∇λ

0 δcb

�
: ðA5Þ

The second matrix has a unit determinant and likewise for
the upper-left block in the first matrix. This produces
Eq. (4.6).

3. Derivation of Eq. (4.8)

Starting from (3.11), and using Aa
μ ¼ Ba

μ þ ϕa
μ, one

obtains terms of the types BB, Bϕ, and ϕϕ. The terms
BB are just those in (3.12) with Aa

μ → Ba
μ.

The terms Bϕ are given by twice (3.11) replacing one of
theAwithAa

μ → Ba
μ and the other one withAa

μ → ϕa
μ. This

produces

ðSð2ÞkinÞBϕ¼
�
1

2
ðϕa

μν−ϕa
νμÞðBa

μν−Ba
νμÞ−Fab

μνϕ
a
μBb

ν

�
x
: ðA6Þ

Using ϕa
μν − ϕa

νμ ¼ Fab
μνϕ

b and integration by parts in the
other term,

ðSð2ÞkinÞBϕ ¼ h−ϕaFab
μνBb

μν þ Fab
μμνϕ

aBb
ν þ Fab

μνϕ
aBb

μνix
¼ hFab

μμνϕ
aBb

νix: ðA7Þ

Finally, the term ϕϕ is half the previous one after the
replacement Ba

μ → ϕa
μ. This produces (4.8).

APPENDIX B: THE OPERATORS Zμ1���μn
1. Definition and properties of ZR

μ1���μn
The operator Zμν is defined as

Zμν ¼ ½∇μ;∇ν� ¼ ZR
μν þ Fμν: ðB1Þ

ZR
μν acts on coordinate indices and Fμν on gauge indices.

ZR
μν is multiplicative but not “purely multiplicative” (by

definition) as it is not diagonal in the coordinate indices.
The higher rank tensors are defined recursively, namely
(recall that I ¼ μ1 � � � μn stands for a string of coordinate
indices),

ZαI ¼ ½∇α; ZI� þ
1

2
f∇λ; RIαλg: ðB2Þ

The extra term ensures that ZI is a multiplicative operator.
The same formula applies to ZR

I .
The clean separation between coordinate and gauge

sectors,

ZI ¼ ZR
I þ FI; ðB3Þ

holds too for higher rank tensors. The operators ZI , ZR
I , and

FI are all anti-Hermitian. From its definition, ZR
I has the

property

½ZR
I ; Vμ1μ2���� ¼ RIμ1λVλμ2��� þ RIμ2λVμ1λ��� þ � � � ; ðB4Þ

where V is a coordinate tensor. In particular, for a scalar
field ϕðxÞ,
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½ZR
I ;ϕ� ¼ 0: ðB5Þ

Now, let j0i be the scalar function that takes the value 1
for all x. This is a coordinate scalar. The relation ∇μj0i ¼ 0

implies

ZR
μνj0i ¼ 0 ¼ h0jZR

μν: ðB6Þ

More generally [using Eq. (B2)],

ZR
I j0i ¼ CIj0i; h0jZR

I ¼ −h0jCI; ðB7Þ

with

Cμν ¼ 0;

Cαμν ¼
1

2
Rλμναλ;

Cα1���αnμν ¼
1

2
Rλα2α3���αnμνα1λ þ

1

2
Rα1λα3���αnμνα2λ þ � � �

þ 1

2
Rα1���αn−1λμναnλ: ðB8Þ

2. Relation with the operator R̂μν of [18]

The operator ZR
μν coincides with R̂μν in [18]. The higher

rank operators ð∇α1 � � �∇αnR̂μνÞρσ are introduced in [18],
with the convention that the covariant derivative connec-
tions do not act on the matrix indices ρ, σ. Using the
notation

