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Nonminimal non-Abelian quantum vector fields in curved spacetime
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The quantum effective action of nonminimal vector fields with Abelian or non-Abelian gauge degrees of
freedom in curved spacetime is studied. The Proca or Yang-Mills fields are coupled to a local masslike term
acting in both coordinate and gauge spaces. Pathologies due to gauge invariance in the ultraviolet are
avoided through the introduction of a non-Abelian version of the Stueckelberg field. It is found that the
breaking of gauge invariance induced by the mass term affects only the tree-level part of the effective
action. The ultraviolet divergent part of the effective action to one loop is obtained using the method of
covariant symbols and dimensional regularization. Formulas are given valid for any spacetime dimension
and explicit results are shown for the two-dimensional case. As already happened for a single vector field,
the ultraviolet divergences are local but not of polynomial type.
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I. INTRODUCTION

Vector fields play a prominent role in the Standard Model
of particles, as mediators of gauge interactions. In turn there
is currently a growing interest in the role that various types of
vector fields could play in relativistic gravity and cosmology
[1-9]. As noted in [9], “Imposing the conditions of Lorentz
symmetry, unitarity, locality and a (pseudo-)Riemannian
spacetime, any attempt of modifying gravity inevitably
introduces new dynamical degrees of freedom. They could
be additional scalar, vector or tensor fields.” The subject has
received a further boost with the discovery of ghost-free
consistent nonlinear theories of Proca interactions [10—15].
The crucial issue of the quantum stability of these theories
has been analyzed in [16,17].

In this work, we consider a set of N vector fields in
curved spacetime endowed with Abelian (Proca) and/or
non-Abelian (Yang-Mills) internal degrees of freedom. No
self-interactions are included beyond those implied by the
Yang-Mills structure, but the vector fields are coupled to an
external masslike x-dependent tensor field which is allowed
to arbitrarily mix them [see Eq. (2.1)]. Our focus is on the
proper quantization of such a theory and on the structure of
the quantum fluctuations.
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Early work studying the subject of quantum fluctuations
for vectors fields was carried out in [18-21] (see [22-29]
for recent related work). Particular nonminimal couplings
(the minimal case being a standard mass term) were
considered in [30] at the classical level and in [31] at
the quantum level. The quantized theory for general non-
minimal couplings was first studied in [32] for particular
spacetime backgrounds. There it was found that patholo-
gies arise in the quantization of the theory since the mass
term couples effectively as a metric field. Technically the
problem is that the masslike field breaks gauge invariance
but does not suppress the fluctuations in the longitudinal
polarization at large wave numbers. In other words, the
principal symbol of the fluctuation operator is singular.
General backgrounds were considered in [33] solving the
above-mentioned pathology by means of a Stueckelberg
field. In this way, a proper gauge symmetry is present in the
theory and one can proceed through a standard gauge fixing
procedure. However, approximations were introduced in
the analysis of [33] giving rise to a nonlocal result. A full
solution to the problem of computing the ultraviolet (UV)
divergent part of the effective action, within dimensional
regularization, was obtained in [34] using the Schwinger-
DeWitt technique and later in [35] using the method of
covariant symbols, finding perfect concordance in both
calculations. The pathologies identified in [32] translate to
the fact that the UV divergences are local but not poly-
nomial in the masslike external field.

The results just noted refer to a single vector field. Here
we address the case of several vector fields. This allows us
to consider the non-Abelian scenario. In fact, we consider
sets of vector fields organized in Abelian and non-Abelian
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multiplets. We treat the Abelian and non-Abelian versions
simultaneously since the formalism is identical in both
cases. In the absence of a mass term, there would be a
gauge symmetry present in the Lagrangian. This symmetry
is explicitly broken by the mass term. Nevertheless we
obtain the remarkable result that the breaking only affects
the effective action at tree level, while the contributions
from one or more loops are fully gauge invariant. This
results in an important simplification of the calculation.
Another insight comes from the introduction of the
Stueckelberg field in our present non-Abelian setting
(see [36] for a review on this subject). In the Abelian
case, the Stueckelberg field appears through A, =B, +d,¢.
In this way, a U(l) gauge symmetry arises from
B, — B, +9d,A, ¢ — ¢ — A. In the non-Abelian case, a
literal translation of this prescription would take the form
Af = (BQ);‘ where Q refers to a non-Abelian gauge
transformation with parameters ¢ (in Lie algebra of the
gauge group). The resulting theory enjoys a non-Abelian
gauge invariance and one can then proceed to fix the gauge
through the Fadeev-Popov method. Such approach is, in
principle, correct but exceedingly complicated, as the
dependence on ¢? is nonlinear. In particular, this would
imply a reorganization of the loop expansion from the
original theory (field Aj) to that with By and ¢“. We
develop a completely different approach where the
Stueckelberg field is introduced linearly also in the non-
Abelian setting.

Once the Stueckelberg field is introduced, the (UV
regulated) quantum theory is no longer pathological and
it is possible to proceed to a systematic computation of its
effective action. Our focus is on the UV part of the effective
action to one-loop order. As already known from the study
of the Abelian case [34,35], the mass term acts as an
effective second metric tensor. In the present case, this is in
fact a non-Abelian effective metric. Presumably, the gen-
eralized Schwinger-DeWitt technique [18] can be adapted
to this situation, but such an approach is not presently
available. Instead here we apply the method of covariant
symbols [37]. This method is simple to use and allows one
to formulate the loop momentum integration while pre-
serving manifest covariance under diffeomorphism and
gauge transformations. Details of the method are provided
below.

The problem studied here is an extension of that already
solved for N =1 (just one vector field), so some specific
features of that case are inherited in the more general setting
analyzed in this work. In particular, the loop momentum
integrals cannot be written in closed form. For N > 1 this
problem is even worse, as the propagators are now matrices
with respect to the gauge indices. Also for this reason some
contributions to the effective action (see I'; , below) cannot
be expressed in a standard form involving just integration
over x, p, and traces in internal space, and it is necessary to
resort to a parametric form, with integration over one more

parameter. Unfortunately, while the problem is well posed
and the method fully appropriate to solve it, we have found an
unexpected impediment, namely, the number of terms
obtained for the physically relevant case of four spacetime
dimensions is prohibitively large (at least hundreds of terms
are generated). In view of this, we develop the formulas for
the general case but only present detailed results for two
spacetime dimensions (note that there are no UV divergences
for odd dimensions within dimensional regularization).

In Sec. IT we expose the theory to be analyzed. In Sec. III
the background field approach is introduced for the
effective action. It is shown that its quantum part admits a
gauge-covariant treatment. The effective action to one loop
is constructed, showing its limitations in the UV sector.
Those obstacles are overcome in Sec. IV by introducing the
Stueckelberg field. The nonpathological one-loop effective
action is constructed and then decomposed into various
contributions to be computed subsequently. Section V
introduces some notational conventions. Section VI intro-
duces general considerations to undertake the calculation
and presents explicit results for d = 2. Some nontrivial
symmetries related to metric deformations are also verified.
The actual calculations are worked out in Sec. VII. To this
end, the method of covariant symbols is reviewed first,
and its application to the various contributions is dis-
cussed, including the extraction of the coefficients of the
UV divergence. The conclusions are summarized in
Sec. VIII. The proof of some formulas is provided in
Appendix A. Properties of the operator Z,, and its relation
to ﬁﬂy of [18] are discussed in Appendix B. The canonical
form of I'g using a basis of standard operators is displayed
in Appendix C. Explicit results for perturbative mass
expansions are presented in Appendix D. Details of the
method of noncovariant symbols, used as a check of the
calculations, are given in Appendix E. Finally, the method
of covariant symbols is illustrated through a sample
computation in Appendix F.

II. FORMULATION OF THE PROBLEM

We consider N real vector fields /Alz (x),a=1,...,Nin
an Euclidean d-dimensional spacetime with metric g, (x)
and action'

R Vanr 10 a s
st = [ate/a([FEEnMEAAL). )
where M" (x) is a positive definite” local mass term
fulfilling the symmetry condition

My (%) = My (%) (2:2)

'"The ugly notation AZ and F* will soon be traded by Aj
and F*.
’As a matrix with indices (ua) and (vb).
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Coordinate indices are raised, lowered, and contracted with
the metric g,,.

The N fields are organized in n gauge sectors. Each
sector has gauge symmetry of either SU(n;) or U(1) type
and the full gauge group is the direct product of these.” The
fields fall in the Lie algebra of the group, i.e., the adjoint
representation, with gauge coupling g, in the gauge sector i.
Without loss of generality, one can choose g; = 1 for the
Abelian factors. Hence, N = > " | N; where N; = n? — 1
for an SU(n;) sector and N; = 1 for a U(1) one. With a
standard normalization of the fields, the field strength
tensor is

ﬁZu = a,uAZ - auA/Lj + gafabcAzAiﬁ (23)
where f ;. are the structure constants of the gauge group.
Since the gauge group is a direct product, the structure
constants are block diagonal, one block for each gauge
sector, and g, = g; is the coupling of the ith sector (the g,
take a common value within each block). Of course, in a
U(1) sector the structure constant vanishes. The field

strength tensor j:,‘jy (x) is covariant under gauge and
coordinate transformations. The kinetic part of the action
is block diagonal, while the mass term may mix different
gauge sectors.

When all the gauge sectors are of the U(1) type, the
theory is Abelian and reduces to a generalized Proca field
with N flavors. Nevertheless, since all the cases can be
treated within the same scheme, we will refer to the internal
space as gauge space.

Regarding the symmetries, the kinetic term is fully local
gauge invariant but such symmetry is reduced to a global one
by the mass term: the action is invariant under M — M =
QMQ! for a global transformation Q in the gauge group. If
some gauge sectors are equivalent, namely, with equal gauge
group SU(n;) or U(1) and same g;, there is an additional
global symmetry under rotations among those equivalent
sectors, with a corresponding rotation of M. A further
symmetry, special for the case of d = 4 spacetime dimen-
sions, is that of local Weyl-like transformations, namely, the
action is unchanged under the simultaneous replacements

G (¥) = £(x) gy (x) and M (x) — &7 (x) M (x).

III. THE EFFECTIVE ACTION

A. The background gauge field

Within the background field approach [38], the field is
split as a background plus a fluctuation, Aj(x) =
Af(x) + A (x).

In this approach, the effective action I'[A; M, g| follows
from

*More generally, one could take a Lie subgroup of SO(N) and
the results and formulas derived in this work hold equally well in
that case.

7 = e TUiMgl — / DA [aaA 3y

where A{(x) is the background field and the current J%(x)
is adjusted so that (Af(x)) = 0. As usual,

1 ST[A; M, g

V(x)  SA5(x)

In the background gauge field approach, the field Af(x)
transforms homogeneously under local gauge transforma-
tions, the inhomogeneity being saturated by the trans-
formation of Af(x). Correspondingly, the gauge-covariant
derivative relies on Aj(x) as a gauge connection.

We will use a single covariant derivative V,, containing
coordinate and gauge connections [39]. The coordinate
connection is that of Levi-Civita for the metric and the
gauge connection is that of the background field Ay. So, for
instance, for coordinate-scalar and coordinate-vector fields
¢* and By, respectively, both in the adjoint gauge repre-
sentation,

Ja(x) =

(3.2)

vﬂ¢a = aﬂ¢a =+ gafab(,‘A/l:(ﬁcv

VB¢ =0,B¢ —T4,B% + guf apcASBE. (3.3)
Throughout, coordinate indices are contracted with the
metric g,, and gauge-vector indices with J.

The effective action can be split into the classical or tree-
level component S[A] and the quantum correction I'y[A]
which contains graphs with one or more loops,

I[A] = S[A] + Ty [A]. (3.4)
Here we find a fundamental result given by the following

Theorem.—T [A] is invariant under local gauge trans-
formations and all the gauge breaking in the effective action
is saturated by the mass term at tree level. That is,

[oA; M, g] =T[A% M2, g], (3.5)
where Q(x) is any local gauge transformation, and A®* and
M are the gauge-transformed fields.

Proof-—The reason is fairly simple. The semiclassical
expansion follows from a Taylor expansion of the action
S[A+A] - [d?x,/gJA in powers of the fluctuation A.
The zeroth order gives the classical action, and the first
order in A cancels due to the equations of motion, i.e., the
choice of J#. The quantum component I', depends only on
terms that are quadratic or higher order in .A. The breaking
of gauge invariance would come solely from the mass term
T M, A2 AL but this is covariant since the field A trans-
forms homogeneously under gauge transformations.

