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Abstract: The categorical treatment of fuzzy modules presents some problems, due to the well known
fact that the category of fuzzy modules is not abelian, and even not normal. Our aim is to give
a representation of the category of fuzzy modules inside a generalized category of modules, in
fact, a functor category, Mod−P , which is a Grothendieck category. To do that, first we consider
the preadditive category P , defined by the interval P = (0, 1], to build a torsionfree class J in
Mod−P , and a hereditary torsion theory in Mod−P , to finally identify equivalence classes of fuzzy
submodules of a module M with F-pair, which are pair (G, F), of decreasing gradual submodules of
M, where G belongs to J , satisfying G = Fd, and ∪αF(α) is a disjoint union of F(1) and F(α)\G(α),
where α is running in (0, 1].

Keywords: fuzzy set; fuzzy module; gradual element; gradual module; gradual ring; functorial
category
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1. Introduction

The behaviour of fuzzy ideals and modules is reflected in the category of fuzzy
modules, but this category, as it was pointed out by Lopez–Permouth and Malik, in [1],
has no relevant properties; for instance, it is not an abelian category. On the contrary, it
seems more a kind of category of topological objects. Following the theory of gradual
elements, introduced in [2], see also [3] and applied to subsets and subgroups in [4], our
aim in this work is to expone a categorical framework in which to embed the theory of
fuzzy modules. To do that, first we consider a preadditive category A, and the additive
functors from A to Ab, the category of abelian groups. These functors are the objects of an
abelian category, in fact a Grothendieck category, which we represent by A−Mod, each
of these functors is called a left A–module. The counterpart are the right A–modules (the
contravariant additive functors fromA toAb). This framework can be extended to consider
a commutative ring A and the category A−Mod, of A–modules, instead of Ab, or even
more, to consider an arbitrary ring R; in this case we need to change the building method.
In all these cases we have a Grothendieck category, but in the commutative case the Yoneda
embedding provides some particular and interesting consequences, as the existence of
enough projective and injective modules in A−Mod.

The category A−Mod is well known, even if we do not impose any extra condition
to A, but such a general theory is not interesting for the applications we have in mint; for
instance, the existence of simple modules or chain conditions properties are assured only in
very restrictive cases. Otherwise, the category A−Mod is a generalization of the category,
R−Mod, of left modules over a ring R; in fact R−Mod is an example of a functor category.
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In the study of the category R−Mod, left ideals are a fundamental tool; in the func-
tor category A−Mod left ideals are defined as submodules of the particular modules
HomA(X,−), for any object X ∈ Obj(A). Right ideals are defined, in the same way, using
the contravariant functors HomA(−, X). Our first goal in the study of general functor
categories is to demonstrate the basic arithmetic properties of ideals and modules.

Once we have established the category A−Mod, of left A–modules, as the framework
in which develop the theory, we study some particular examples of preadditive categories
A; in particular, those defined by a poset P. Indeed, fixed a commutative ring A, we may
associate to P several preadditive categories, one of them is denoted P , which is defined
by the hom–sets: for any a, b ∈ P, either HomP (a, b) = A fa,b, (the free A–module on
{ fa,b}), whenever a ≤ b, or HomP (a, b) = 0, otherwise; and the composition in the obvious
way. A left P–module is an A–additive functor from P to A−Mod. In addition, if P is
a directed set, for any left P–module F we can build a directed system of A–modules:
({F(a) | a ∈ P}, {F( fa,b) | a, b ∈ P}), and its direct limit: lim−→ F. In this way, every
left P–module has associated, uniquely, with an A–module. If P has a maximum, say 1,
then lim−→ F = F(1), in other cases it is a module defined by the usual construction of the
direct limit.

The particular case of HomP (a,−) is of interest: since fa,b is both a monomorphism
and an epimorphism, for every a ≤ b, we have that ( fa,b)

∗ : HomP (b, x) −→ HomP (a, x)
and ( fa,b)∗ : HomP (x, a) −→ HomP (x, b) are always monomorphisms, and if we take
direct limits, HomP (x, a) is a submodule of lim−→HomP (x,−). It happens that those
P–modules satisfying this properties have special properties.

The class J of all P–modules F such that F(a) ⊆ lim−→ F, i.e., F( fa,b) is always a
monomorphism is closed under: submodules, direct product, hence direct sums, and
group–extensions.

This means that J is the torsionfree class for a torsion theory in P−Mod. On the other
hand, this torsion theory defines a torsion class, i.e., a class of P–modules closed under:
quotients, direct sums, and group–extensions, and, in addition, it is closed under submodules.

Hence, J is the torsionfree class of a hereditary torsion theory; therefore, it is closed
under essential extensions. Thus, J contains every module of the shape HomP (x,−), all
of them are projective, and for any module F ∈ J , the injective hull E(F) also belongs to
J . This means that J is an example of a class of modules that have been well studied. In
particular, in this paper, we identify this hereditary torsion theory, and demonstrate that it
is defined by the dense ideals.

In this case, to any P–module F in J we define a new module Fd in such a way that
the operator F 7→ Fd is an interior operator, and study the behaviour of this operator with
respect to arithmetic properties of left ideals and modules; so later we verify that it defines
a class of modules in J that allow us to define fuzzy submodules in a natural way.

To find, in this context, a representation of fuzzy modules, we consider F–pairs, i.e.,
pairs (G, F) of decreasing gradual submodules of a module M such that G = Fd and M is
the disjoint union of the family {F(α) \G(α)}; see [4]. Our objective is to find a model of the
fuzzy theory using a functor category, or equivalently gradual modules, and we can do that
first considering algebraic operations on fuzzy submodules (the sum of two submodules,
µ1, µ2, is the smallest submodule containing both submodules whenever µ1(0) = µ2(0)),
hence we define an equivalence relation in the set of all fuzzy submodules of M, saying
µ1 ∼ µ2 whenever µ1(x) = µ2(x) for any 0 6= x ∈ M; in this way every equivalence class
contains a unique submodule µ0 with µ0(0) = 1.