R̂α1���αnμν ≡∇α1 � � �∇αnR̂μν; ðB9Þ

these operators fulfill the recursion

R̂αI ¼ ½∇α; R̂I� þ RIαλ∇λ; ðB10Þ

as well as

½R̂I; Vμ1μ2���� ¼ ½ZR
I ; Vμ1μ2����

¼ RIμ1λVλμ2��� þ RIμ2λVμ1λ��� þ � � � : ðB11Þ

The operators ZR
I and R̂I are related through

ZR
I ¼ R̂I þ CI: ðB12Þ

Therefore,

R̂Ij0i ¼ 0; h0jR̂I ¼ −2h0jCI: ðB13Þ

The operators R̂I and ZR
I have identical commutation

properties on purely multiplicative fields. The R̂I are
simpler than ZR

I when acting on states on the right (since

they vanish on coordinate scalars), while the ZR
I have the

virtue of being anti-Hermitian.

3. Derivation of Eqs. (5.9)

The first relation in (5.9), the trace in the coordinate-
scalar space, follows from the fact that ZR

I coincides with
−CI when acting on scalars on the left,

hϕjZR
I ¼ h0jϕZR

I ¼ h0jðZR
I ϕ − ½ZR

I ;ϕ�Þ ¼ −hϕjCI: ðB14Þ

For the second relation, the trace in the coordinate-vector
space, consider an operator Oμ

ν acting on the coordinate-
vector space, ðOVÞμ ¼ Oμ

νVν. Disregarding the gauge-
space sector for simplicity, the trace can be written as

tr1ðOμ
νÞ ¼

X
A

uAμOμ
νuνA; ðB15Þ

where uμAðxÞ is any local basis of vectors at x and uAμ ðxÞ is
its dual basis, uAμu

μ
B ¼ δAB. When Oμ

ν is purely multipli-
cative (i.e., it does not contain ∇μ nor ZR

I ), the trace is
simply

tr1ðOμ
νÞ ¼ Oμ

νuAμuνA ¼ Oμ
νgνμ ¼ Oμ

μ: ðB16Þ

If the operator has a factor ZR
I on the left, where I is any

string of coordinate indices, without loss of generality we
can assume that it has the form ZR

I H
Iμ

ν. That is, the row-
column indices μν are not in ZR

I , and all the indices in I are
different. For instance, ZR

α
αμXν can be rewritten as

ZR
αβλg

αβgμλXν. Using now

huAμ jZR
I ¼ h0juAμZR

I ¼ h0jðZR
I u

A
μ − ½ZR

I ; u
A
μ �Þ

¼ h0jð−CIuAμ þ RI
λ
μuAλ Þ ¼ huAλ jðRI

λ
μ − gλμCIÞ;

ðB17Þ

it follows that

tr1ðZR
I O

μ
νÞ ¼

X
A

uAμZR
I O

μ
νuνA

¼
X
A

uAμ ðRI
μ
λ − gμλCIÞOλ

νuνA

¼ tr1ððRI
μ
λ − gμλCIÞOλ

νÞ: ðB18Þ

This proves Eqs. (5.9). If the operator contains more than
one factor ZR on the left, the procedure is applied
recursively,

tr1ðZR
I Z

R
JO

μ
νÞ ¼ tr1ððRI

μ
λ − gμλCIÞZR

JO
λ
νÞ

¼ tr1ðZR
J ðRI

μ
λ − gμλCIÞOλ

ν

− ½ZR
J ; RI

μ
λ − gμλCI�Oλ

νÞ: ðB19Þ
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APPENDIX C: CANONICAL FORM OF ΓS

The following formulas display the expression of the operators in ΓS;n, n ¼ 1, 2, 3, 4 in Eq. (6.7) using the basis of
operators in (6.12) to bring them to the canonical form in (6.9), by means of the commutation identities in (6.11). These
expressions hold in any spacetime dimension. Equations (C1)–(C4) correspond to ΓL;1, ΓL;2, ΓL;3, and ΓL;4, respectively,

ΔYμν ¼ O19Yμν;

ΔMW ¼ O2W;