The property (3.5) is important because it allows us to
use a gauge-covariant formalism for I'y.
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B. One-loop effective action

The one-loop effective action follows from the quadratic
part of the action:

I [A] (3.6)

8*S[A+ A]
SA?

1
= —log Det, <
2 A=0

The subindex 1 in Det; indicates that the determinant is to
be evaluated in the space Aﬂ (x), i.e., of coordinate vectors.
Also, for the gauge degrees of freedom, the determinant is
taken in the adjoint gauge representation space. This is not
explicitly indicated but will be implicit in all formulas as no
other gauge representations will be present.

Therefore, we need to isolate the terms quadratic in .4
from the action S[A + A]. After the shift A = A+ A, the
field strength tensor in Eq. (2.3) becomes

Fo, =Fa4, +V, Al

- VI/A; + gafabcA;les (37)

with

Foy = 0,A% — 0,A% + guf apcALAS. (3.8)
In the shifted variables, the quadratic part of the kinetic

term of the action takes the form®

SEAAI= [ a2/ (9,48 = V,Ag? - S AL ).
(3.9)

where we have the introduced field strength tensor F ,’jfj as
an antisymmetric matrix in gauge space (as well as in
coordinate space)

v = g(,fa(,bfﬂl/ (310)

Note that F' ;jf vanishes in the Abelian sectors.

In what follows, we adopt the convention that covariant
derivatives are indicated by adding new indices to the left,
hence ¢5 =V ,¢°, B, =V, B, etc. The only 5exceptions
to this rule are the operators Z “and ZR With this

Hilz-- Hil2--
convention,

s@14

S = [ iy

— AL —EF;,‘,’A“A”>

(3.11)

*We will occasionally place all the coordinate indices as lower
indices when no ambiguity arises. Repeated coordinate indices
are_always contracted with the metric g,,,.

Some conventions used in this work are summarized in
Sec. V.

Using integration by parts and Bianchi identities, the
quadratic part of the kinetic term can be written as (see
Appendix A)

sl = [ (54507 - (43

1
R AL + 27@,@,@) , (3.12)

where R, is the Ricci tensor. Thus, adding the mass term,

St Al = / ddx\/ge "”A“Ab> (3.13)

the full quadratic Lagrangian controlling the one-loop
fluctuations is

L2 (x) = %A”K’(;”.A,,, (3.14)

where

K = —gV? + VY = 2FW + R + MM, (3.15)
Here, and also in what follows, we use a matrix notation for
the gauge indices, which will be implicit. As advertised, the
Lagrangian £?)(x) is manifestly gauge invariant.

The term + V#V¥ in Kj" is a direct consequence of
gauge invariance of the kinetic energy part of the action
(2.1) and is needed to retain just three polarizations in the
Proca field. While the differential operator K needs not be
singular in the presence of a positive definite mass term
M#_ its principal symbol, i.e., the O(V?) leading UV
divergent component is singular, since the longitudinal
polarizations are not penalized at large wave numbers.
The fact that the principal symbol is singular introduces
pathologies in the effective action which prevent one from
carrying out an extraction of the UV divergent terms.

In the special case of a standard Proca field, with a
constant scalar mass, the UV divergent part of the effective
action is a polynomial in the mass [18], but this is no longer
so for a nonconstant mass term even in the Abelian case
[34]. This confirms that K cannot be directly used as the
fluctuation operator.

IV. THE STUECKELBERG FIELD
A. The non-Abelian Stueckelberg field

In order to bypass the above-mentioned pathologies in
the UV, we will adapt the Stueckelberg approach intro-
duced in [33] (and also applied in [34,35]) for the non-
minimal Proca field to the non-Abelian case. To this end,
we rewrite the partition function as

105019-4
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Z:/ DA Hro4 / Dye~Seld,  (4.1)

where Sy¢ly| can be any action. The partition function is
unchanged as the new factor is just a constant.’® We take a
standard choice

1
Sald) = [ a5 V302 42)
where y“(x) is a coordinate scalar and a gauge vector (i.e.,
in the adjoint representation).

Subsequently, a change of variables (A, y) — (B, ) is
applied in (4.1), where B3 (x) is a real coordinate-vector and
gauge-vector field and ¢“(x) is real coordinate-scalar and
gauge-vector field,

7 = /DBD¢J[B, ¢]e—S[AJrA]—ngb(Hfddx\/yJA’

dAM>
aB.#))

By construction, the effective action does not depend on the
detailed choice of gauge-fixing function(al) y [, ¢], more-
over, the expectation value of any functional written in the
form F|A, y| is independent of this choice (unless the very
functional F depends on it). This property provides
identities for the gauge-fixing dependence of the expect-
ation values [40].

We choose a linear change of variables. Besides sim-
plicity, the virtue of such a choice is that the loop expansion
in the new variables coincides with that in the old ones.
Specifically, we take

JIB. ] = Det< (4.3)

A= B4V, 4=V, B

H=us

(4.4)

or, using our notational convention for the covariant
derivatives,
A = B + ¢, x' =B, (4.5)
The corresponding Fadeev-Popov determinant is easily
obtained as (see Appendix A)
J[B, ¢] = Dety(6,,V*V,). (4.6)
The subindex 0 in Det, indicates that the determinant is to
be evaluated in the ¢“ space, i.e., the coordinate-scalar
space. As already noted, the reference to the adjoint gauge
representation is not explicitly displayed, as its presence is
ubiquitous and no other gauge representation will be
needed. With our choice of a linear change of variables,

°It does not depend on Af(x), J(x), nor M (x). It is also
independent of the metric if no derivatives are involved.

the determinant J does not depend on the quantum fields B,
¢. It depends on Aj and g,,. As usual, the determinant can
be implemented through a complex ghost field with
quadratic action.

It is worth noticing that one could have introduced the
Stueckelberg field in a different manner, to wit, through the
change of variable A = B in Eq. (3.1), where Q(x) is an
arbitrary gauge transformation, and ¢“(x) enters through
Q = ¢, In addition, the measure DA is replaced by
DBDQ." In this way, the full theory S[B%] becomes gauge
invariant even in the presence of the mass term. Then one
fixes the gauge as usual with the Fadeev-Popov method. A
more involved question is how to introduce the background
gauge machinery. In such alternative approach, the change
of variables from (A, y) to (B,¢) is not linear and so it
should be considerably more complicated than the method
adopted above. In the Abelian case, the two approaches are
equivalent.

B. The one-loop effective action revisited

The introduction of the gauge-fixing action Sy[y| adds
an irrelevant constant to the effective action. Hence, in
variables (B, ¢) the effective action is just

& (SIA+A] + ngM)>

1
Fl [A] = ElogDetl+0< 5(8 ¢)2

B=

0
$=0

— log Dety(8,,V?), (4.7)
where the last term comes from the Fadeev-Popov deter-
minant. The subindex 1+ 0 indicates the direct sum of
coordinate-vector and -scalar spaces.

The kinetic energy term (3.12) in variables (B, ¢)
becomes (see Appendix A)

1 1
SlAI= [ atn (5 (B0 - (557 - Fiteges,

1 1
-l-ERWBzB,‘,‘ + F,‘j}j,/qﬁ“Bff —l—EFﬁ},’Dqﬁ“qﬁfj) , (4.8)
while Sy¢[y] is already quadratic, namely,
1
Suldl = [ @'xva; (81, (4.9)

This contribution removes the problematic longitudinal
term in the kinetic energy. The price to pay is the
introduction of a kinetic term for ¢ which has a metriclike
coupling to the mass tensor, namely, the last term in

’Or just DBD¢. The two measures DQ and D¢ are equiv-
alent. As is well known, the Jacobian of an ultralocal change
of variables such as 0Q/d¢ has no effect in dimensional
regularization.
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1
S A] = / ddx\/§<§MZZB,§’B’Z + M B

1 'z
+§M’;b ,‘jqﬁ,’j). (4.10)

In summary, the new full quadratic Lagrangian control-
ling the one-loop fluctuations is

(B.¢)K(B.¢)" + Vil (4.11)

I\JI'—‘

The ghost field @, is a complex fermionic coordinate-scalar
and gauge-vector field. On the other hand K is a second
order differential operator acting on the space (5, ¢),

—V2gH — QFM 4 RV 4 MM —F, ' + MMV,
K = ) w . o (4.12)
F.' =V M HF W’ Vgt =V MPV, )
[
The matrix gauge indices are implicit. {, } denotes the —V2gw 4 ym -+ + MHV,,
anticommutator. K= < =V M® =V +3{PF .V} + W) (4.15)

Note that several differential operators can be read from
the last term in Eq. (4.8), namely, F,”Vj, VF,/ or
1{Fu".Vs}. All of them are equivalent in the ¢-¢ sector,
since the matrix F,, is antisymmetric and the Hilbert space
spanned by ¢ is real. However, the functional integral over
B and ¢ is only related to the determinant of the symmetric
version of K, the one presented in Eq. (4.12).

As expected, after the introduction of the Stueckelberg
field, the principal symbol of the operator K is no longer
singular. Nevertheless, even though the technical problems
have been sorted, the pathologies still will reflect on the
effective action; in particular, one finds that the UV
divergences do not depend polynomially on M, as already
happened in the case N = 1 studied in [34,35].

The leading UV divergent terms, with two derivatives,
are at the diagonal of the matrix K. Particularly problematic
will be the term -V, M% V in the ¢-¢ sector. Because the
leading divergence in the covariant derivatives is Abelian,
only the symmetric component of M* is truly of second
order. Hence, we will introduce the separation of the mass
tensor into symmetric and antisymmetric components,

oy uv
Mab - Mab + ab>

—_ _ N

ab - Q Qba

My, = Mg, = M),.
(4.13)

It can be noted that M** must be positive definite and
should dominate Q*¥, which is not. The mass term from Q
is subdivergent since it is of first order in the derivatives.
Indeed, after integration by parts,

/ dix /55 O
/ ddx\/_( el - OLF: a¢b>. (4.14)

Then the (symmetric) fluctuation operator K takes the final
form

where we have introduced the following shorthand
notation:

Y, = My, —2F,, +R,,

1
W - 4 {Q;wv ;w} (416)

O, =F

aoy>

P u = F aap Qmmv

as well as

V2, =V, MY, (4.17)

As already noted, the field M**(x), which was seemingly
UV subdominant in the original action, is in fact UV
dominant in the sector of the field ¢ in K and acts
effectively as a second (inverse) metric. In the Abelian
case (N = 1) such metric is an ordinary one, and even so it
introduced a considerable amount of complication in the
calculation of the effective action in [34,35]. In the setting
discussed in this work, the “effective metric” M**(x) is a
non-Abelian one in gauge space, so we can certainly expect
a higher degree of difficulty in the resources needed to
attack this problem.

From the Lagrangian in Eq. (4.11), the effective action to
one loop is thus

[ [A M, g] = T [As M. g] + Tn[As g]. (4.18)
with
1
Ik[A; M. g = ETrlJr() log(K).
[gnlA; g] = —Try log(V?). (4.19)
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C. Contributions to the effective action

As just said, the effective action can be split into
[y =Tk + gy (4.20)

The operator K can be split into UV leading O(V?) and
subdivergent O(V) components

K=K, +Kg.

K, = diag(-V?¢*,-V3,). (4.21)

Correspondingly, we also separate the effective action as

Tk =3 Triao(Ko (1 + K'Kg) =T, +T5, (422)
with
Iy = 3 Tryolog(K,).
[y = %TrHO log(1 + K;'Ky). (4.23)

The relation Tr(log(AB)) = Tr(log(A)) + Tr(log(B)) is
only guaranteed for sufficiently convergent pseudodiffer-
ential operators A and B. Nevertheless, it is expected to
correctly reproduce the UV divergent terms within dimen-
sional regularization when A and B are both coordinate-
scalar operators.

I'; can be split further as

FL == FL,l + FL,O’ (424)
with
1 2
Ipa= ETH log(—V2g),
1
FL,O = ETI'O log(—V%,l) (425)

For the purpose of obtaining the UV divergences of the
effective action, the subdivergent terms can be treated
perturbatively

1
FS = 5Trl+0 log( —+ KL KS (426)

ern’

where

1
Dgn = —%TYHO((—KZIKSY’)- (4.27)
Since K7'Kg = O(V™!), terms with n > d are UV finite
in d spacetime dimensions. Thus, collecting the various

contributions,

l—wliw Fdlv + l"dlv (428)

dlv + Z l—*dlv

The contributions to I'{"V[A; M, ¢] are analyzed in the
following sections, after introducing some notation.