With this baggage we can establish a correspondence between F-pair on M and equiv-
alence classes of fuzzy submodules of M. What is of interest in this correspondence is that
we use the α–levels theory to associate a decreasing gradual submodule, σ(µ), the inverse
is built using the property (F), or equivalently the F-pair theory. This correspondence is
not a homomorphisms with respect to the sum of submodules; it has also a problem with
respect to arbitrary unions. To solve this, we establish a new correspondence between
fuzzy submodules and gradual submodules. Indeed, for any fuzzy submodule µ, we define
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a strictly decreasing gradual submodule; it is noting more that σ(µ)d, and demonstrates
that the correspondence between equivalence classes of fuzzy submodules and strictly
decreasing gradual submodules satisfying property (inf-F) is a bijection, and, in addition, it
is a homomorphism with respect to sum, join and meet.

We organize this paper as follows. In Section 2, we introduce background notions on
functor category defined by an preadditive category which includes Yoneda embedding,
and demonstrate that it is a Grothendieck category, see [5,6]. We discuss the different rings
we can use, starting from the ringZ of integer numbers, continuing with a commutative ring,
and we collect the useful arithmetical notions on modules and ideals. In Section 3, we study
the class of torsionfree modules when we particularize to the preadditive category defined
by a directed poset; it is the torsionfree class of a hereditary torsion theory. In addition,
we introduce an interior operator which will be of utility in studying fuzzy submodules.
We introduce several elements associated to gradual submodules; in particular, decreasing
gradual submodules, and related them with torsionfree modules, and strictly decreasing
gradual submodules. To introduce them, we need to study an interior operator, and show
that it defines a hereditary torsion class, which we relate with dense ideals. In Section 4,
the relationship with the theory of fuzzy submodules is studied, where we establish a
correspondence with strictly decreasing gradual submodules through a map which is a
homomorphism with respect to the sum, product, union and intersection, and allows us
to translate properties of fuzzy submodules and ideals to similar properties on gradual
modules and submodules, and vice–versa.

2. Preadditive Categories

In this section, we introduce the basic notions of functor categories and modules over
a preadditive category as background for studying gradual rings and modules.

2.1. Preadditive Categories

A category A is preadditive if it satisfies:

(i) HomA(X, Y) is an abelian group for any X, Y ∈ Obj(A).
(ii) For any X, Y, Z, T ∈ Obj(A), and morphisms f1, f2 ∈ HomA(X, Y), g ∈ HomA(Z, X)

and h ∈ HomA(Y, T) we have:

( f1 + f2)g = f1g + f2g and h( f1 + f2) = h f1 + h f2. (1)

In a category C:

• an object T is terminal if for any object X there is only one morphism from X to T,
• an object I is initial if for any object X there is only one morphism from I to X,
• an object Z is zero if it is initial and terminal.

Lemma 1. Let A be a preadditive category,

(1) If EndA(X) has only one element then X is a zero object.
(2) For any object X ∈ Obj(A) either X is the zero object or HomA(X, X) = EndA(X) is a

unitary ring.

Corollary 1. If A is a preadditive category, for every nonzero objects X, Y ∈ Obj(A), we have
that HomA(X, Y) is

(1) a right EndA(X)–module and
(2) a left EndA(Y)–module.

The following are examples of preadditive categories.

Example 1.

(1) The category Ab of all abelian groups and homomorphisms of abelian groups is a preadditive
category, as is the category of left R–modules for any ring R.
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(2) If R is a ring and consider the categoryR with only one object, say ∗, whose endomorphisms
are parameterized by R, thenR is a preadditive category with + the sum in R, and composition
the product in R.

(3) If A is a preadditive category, the apposite category Aop is preadditive, being Obj(Aop) =
Obj(A), HomAop(X, Y) = HomA(Y, X), for any X, Y ∈ Obj(A), and the composition ∗op

defined f ∗op g = g ◦ f for any f , g morphisms in Aop for which the composition is defined.
(4) For any partial ordered set P, and any ring R, we define a new category P whose objects are

the elements of P, the homomorphism sets are

HomP (a, b) =
{
{ fa,b}R ∼= R, if a ≤ b, with neutral element written 0a,b
{0a,b}, if a � b.

(2)

and composition given by the following table, whenever a ≤ b ≤ c (if a ≤ b ≤ c is not
satisfied the composition does not exist):

0b,c ◦ 0a,b = 0a,c, fb,c ◦ 0a,b = 0a,c
0b,c ◦ fa,b = 0a,c, fb,c ◦ fa,b = fa,c

(3)

For simplicity, we may write 0 by 0a,b. The sum in HomP (a, b) is defined through the sum in
R; if b ∈ P is a bottom element, b ∈ Obj(P) is an initial object, and if t ∈ P is a top element,
t ∈ Obj(P) is a terminal object.

Given preadditive categories A and B, a functor F : A −→ B is additive whenever
F( f1 + f2) = F( f1) + F( f2) for any f1, f2 ∈ HomA(A1, A2), and any pair A1, A2 ∈ Obj(A).

The following functors between preadditive categories will be additive unless the
contrary is indicated.

2.2. Modules

LetA be a preadditive category. A leftA–module (or simply anA–module) is an additive
functor F : A −→ Ab, to the category of abelian groups.

If F is an A–module, for any X ∈ Obj(A), any homomorphism f in the category A,
and any element m ∈ F(X), we define the dot–product:

f ·m =

{
F( f )(m) ∈ F(Y), whenever f ∈ HomA(X, Y),
0 ∈ F(Y), otherwise, i.e., if f ∈ HomA(Z, Y) and Z 6= X.

(4)

The dot–product, for convenient fi and mj, satisfies the following properties:

(1) f · (m1 + m1) = f ·m1 + f ·m2.
(2) ( f1 + f2) ·m = f1 ·m + f2 ·m.
(3) ( f1 f2) ·m = f1 · ( f2 ·m).
(4) idX ·m = m.

Let G, F be A–modules, a homomorphism from F to G is an abelian group natural
transformation θ : F −→ G.

Observe that an A–module is a collection of abelian groups together with a family
of homomorphisms satisfying the commutative properties induced by the commutative
relations of A.

In the following, A will be an skeletally small preadditive category; this means that the
class of isomorphisms of A constitutes a set. We impose this condition to assume that in
the category we shall construct the Hom’s are sets.

In this case, the A–modules and homomorphisms of A–modules constitute a category,
that we call A−Mod; indeed, it is an abelian category, as we are going to demonstrate later.