1

2
ΔMfPμ;∇μg ¼ ðO1ÞμPμ −

1

2
O2Pμμ; ðC1Þ

ΔYαμΔYμβ ¼ O20YαμYμβ þOð∇−5Þ;
ΔMΦμΔΦμ ¼ O10Φ2

μ þOð∇−5Þ;
ΔM∇μMμνΔMνα∇α ¼ ðO3ÞμνMμαMαν þ 2ðO6ÞμναMνμβMβα þ 4ðO12ÞμναβMανμρMρβ

− ðO11Þμνð2MνμαMβαβ þMααμβMβν þ 2MανμβMβα þMαβMβνRμα

− 2FμαMαβMβνÞ − ðO5ÞμðMμνMανα þMνμαMανÞ þOð∇−5Þ;
ΔMΦμΔMμν∇ν ¼ ðO5ÞμΦνMνμ þO10ð−ΦμMνμν −ΦμνMνμÞ þ 2ðO11ÞμνΦμαMαν þOð∇−5Þ;
ΔM∇μMμνΔΦν ¼ ðO5ÞμMμνΦν þ 2ðO11ÞμνMνμαΦα þOð∇−5Þ;

ΔMWΔMW ¼ ðO13½W�ÞμνW;

1

4
ΔMfPμ;∇μgΔMfPν;∇νg ¼ ðO4½Pμ�ÞμνPν þ

1

2
ðO7½Pμμ�ÞνPν − ðO16½Pμ;Mμννα�ÞαβPβ − ðO9½Pμ;Mμνα�ÞναβPβ

− ðO16½Pμ;MναRμναβ�ÞβρPρ

þ ðO18½Pμ;Mμνα;Mνβρ�ÞβρασPσ þ ðO18½Pμ;Mμνα;Mνβρ�ÞαβρσPσ

−
1

4
O13½Pμμ�Pνν −

1

2
ðO7½Pμ�ÞμPνν þ

1

2
ðO16½Pμ;Mμνα�ÞναPββ þOð∇−5Þ;

1

2
ΔMfPμ;∇μgΔMW ¼ ðO7½Pμ�ÞμW þ 1

2
O13½Pμμ�W − ðO16½Pμ;Mμνα�ÞναW þOð∇−5Þ; ðC2Þ

ΔM∇μMμνΔYναΔMαβ∇β ¼ ðO11ÞμνMμαYαβMβν þOð∇−5Þ;
ΔMWΔM∇μMμνΔMνα∇α ¼ ðO14½W�ÞμνMμαMαν þOð∇−5Þ;

1

2
ΔMfPμ;∇μgΔM∇νMναΔMαβ∇β ¼

1

2
ðO14½Pμμ�ÞναMνβMβα þ ðO8½Pμ�ÞμναMνβMβα þ 2ðO15½Pμ�ÞμναβMανρMρβ

− ðO17½Pμ;Mμνα�ÞναβρMβσMσρ

− ðO14½Pμ�ÞμνðMναMβαβ þMανβMβαÞ þOð∇−5Þ;
1

2
ΔMfPμ;∇μgΔM∇νMναΔΦα ¼ ðO14½Pμ�ÞμνMναΦα þOð∇−5Þ;

1

2
ΔMfPμ;∇μgΔMΦνΔMνα∇α ¼ ðO14½Pμ�ÞμνΦαMαν þOð∇−5Þ;

1

4
ΔMWΔMfPμ;∇μgΔMfPν;∇νg ¼ ðO16½W;Pμ�ÞμνPν þOð∇−5Þ;

1

8
ΔMfPμ;∇μgΔMfPν;∇νgΔMfPα;∇αg ¼ ðO16½Pμ; Pμν�ÞναPα þ

1

2
ðO16½Pμ; Pνν�ÞμαPα

þ 1

2
ðO16½Pμμ; Pν�ÞναPα þ ðO9½Pμ; Pν�ÞμναPα − ðO18½Pμ;Mμνα; Pβ�ÞναβρPρ

− ðO18½Pμ; Pν;Mναβ�ÞαβνρPρ − ðO18½Pμ; Pν;Mναβ�ÞμαβρPρ

−
1

2
ðO16½Pμ; Pν�ÞμνPαα þOð∇−5Þ; ðC3Þ
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ΔM∇μMμνΔMνα∇αΔM∇βMβρΔMρσ∇σ ¼ ðO15½MμνMνα�ÞμαβρMβσMσρ þOð∇−5Þ;
1