V. SOME NOTATIONAL CONVENTIONS

A. Covariant derivatives

Let us first recall that the covariant derivative operator
V,, contains all connections (and not only the Christoffel
symbols), and also our convention that covariant deriva-
tives are indicated by adding coordinate indices to the
left, e.g.,

R vp’ R;waﬂ]? (5 1)

v = | ue

1
R/Mﬂ = ER
Here R,,.5, R, and R denote the Riemann tensor, the
Ricci tensor, and the scalar curvature, respectively.

All quantities in the fluctuation operator K are to be
regarded as operators acting on the vector space spanned by
the fields B, and ¢. Hence V, acts on such quantities
through the commutator. In particular g,,,, M*”, and F,, are
purely multiplicative operators, which means that they are
ordinary functions (possibly matrices in gauge space).®

B. Operators Z,, ..,

We will make use of the operator Z,,, which is defined as

=[V,.V,. (5.2)
This operator is multiplicative because its action on a
quantity does not involve derivatives of that quantity; Z,, is
diagonal in x space. However, it is not purely multiplicative
because it acts (is not diagonal) on coordinate indices. For
instance, for a purely multiplicative tensor field V,,,

[Zmn V ]

Rﬂvalvﬂﬂ + R;wﬂlva/l + [ A V ] (53)
The operator Z,, admits a natural separation between
coordinate and gauge actions

Zy = Z{fy + F

JA

(5.4)

where Zl’fy acts only on coordinate indices. As illustrated in
(5.3), the operator fo,, acts on every coordinate index
in turn.

Higher order operators Z, .., , with n covariant deriv-
atives, are defined recursively (see Appendix B) so that

they are also multiplicative. Letting = p; - - - u,, denote a

80f class C(V,Z) in the notation of [37].
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string of coordinate indices, the operators Z; have again a
clean separation between coordinate and gauge

Z[ :Z}e +F[, (55)

and also fulfill

[Zf’ Vﬂlﬂz] = Rl!lllv/lﬂz + Rlﬂzlvﬂll' (56)

In fact, these operators are an anti-Hermitian version of the
derivatives of the operator R, of [18]. Specifically,

Zglman/w = va] T va,,,f?//w + Cal~~~anﬂw (57)

where the C; are purely multiplicative operators con-
structed with the Riemann tensor,

Cn=0,
1 1
= ERﬂazmwan;walﬂ + ERr11/1a3---a,,;wa22 +oe

1
+ ERa] O Apva, A

Cooapw
(5.8)

Eventually we will need to take traces of operators with a
factor ZR on the left. The formulas for the coordinate-scalar
and -vector spaces are, respectively,

tro(ZF0) = ~try(C,0),

try (ZFOF,)) = tr (R, = ¢2C1)OY).  (5.9)
Further details and proofs are given in Appendix B.
C. Integrals and traces
We will use the shorthand notation
(X), = /ddx\/ﬁX, (5.10)

as well as

(X) g = /d"x\/f)trg(X) = (try,(X)),, (5.11)

where tr () refers to trace over gauge space. In particular
tr,(1) = N, the dimension of the gauge space is the number
of dynamical real vector fields in the theory.

In addition, for integrals over a momentum variable in
Sec. VII,

1 dd+2£P

- Vel o

where d + 2¢ refers to dimensional regularization. We also
use combinations such as (X), , for ((X),),, etc.

(X, (5.12)

VI. RESULTS FOR 'V
A. Results for I'y;, and I'; ;

The contributions I'y, and I'; ; to the one-loop effective
action are given by Eqgs. (4.19) and (4.25), respectively. The
computation of their UV divergent part is straightforward in
dimension regularization, in d + 2e dimensions, using the
identity

1 1

Telog(-V)la, = ¢y [ @xv/(buno). (6.1

where the trace is taken in the corresponding space and b,,
is the nth heat-kernel coefficient of the Laplacian [39]. For
d =2 and d = 4, the required coefficients are

1
b, =-R
1 6 5
1 1 1 1
by=—272 +—R: ——R2 +__R2 (62
2= 1% T g N T 150 Vi T 75 (6.2)

As they stand, these formulas hold for an arbitrary space
since Z,, takes care of all required curvatures (coordinate,
gauge, or other in more general cases). For the space of
coordinate tensors of rank r in d dimensions (and adjoint
gauge representation), one easily finds

trr(z/zw) = trr(szw) + trr((zﬁu)z)
= d’trg(Flzw) — rd""'NR?

pvap’

(6.3)

where as already said tr,() denotes the trace over gauge
space. Of course, this result is fully consistent with
Eq. (5.9).

Therefore, for d = 2,

‘ 1 /1
Fdlv =——— (R
gh 4ze <6 >x.g’

. 1 /1
dv—=_—_(-R) .
Ll 47r8<6 >X_g

These two contributions cancel each other, as they should
ind=2.

(6.4)

For d = 4,
. 1 1 1 1 1
Fchv [ _F2 _RZ __RZ _R2 ,
gh 47)%e \ 12 ””+180 w180 ler72
X.9
. 1 1 11 1 1
l"dIV — _F2 __R2 __RZ _R2 .
b (4ﬂ)2€<6 360" 90" 36 >x,g

(6.5)
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B. Results for I'g

1. Contributions to T'g
The UV divergent part of I'g in d dimensions is contained
in >4 Ig,, where 'y, is given in Eq. (4.27). The
quantity K;, defined in Eq. (4.21), is homogeneous in V

be used to collect equivalent terms and also we choose
whenever possible to bring the trace to the scalar-
coordinate space.

Introducing the notation

1
of degree 42, while Kg¢= K — K, contains terms of A= v Ay = v (6.6)
degrees 0 and 1. We will expand I'g, in powers of V M
keeping terms up to O(V~*), which is sufficient for ['!"¥ in
spacetime dimensions d < 4. The trace cyclic property can  this procedure yields the following expressions:
|
1 1 1
FS.] :Trl _EAYIU’ —|—Tr0 —EAMW—ZAM{P”,V”} s
1 1 1
FS,2 = Tr1 _ZAY/MIAY(ZD + Tro EAM(DﬂAq)M -+ EAMV,MMMVAMMIVH
1 1
~5 Ay®,AM,V, — EAMV,,MWNIJ,,
1 1 1
- ZAMWAMW - 1_6AM{P;N vﬂ}AM{PZ/’ vl/} - ZAM{P/N V”}AMW> s
1 1 1
FS.3 = TI'O <§ AMV/AMﬂbAYvaAMaﬁv/f + EAMWAMvﬂM/wAMDava + ZAM{PM, vy}AMVUMDaAMaﬁVﬂ
1 1
-7 Ay{P,. V,}AyV, M, AD, — 3 Ay{P,. V, }Ay®,AM,V,
1 1
- AW (P ) P V) = 4 B (P T, 8 PV, (P V) 4 O(7) )
1 1
FS,4 = TI'O (— ZAMvﬂMﬂbAMvavaAMvﬂMﬂpAMpava + g AM{P”, V”}AM{PD, VH}AMVaMaﬂAMﬂpr
1
TR AT AT SIS AER ) ) (67)

The functional traces are of the form

Tr,(4) = / dlx /G, (AR, =01,  (6.8)

where d is the spacetime dimension and tr, or tr; refer to
the trace over coordinate labels, scalar or vector, respec-
tively, and also include trace over gauge labels. In detail,
the diagonal (in x space) matrix element (x|A|x) is of the
form (x,I’, a|Alx, I, b), where a, b are gauge labels in the
adjoint representation and I, I’ are coordinate labels. For
Try() these coordinate labels are absent, while for Tr;()
they are of the type I = pu, I' = v.

At this point, one could already attempt the computation
of the functional traces to obtain I'!"™. Nevertheless, it is
convenient to first simplify the expressions by bringing the
operators to a canonical form. This is in the same spirit as
the universal functional traces of [18]. The goal is to put
together terms involving powers of V (to wit, Vﬂ, A, and

[
A,y on one side and the purely multiplicative terms on
another. That is, bring the various operators in (6.7) to the
form

(6.9)

A=) 0,4,

where O, form a basis of pseudodifferential operators and
A, are purely multiplicative operators. We have chosen to
put the latter on the right-hand side. Thus, for the diagonal
matrix elements,

(x,1',a

A|x,I,b):Z<x,I’,a

n,c

O,

x,1,¢)(A,(x))., (6.10)

or just (x|Alx) =>_,(x|O,|x)A,(x). The coefficients A,
do not modify the UV degree of divergence of the term,
which is controlled by O,, so the hardest work is comput-
ing (x|O,|x).
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To obtain the expansion in Eq. (6.9), we apply the following commutation identities:

{V/le] =X ul >

A, X)) = A(X 0 — 2V, X,1)A,

pupul

1
A V,] = A(zvyz -V,R +Z,, +4RH>A

[AMv vﬂ]
[A.ZF] = A(V,Ryp — 2V, Z8 + ZR A,
[AM7 Zﬁ <v;4M;w( alva — 2Z51) + M/w (Zﬁyl -

In these formulas / = p; - - - u,, represents any (possibly
empty) string of coordinate indices (e.g., aff) and ul the
new string adding u to the left (e.g., paff). X; represents a
purely multiplicative operator, that is, any coordinate tensor
(in particular, may be a coordinate scalar) and a matrix in
gauge space, not involving V, nor Z}.

The usefulness of the commutation relations (6.11) is
that the true degree of UV divergence of the operator on the
left-hand side is actually smaller than the nominal one. So,
for instance, [A, X;] would be nominally of O(V~2), while
this commutator is actually of order O(V~?). Note that Z;
|

(01),4 - AMV,,,

<O3),w = AMAvﬂvw

(05),4 - AMAV,“
(O71X]), = AuXAyV,,

_R/mlva - ERaylua> + Mﬂﬂl/ (Z

= Ay (VoVM s = VoM ppy +VoMopZ g + 2,6V M o — Z,oaM o) Ay

1 1
_ERalva)>AM' (611)

and ZK count as degree O(V?) as they do not add to the UV
degree of divergence of a term, as follows from the property
in Eq. (B4).

A very conspicuous and relevant absence in the list of
commutators is the combination [A,;, X;]. This is not in the
list because that commutator is still of O(V~2) unless
[X;,M,,] =0. This absence prevents one from putting
together all terms involving V and is a consequence of the
non-Abelian character of the theory.

For I'g, the operators required in the basis are

O, = Ay,
(OslX]) = AuXANV,V,,
(O8)wa = AuA?V, V.V,
(Os(X]) e = AuXAYAV,V, V,,

(Og[X, X)) e = Ay XAy X' Ay V,V,V,, Oy = AyA, (6.12)
(Oll)ﬂu = AMszMvD’ (OIZ)ﬂl/aﬂ = AMA V v,V V/;, .
013[X] = Ay XAy, (014[ ]);w - AMXAMAVMVU’
(OIS{X])/Abaﬁ = AMXAMszuvuvavﬁf (Olé[xv X/D/w = AMXAMX,AMVﬂVw
(047]X, X’])Mmﬁ = AyXAyX'AyAV,V,V Vs (Op[X, X’,X”])ﬂmﬁ = Ay XAy X' AyX"AyV,V,V, V.
Op=A Oy = A2

Here X, X/, and X" are arbitrary purely multiplicative
operators, possibly with coordinate indices. The presence
of operators in the basis with such insertions of purely
multiplicative operators is a direct consequence of [A,, X]
being of O(V~2) in the non-Abelian case. Nevertheless, the
computation of the diagonal matrix elements of the
operators O, can be done for generic X, X', and X”.
The operators O;—Q; are required for the terms Tr() of
I's in d = 4 dimensions, O9 and O, appear in the terms
Tr;(). The explicit expansion of the operators in T,
Eq. (6.7), in the basis (6.12) is presented in Appendix C.

The traces indicated in Eq. (6.7) can then be obtained
from

A)—<Ztrr(<x|(’)n|x>An(x))>, r=0,1. (6.13)

The diagonal matrix elements of the operators O, can be
regarded as a generalization of the well-known ““universal
functional traces” introduced in [18] and computed there
using a Schwinger-DeWitt technique. The same technique

105019-10



NONMINIMAL NON-ABELIAN QUANTUM VECTOR FIELDS IN ...

PHYS. REV. D 106, 105019 (2022)

was adapted in [34] for the Abelian case, where M** acts
effectively as a second metric. Our problem involves
considerably more complicated operators since now such
effective metric is gauge non-Abelian. We will use the
method of covariant symbols, already applied in [35] in the
Abelian setting. Of course, it would be interesting to adapt
the Schwinger-DeWitt approach to the present non-
Abelian case.