In the same way, we define right A–modules, as contravariant additive functors from
A to Ab; homomorphisms of right A–modules, and the category Mod−A of right A–
modules.
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We can enrich the categoryA−Mod whenever we consider a category A−Mod instead
of Ab, being A a commutative ring. In this case, we need the preadditive category A the
Hom’s sets to have an extra structure of A–module.

LetA be a preadditive category, and A be a commutative ring; we sayA is a preadditive
A–category (or simply an A–category) if

(1) any HomA(X, Y) is an A–module, and
(2) for any X, Y, Z ∈ Obj(A) the map HomA(Y, Z)×HomA(X, Y) −→ HomA(X, Z) is

A–bilinear.

As a consequence, for any nonzero object X ∈ Obj(A) we have that EndA(X) is an
A–algebra.

2.3. Yoneda Embedding

Remember that if A is a preadditive A–category, and X ∈ Obj(A), then the induced
functor HomA(X,−) : A −→ A−Mod is an A–module as it is A–additive. The image of
any f ∈ HomA(X, Y) is f∗, defined as:

f∗(g) = f g, for any g ∈ HomA(A, X). (5)

There is a map Y : Obj(A) −→ Obj(A−Mod), defined by Y(A) = HomA(A,−). For
any homomorphism g ∈ HomA(B, A), and any object X ∈ Obj(A), we have a homomor-
phism

g∗ : HomA(A, X) −→ HomA(B, X). (6)

Therefore, we obtain a contravariant functor, Y , from A to A−Mod; it is called the
Yoneda embedding.

Lemma 2 (Yoneda lemma). For every X ∈ Obj(A) there is an A–module isomorphism

ω : HomA−Mod(HomA(X,−), F) ∼= F(X). (7)

Corollary 2. The Yoneda embedding, Y : A −→ A−Mod, is a full and faithful contravari-
ant functor.

Ideals and Product of Ideals

Let A be a preadditive A–category. A left ideal of A is a submodule a of an A–module
HomA(X,−), let us call i : a −→ HomA(X,−) the natural transformation inclusion. In
particular, for any homomorphism f ∈ HomA(Y, Z), we have a commutative diagram

a(Y)
a( f ) //

iY
��

a(Z)

iZ
��

HomA(X, Y)
f∗

// HomA(X, Z).

(8)

Hence for every α ∈ a(Y) and any f ∈ HomA(Y, Z), we have f∗(α) = f α ∈ a(Z).
In the same way, we may define a right ideal b as a submodule of HomA(−, X). In this

case, for every f ∈ HomA(Y, Z) and any β ∈ b(Z) we have f ∗(β) = β f ∈ b(Y).
The intersection of a family of left ideals {ai | i ∈ I} is defined componentwise:

(∩iai)(Y) = ∩iai(Y). (9)

It is a left ideal.
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The sum of a family of left ideals {ai | i ∈ I} is defined componentwise:(
∑

i
ai

)
(Y) = ∑

i
ai(Y). (10)

It is a left ideal.
The product of a left ideal a ⊆ HomP (X,−) and an A–module F is defined as:

(aF)(Y) = 〈{ f ·m | f ∈ a(Y) ⊆ HomA(X, Y), m ∈ F(X)}〉 (11)

It is a submodule of F.

3. Torsionfree Modules

In this section, we particularize to the case in whichA = P , is the preadditive category
defined by a poset P, which is, in addition, a directed set. We shall use the P–module
instead of left P–module throughout this section if there is no risk of confusion.

3.1. Directed Posets

Let P be a poset, with minimum element 0; it is directed if for any a, b ∈ P there exists
c ∈ P such that a ≤ c and b ≤ c.

From the poset P, we build a category, P , whose objects are the elements of P. For any
a, b ∈ P, we define

HomP (a, b) =
{
{0a,b, fa,b}, if a ≤ b,
{0a,b}, otherwise,

(12)

with composition and addition given, for any a, b, c ∈ P, whenever a ≤ b ≤ c, by the rules:

0b,c0a,b = 0a,c 0b,c fa,b = 0a,c;
fb,c0a,b = 0a,c fb,c fa,b = fa,c;

0a,b + 0a,b = 0a,b 0a,b + fa,b = 0a,b;
fa,b + 0a,b = 0a,b fa,b + fa,b = fa,b.

(13)

Let B be a ring. It is possible to modify the above category P to get a new preadditive
B–category, also denoted by P , in defining

HomP (a, b) =
{
{ fa,b}B =, if a ≤ b
{0a,b}, otherwise,

(14)

identifying 0a,b with fa,b0, and 0a,bx, for any x ∈ B, with addition defined following the
addition in B, and composition using the former composition rules.

Lemma 3. P is a preadditive B–category.

Given a directed poset P, with minimum 0 ∈ P, and a commutative ring A, consider
the preadditive A–category P , for any A–additive functor F : P −→ A−Mod, i.e., a
left P–module; we consider the family {F(a) | a ∈ P}, and, for any a, b ∈ P the map
F( fa,b) : F(a) −→ F(b), whenever it exists; this defines a directed system of A–modules:

({F(a) | a ∈ P}, {F( fa,b) | a ≤ b}). (15)
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Since the existence of the direct limits in A−Mod is assured, we have an A–module:
lim−→ F, and homomorphisms, say qa : F(a) −→ lim−→ F, such that, for every pair a ≤ b, the
following diagram commutes.

F(a)

F( fa,b)

��

##

qa

**⊕aF(a) // lim−→ F

F(b)

;;

qb

44

(16)

Lemma 4. Given a, b ∈ P if a ≤ b then fa,b is an epimorphism and a monomorphism in P .

Proof. Indeed, if fb,c(n1 fa,b) = fb,c(n2 fa,b), then n1 fa,c = n2 fa,c, hence n1 = n2. In the same
way, we prove fb,c is a monomorphism.

Let x ∈ P, if we consider the P–module HomP (x,−), for any pair a ≤ b we have a
module map ( fa,b)∗ : HomP (x, a) −→ HomP (x, b), which is a monomorphism. In general,
( fa,b)∗ is not an epimorphism because if a ≤ b and 0x,b 6= f ∈ HomP (x, b), then x ≤ b, but
it may be x � a, hence HomP (x, a) = {0x,a}.