4
ΔMfPμ;∇μgΔMfPν;∇νgΔM∇αMαβΔMβρ∇ρ ¼ ðO17½Pμ; Pν�ÞμναβMαρMρβ þOð∇−5Þ;

1

16
ΔMfPμ;∇μgΔMfPν;∇νgΔMfPα;∇αgΔMfPβ;∇βg ¼ ðO18½Pμ; Pν; Pα�ÞμναβPβ þOð∇−5Þ: ðC4Þ

APPENDIX D: PERTURBATIVE EXPANSIONS

For completeness, we give here the expressions for Γdiv
L;0 and Γdiv

S in d ¼ 2 [Eqs. (6.32) and (6.16), respectively] to second
order in an expansion in powers of Hμν, where

Mμν ¼ m2gμν þHμν ðD1Þ

and to all orders in the other fields.m2 is a constant c number. In d ¼ 2, the combination Γdiv
L;1 þ Γdiv

gh cancels, so there are no

further contributions to Γdiv
1 .

The result is obtained by expanding Eqs. (6.32) and (6.16) and carrying out the angular average, and integration over z in
the case of Γdiv

L;0, as such evaluations can be done explicitly when Mμν ¼ m2gμν,

Γdiv
L;0 ¼

1

4πε

�
1

12
Rþ 1

m4

�
−

1

12
FμνHμαHνα −

1

96
HμμHννRþ 1

48
HμνHμνR

−
1

24
HμμνHναα −

1

96
HμννHμαα −

1

48
HμναHμνα þ

1

24
HμναHνμα

�
þOðH3Þ

�
x;g
: ðD2Þ

Γdiv
S ¼ 1

4πε

�
−
1

2
m2 −

1

2
R −

1

4
Hμμ þ

1

m2

�
−
1

2
W̃ −

1

4
QμνQμν −

1

16
HμμHνν þ

1

8
HμνHμν

�

þ 1

m4

�
−
1

8
PμPμ þ

1

4
W̃Hμμ þ

1

16
QμνQμνHαα þ

1

8
QμνQμαHνα þ

1

4
QμνHμαHνα

�

þ 1

m6

�
1

16
PμPμHνν þ

1

8
PμPνHμν −

1

24
PμHμνHναα þ

1

24
PμHμνHανα þ

1

96
PμHννHμαα

þ 1

48
PμHννHαμα þ

1

48
PμHναHμνα −

1

12
PμHναHνμα −

1

96
PμHμννHαα −

1

48
PμHμναHνα

−
1

48
PμHνμνHαα þ

1

12
PμHνμαHνα −

1

24
PμHνναHμα þ

1

24
PμHνααHμν −

1

16
W̃HμμHνν

−
1

8
W̃HμνHμν −

1

96
QμνQμνHααHββ −

1

48
QμνQμνHαβHαβ −

1

48
QμνQμαHναHββ

−
1

24
QμνQμαHνβHαβ −

1

24
QμνQμαHαβHνβ −

1

48
QμνQμαHββHνα

�

þ 1

m8

�
−

1

96
PμPμHννHαα −

1

48
PμPμHναHνα −

1

48
PμPνHμνHαα −

1

24
PμPνHμαHνα −

1

24
PμPνHναHμα

−
1

48
PμPνHααHμν −

1

48
PμHμνPνHαα −

1

48
PμHμνPαHνα −

1

192
PμHννPμHαα

−
1

96
PμHναPμHνα −

1

48
PμHναPνHμα

�
þOðH3Þ

�
x;g
: ðD3Þ

In this formula W̃ ≡W − 1
2
Pμμ.