2.1 ind=2

Details of the calculation of the divergent part of the
diagonal matrix elements will be given in Sec. VIL
However, from the data displayed in Table I, we already
anticipate that the number of terms contributing to ngv is
very large for d = 4 (namely, 265 terms from O, 123 from
Oy, etc). In view of this, we will only display explicit results
for d = 2.

In d =2, Eq. (6.7) reduces to

1 1 1
FS,I :Trl <_§AY/4D> +Tr() <_§AMW_ZAM{P,“’V,”}> ,

1
FS,Z = TI'O (z AMV;tMMyAMDava

1 -
_RAM{PWV”}AM{PD,VD}—kO(V 3)) (6.14)

This can be rewritten using the basis of operators O, in
Eq. (6.12) (see Appendix C),

1

1 1
FS,I :Tr1 <_5019Yﬂv> +Tr0 <—502W—§(01)”P”

1
+Z(92PW+0(V—3)>,

1 1
1—‘5,2 :TrO <§(03)/HJM[I(IM[II/ _1(04 [PMD;;DPU + O(v_3 )) .
(6.15)

Details of the calculation are given in Sec. VIIB. The
result is’

w1/ 1 1 1.
FSJ:% _EY””_ENMW+ZNMP”M
1. N N Aa oA a
—ENMMWNMMW/;NMPﬂkaO,kﬂki

1. N N AAa o
—|—NMMWﬁNMMWNMPlkUkak/}k,{> ,

2 X,g,ang
T = (SR My Moy~ R PRy P
S’2_47I8 2 M Ha av™ vy 4 ML VML vty x’g’ang'

(6.16)

9
Note that Yﬂﬂ = Mﬂll + R, PMM :%[F/u,s Q;u/]'

TABLE I. For the various operators in Eq. (6.12), the second
column displays the UV divergence degree, while the columns
labeled with —2, —4, —6 show the number of terms of each degree
in the expansion of the diagonal matrix element of the operator.

Operator Degree -2 —4 -6
0, -1 2 265

0, -2 1 11 3303
O; -2 1 44

Oy -2 1 123

Os -3 2

O78 =3 6

Oy -3 12

O10.18 —4 1

O -2 1 1

Oy —4 1

Here k, is a normalized momentum variable, ¢’k k, = 1,
whereas

Ny = (k e, M)~ (6.17)
The symbol (),,, denotes angular average over lAcﬂ,
_T'(d/2) de1
X} =5 / d1Q, X, (6.18)
This average is to be applied together with (), , already

introduced in Sec. V C.

Equation (6.16) is our final result for I'{"¥ in d = 2. The
expression for d = 4 is qualitatively similar, but consid-
erably longer. Further perturbative results are given in
Appendix D.

While the angular averages in Eq. (6.16) cannot be
evaluated in closed form in general, they are perfectly
convergent and well defined. In any case, these integrals
introduce a wild local but nonpolynomial dependence on
the field M”, (x) in the divergent part of the effective action,
implying that the UV divergences cannot be removed by
polynomial counterterms, rendering the theory not renor-
malizable in a standard sense. This was true already when
N =1, the Abelian case studied in [32-35].

C. Results for I'; ,

1. Preliminaries
The remaining contribution to the effective actionis I' ),
1 ) 1
o= ETrO log(-V3,) = ETrO log(-=V,M*Vy). (6.19)

This is the effective action of a scalar field with action

1 y
Sio— / AN (6.20)

105019-11



L.L. SALCEDO

PHYS. REV. D 106, 105019 (2022)

In the special case of N = 1, that is, when there is no gauge
sector (the case considered in [32-35]), one can combine
g and M into a new metric §,,, namely, \/gM* =
VG3" [34,41], in such a way that

0—/ddx\/§%¢”§’“’¢y (N=1). (6.21)

Hence, I'; o =3Tr log(—=V?) and the heat-kernel result
(6.1) immediately applies. Note that this method works in
any spacetime dimension except d = 2, since in that case
det(/Gj) = 1.

Unfortunately, no such simplification takes place for
N > 1. In fact the situation is even worse, namely, I'{'}
does not admit a standard form, like that displayed in
Eq. (7.18). By definition, we say that the terms in an
expansion of a diagonal matrix element (x|O|x) adopt a
“standard form” when all the pieces are covariant with no
“free” V,, operators (all V,, are in the form [V, ]) and only
remains to carry out a momentum integration. Also, labeled
operators [42] are not permitted in a standard form. The
momentum integration can be traded by another parameter,
e.g., a proper time as in a Schwinger parametrization.

While a standard form can always be achieved for matrix
elements of the type (x|f(V,X)|x) (X being purely
multiplicative operators) when the dependence on V, is
of rational type, this is not guaranteed for more general
functions f. However, it is often the case that a standard
form exists for a pseudodifferential operator of the type
log(f) with f a differential operator. A well-known instance
of standard form for a Trlog is that found by Chan (for flat
spacetime to fourth order in a derivative expansion) [43]. To
second order,

Trlog(—V; + X)
ddk k>
(/& ( log(Ne) + [V, NP +0(7) )

X9

(6.22)

C_(k2+X

Extensions of this formula exist to sixth order [44], also for
curved spacetime [45] and for finite temperature [46]. Yet
the techniques applied in those cases cannot be translated to
evaluating I';  because in the present case what plays the
role of a metric, M*, is actually a nontrivial matrix in
gauge space and appears already in the leading term
log(k,k,M*). The obstruction to a standard form does
not depend on the method used to compute the effective
action; it is intrinsic to I', ; in the non-Abelian case.

2. Special case of separable mass term

Here we mention the special case of a mass term
separable in coordinate and gauge spaces, that is,

M (x) = Ty (x) G (). (6.23)
The fluctuation operator can then be written as
VM¥N g =V, TG¥Vy =TV, GV +T,G¥V,
=T(VZ + L*V,), (6.24)
where we have defined
Vi = VaG“ﬁVﬂ, L=T7'T,G*. (6.25)

Now, the factor T (x) can be dropped from Tr(log(—V3,)),
being ultralocal (carries no derivative operators), hence

1
FL.O = ETI'O log(—Vé — L"Va)

1 1
:§Tr0 log(-VZ) + = Tro log(1 + AgL*V,), (6.26)

with A = 1/VZ. The first term is just like I'; ; of the
Abelian case N = 1 (with G** instead of M**). The second
term can be expanded in powers of AgL*V,, similarly as
done for I'g in (4.26). So this contribution does admit a
standard form.

It is noteworthy that there is an ambiguity in the
separation (6.23) of the Weyl-transformation type, namely,

G (x) > Ax)G* (x),  Tup(x) =47 (x)Tap (x),

(6.27)
where A(x) is local but both scalar coordinate and gauge
singlet. Such ambiguity can be used to fix some gauge
condition on G*(x) or T,,(x), or as a check of the
calculation, since the sum of the two terms in (6.26) should
be 4 independent.

We do not pursue the subject of the separable mass case
any further in this work.

3. Method of contour integration

Coming back to the case of a general mass term M’ (x),
to deal with the logarithm we follow here the approach of
introducing a parametric integral. This is based on the
observation that a standard form would easily follow for a
rational function instead of the log.

The contour integration method is based on the identity

dz 1 1
o= [ —1 —Try| —=5 2
o= [ e o). 629

where the path y is meant to enclose counterclockwise the
spectrum of —V3,. More precisely, the path y on the z
complex plane starts at —oco toward the origin just above the
negative real semiaxis, encircles z = 0 clockwise, and goes
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back to —oo just below the negative real semiaxis. ' Hence,
introducing a convenient notation,
dz 1
X).= | —I X, O=——, 6.29
0= [ Sols@X. 0= (629)
we can express Eq. (6.28) as
1 /
FL,O = ETro(Oz) . (630)
4

The calculation of the diagonal matrix element (x|O)|x)
is formally identical to that of (x|O,|x); unfortunately, the
presence of the z integration implies that the relevant
quantity (0}), = log(=V3,) is actually of degree O(V?)
instead of O(V~2). Hence, the amount of work required to
evaluate (x|(0}),|x) is similar to that of (x|O,|x) for d 4 2
|

dimensions to achieve the same degree of UV divergence
(see Sec. VII C).

The convergence problem would not improve if instead
of a z integration the sought-for rational dependence on V,
was obtained through the variation of I'j, under a
deformation of M,

1
o' o = ETTO(AMVﬂtsM””V,,), (6.31)

as this requires one to evaluate (x|A,V,V, |x), which is
still of O(V?).

4Ty gind=2

Once again, the number of terms is prohibitively large in
d = 4 [it requires O, to O(p~°) in Table I] and we present
results for d = 2. The calculation gives

iy = 4%8< NuM oy Ny MoyasN Moo N M Nygk ko sk ey — NygMoyoN Mg Ny M oy N oy M, Ny R ok g ok K,
+ Ny My Ny My Ny M o Nk sk ey — %N My N oM oosN M s N ik Rk K
+ %NMMMWNMMWPNMM%NMIA(UlAcalAc/,IAc,, %N MV yiM g, Ny Mo Ny R o
- %NMMWNMMWNM SN RE ko ksk, + ;NMM NyyM ooy Ny, hy — %NMMWFWNMMWNM%D@

1 A A ~AOA 1 A A IS ~oA 1 A A
_ENMM Ny F wa a,,NMkykﬂ+§NMMWNMMWNMRI<,,I<(,—i—ﬁNMMWNMR>

In this formula N, = (—z + ]%M/AC,,MW)_I. Besides integra-
tion over x, trace over gauge space, and angular average, an
integral over z, as defined in Eq. (6.29), is applied.
Integration by parts with respect to x has been used to
have at most one covariant derivative on M,,. Also the
following two-dimensional identities have been used:

Rﬂl/(lﬂ - (g,ua.gy/i - gﬂﬁgv(l)R’

R =~ guR. (6.33)

NI'—‘I\JI'—‘

In addition, integration by parts identities in momentum
space have been applied to bring the expression to a
manifestly Hermitian form.

Perturbative expansions are presented in Appendix D.

"“The ¢ function result would follow from understanding
log(z) as —% at s = 0 in the sense of analytical continuation

in the s variable, taking the derivative with respect to s only after
the Tr() has been computed [47].

(6.32)

X,g,ang,z

5. Verification of metric-related symmetries in I'y

The Weyl-like transformation noted at the end of Sec. II,
G (6) = () gy (x). M () = E2(x) M (x), is @ sym-
metry of the full action only in d = 4. However, in any
spacetime dimension, I'; ( has a large symmetry as this term
only depends on the pair (g,,, M*) through the combination
V/gM", . This follows from (6.20) since ¢* are coordinate
scalars and so ¢y does not depend on the metric tensor.

It is convenient to distinguish two types of symmetry
transformations leaving invariant I'; ;, which will be called
“transverse” and “longitudinal,” respectively,

(i) A transverse transformation corresponds to leaving

M*" intact, while g, changes arbitrarily but keeping
/g invariant, thus preserving the volume element.

(i) A longitudinal transformation corresponds to the

simultaneous change

g/w(x) - f(x)g;woc)’

My, (x) = &P )My, (x). (6.34)

in d spacetime dimensions.
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We have checked that both symmetries are fulfilled by
the expression in Eq. (6.32). It is sufficient to consider
the infinitesimal case.'' For transverse transformations, the
first order variations are

0g, = @, Wwith o', =0,

SMP = 6p, = 6F,, = 3Ny =0,
1
5Ma;w - 5 (a)a'uﬂ + )y — a)ﬂaﬁ)M}W

1 A
+3 (a)aljﬂ =+ a)ﬂva - a)yai)Mﬂ ’

2
5(gﬂIJR) - a)/l/db + wiuiﬂ - wlﬁ/w (d = 2) (635)
It should be noted that the metric does not appear explicitly
anywhere in Eq. (7.21), and the metric is only contained in
R4 R, and the covariant derivatives. This is because
the same is true for the covariant symbols of V, and the
multiplicative operators, and no explicit metric appears
in the original expression of ). After using the two-
dimensional identities (6.33) the metric does enter in
Eg. (7.22) in the combination g, R. In d = 2, the variation
of this quantity depends only on derivatives of w,,. Also
note that the integral (), , does not contain a net ,/g. When
the above first order variations are applied to (7.22), and
after integration by parts in x space to remove terms with
@yqp (tWO derivatives), one obtains an expression which
vanishes upon integration by parts in p space. We have
checked this to third order in an expansion of the type
M* = m?g¢" + H* in powers of H*. The integration over
z plays no role in the cancellation of terms.
For first order longitudinal variations, one has instead (in
d=72),

op, =oF

w=0,  SMW = —wMr,

5g/w =W
1 1
5Maﬂy = _WM(I”U + 5 Wﬂ,g'u(lM/IV + 5 "V/Igyar}‘4”}L

1 1
— WM = WM,

5(g,R) = —wh;. (6.36)
The terms with w without a covariant derivative correspond
to global transformations. It is easy to verify that (7.22)
remains invariant under global longitudinal transformations
by applying the simultaneous rescaling z — £~'z (which in
turn implies Ny, — Ny, or 6Ny = wiN,,). Therefore, it is
only necessary to keep terms with w, and w,, in the
variation of (7.22). After variation and integration by parts
in x to remove terms with w,, (two derivatives), one finds

that the result cancels upon integration over p. Once again

"Here we need to refer to results to be established in
Sec. VIIC.

we have checked this through third order in an expansion in
powers of H".