The same holds if we consider the right P–module HomP (−, x).

Proposition 1. In the diagram (16), taking F = HomP (x,−), every map F( fa,b) is a monomor-
phism. Therefore, each map qa is a monomorphism, i.e., each HomP (x, a) is a submodule of
lim−→HomP (x,−).

Proof. It is a consequence of being fa,b an epimorphism. Since, in the case F( fa,b) = ( fa,b)∗
is a monomorphism, the construction of the direct limit in the category of A–modules, as
a quotient of a direct sum, implies that each qa is a monomorphism. Indeed, if qa(x) = 0,
there exists b ≥ a such that ( fa,b)∗(x) = 0, hence x = 0.

The construction of HomP (x,−) implies that we may identify HomP (x, a) and A fx,a
as A–modules, because both of them are isomorphic to A. Otherwise, if f ∈ HomP (x, a),
there exists n ∈ A such that f = n fx,a. Hence, if x ≤ a, then ( fx,a)∗ : HomP (x, x) −→
HomP (x, a), and f = n fx,a = n fx,a fx,x = f fx,x = f · fx,x. Therefore, fx,x generates
HomP (x,−), i.e., 〈 fx,x〉 = HomP (x,−).

Proposition 2. Each HomP (x,−) is a cyclic P–module with generator fx,x.

3.2. Torsionfree P–Modules

In the category P−Mod, we shall collect in a class all P–modules satisfying the
property given in Proposition (1). Let F be a P–module, we say F is torsionfree, if F( fa,b) is
a monomorphism for every a ≤ b, and denote by J the class of all torsionfree P–modules.

Proposition 3. The class J satisfies the following properties:

(1) It is closed under monomorphisms.
(2) It is closed under direct sums and direct products.
(3) It is closed under group–extension.

Proof. (1). Let F be a torsionfree P–module, and j : G � // F be a monomorphism, if
a ≤ b we have a commutative diagram (sometimes, when working with commutative
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diagrams, we use the following notation: a monomorphism is represented by an arrow
such as � // , and an epimorphism by // // ).

G(a) � ja //

G( fa,b)

��

F(a)
_

F( fa,b)

��
G(b) � jb // F(b)

(17)

Hence G( fa,b) is a monomorphism.
(2). Let {Fi | i ∈ I} be a family of torsionfree P–modules; for any index i ∈ I we have

a commutative diagram

Fi(a) � (ji)a //
_

Fi( fa,b)

��

⊕iFi(a)

⊕i Fi( fa,b)

��
Fi(b)

� (ji)b // ⊕iFi(b)

(18)

and the kernel of ⊕iFi( fa,b) is zero. The direct product case is similar.
(3). Let F1, F2, F3 be P–modules; if F1, F2 ∈ J and 0 → F1 → F2 → F3 → 0 is a short

exact sequence, we have a commutative diagram whenever a ≤ b:

0 // F1(a) � //

F1( fa,b)

��

F2(a) // //

F2( fa,b)

��

F3(a) //

F3( fa,b)

��

0

0 // F1(b)
� // F2(b) // // F3(b) // 0

(19)

By the hypothesis F1( fa,b) and F3( fa,b) are monomorphisms, then F2( fa,b) is a monomor-
phism.

In particular, the class J is the torsionfree class of a torsion theory in P −Mod. To
find this torsion theory, for any P–module, F, and any a ∈ P, we define

η(F)(a) = {u ∈ F(a) | exists b ∈ P, a ≤ b, such that F( fa,b)(u) = 0}. (20)

Lemma 5. η(F) is a submodule of F, and F/η(F) is torsionfree.

Proof. We have η(F)(a), which is a submodule of F(a); indeed, if u1, u2 ∈ η(F)(a), there
exist b1, b2 ∈ P, such that F( fa,bi

)(ui) = 0, and there exists c ∈ P such that fa,c = fbi ,c fa,bi
,

then u1 + u2 ∈ η(F)(a). Otherwise, for any u ∈ η(F)(a) and any n ∈ A, there exists b ∈ P,
such that F( fa,b)(nu) = n fa,b(u) = 0, then nu ∈ η(F)(a).

We have η(F) is a submodule of F; indeed, for any f ∈ HomP (a, b), and any u ∈
η(F)(a), there exists n ∈ A such that f = n fa,b, and c ∈ P such that F( fa,c)(u) = 0. There
exists d ∈ P such that fa,d = fb,d fa,b = fc,d fa,c, and f · u ∈ η(F)(b).

If (F/η(F))( fa,b)(u) = 0, then F( fa,b)(u) ∈ η(F)(b), and u ∈ η(F).

η(F)(a) //

η(F)( fa,b)

��

F(a) //

F( fa,b)

��

(F/η(F))(a)

(F/η(F))( fa,b)

��
η(F)(b) // F(b) // (F/η(F))(b)

(21)

A P–module F such that F = η(F) is called a torsion P–module. We may characterize
the P–modules, which are torsion:
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Lemma 6. A P–module F is torsion (F = η(F)) if, and only if, lim−→ F = 0.

Proof. Let F be a torsion P–module, for any x ∈ F(a) there exists b ∈ P such that
F( fa,b)(x) = 0.

Presently, we can characterize the class T of all torsion P–modules. Indeed, T is a
hereditary torsion class,

Lemma 7.

(1) Let G be a submodule of P–module F, then η(G) = η(F) ∩ G.
(2) Let f : F −→ G be a homomorphism, then f (η(F)) ⊆ η(G).
(3) For any P–module F we have η(F/η(F)) = 0.

In particular, η is a radical torsion and defines a hereditary torsion theory in P−Mod.

Proof. (1). We have (η(F) ∩ G)(a) = η(F)(a) ∩ G(a) = η(G)(a).
(2). Let u ∈ η(F)(a), there exists b ∈ P such that F( fa,b)(u) = 0, hence

G( fa,b) f (a)(u) = f (b)F( fa,b)(u) = 0. (22)

(3). Let u ∈ η(F/η(F))(a), there exists b ∈ P such that (F/η(F))( fa,b)(u) = 0, hence
we have a commutative diagram with exact rows

0 // η(F)(a) � //

η(F)( fa,b)

��

F(a) // //

F( fa,b)

��

(F/η(F))(a)

(F/η(F))( fa,b)

��

// 0

0 // η(F)(b) � // F(b) // // (F/η(F))(b) // 0

(23)

F( fa,b)(u) ∈ η(F)(b), and there exists c ∈ P such that F( fb,c)F( fa,b)(u) = 0; therefore
u ∈ η(F)(a), hence u = 0.