The term R in Γdiv
L;0 is the Gauss-Bonnet invariant in two dimensions, complying by itself with the transverse and

longitudinal symmetry invariance discussed in Sec. VI C 5. In the two-dimensional case, these symmetries do not allow
terms with one Hμν nor of order 1=m2 in Γdiv

L;0.
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APPENDIX E: METHOD OF NONCOVARIANT
SYMBOLS

1. Covariant vs noncovariant method of symbols

The method of noncovariant symbols [57,58] allows one
to obtain diagonal matrix elements of pseudodifferential
operators and it can be extended to curved spacetime [37].
The difference between the covariant and noncovariant

versions can be elucidated already in the case of flat
spacetime. Let f̂ ¼ fðD;XÞ be a pseudodifferential oper-
ator constructed out of the gauge-covariant derivative Dμ

and one (or more) non-Abelian fields XðxÞ (a purely
multiplicative operator). Then,

hxjf̂jxi ¼
Z

ddp
ð2πÞd hxjf̂jpihpjxi

¼
Z

ddp
ð2πÞd e

−xphxjf̂jpi

¼
Z

ddp
ð2πÞd hxje

−xpf̂expj0i

¼
Z

ddp
ð2πÞd hxjfðDþ p;XÞj0i; ðE1Þ

where pμ is imaginary and j0i is the state hxj0i ¼ 1. The
quantity hxjfðDþ p;XÞj0i is the (noncovariant) symbol
of f̂.
After momentum integration, the result is gauge covar-

iant in the sense that Dμ will only appear in the form of a
commutator ½Dμ; �. This follows from the fact that under the
shift Dμ → Dμ þ aμ, where aμ is an arbitrary constant
imaginary c number, the dependence on aμ cancels upon
momentum integration (since aμ can be compensated by a
corresponding shift in pμ). The virtue of the covariant
symbol,

f̄ ¼ e−D∂fðDþ p;XÞeD∂; ðE2Þ

is that it is multiplicative (with respect to x) and is already
covariant without momentum integration [37].
To illustrate the point, let us apply the method of

noncovariant symbols to f̂ ¼ ðD2
μ − XÞ−1,

hxjf̂jxi ¼
�

1

ðpμ þDμÞ2 − X

�
p

: ðE3Þ

Defining N ¼ 1=ðp2
μ − XÞ and expanding in powers of Dμ,

hxjf̂jxi ¼ hN − Nð2pμDμ þD2
μÞN

þ Nð2pμDμÞNðpνDνÞN þOðD3Þip: ðE4Þ

Instead of doing the momentum integration, one can add
terms which are identically zero by integration by parts in

momentum space to bring the expression to a covariant
form. For instance, the first order term18

hxjf̂jxið1Þ ¼ h−2pμNDμNip ðE5Þ

can be supplemented with

0 ¼ h∂μð−DμNÞip ¼ h2pμDμN2ip; ðE6Þ

yielding a manifestly gauge-covariant result

hxjf̂jxið1Þ ¼ h2pμ½Dμ; N�Nip: ðE7Þ

This procedure can be carried out systematically. Rewriting
Eq. (E4) as

hxjf̂jxi ¼ hT0 þ T1 þ T2 þ � � �ip;
T0 ¼ N; T1 ¼ −2NpDN;

T2 ¼ −NDDN þ 4NpDNpDN; ðE8Þ

the systematic integration by parts suggested by the
method of covariant symbols can be implemented as19

e−D∂

X
n

Tnj0i ¼
X
n

T̃nj0i;

T̃n ¼
Xn
j¼0

ð−1Þj
j!

ðD∂ÞjTn−j; ðE9Þ

and now

hxjf̂jxi ¼ hT̃0 þ T̃1 þ T̃2 þ � � �ip: ðE10Þ

In this way,

T̃0 ¼ T0 ¼ N ðE11Þ

is already covariant, and

T̃1¼T1−D∂T0¼−2NpDN−D∂N¼2½pD;N�N ðE12Þ

is the term obtained previously in Eq. (E7). For the second
order,

18Actually this term vanishes by parity; nevertheless, it serves
to illustrate the point.