The cancellation of transverse and longitudinal varia-
tions of the effective action is a highly nontrivial check
of Eq. (6.32).

VII. COMPUTATION OF THE DIAGONAL
MATRIX ELEMENTS

A. Method of covariant symbols

The diagonal matrix elements can be computed using the
method of covariant symbols. This method was introduced
in [48] for flat spacetime and extended to curved spacetime
in [37] where it is described in great detail. It has also been
extended to finite temperature in [46,49]. A summary can
be found in [35] (Sec. III. 4 and Appendix B). Nevertheless,
as the method is not widely known, and to have a more self-
contained work, we give some details here.

For an operator O, constructed with V, plus some
purely multiplicative fields, such as those in the basis
(6.12), its covariant symbol will be denoted O. This
quantity is obtained by applying two successive similarity
transformations’

O 1= eVt e E Pl msVo?Y |, (7.1)
Here {, } denotes the anticommutator, & are the Riemann
coordinates corresponding to the affine connection in V,
located at the point x where the diagonal matrix element
(x|O|x) will be evaluated, P, is a momentum variable, and
0" =d/dp,. For convenience, we use a purely imaginary
variable, p, = ik,, k € R? but dp = d’k. This definition
of covariant symbols holds for V, having any affine
connections (e.g., with torsion); here we assume the
Levi-Civita connection for the coordinate indices, plus
the gauge connection.

The original operator O acts only in x space (and
possibly in some internal space), while its covariant symbol
O acts both on x and p spaces. The first remarkable
property of @ is that this operator is multiplicative with
respect to x (although not with respect to p). This means
that it commutes with functions of x which are coordinate
scalar and gauge singlet.

The second important property of the map O > Oisthat,
being a similarity transformation, it is a faithful algebra
homomorphism (which also preserves Hermiticity).
Therefore, the covariant symbol of a pseudodifferential
operator of the type f(V,,X) is simply f(Vﬂ,)_(). This
implies that it is sufficient to obtain (once and for all) the
covariant symbol of a few basic blocks and, once this is
done, there is no need to go back to the original definition in
Eq. (7.1). For instance,

This formula is schematic, see full construction in [37].
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1 1
vy = p,u - Z{Zuﬂv aa} +§{[Za/u p/}]’ aaaﬁ} + 0([7_2)9

1 _
57 Xap0” & +0(p).
_ 1

Z;w = Z;w - E{Zapw aa} + O(p_z)'

X=X- X 0% +
(7.2)

Extensive formulas can be found in [35,37]. As advertised,
explicit V, are no longer present and the covariant symbol is
a multiplicative operator. The expressions take the form of
an expansion in powers of V/p, i.e., with terms ordered by
the number of covariant derivatives or equivalently by
powers of p,, [counting 0¥ as O(p~")]. Here X is any purely
multiplicative operator (i.e., not containing V, nor Z¥), so in
particular,

_ 1
M, =M, — M4, 0"+ M

21 aﬂwdaaﬁ + 0([7—3)

(7.3)

And, of course, Z,, = [V, V,] is verified.

It might seem that Z,,, or Z,,,, would commute with p; or
0" in Eq. (7.2), but in fact this is not so. Since p, and 0"
carry coordinate indices, Eq. (B4) applies and one has
instead

(20" =

[Z/wv p(l] = R;wa/}p/}v ;wa/}aﬂ‘ (74)

Equations (7.2) are written so that the Hermiticity proper-
ties are manifest. Note that the metric does not appear in the
covariant symbols of V,, or X; in fact, those formulas hold
for a completely arbltrary torsionless connection.”> The
concrete connection will show up through the action of Z,,,,
asin Eq. (5.9). In our case, we have also g,, = g,, since V,,
is metric preserving.

The last important property of the covariant symbols to
be noted is their relation with diagonal matrix elements,

n _L ddp _
ol == [ 25

Here the object 1 (which is usually not written explicitly) is
the function identically equal to 1 in momentum space. In
practice, this means that the operator ¢ in O vanishes when
it is placed on the right. On the other hand, ¢* is also zero
when placed on the left due to the integral over p,,.

The quantity O1 (with all the ¢* already canceled by
moving them to the right) is just a function of x and p and is
closer to the standard definition of the symbol of a
pseudodifferential operator. Hence, the function O1 (multi-
plicative with respect to p,) is what is needed to obtain the

(7.5)

diagonal matrix elements, but the full covariant symbol O
is the object carrying a faithful algebra representation.

“In this sense Vﬂ or X are truly universal.

If instead of Eq. (7.1) only the first similarity trans-
formation is applied, O+ eP«De’Ps, one obtains
f(V.X)— f(V+p,X), and the result is the method of
noncovariant symbols,

= sl

The integrand is not a multiplicative operator (nor mani-
festly covariant) but it becomes so after integration over p,,.
What the additional similarity transformation achieves in
Eq. (7.1) is precisely to have an integrand which is
manifestly covariant by systematically applying integration
by parts in p space. Further details on the method of
noncovariant symbols are given in Appendix E.

The manifest covariance of @ (and hence O1) follows
from using Riemann coordinates at x (rather than the Synge
function as in the Schwinger-DeWitt approach), so the
method of covariant symbols is suited to computing
diagonal matrix elements (within a derivative expansion
approach), but not for nondiagonal matrix elements. On the

(x|f(V,X)|x V+p.X). (7.6)

other hand, the method makes no assumptions on O so it
works equally well even for a pseudo-Laplacian like V3,
with a “metric” which is non-Abelian.

We will illustrate the use of the method of covariant
symbols below, but its application is straightforward. O is
obtained from f(V,X) — f(V.X), and V,, X are taken
from the already compiled tables to the required order. The
quantity O so obtained contains only purely multiplicative
operators (covariant derivatives of X), plus Z, .., ., p,
and 0".

The natural next step is to remove all ¢# by moving them
to the right where they vanish, acting on all dependence on
py- In doing so the commutator between Z, ..., and 0" has
to be applied. This generates some Riemann tensors. One
can also choose to move some of the ¢ to the left (where
they also vanish) if this produces a smaller number of
terms. The two choices are related through integration by
parts in momentum space.

Since p, does not commute with Z,, ..., , in order to carry
out the momentum integration it will be convenient to move
allthe Z, .., together, to the right (or to the left) using their
commutation relations. This produces more coordinate
curvatures and also gauge curvatures F,,. All these
manipulations produce a diagonal matrix element which
does not assume a particular vector space for the action of

the operator O. The concrete space is used when the
operators Z, .., are removed after its action is evaluated,
as in Eq. (5.9).

Once the 0" have been eliminated and all the Z,, ..., are
together (or eliminated) it only remains to carry out the
momentum integration, if possible. When the nonpolyno-
mial dependence on p, comes from a single (and Abelian)

metric, the integrals can often be obtained explicitly.
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If there are two metrics g,, and M*” (and even more so
when the latter is non-Abelian), the integrals cannot be
evaluated in closed form in general. In this case, one should
be aware of ambiguities in the final expression due to
integration by parts in momentum space. Complicated
expressions can occasionally reach a simpler form through
integration by parts in p,. For this reason, the numbers
quoted in Table I are upper bounds.

An explicit application of the method of the covariant
symbols to illustrate the procedure just described is dis-
played in Appendix F, by computing one of the universal
functional traces of [18].

In what follows, we proceed to give details of the
calculation of I'§"¥ and I'{™y.

B. Calculation of I'!i¥ in d =2

The starting point is Eq. (6.15). Applying the covariant
symbols formula (7.5),

(x|0Lx) = (0), (1.7)

[with (), defined in Eq. (5.12) and the 1 is implicit)], one
has"

Since vﬂ = O(p,), while for multiplicative operators X =
O(1) for large p,, the terms O(V~™") in O become O(p™)

in O.

Within dimensional regularization (p™), vanishes for
all n with the exception n = d. Hence, we need to isolate
terms 1/p? in d = 2, and in particular more UV convergent
terms can be neglected.

Of the basic operators present in the formula, O, 3 4 19,
are of O(V~2). Therefore, the covariant symbols of the
latter only require the leading terms of the building blocks,

14For_a multiplicative X, (x|OX|x) = (x[O|x)X(x), consis-
tently (OX), = (O),X(x) since X — X contains ¢* but not p,
[see Eq. (7.2)], and such terms vanish inside ).

V.= p,+0(p™).
Ay =-Ny+0(p7),

A= -N,+ o(p~3),

X=X+0(p™), (7.9)
where X is any purely multiplicative operator. Here we have
introduced the definitions

Ny=(-¢"p.p,)”".  Ny=(-M*p,p,)". (7.10)

Note that Ny, is a matrix in gauge space. This produces

(7)2 = —NM + 0([7_3)7
(_93 = NMng/lpl/ + 0(p_3)’
04[X]yv = NMXNMpﬂpy + 0(p_3)a

O19=—=N,+0(p~3). (7.11)
The terms
degree p~2.

The remaining operator O; is O(V~!) and its covariant
symbol O(p~!). To isolate the 1/p? term we have to
take one more term in the expansion. The expansion in
(7.2) is effectively in powers of V/p, so terms with one
more covariant derivative are needed. Note that in this
counting Z, , counts as O(V"). From its definition
(0y), = AV, one obtains

shown explicitly are homogeneous of

(@1)/1 = AM?& (7-12)

with

Ay =(V,M, V)" (7.13)

The expansion of V, in Eq. (7.9) is already sufficient, but
A, needs to be expanded to order 1/p* which in turn
requires M, to order 1/p,

AM = (p[l(MﬂIJ - Ma;waa)pu + 0(1))_1

= _NM +NMpyMuya6UpaNM + 0(]7_4)- (714)

Therefore,

(@1)/1 = _NMPA + NMpﬂMwaaupaNMp/l + O(P_3)'
(7.15)

To the order needed, the operators (7)2,3,4_19 do not
have any ¢*, hence they already coincide with O,1. For
O, the momentum derivatives can be moved to the right
using

[aﬂv p u] =4,

[0, Ny] = 2p,NyM*N,,.  (7.16)
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In this way,15

(01);,1 ==Nyp, — NyM,,,Nyp;p,
- 2NMMﬂpNMMﬂaﬂNMp/1pvpapﬁ

+0(p~3). (7.17)
The first term is homogeneous of degree 1/p and the two
other explicit terms are homogeneous of degree 1/p?. The
first term vanishes within momentum integration due to
parity. For the same reason, all odd order terms have been
omitted in Table I. In any case, only the contributions 1/ p?
are relevant in d dimensions for [,

No operators Z; appear in the expansions of (_91‘2’3,4’19 to
the order required in Eq. (7.8). The most UV divergent
operatoris O; = O(V~!), so its leading term is 1/ p and the
term relevant in d = 2, 1/ p?, comes from contributions of
the type V/p?, while Z; needs at least two covariant
derivatives.

Operators Z; do appear in d = 4. Just as 0", the operators
Z® have to be resolved before having a useful expression for
(x|O,|x). To this end, the operators ZX can be moved to the
left or to the right, using their commutation relations noted in
(B4), including (7.4). In accordance with the choice in
Eq. (6.9), where the multiplicative operators A, have been
placed at the right, ZX should be moved to the left. This
allows one to apply the rules in Eq. (5.9) (see Appendix B).

It remains to insert in Eq. (7.8) the various expressions
for 0,1 just obtained. In the resulting expression, the terms
involving P, in Iy ; are not manifestly Hermitian. This can
be fixed by applying integration by parts in p and x
spaces16 as well as the trace cyclic property. This gives,

. 1 1 1
F‘;{Y = <§N9YW +§NMW—ZNMP””

1
+ENMMyuNMMuaﬁNMPApbpapﬁpl

1
_ENMM/mﬂNMM/wNMPﬂpupapﬂpﬂ> )
x.p.g

. 1 1
F_(Si’l,\é: <§N9NMMyaMaupypu_ZNMPﬂNMPupypy>

x.p.9

(7.18)

The integrand is a homogeneous function of p of degree
—2. It only remains to extract the 1/¢ coefficient to isolate
the UV divergent contributions. The details are given in

" Actually, for convenience here ¢ has been moved to the left
(and then removed) so the rhs differs from O1 by terms which
vanish upon momentum integration.