Since η is a hereditary torsion radical in the category P−Mod, the torsionfree modules
are those F such that η(F) = 0, i.e., they satisfy that the image of any fa,b is a monomor-
phism; hence, they are the torsionfree P–modules, previously introduced.

We write the following result as a paraphasic of the basic property of torsionfree
objects in a Grothendieck category.

Lemma 8. Let F be a P–module, for any P–module G such that G( fa,b) is a monomorphism
whenever a ≤ b, and any homomorphism f : F −→ G there exists a unique homomorphism
f ′ : F/η(F) −→ G such that f = p f ′.

F
p //

f
''

F/η(F)

∃1 f ′

��
G

(24)

3.3. Dense Ideals

Let F be an P–module, a ∈ P, and x ∈ F(a). For any submodule F′ ⊆ F, we define
(F′ : x) as follows; for any b ∈ P we put

(F′ : x)(b) = { f ∈ HomP (a, b) | F( f )(x) ∈ F′(b)}. (25)

Lemma 9. With the above notation (F′ : x) ⊆ HomP (a,−) is an ideal.

We call (F′ : x) the residual ideal of x with respect to F′. We define the annihilator,
Ann(x), of x ∈ F(a) as the residual ideal Ann(x) = (0 : x).
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For any element a ∈ P, a family of left ideals L(a) of HomP (a,−) is a filter if it satisfies:

(1) If a1 ⊆ a2 and a1 ∈ L(a), then a2 ∈ La, for every left ideals a1, a2 of HomP (a,−).
(2) If a1, a2 ∈ L(a), then a1 ∩ a2 ∈ L(a), for every left ideals a1, a2 of HomP (a,−).

Presently, we are interested in the relationship of L(a) and L(b) whenever there exists
a map g : a→ b in P . Therefore, we have:

(3) If g ∈ HomP (a, b) and a ∈ L(a), then (a : g) ∈ L(b).
Observe that in this case we have:

(a : g)(c) = { f ∈ HomP (b, c) | HomP (b, f )(g) ∈ a(c)}
= { f ∈ HomP (b, c) | f g ∈ a(c)} ⊆ HomP (b, c).

(26)

A family of filters L = {L(a) | a ∈ P} satisfying properties (1), (2) and (3) is called
linear filter in P −Mod.

Our objective is to parameterize hereditary torsion theories in P −Mod using families
of filters L = {L(a) | a ∈ P}; to do that we need a fourth property. A linear filter
L = {L(a) | a ∈ P} is a Gabriel filter if it satisfies the property:

(4) Let a ⊆ HomP (a,−) be an ideal, and b ∈ L(a); if for every b ∈ P and every x ∈ b(b)
we have (a : x) ∈ L(b), then a ∈ L(a).

In [7], a correspondence is established between Gabriel filters and hereditary torsion
theories that associates to any Gabriel filter L = {L(a) | a ∈ P}; the torsion class T (L):

T (L) = {F | Ann(x) ∈ L(a) for every a ∈ P and every x ∈ F(a)}. (27)

Otherwise, to any hereditary torsion class T associates, the Gabriel filter L(T ), such
that, for any a ∈ P:

L(T )(a) =
{
a ⊆ HomP (a,−) | HomP (a,−)

a
∈ T

}
. (28)

We have studied the hereditary torsion class of all torsion P–module, hence we are
interested in determining the associated Gabriel filter. Since T = {F | lim−→ F = 0}, then

a ⊆ HomL(a,−) is in the Gabriel filter if, and only if, lim−→
HomP

a = 0, or equivalently, if
lim−→HomP (a,−) = lim−→ a. In consequence, the Gabriel filter L, associated to the torsion
class of all torsion P–modules, satisfies

L(a) = {a ⊆ HomP (a,−) | lim−→Hom(a,−) = lim−→ a}. (29)

Observe that this Gabriel filter L can be also described as the filter of all ideals
a ⊆ HomP (a,−) satisfying that for every b ∈ P, and any g ∈ HomP (a, b), there exist c ∈ P,
and h ∈ HomP (b, c) such that hg ∈ a(c). These are the dense ideals in [7].

3.4. An Interior Operator

Let F ∈ J be a torsionfree P–module, for any a ∈ P we define

Fd(0) = F(0),
Fd(a) = ∑{F(b) | b < a}, if a 6= 0,

(30)

where this sum is in lim−→ F.

Lemma 10. Let F be a torsionfree P–module, then Fd defines a functor from P to A−Mod, hence
a P–module, and a submodule of F, which is also torsionfree.
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Proof. It is obvious that Fd(a) ⊆ F(a) is a submodule. On the other hand, for any f ∈
HomP (a, c) there exists n ∈ A such that f = n fa,c, and for any x ∈ Fd(a) there existe b ∈ P
such that x ∈ Im(F( fb,a)), say x = F( fb,a)(x). Then, we have:

f · x = F(n fa,c)(x) = nF( fa,c)F( fb,a)(x) = nF( fb,c)(x) ∈ Fd(c). (31)

This means that the operator d : J −→ J , defined by d(F) = Fd, is an interior operator.
Indeed, it satisfies the statements in the following Lemma.

Lemma 11.

(1) d(F) ⊆ F for any F ∈ J .
(2) d(F1) ⊆ d(F2) whenever F1 ⊆ F2, for any F1, F2 ∈ J .
(3) d(F) = dd(F) for any F ∈ J .

A torsionfree P–module is d–open if d(F) = F.
Let us show some arithmetical properties of this interior operator, with respect to

submodules.

Proposition 4.