19Equivalently, one can put instead a factor epD at the right and
move ∂

μ to left.
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T̃2 ¼ T2 −D∂T1 þ
1

2
ðD∂Þ2T0

¼ −NDDN þ 4NpDNpDN −D∂ð−2NpDNÞ

þ 1

2
ðD∂Þ2N: ðE13Þ

Carrying out the momentum derivatives and moving theDμ

to the left yields a manifestly covariant form

T̃2 ¼ −NμμN þ 4pμpνðNμNν þ NμνNÞN; ðE14Þ

where

Nμ ¼ ½∇μ; N�; Nμν ¼ ½∇μ; Nν�: ðE15Þ

2. Method of noncovariant symbols
in curved spacetime

The results presented in this work, obtained using the
method of covariant symbols, have been reproduced also
using the method of noncovariant symbols. For the latter,
the technique in Eqs. (E9) and (E10) is applied, which
produces covariant expressions without requiring further
integration by parts in momentum space. This holds too in
curved spacetime using the covariant derivative ∇μ which
includes all connections, and 1

2
f∇μ; ∂μg instead of Dμ∂

μ, in
the exponential.
In this approach, typically the∂μ [generated inEq. (E9)] are

removed by moving them to the right. Then the free ∇μ are
moved together, say to the right, to form covariant combi-
nations Zμν ¼ ½∇μ;∇ν�, etc. Therefore, one has to specify
how ∇μ commutes with pν and ∂ν, as these commutators do
not vanish (consistently with ½Zμν; pα� ¼ Rμναλpλ).
To this end, let us introduce a set of coordinates ξAðxÞ

(technically d coordinate scalars). Eventually, after all free
covariant derivative operators have been removed, these
will be the Riemann coordinates at x0 (the point at which
the diagonal matrix element is being computed). And let the
vector fields tAμ ðxÞ and tμAðxÞ be defined through the
relations

tAμ ¼ ½∇μ; ξA�; tAμ t
μ
B ¼ δAB: ðE16Þ

Note that the d vector fields tAμ ðxÞ do not define a tetrad. In
terms of these,

pμ ¼ tAμpA; ∂
μ ¼ tμA∂

A; ∂
A ≡ ∂=∂pA; ðE17Þ

where pA are (imaginary) constant c-number parameters,
hence ½∇μ; pA� ¼ ½∇μ; ∂A� ¼ 0. This allows one to write

½∇μ; pν� ¼ tAμνpA ¼ tλAt
A
μνpλ ≡ −Gμ

λ
νpλ;

½∇μ; ∂ν� ¼ Gμ
ν
λ∂

λ; ðE18Þ

using ½∇μ; tνA� ¼ −tνBtBμαtαA in the second relation. Note
that tAμν ¼ tAνμ, hence Gμλν ¼ Gνλμ. Successive derivatives
require derivatives of GμναðxÞ which in turn follow from
those of tAμ ðxÞ. Here it enters the Riemann coordinate
condition at x0, which requires [53]

(i) tAμ ¼ δAμ at x0, and
(ii) the vanishing of the completely symmetry compo-

nent of tAμ1���μn at x0 for n ≥ 2.
From these conditions, using the Jacobi identity (7.19), it
follows

tAμνjx0 ¼ 0;

tAαμνjx0 ¼
1

3
ðRαμν

λ þ Rανμ
λÞtAλ ;

tAαβμνjx0 ¼
�
1

4
Rαβμν

λ þ 1

4
Rαβνμ

λ þ 1

6
Rβαμν

λ þ 1

6
Rβανμ

λ

þ 1

12
Rμανβ

λ þ 1

12
Rναμβ

λ

�
tAλ : ðE19Þ

Hence,

Gμλνðx0Þ ¼ 0;

Gαμλνðx0Þ ¼ −δλAtAαμνðx0Þ;
Gαβμλνðx0Þ ¼ −δλAtAαβμνðx0Þ: ðE20Þ

It is important to remark that the conditions at x ¼ x0 can
only be imposed after all free ∇μ have been removed, and
also that the pμ’s in Ng and NM have to be differentiated
too; p2

μ cannot be treated as a constant during this
calculation. On the other hand, as proven in Appendix C
of [35], in the final expression (i.e., after x is set to x0)
one can freely integrate by parts neglecting derivatives
of pμ.