'%As shown in Appendix C of [35], p, can be treated as a
constant when integrating by parts in x space, when V,, and ZR
are no longer present.

Sec. VIID. An application of the rules provided there
immediately produces the result quoted in Eq. (6.16).

In Eq. (7.17) there is one term of degree p~! and two
terms of degree p~2. Table I shows the number of terms of
each degree for the diagonal matrix elements of the
operators O,. Only even orders are displayed since odd
orders vanish upon integration over p, in any parity
preserving regularization, such as dimensional regulariza-
tion. For a given operator, the number of terms increases
rapidly with (minus) the degree. Nevertheless, the number
of terms displayed in the table is an upper bound; this
number is subject to variations due to various identities
which allow one to write a given expression in different
forms. Such identities include integration by parts in
momentum space and reordering of the covariant deriva-
tives acting on a tensor due to the Jacobi identity,

Voo Vo, X = [V, [V X + [Z,, X].

Hv

ol (7.19)
Furthermore, integration by parts in x space and trace cyclic
property is allowed within the functional trace operations
Try, in Eq. (6.13). We have not attempted a systematic
minimization of the number of terms as there is no practical
procedure to do this, and in any case we do not expect a
significant reduction in the length of the expressions. An
exception is the operator O, at p~* which is used below,
Eq. (7.21), in the computation of I'; 3, in Sec. VIC 4.
Nevertheless, it should be noted that, recently, important
progress has been achieved in the counting and classifica-
tion of allowed independent terms in effective field theo-
ries, through the construction of Hilbert series of the
operator basis [50]. In this technique, the basic blocks
(fields or composite operators) plus their symmetrized
derivatives are identified with representations of the
d-dimensional conformal group.17 Computation of the
Clebsch-Gordan series then allows one to obtain generating
functions for basis operators and count them. The key point
is that both equation of motion as well as integration by part
identities are automatically accounted for, in addition to
spacetime and internal group symmetries. The method has
been successfully applied to pure Einstein relativity and
also to general relativity combined with the Standard
Model of particle physics [51]. The adaptation of the
Hilbert series technique to obtain basis of operators in
diagonal matrix elements and the effective action contri-
butions as those displayed in Egs. (7.18) or (7.22) would be
extremely interesting, and more so in d =4 where the
number of terms becomes huge. Serious complications
arise due to the presence of an additional momentum
variable, with its own integration by parts identities, and
also the existence of constraints relating some of the
building blocks, such as M* and N,,. No attempt will
be made here to adapt the promising technique of Hilbert

"7 Alternatively, cohomological techniques can be applied [50].
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series to working with covariant symbols; we defer such a
study to future work.

C. Calculation of I'!ly in d =2
Because of the similarity between the operators O, and
0,, the expression of their diagonal matrix elements are
identical when written in terms of N,,, with the only
proviso of using the new definition

Ny = (-z—=M"p,p,)~! (7.20)

for O, instead of that in (7.10).

The UV divergent terms in I', ; must have exactly d
covariant derivatives. The operator O, is of UV degree
0(V~2), so the leading term in O, is O(p~2) and no
derivatives. Since one still needs to expand its covariant
symbol to d covariant derivatives, the order p~42V? is
needed. The proper divergence O(p~) is only recovered
after integration over z, a parameter of dimension
squared mass.

We present results only for the case d = 2. For the terms
of order exactly p~*, the calculation gives the following
result:

<x|O,2|x>(_4) = <4NMM;wNMM/mﬁNMMpo%NMMpnNMpupap/fpapllpn + 2NMM;wNMM/mfNMMppaNMpupapﬁpo

+ 2NMMﬂ/,wNMM(I/)’pNMM(zaNMpupﬂppp(i + NMMm/NMMﬂa/)’/)NMM(mNMpvp/}p/)pr;
2

=+ NMMﬂvNMMaﬂﬂpNMMaaNMpypﬂpppa + 3

NMMW/NMMaﬂNMMpUNMRﬂap/lpvpﬂpapﬂ

2
- gNMM/AL/NMMaﬁNMMpGNMR/Mappvpﬁpap/l + NMMWWNMMaaﬂNMpup[i

1
- NMM;wFuaNMMa/}NMpupﬁ - NMMﬂuNMFuaMaﬁNMpypﬁ _6NMM}4DNMR}UJ> .

The expression obtained after applying the method of
covariant symbols has been simplified by using integration
by parts in momentum space, also achieving a manifest
Hermitian form (since O, is Hermitian).

1

(7.21)

It can be noted that the expression in (7.21) holds for
arbitrary d. For d = 2, one can use the identities in (6.33).
Also we integrate by parts with respect to x to have at most one
covariant derivative on M ,,. This gives for the effective action

F%l},) = _< - 2NMM;41/NMM;mﬁNMMpUNMMpMNMpypapﬂpo'pllpr] - 2NMM/waNMM/4ﬁNMMpUﬁNMMpnNMpz/papﬂpo'p/lpn

2

- NMMﬂuNMMﬂaﬁNMMapaNMpup/ipppa + NMM/U/NMMaa/JNMM/ApaNMpvp/jpppa
- NMM/AL/aNMMﬁ/ApNMMﬁaNMpupapppo‘ + NMM/w(xNMMﬁﬁpNMM;wNMpup(xpppu
+ NMM;WNMMaﬁNMMypNMprpap/}pp + NMMﬂﬂUNMMa(l/fNMprﬂ - NMM/wF/mNMMaﬁNMpUp/f

2 1
_NMMﬂDNMFﬂ(zMaﬂNMpup/} +_NMMﬂDNMMM(1NMRp1/pa __NMM;mNMR>

3

One could apply further the trace cyclic property and also
the identity NyM,,Nyp,p, =—Ny —zN3, in one of
the terms, but no simplification would be achieved. The
final step is to extract the 1/¢ coefficient from the radial
part of the momentum integral, as described in the next
subsection. This procedure yields the expression quoted in
Eq. (6.32).

D. Extraction of the UV divergent component

Let us consider first the case when the parameter z is not
present, as in Eq. (7.18). Once the operators d, and ZR have

(7.22)

12 pages

|

been removed, the structure of a general term O, to be
integrated over p, is a sum of products with factors N,
N,, and p,, as well as p,-independent multiplicative
operators M;, R;, F;, etc. Hence, the momentum integral
affects only terms of the form

Ny (NM)albl e (NM)ammeﬂl “Puy; ENZNSmPWj- (7.23)

This monomial is homogeneous in p, with degree
2(j —n—m).
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We are only interested in the UV divergent part and to
extract it we will use dimensional regularization, namely, in
d + 2¢ dimensions with e — 0~. For the UV divergent part,
d can be used instead of d + 2¢ in the UV-finite contri-
butions. Within dimensional regularization, the integral

¢ ¢ N ®m ®2
N J
d \/_

vanishes unless d = 2(n 4+ m — j), which is assumed in
what follows.
Recalling that p, =

(7.24)

ik, and d’p, = d’k,,

i 1 dd+2£kﬂ ® .
Iy" = =% | e NINGK®Y. (7.25)
Let us introduce a standard tetrad field e/ (x),
Gu = €ueldap.  eney =8, (7.26)
in such a way that
k, = enky, d'k, = \/9d'k,,
Ny = Ny = (7.27)
g k% ’ M kAkBMAB 5 .
thus
(I:?’j)ﬂ]"'llzj = (I;n’j)Al»--Azjeﬁll : eﬁzz,j
iy B ; dd+28kA o ®2}
(I3 )a,n,, = (=1) 2y —— NNy "k (7.28)

The UV divergence comes from the radial part of the
integral, hence we introduce spherical coordinates,

ko =kky,  k=\/KE=N;"* B =1 (729
This allows one to separate the integral into radial and

angular average factors,

pri= 2y (7.30)
¢ (4m)yPr(d/2) '
where the angular average is
smj  T(d)2) A2 A2
Id J > /dd IQ N® k® J — <N® k® j>ang7
N 1

and /, is the radial part (introducing a cutoff mass m to
avoid a trivial infrared divergence for negative ¢), and using
the condition 2(n +m — j) = d,

2¢e

o 1
162/ dik?e = -Z0 — _— 1 o(1).
mg

7.32
2¢e e ( )

In summary, for the UV divergent part, one obtains

m,jdiv 1 l _1\j+1Gmi

1, = 7(47;)"/21“@/2) g( D7+ (7.33)
As noted, the angular averages 7:1"" are perfectly UV
convergent and well defined, but they cannot be written
in closed form in general.

The analysis is similar for I'y 5, which involves an
additional integration over z. As mentioned, in this case
and for d = 2, the relevant terms are of order p~*, and to
extract the UV divergent part one must integrate over z and
p,- The point can be elucidated following the steps shown
above (for d = 2), noting that now N,, contains z:

< ®21N® 2+j /d2+2& /
Jan = V9 2ri
. 1 ®(2+))
x 1 O —————
—(_1)j/°°dkk2j+l+2£/£/£
o (27)? J, 2xi

x log(z)k®% <;ﬂ) ®(2+/)'
-2+ K2M"k,k,

(7.34)
Applying the rescaling z — zk? and noting that the induced

term with log(k?) vanishes since no singularities are
enclosed by the path y in the z complex plane,

[
op 2¢ | (2n)% ), 2ni

xlog(z)ic@zj( L >®(2”)
—z 4+ MPk R,

(1) enigeen
= e BIR ) g + 0(1),

(PN

(7.35)

where Ny = (—z + M””I}ﬂfcy)‘l. Applying this angular
average in Eq. (7.22) yields Eq. (6.32).

VIII. SUMMARY AND CONCLUSIONS

In this work we have addressed the problem of quantiz-
ing a system of, in general, non-Abelian vector fields with a
completely general local nonminimal mass term coupling
all of them. The case of N Abelian fields is a particular
instance in our formulation. We make use of a background
field approach. A remarkable result is that, although the
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mass term breaks gauge invariance, the effective action is
fully gauge (as well as coordinate) invariant beyond tree
level, Eq. (3.5). The technical problems present in the
original theory (namely, the UV region is blind to the mass
term and so requires some type of gauge fixing) are
satisfactorily removed by introducing a non-Abelian
Stueckelberg field, Eqs. (4.1) and (4.4). This is done after
background and fluctuation fields have been separated and
the Stueckelberg field only affects the latter. This auxiliary
field is introduced linearly so that the loop structure of the
original theory is preserved. As a consequence, the com-
putation of the UV divergent part of the effective action to
one loop can be carried out systematically preserving
coordinate and gauge symmetries during the calculation.
To this end, we apply dimensional regularization and the
method of covariant symbols. This produces terms which
are local, i.e., they contain a finite number derivatives of the
external fields (no more than d in d spacetime dimensions),
however, they are not polynomial with respect to the mass
term, a fact already observed in the simpler case of a single
vector field. The one-loop effective action is expressed in
Eq. (4.28) as a sum of four terms, I'y, defined in (4.19), ', ;
and I'y o in (4.25), and I'y in (4.26) [and expanded in
Eq. (6.7)]. The formalism is developed for arbitrary
spacetime dimensions and we present explicit results for the
two-dimensional case. Regrettably in the four-dimensional
case too many terms are produced (even selecting particular
settings, such as purely Abelian, flat spacetime, or pertur-
bative expansions) so their explicit expression would be of
little practical use. The explicit two-dimensional results for
the UV divergent component are displayed in (6.4) for I,
and I'; 1, in (6.16) for Iy, and in (6.32) for I'; ;. Checks
have been applied to the results of the calculation.
Particularly stringent are the tests related to invariance
with respect to metric transformations in Sec. VICS5.
Perturbative results are also presented in Appendix D.
Although not explicitly discussed in the text, we have
repeated most of the calculations of diagonal matrix
elements using the method of noncovariant symbols
[37,46] to find an identical result, modulo integration by
parts in momentum space. In some cases, the latter method
has produced shorter expressions. Details of the noncovar-
iant method are discussed in Appendix E.