(1) Let {Fi | i ∈ I} be a family of torsionfree submodules of a P–module F, then(
∑

i
Fi

)d

= ∑
i

Fd
i . (32)

As a submodule of Fd. Thus, the class of d–open submodules is closed under sums.
(2) Let F1, F2 ⊆ F be torsionfree submodules of a P–module F, then

(F1 ∩ F2)
d = Fd

1 ∩ Fd
2 . (33)

Thus, the class of d–open submodules is closed under finite intersections.
(3) Let a be a torsionfree left ideal, and G ⊆ F be a submodule of a torsionfree P–module F, then

(aG)d = adGd. (34)

Thus, the class of d–open left ideals is closed under products.

Proof. (1). Let a ∈ P, then(
∑

i
Fi

)d

(a) = ∑
b<a

(
∑

i
Fi

)
(b) = ∑

b<a
∑

i
Fi(b) = ∑

i
∑
b<a

Fi(b) = ∑
i

Fd
i (a). (35)

(2). Let a ∈ P, then

(F1 ∩ F2)
d(a) = ∑

b<a
(F1 ∩ F2)(b) = ∑

b<a
(F1(b) ∩ F2(b))

= ∑
b<a

F1(b) ∩ ∑
b<a

F2(b) = Fd
1 (a) ∩ Fd

2 (a). (36)

Due to the upper–continuous property of the lattice of A–submodules.
(3). Let a ∈ P, then

(aG)d(a) = ∑
b<a

(aG)(b) = ∑
b<a
〈{ f ·m | f ∈ a(b) ⊆ HomP (c, b), m ∈ G(c)}〉 (37)
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(ad(a)Gd)(a) = 〈g · n | g ∈ ad(a) ⊆ Hom(c, a), n ∈ Gd(c)〉
= 〈g · n | g ∈ ∑

b<a
a(b), n ∈ ∑

e<c
G(e)〉 = ∑〈g · n | g ∈ a(b) ⊆ Hom(c, b), n ∈ G(c)〉, (38)

and both are equal.

Since F is torsionfree, we have lim−→ F = ∪{F(a) | a ∈ P}. For any a ∈ P, we have

a short exact sequence 0 → Fd(a) → F(a) → F(a)
Fd(a) → 0, and taking direct limits, we also

have a short exact sequence

0 −→ lim−→ Fd −→ lim−→ F −→ 0 −→ 0 (39)

Hence lim−→ Fd ∼= lim−→ F.
If we consider the inclusion Fd(a) ⊆ F(a), and the difference set F(a) \ Fd(a), in

general, the union of all these difference sets does not coincide with lim−→ F, i.e., ∪{F(a) \
Fd(a) | 0 6= a ∈ P} ∪ F(0) ⊆ lim−→ F. We say F satisfies property (F) whenever the
equality holds; in this case we can associate to each element x ∈ lim−→ F either 0 or a unique
a ∈ P \ {0} such that x ∈ F(a) \ Fd(a). Observe that this is a property of sets and not a
property of modules.

4. Gradual and Fuzzy Modules

Let M be an A–module, a fuzzy submodule is a map µ: M −→ [0, 1] satisfying some
extra properties; we are interested in associating to a fuzzy submodule a filtration of
submodules: the α–level filtration, and establish properties of µ via properties of the α–
level filtration, in order to have a useful theory of fuzzy modules inside the framework of
functorial categories. Our objective in this section is to demonstrate that another different
filtration to the α–level filtration picks up more efficiently the properties of µ.

In this section, we work with P = (0, 1] and the preadditive A–category P ; therefore,
with the category Mod−P of right P–modules.

4.1. Fuzzy Ideals

Let A be a commutative, a fuzzy subset µ is a fuzzy ideal if for any x, y ∈ A we have:

(1) µ(x− y) ≥ min{µ(x), µ(y)},
(2) µ(xy) ≥ max{µ(x), µ(y)} and
(3) µ(0) 6= 0, to avoid the trivial case.

Lemma 12 ([8]). If µ is a fuzzy ideal, then µ(0) ≥ µ(x) for any x ∈ A.

Proof. Take y = 0 in (2).

Remember, for any α ∈ [0, 1], the α–level of a fuzzy ideal µ is defined as:

µα = {x ∈ A | µ(x) ≥ α}. (40)

Observe that µ0 = A; for that reason we shall use α–levels with α ∈ (0, 1].

Lemma 13 ([8]). Let µ be a fuzzy subset of a ring A; the following statements hold:

(1) If µ is a fuzzy ideal, µα is an ideal for every 0 ≤ α ≤ µ(0).
(2) If for any α ∈ Im(µ), we have µα is an ideal, then µ is a fuzzy ideal.

Proof. (1). Let x, y ∈ µα, then µ(x − y) ≥ min{µ(x), µ(y)} ≥ α, hence x − y ∈ µα.
Otherwise, if x ∈ µα, for any y ∈ A we have µ(xy) ≥ µ(x) ≥ α, then xy ∈ µα.

(2). Since µα is an ideal then 0 ∈ µα; this means that µ(0) ≥ α for any α ∈ Im(µ), hence
µ(0) = max(Im(µ)), and µ(0) ≥ µ(x) for any x ∈ A.
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Let x, y ∈ A and α = min{µ(x), µ(y)}, then x, y ∈ µα, and x− y ∈ µα, hence µ(x−
y) ≥ α = min{µ(x), µ(y)}. Otherwise, if µ(x) = α, for any y ∈ A we have xy ∈ µα, hence
µ(xy) ≥ α = µ(x). In consequence, µ is a fuzzy ideal of A.

Let us call a decreasing gradual right ideal of A a family of ideals {aα | α ∈ (0, 1]} such
that if α ≤ β, then aβ ⊆ aα, for any α, β ∈ (0, 1]. An example of a decreasing gradual right
ideal is given by the set of α–level of a fuzzy ideal.

Lemma 14. Let µ be a fuzzy ideal of a ring A; if µ(x) = µ(y) = µ(0), then µ(x− y) = µ(0).

Proof. It is a direct consequence of the above lemma as µµ(0) is an ideal.

The problem of working with algebraic operations of fuzzy ideals is hard; as it is
pointed out in ([9], (p. 78)), if µ1 and µ2 are fuzzy ideals, then µ1 + µ2 non–necessarily
coincides with the smallest fuzzy ideal containing µ1 and µ2; one condition in order to have
this property is that µ1(0) = µ2(0).

A similar problem arose when associating a right P–module to a fuzzy ideal µ. The
natural candidate is σ(µ), defined σ(µ)(α) = µα = {x ∈ A | µ(x) ≥ α}, the α–level of µ,
which is empty if α > µ(0).