APPENDIX F: SAMPLE CALCULATION USING
THE METHOD OF COVARIANT SYMBOLS

As the method of covariant symbols is not well known,
we will present here the calculation of one of the universal
functional traces of [18] using this method. Concretely, we
consider

hxj∇μΔjxidivd¼4: ðF1Þ

We want the UV divergent part in 4þ 2ε dimensions.
Therefore, we need the terms of order 1=p4 of the covariant
symbol of ∇μΔ. Since this operator is of order 1=p and the
expansion of the covariant symbols is in powers of ∇=p, it
will necessary to go to order ð∇=pÞ3. That is,

ð∇μΔÞ−4 ¼ ð∇̄μÞ1ðΔ̄Þ−5 þ ð∇̄μÞ−2ðΔ̄Þ−2; ðF2Þ
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where the subindex indicates the number of pμ minus the
number of ∂μ in the term. Note that ð∇̄μÞ0 ¼ 0, as can be

seen in Eq. (7.2), and also ðΔ̄Þ−3 ¼ 0 due to ð∇2Þ1 ¼ 0.
Equations (B1) of [35] show the expressions of ð∇̄μÞn for

n ¼ 1;…;−3 and of ð∇̄2Þn for n ¼ 2;…;−2 (i.e., to four
covariant derivatives). The expressions of ðΔ̄Þn are not
tabulated there but they need to be computed only once,
using

Δ̄ ¼ ð∇2Þ−1

¼ ðð∇2Þ2 þ ð∇2Þ0 þ ð∇2Þ−1 þOðp−2ÞÞ−1: ðF3Þ

This gives

ðΔ̄Þ−2 ¼ ðpμpνgμνÞ−1 ¼ −Ng ðF4Þ

[with Ng already defined in (7.10)] and

ðΔ̄Þ−5 ¼ −Ngð∇2Þ−1Ng: ðF5Þ

The formulas ð∇̄μÞ1 ¼ pμ and ðΔ̄Þ−2 ¼ −Ng, as well as

the tabulated values of ð∇̄μÞ−2 and ð∇2Þ−1, are inserted in
Eq. (F2) and this results in an expression containing ∂μ.
These derivatives are removed by using

½∂μ; Ng� ¼ 2pμN2
g ðF6Þ

and (7.4). Also this very equation is used to move all Zμ1���μn
to the right. This procedure yields

hxj∇μΔjxidivd¼4¼
�
−
2

3
N2

gZννμ−
2

3
N3

gpμpνZααν

−
8

3
N3

gpνpαZναμþ
1

2
N3

gpμpνRν

þN3
gpνpαRμνα−2N3

gpνpαRναμ

�
p
: ðF7Þ

The integral over pμ is immediate and gives

hxj∇μΔjxidivd¼4 ¼ −
1

ð4πÞ2ε
�
1

6
Zααμ −

1

8
Rμ

�
; ðF8Þ

using Rννμ ¼ 1
2
Rμ.

This result can be expressed in terms of the operator R̂I.
Using the relations ZI ¼ FI þ ZR

I and ZR
I ¼ R̂I þ CI , and

also Cααμ ¼ 1
4
Rμ, from Eq. (5.8), one obtains

hxj∇μΔjxidivd¼4¼−
1

ð4πÞ2ε
�
1

6
Fααμþ

1

6
R̂ααμ−

1

12
Rμ

�
; ðF9Þ

a result in agreement with Eq. (4.54) of [18]. Other
universal functional traces are also reproduced with the
method of covariant symbols.
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