As already pointed out, the nonminimal masslike cou-
pling discussed in this work (or also its Abelian version)
respects locality but introduces terms in the effective action
which are nonpolynomial in the field M**(x). All current
efforts for an effective field theory description of general
relativity or the Standard Model of particles, or both (e.g.,
[51]), naturally assume an expansion in local and poly-
nomial operators over some power of the cutoff (a new-
physics scale), O,(x)/A", consistent with the renormali-
zation group analysis of Wilson [52]. In this light, the
analyses presented in [34,35] and in this work should
indicate that a nonminimal coupling of the type Eq. (2.1)

can be ruled out in vector field theories, also in the non-
Abelian setting. If the presence of such nonminimal
coupling could not be prevented through some mechanism
(such as the requirement of strict gauge invariance), one
would be impelled to assume a much larger class of
effective field theories, including local but nonpolynomial
operators. On the other hand, even in that case, reexpan-
sions as that in Appendix D would bring the expression
again to the standard form, requiring only local and
polynomial composite operators, provided that the scale
m can be interpreted as a proper cutoff of the theory and a
separation of the type M* = m’g" + H* is somehow
natural.

The fluctuation operator in Eq. (4.15) is a rather involved
one, due to the presence of a non-Abelian field M*
coupling like a metric in the ¢ sector. Chan’s method or
even the Schwinger-DeWitt technique are not readily
available to deal with such term. Yet the formalism of
covariant symbols could be applied also to I'y ;, upon
introduction of a parametric form to remove the logarithm.
In fact, the method of covariant symbols is a practical and
easy-to-use tool to obtain diagonal matrix elements of local
operators f(V, X), provided the dependence on V is of
rational type. This latter requirement follows from the fact
that, in practice, the covariant symbols are only obtained as
an expansion in powers of V/ p. It can also be noted that the
covariant symbols depend only on the connection; the
presence of a metric is not required, as the Riemann
coordinates can be defined directly from the connection
[53]. The method can be used to obtain not only the
counterterms but also covariant derivative expansions of the
effective action itself [45,54,55]. In particular, the treatment
of fermionic modes in curved spacetime poses no special
problems once the spin connection is included in the
covariant derivative [56]. The extension of the method
for finite temperature also exists [46,49] (but not yet for
temperature and curvature at the same time). The method of
covariant symbols should apply whenever the generalized
Schwinger-DeWitt technique applies, so it can be used as
an alternative approach in the analysis of quantum field
theories in curved spacetime, effective field theories
involving gravity, or in the study of the newly developed
Proca theories noted in the Introduction.
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APPENDIX A: DERIVATION
OF SOME FORMULAS

1. Derivation of Eq. (3.12)

Applying integration by parts in the first term in (3.11)
[using the notation of (5.10)],

<(-’4ﬁv - -'45/4)2>

X

Bl

1
<(‘AZD)2 - -AZU-Azﬂ>x = E <(AZD)2 + Azszy>x

((A0)? + ADAL, + ASZI A

<(AZI/)2 - Af/ll/Azﬂ + 'AZ (FZII/)A/IZ + R/w/mAg»x

N = N = = N =

((AL)? = (AL)? = FilALAD + R, AD)), (A1)

Added to the other term in (3.11), (—3F42.A4AL), pro-
duces (3.12).

2. Derivation of Eq. (4.6)

From the change of variables

A,‘j = B/’j + du ' = Bjjﬂ, (A2)
one obtains

a('Az’)(a> _ (50179/41/ 5abvﬂ) <A3)

aBY.¢") V¥ 0

(with rows for the numerator and columns for the denom-
inator). More conveniently, doing the change of variables in
two steps (B.¢) — (A.¢) = (A7),

O O )
SaALg)aBgy MY

)
aBY.¢")

using y* = Aj, — ¢y, in the first factor, produces
( 5abgﬂy 5abv,u )
Sap V¥ 0
8ac i 0 Sep 9y SV
:< 9u >< b9 b /1)‘ (AS)
61/zc'v}L _6acv2 0 50!7
The second matrix has a unit determinant and likewise for

the upper-left block in the first matrix. This produces
Eq. (4.6).

3. Derivation of Eq. (4.8)

Starting from (3.11), and using Aj = Bj + ¢y, one
obtains terms of the types BB, B¢, and ¢¢. The terms
BB are just those in (3.12) with Aj — Bj,.

The terms B¢ are given by twice (3.11) replacing one of
the A with A5, — B and the other one with A§ — ¢¢. This
produces

1
<S£?3>B¢—<5<¢;:y— zﬂszy—Bzﬂ)—sz;B@ :

X

(A6)

Using ¢4, — ¢, = Fi2¢" and integration by parts in the
other term,

2 ara ab pa ab fa
(Sl((il)l)8¢ = <_¢ FMZIIJBZD + le;v¢ Blé + F;u% B/[ju>x

= (Fint“By),. (A7)
Finally, the term ¢¢ is half the previous one after the
replacement By, — ¢;. This produces (4.8).

APPENDIX B: THE OPERATORS Z, ..,

1. Definition and properties of Z,Ifl‘..ﬂ”

The operator Z,,, is defined as

Z;w = [vw vzx] = Z/,IED + F/w. (Bl)
ZR, acts on coordinate indices and F,, on gauge indices.
Z{fy is multiplicative but not “purely multiplicative” (by
definition) as it is not diagonal in the coordinate indices.
The higher rank tensors are defined recursively, namely

(recall that I = py - - - u,, stands for a string of coordinate
indices),

1
Zal = [vm ZI] + E {v/l’ Rlal}' (B2)
The extra term ensures that Z; is a multiplicative operator.
The same formula applies to ZX.
The clean separation between coordinate and gauge
sectors,
Z, =Z{ +Fy, (B3)
holds too for higher rank tensors. The operators Z;, ZK, and
F; are all anti-Hermitian. From its definition, ZX has the

property
27, Vi) = Ry iV + RypiVy +---. (B4)

where V is a coordinate tensor. In particular, for a scalar
field ¢(x),
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[ZR, @] = 0. (B5)

Now, let |0) be the scalar function that takes the value 1
for all x. This is a coordinate scalar. The relation V ,|0) = 0
implies

Z§D|0> =0= <O|Z§D (B6)
More generally [using Eq. (B2)],
Z{10) = C/0).  (0|zf = —=(0|C;.  (BT)
with
Cn=0,
1
Ca/w = ER/l/wa/I?
1 1
Calu-an;w = ERﬂazayuan/wal/l + ERal/lagma,,yvazl + -
+ ERa] QAo At (BS)

2. Relation with the operator ’fiﬂy of [18]
The operator Z,’fy coincides with 7A2,w in [18]. The higher
rank operators (V,, -+ V, R,,)’, are introduced in [18],
with the convention that the covariant derivative connec-

tions do not act on the matrix indices p, o. Using the
notation

A A

Reayayw = Va, - Vo, Ry (B9)
these operators fulfill the recursion
Rt = Voo R + Rii Vs, (B10)
as well as
Ri Vi) = 28V ]
=Ry iV + Riyp Vg + -+ (BI1)
The operators Z¥ and 7A2, are related through
ZR =R, +C,. (B12)
Therefore,
R;|0) =0, (0|R; = =2(0|C;,. (B13)

The operators 7; and Z® have identical commutation
properties on purely multiplicative fields. The 7A2, are
simpler than Z¥ when acting on states on the right (since

they vanish on coordinate scalars), while the Zf have the
virtue of being anti-Hermitian.

3. Derivation of Egs. (5.9)

The first relation in (5.9), the trace in the coordinate-
scalar space, follows from the fact that Zf coincides with
—C; when acting on scalars on the left,

(0lpZ} =

(plz] = (0[(zF9 - [2}.¢]) = =(IC;. (B14)

For the second relation, the trace in the coordinate-vector
space, consider an operator 0¥, acting on the coordinate-
vector space, (OV)¥ = O#, V*. Disregarding the gauge-
space sector for simplicity, the trace can be written as

A
E u, O uly,

where i/} (x) is any local basis of vectors at x and u (x) is
its dual basis, ujuf = &5. When OF, is purely multipli-
cative (i.e., it does not contain V” nor Zf), the trace is
simply

trl O’l (BIS)

try (O4) = OFupuy = O ¢, = O*,.  (B16)

If the operator has a factor Z% on the left, where I is any
string of coordinate indices, without loss of generality we
can assume that it has the form ZRH!# . That is, the row-
column indices pv are not in ZR and all the indices in I are
different. For instance, ZE*X, can be rewritten as

Z8,9 ¢ X, Using now

(up|ZF = (0lup Zf = (O[(ZFuy — [ZF, uy])
= <0|(—C114M +R; ,Mf) (u| (R 4 9’1 Cy).
(B17)
it follows that
tr) (ZRO#)) = ZuﬁZﬁO”yu‘;‘
A
= Z”Z\(RIM/I - ¢,C)0 uy
A
=t (R — ¢,C1)OL). (B18)

This proves Egs. (5.9). If the operator contains more than
one factor Z® on the left, the procedure is applied
recursively,

try (ZRZROr,) = (R, — ¢*,C1)ZEO)
= tr (Z§ (R, — ¢*1C1) O

- [Z8. R, — ¢*1C1]O%). (B19)
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APPENDIX C: CANONICAL FORM OF I'g

The following formulas display the expression of the operators in I'y,,, n = 1, 2, 3, 4 in Eq. (6.7) using the basis of
operators in (6.12) to bring them to the canonical form in (6.9), by means of the commutation identities in (6.11). These
expressions hold in any spacetime dimension. Equations (C1)—(C4) correspond to I'y 1, I'; 5, I'; 3, and I'; 4, respectively,

AYﬂy = 019Yﬂu7
AyW = O,W,
1 1
EAM{Pﬂ,Vﬂ} - (Ol)ypﬂ _EOZPWL (Cl)

AY  AY yp = OrY .Y 5 + 0(V),
Ay®@,AD, = O0)y®% + O(V7),
Ay VM AMNV o = (03),, MyaMay + 2(06) 1aMuupMipa + 4 O12) juapManup Mg
= (011, 2M e Mpap + MagupMp, + 2M s My + MopMp, R,
= 2F,eMaypMp,) = (05),(MuMea + MyaMa) + O(V7),
Ay @AMV, = (05),®,M,, + O1p(=®, M, — B M,,) +2(011) ,, @paMe, + O(V7),
AyV M, AP, = (Os5) M, @, +2(0),, M, @, + O(V),
AyWAyW = (013[W])/WW’

1 1
ZAM{P#’ vﬂ}AM{Pu’vu} = (04[P}J)MDPU +§(07{P/m])ypv - (016[P/1’M/4W0¢Daﬂpﬁ - (09[P/1’M/wa])vaﬂpﬁ

- (016[Pw MvaRyuaﬂ])ﬂ/)Pp
+ (OIS[Pw M;wa’ Mvﬂp])ﬂpaopa + (OIS[PM’ M;wav Ml/ﬂp})aﬂpapo'

1 1 1
- ZOIS[PIIM]PM/ - E (07 [Pﬂ])ypl/l/ + 5 (016[})/4’ Mﬂl/a})l/(lPﬂﬂ + O(V—S)’

1 1
EAM{P/U VM}AMW = (07[Pﬂ})/4W + 5013[P/m}w - (016[PuvMyua])mW + O(V_S)v (CZ)

AMWAMVMMWAMW:V(I = (014[W] )yuMuaM(w + O(V_S)’

AV My AY ( AM 5V = (O11) MY (g Mg, + O(V),
1
(014[Pﬂﬂ])uaMuﬂMﬁa + (08 [Pﬂ]);wanﬁMﬁa + 2(015[PM])ﬂuaﬁMaupMpﬁ

1
EAM{P N vﬂ}AnyMyaAMaﬁVﬁ — 5
- (017[Pﬂ7 Mﬂua])vaﬁpMﬂaMap

- (014[Pﬂ])yy<MuaMﬂaﬁ + MayﬂM/Ja> + O(V_S)’

1
_AM{P/U vﬂ}AMVUMuaA(Da = (014[Pﬂ])yvaaq)a + 0<v_5)’

2
1
EAM{P//H vﬂ}AMq)UAMyava = (014[Pﬂ])yuq)aMay + O(V_S)’

1
ZAMWAM{PM’V}I}AM{PU’VU} = ((916[‘}‘/7 Py]);va + O(V_S),

1 1
gAM{Pw vﬂ}AM{Pu’Vv}AM{Pwva} - (Olé[P;nP/mePa +§(016[P/47PWD;40:P0:
(016[1);4/47 PuDuaPa + (09[1);4’ Pl/]);wapa - (OIS[PM’M#W’ P/f])vaﬁppﬂ

OIS[PW PwMua/)’])aﬁy/)P - (Olg[P/UPI/’MU(lﬂ])ﬂaﬂpPp

+

Rl =

((,)16[P;47 PDDMDPaa + O(V_S)’ (C3)

N =
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AMvﬂMyvAMvavaAMvﬂMﬁpAMpava = (OIS[MMDMDG]> MﬂaMGp + O(V_S)’

uapp

1
ZAM{PW VM}AM{Pw vv}AMvaMaﬂAMﬂp p = (017[})/47 Pu])yua/)’MapMpﬂ + O(V_S)’
1
EAM{P 7v/4}AM{Pw VD}AM{P(Dva}AM{Pﬂ»vﬂ} = (OIS[PwPuvP(l])uua[}Pﬁ + O(V_S) (C4)

APPENDIX D: PERTURBATIVE EXPANSIONS

For completeness, we give here the expressions for F%i}) and 'YV in d = 2 [Egs. (6.32) and (6.16), respectively] to second
order in an expansion in powers of H**, where

M = m2g + HW (D1)

and to all orders in the other fields. m? is a constant ¢ number. In d = 2, the combination I'{"| + I“g;v cancels, so there are no
further contributions to T'¥%.