This second problem can be easily solved if we put σ(µ)(α) = {0}whenever α > µ(0),
and this means that a plethora of fuzzy ideals µ have associated the same decreasing gradual
right ideal: exactly those which coincides in A \ {0}. To organize all fuzzy ideals, we may
define an equivalence relation ∼ on fuzzy ideals by µ1 ∼ µ2 if µ1(x) = µ2(x) for any
0 6= x ∈ A. Observe that in the equivalence class [µ] of µ there exists exactly one element,

that attending to µ is denoted by µ0, such that µ0(0) = 1, i.e., µ0(x) =
{

µ(x), if x 6= 0,
1, if x = 0.

Lemma 15 ([4]). Let µ be a fuzzy ideal of a ring A, then µ0 is a fuzzy ideal.

As a consequence we may define a new sum operation on fuzzy ideals using equiv-
alence classes: [µ1] + [µ2] = [µ0

1 + µ0
2]. Be careful, as the map (−)0 is not necessarily a

homomorphism with respect to the sum of fuzzy ideals. If necessary, either we avoid the
use of parenthesis, or we adorne the sum symbol, as [+], to indicate we are working with
equivalence classes. For the two fuzzy ideals, µ1 and µ2, we simply write

([µ1] + [µ2])(x) = (µ1[+]µ2)(x) = Sup{µ0
1(y) ∧ µ0

2(z) | y + z = x}. (41)

In this case, associated to every class [µ], there exists a right P–module σ(µ), which
is a submodule of A, the constant right P–module equal to A, which is identify with the
contravariant functor HomP (−, 1).

Remark 1. Unfortunately, the map [µ] 7→ σ(µ) is not a homomorphism with respect to the sum of
submodules. Indeed, we have:

σ(µ1[+]µ2)(x) = {x ∈ A | (µ1[+]µ2)(x) ≥ α}
= {x ∈ A | Sup{µ0

1(y) ∧ µ0
2(z) | y + z = x} ≥ α}

⊇ {y + z | µ0
1(y) ≥ α, µ0

2(z) ≥ α}
= {y | µ0

1(y) ≥ α}+ {z | µ0
2(z) ≥ α}

= σ(µ1)(α) + σ(µ2)(α).

(42)

The following example shows that there are examples in which σ(µ1) + σ(µ2) $
σ(µ1 + µ2).

Example 2. As we know, for every fuzzy submodules µ1, µ2 we always have an inclusion σ(µ1) +
σ(µ2) ⊆ σ(µ1 + µ2); let us show that this inclusion could be proper. We define fuzzy submodules
µ1 and µ2 as follows:
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µ1(x) =


0, if x ∈ Z \ 2Z,
1− 2t

3t , if x ∈ 2tZ \ 2t+1Z,
1, if x = 0.

µ2(x) =


0, if x ∈ Z \ 3Z,
1
2 −

1
3t , if x ∈ 3tZ \ 3t+1Z,

1, if x = 0.
(43)

We claim (µ1 + µ2)(2) = Sup{µ1(y) ∧ µ2(2 − y) | y ∈ Z} ≤ 1
2 . Indeed, we have

two possibilities:

(1) µ1(y) > 1
2 , then y ∈ 4Z, i.e., there exists k ∈ Z such that y = 4k. Hence, µ2(2− y) =

µ2(2− 4k) = µ2(2(1− 2k)) < 1
2 as 2− y 6= 0.

(2) µ1(y) < 1
2 .

In both cases, we have µ1(y) ∧ µ2(2− y) < 1
2 . In addition, we can choose y, such that

µ1(y)∧ µ2(2− y) is as closed to 1
2 as we desire. For any 2 ≤ t, s ∈ N there exist k, h ∈ Z such that

2t−1k− 3sh = 1, hence 2− 2tk = 2(1− 2t−1k) = 3sh; now, if we take y = 2tk, then µ1(y) ≥
1− 1

3t and µ2(2− y) ≥ 1
2 −

1
3t . In consequence, 1

2 > µ1(y) ∧ µ2(2− y) ≥ 1
2 −

1
3t , which implies

that (µ1 + µ2)(2) = 1
2 , and 2 ∈ (µ1 + µ2) 1

2
. On the other hand, we have (µ1) 1

2
+ (µ2) 1

2
= 4Z,

and 2 /∈ (µ1) 1
2
+ (µ2) 1

2
.

Remark 2. The intersection of two fuzzy ideals µ1, µ2 satisfies σ(µ1 ∩ µ2) = σ(µ1) ∩ σ(µ2), and
the intersection of a family {µi | i ∈ I} of fuzzy ideals satisfies σ(∩iµi) = ∩iσ(µi). We point out
that the map (−)0 is a homomorphism with respect to the intersection.

Remark 3. Since, for any fuzzy ideal µ and elements x, y ∈ A we have µ(xy) ≥ µ(x) ∨ µ(y),
hence µa · µb ⊆ µa∨b, and this coincides with the multiplication of right ideals of P : if α ≤ β then
σ(α) · σ(β) ⊆ σ(β) as σ(β) is an ideal; hence it is with the multiplication of right ideals in the
functor category.

Remark 4. The product of two fuzzy ideals µ1, µ2 is defined as:

(µ1µ2)(x) = Sup

{
∧i(µ1(xi) ∧ µ2(yi)) | x = ∑

i
xiyi

}
. (44)

Moreover, the map (−)0 is a homomorphism with respect to this product. For any fuzzy ideals,
µ1, µ2, we have:

(µ0
1µ0

2)(x) = Sup
{
∧i(µ

0
1(xi) ∧ µ0

2(yi)) | x = ∑i xiyi
}

= Sup{∧i(µ1(xi) ∧ µ2(yi)) | x = ∑i xiyi} = (µ1µ2)
0(x),

(45)

if x 6= 0. On the other hand,

σ(µ1µ2)(α) = {x | µ1µ2(x) ≥ α}
= {x | Sup{∧i(µ1(xi) ∧ µ2(yi)) | x = ∑i xiyi} ≥ α}
⊇ {x | x = ∑i xiyi, xi ∈ σ(µ1)(α), yi ∈ σ(µ2)(α)}
= σ(µ1)(α)σ(µ2)(α)
= (σ(µ1)σ(µ2))(α).