The result is obtained by expanding Eqs. (6.32) and (6.16) and carrying out the angular average, and integration over z in
the case of Fi‘}), as such evaluations can be done explicitly when M* = m?g*,

: 1 /1 1 1 1 1
Fglé = 4—”8 <ER —‘y—w (_EF[H/H#&HUG —%H””HM/R +4_8HW/HI4VR
1H H 1H H 1H H +1H H )+0(H3)> (D2)
2 4 puvttvaa 96 pvvttuao 48 puvat St puva 2 4 uvatfvpa xg'

N AR B T VAR 1 1
Fg :—<_§m2_§R HWI+W(__W_ZQHDQ}HJ__H HW_I__HﬂIJH#u)

4ze 4 2 16~ 8
1 1 1. 1 1 1
+ W _gPMPy + Z WH;m =+ 1_6 Q;wQ/wHaa + g Q;wQﬂaHya + Z Q/wHﬂaHya
1 /1 1 1 1 1
+ % EP/JP/IHUIJ + gPﬂPuH;w - ﬁPuH;waaa +ﬂP/4H,uuHaua + 9_6PﬂHUUHﬂa(l
1 1 1 1 1
+ EP/JHI/DHO(,MG =+ &PﬂHuaH;wa - EPvaana - 9_PyH/4w/Haa - 4_8P;4H/u/aHua
1 1 1 1 1 -
- 4_8P/4Hym/Ha(1 + EPﬂHy;mHva - ﬁPwaaH;m + ﬁPﬂHyaaH/w - 1_6 WH;mHW
1. 1 1 1
- g WHﬂl/Hﬂ - % Q/,wQ;wHaaHﬂﬂ - E Q;wQ;wHaﬂHaﬂ - E Q/,wQ;mHuaHﬂﬂ

1 1 1
- ﬁ Q/w Q;mrHuﬂHa[)’ - ﬁ Q;w Q/ulH(z/}Hy/)’ - 4_8 Q/w Q;laH[)’/}Hya>

1 1 1 1 1 1
+ o (— %P”P”HWHW - EP”P”HWHm - EPMP,/HWH{m - ﬂPﬂP,/HWHW - ﬂP”PDHmHW

1 1 1 1
- &P,uPUH(mH;w - @PuH;wPVHaa - &PquwP(lea - @PuHWPyHaa
1 1
~og PuHuaPutia = 3¢ PﬂHmP,,HW> + 0(H3)> . (D3)
x.9

In this formula W =W -1P,,.
The term R in I'Y" is the Gauss-Bonnet invariant in two dimensions, complying by itself with the transverse and
longitudinal symmetry invariance discussed in Sec. VIC 5. In the two-dimensional case, these symmetries do not allow

terms with one H* nor of order 1/m? in '}l
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APPENDIX E: METHOD OF NONCOVARIANT
SYMBOLS

1. Covariant vs noncovariant method of symbols

The method of noncovariant symbols [57,58] allows one
to obtain diagonal matrix elements of pseudodifferential
operators and it can be extended to curved spacetime [37].

The difference between the covariant and noncovariant
versions can be elucidated already in the case of flat
spacetime. Let / = f(D,X) be a pseudodifferential oper-
ator constructed out of the gauge-covariant derivative D,
and one (or more) non-Abelian fields X(x) (a purely
multiplicative operator). Then,

d
(i) = / %mﬂpxm

d
e

d

- [ Sh vl ier)
d

_ /%(ﬂf@—#p,xﬂo}a (E1)

where p, is imaginary and |0) is the state (x[0) = 1. The
quantity (x|f(D + p,X)|0) is the (noncovariant) symbol
of ]A[

After momentum integration, the result is gauge covar-
iant in the sense that D, will only appear in the form of a
commutator [D,, |. This follows from the fact that under the
shift D# - D” +ay, where a, is an arbitrary constant
imaginary ¢ number, the dependence on a, cancels upon
momentum integration (since a, can be compensated by a
corresponding shift in p,). The virtue of the covariant
symbol,

J=ePf(D+ p.X)e, (E2)

is that it is multiplicative (with respect to x) and is already
covariant without momentum integration [37].

To illustrate the point, let us apply the method of
noncovariant symbols to f = (D2 - X)',

! > . (E3)

(x|flx) = <—(p” D7 -x/,

Defining N = 1/(p; — X) and expanding in powers of D,

(x|f|x) = (N = N(2p,D, + D})N
+N(22p,D,)N(p,D,)N + O(D?)),,.  (E4)

Instead of doing the momentum integration, one can add
terms which are identically zero by integration by parts in

momentum space to bring the expression to a covariant
form. For instance, the first order term

(PO = (<2p,ND,N), (ES)
can be supplemented with
0= (0(-D,N)), = 2p, DN, (E6)
yielding a manifestly gauge-covariant result

(2|71 = (2p,[D,.. NIN) .

(E7)

This procedure can be carried out systematically. Rewriting
Eq. (E4) as

<X|JA£|X> =(To+T+Ty+-),
To=N, T, =-2NpDN,
T,=—-NDDN +4NpDNpDN,  (ES)

the systematic integration by parts suggested by the
method of covariant symbols can be implemented as'

e_DaZTn|0> = ZTn|O>f
7= " oyt @)

j=0 J
and now
x|flx) = (To+T1 + Ty +--+),. (E10)
In this way,
To=Ty=N (E11)
is already covariant, and
T,=T,-DoTy=-2NpDN—-DoN =2[pD,N]N  (E12)

is the term obtained previously in Eq. (E7). For the second
order,

'8 Actually this term vanishes by parity; nevertheless, it serves
to illustrate the point.

19Equivalently, one can put instead a factor e”? at the right and
move ¢" to left.
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y 1
T,=T,—DdT, + 3 (D0)?T,
= —NDDN + 4NpDNpDN — Do(—2NpDN)

1
+5 (DO)N.

(E13)
Carrying out the momentum derivatives and moving the D,
to the left yields a manifestly covariant form

T,=-N,N +4p,p,(N,N, + N, N)N, (E14)

where

N,=1[V,.N], N, =[V,N,. (E15)

2. Method of noncovariant symbols
in curved spacetime

The results presented in this work, obtained using the
method of covariant symbols, have been reproduced also
using the method of noncovariant symbols. For the latter,
the technique in Eqs. (E9) and (E10) is applied, which
produces covariant expressions without requiring further
integration by parts in momentum space. This holds too in
curved spacetime using the covariant derivative V, which
includes all connections, and 1 {V,,, 0"} instead of D,0*, in
the exponential.

In this approach, typically the 0# [generated in Eq. (E9)] are
removed by moving them to the right. Then the free V, are
moved together, say to the right, to form covariant combi-
nations Z,, = [V,,V,], etc. Therefore, one has to specify
how V, commutes with p, and ¢, as these commutators do
not vanish (consistently with [Z,,, p,| = RaP2)-

To this end, let us introduce a set of coordinates &4 (x)
(technically d coordinate scalars). Eventually, after all free
covariant derivative operators have been removed, these
will be the Riemann coordinates at x, (the point at which
the diagonal matrix element is being computed). And let the
vector fields 7;(x) and #(x) be defined through the
relations

H

= [V, &, 1ty = 5. (E16)
Note that the d vector fields 7} (x) do not define a tetrad. In
terms of these,

o =o', A =0/0py,

Pu = tiDas (E17)

where p, are (imaginary) constant c-number parameters,
hence [V, ps] = [V,.0*] = 0. This allows one to write

[Vﬂ, pv] = tﬁupA = tﬁtﬁvpﬂ = —GMADP,%

V0] =G0 (E18)

using [V, 4] = —415,1% in the second relation. Note
that #, = 1, hence G,;, = G,,,. Successive derivatives
require derivatives of G,,,(x) which in turn follow from
those of #;(x). Here it enters the Riemann coordinate
condition at x,, which requires [53]

(i) ) =54 at xo, and

(i1) the vanishing of the completely symmetry compo-

nent of t;‘]“.,,n at xo for n > 2.

From these conditions, using the Jacobi identity (7.19), it
follows

té;w|x0 = g (R()z/,w}L + Rau;tll)tf’

1 1 1 1
tgﬂ;w |x0 = <_ R(Jzﬂ/w/1 + _R(Jtﬁpy}L + _R/)’a/w}L + _R/}ow//L

4 4 6 6
! R, ! Ry’ | 14 E19
+E povf +E vauf tﬂ' ( )
Hence,
G;Mu(XO) = 0’
Gaylu(XO) = _(Sﬁtéyv(XO)’
G(xﬁﬂlu('XO) = _5ﬁté/}uv<x0)‘ (EZO)

It is important to remark that the conditions at x = x; can
only be imposed after all free V, have been removed, and
also that the p,’s in N, and N, have to be differentiated
too; p/% cannot be treated as a constant during this
calculation. On the other hand, as proven in Appendix C
of [35], in the final expression (i.e., after x is set to x;)
one can freely integrate by parts neglecting derivatives
of p,.

APPENDIX F: SAMPLE CALCULATION USING
THE METHOD OF COVARIANT SYMBOLS

As the method of covariant symbols is not well known,
we will present here the calculation of one of the universal
functional traces of [18] using this method. Concretely, we
consider

IV, Al (F1)

We want the UV divergent part in 4 4 2¢ dimensions.
Therefore, we need the terms of order 1/p* of the covariant
symbol of V,A. Since this operator is of order 1/p and the
expansion of the covariant symbols is in powers of V/p, it
will necessary to go to order (V/p)3. That is,

(VuA)_y = (vﬂ)1<A)—5 + (vu)—z(ﬁ)—z» (F2)
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where the subindex indicates the number of p, minus the
number of ¢ in the term. Note that (V,), = 0, as can be
seen in Eq. (7.2), and also (A)_; = 0 due to (V?); = 0.
Equations (B1) of [35] show the expressions of (Vﬂ)n for
n=1,...=3 and of (V?), for n =2,....,=2 (i.e., to four
covariant derivatives). The expressions of (A), are not

tabulated there but they need to be computed only once,
using

= (V?)"!
= (V) + (V) + (V) +0(p2)™. (B3
This gives
(A)—Z = (pﬂpuglw)_l = _Ng (F4)
[with N, already defined in (7.10)] and
(B)_s5 = =Ny(V?)_N,,. (Fs)

The formulas (V,)); = p, and (A)_, = —N,), as well as
the tabulated values of (V,)_, and (V?)_,, are inserted in
Eq. (F2) and this results in an expression containing d,,.
These derivatives are removed by using

[0#,N,| =2p"N? (F6)

and (7.4). Also this very equation is used tomove all Z, ..,
to the right. This procedure yields

. 2 2
<x|vﬂA|x>gw4:< 3N§ v 3sz;¢puzaay

8
- 3N3pypazz/a/4 +2ng/4pyRu

+NipuPaRywa — 2N3pypa7€mﬂ>- (F7)
P

The integral over p, is immediate and gives

1 1 1
le — _ - _
x|V, Alx)q n)e (62““" 8R”>’ (F8)

using R,,,, = éRﬂ
This result can be expressed in terms of the operator RI
Using the relations Z; = F; + ZK and Z§ = R, + Cy, and

also Cppy = 4Rw from Eq. (5.8), one obtains

1 1 1. 1
dlv _ _
x|V, Alx)G, = —(47'[)28 (6 aay 6R au 12R ), (F9)

a result in agreement with Eq. (4.54) of [18]. Other
universal functional traces are also reproduced with the
method of covariant symbols.
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