(46)

and the equality does not necessarily hold.

It is very easy to build examples in which we have proper inclusion σ(µ1)σ(µ2) $
σ(µ1µ2). In the following, we show one.

Example 3. Let K be a field, {X, Y} ∪ {Xn | n ∈ N} be a family of indeterminates over K, and
a the ideal of the polynomial ring K[X, Y, X0, . . .] generated by the set {X − YnXn | n ∈ N}.
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We denote by A the quotient ring
K[X, Y, X0, . . .]

a
= K[x, y, x0, . . .], satisfying the relations

x− ynxn = 0, for every n ∈ N.
In A, we have a strictly descending chain of ideals:

A % (y, x0, x1, . . .) % (y2, x0, x1, . . . , ) % · · · % (yn, x0, x1, . . .) % · · · % (x0, x1, . . .). (47)

Therefore, there is a fuzzy ideal µ, defined by

µ((yn, x0, x1, . . .) \ (yn+1, x0, x1, . . .)) = 1
2 −

1
2n , for every n ∈ N, and

µ(x0, x1, . . .) = 1.
(48)

Observe that µ(x0) = µ(x) = 1, but (µµ)(x) = Sup{µ(y) ∧ µ(z) | yz = x} ≤ 1
2 .

Therefore, x ∈ σ(µ)(1)σ(µ)(1) = µ1µ1 $ (µµ)1 = σ(µµ)(1).
Up to the present, we considered the decreasing gradual right ideal σ(µ), defined by the

α–levels: σ(µ)(α) = µ(α), for every α ∈ (0, 1]. On the other hand, if we consider σ̃(µ) = σ(µ)d,
we obtain a decreasing gradual right ideal that satisfies σ̃(µµ) = σ̃(µ)σ̃(µ), as we demonstrate
that σ̃ preserves the product. The same holds when we consider the sum.

To establish a homomorphism with respect to the sum and the product, first, let
us collect in the following proposition the behaviour of (−)0 with respect to the usual
operations of fuzzy ideals.

Proposition 5. Let µ1, µ2 be fuzzy ideals, and the following statements hold:

(1) In general, (µ1 + µ2)
0 6= µ0

1 + µ0
2, hence we define [µ1] + [µ2] = [µ0

1 + µ0
2].

(2) (µ1 ∩ µ2)
0 = µ0

1 ∩ µ0
2, hence we may define [µ1] ∩ [µ2] = [µ1 ∩ µ2].

(3) (µ1µ2)
0 = µ0

1µ0
2, hence we may define [µ1] · [µ2] = [µ1 · µ2].

Second, in order to arrange the drawback shows in Remarks (1) and (4): σ is not a
homomorphism with respect to the sum and product. We modify the notion of α–levels in
considering strict α–levels. Let µ be a fuzzy ideal of a ring A, for any α ∈ [0, 1], the strong
α–level µ̃α is defined as

σ̃(µ)(α) = µ̃α =

{
{x ∈ A | µ0(x) > α}, if α < 1,
{x ∈ A | µ0(x) = 1}, if α = 1.

(49)

This definition can be extended to any fuzzy subset µ such that Im(µ) has a maximum
element α0. In this case, we shall define the strong α–level µ̃α of µ as:

σ̃(µ)(α) = µ̃α =

{
{x ∈ A | µ(x) > α} ∪ {0}, if α ∈ Im(µ) \ {α0},
{x ∈ A | µ(x) = α0} ∪ {0}, if α ≥ α0.

(50)

Lemma 16. Let µ be a fuzzy subset of a ring A such that Im(µ) has a maximum, the following
statements hold,

(1) If µ is a fuzzy ideal, for any α ∈ [0, 1] we have that µ̃α is a decreasing gradual right ideal.
(2) If for any α ∈ [0, 1], we have that µ̃α is an ideal, and then µ is a fuzzy ideal.

Proof. (1). By Lemma (14) we have that µ̃1 is an ideal. If α < µ(0) and x, y ∈ µ̃α, then
µ(x), µ(y) > α, hence Min{µ(x), µ(y)} > α and µ(x − y) ≥ Min{µ(x), µ(y)} > α, i.e.,
x− y ∈ µ̃α. If x ∈ µ̃α, for any y ∈ A we have µ(xy) ≥ µ(x) > α, i.e., xy ∈ µ̃α.

(2). Let x, y ∈ A and β = µ(x) ≤ µ(y). For any α < β we have x, y ∈ µ̃α, hence
x− y ∈ µ̃α and µ(x− y) > α, hence µ(x− y) ≥ β. Otherwise, if x, y ∈ A and µ(x) = β, for
any α < β we have x ∈ µ̃α, then xy ∈ µ̃α and µ(xy) > α, hence µ(xy) ≥ β = µ(x).
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In this way, we have that there exists a right P–ideal σ̃(µ) associated to the fuzzy
ideal µ,

σ̃(µ)(α) = µ̃α, for any α ∈ (0, 1]. (51)

Observe that σ̃(µ) ⊆ σ(µ).
The definition of σ̃ can be extended to equivalence classes of fuzzy ideals in the

obvious way. In this case, the map [µ] 7→ σ̃(µ0) is a homomorphism with respect to: the
sum, the intersection and the product of classes of fuzzy ideals. For simplicity, we consider
fuzzy ideals µ such that µ = µ0, and if by Proposition 5 we avoid the use of brackets, then
we have the following proposition:

Proposition 6. Let µ1, µ2 be fuzzy ideals, then we have:

(1) σ̃(µ1[+]µ2) = σ̃(µ1) + σ̃(µ2).
(2) σ̃(µ1µ2) = σ̃(µ1)σ̃(µ2).
(3) σ̃(µ1 ∩ µ2) = σ̃(µ1) ∩ σ̃(µ2).

Proof. (1). We have:

σ̃(µ1[+]µ2)(x) = {x ∈ A | (µ1[+]µ2)(x) > α}
= {x ∈ A | Sup{µ0

1(y) ∧ µ0
2(z) | y + z = x} > α}

= {y + z | µ0
1(y) > α, µ0

2(z) > α}
= {y | µ0

1(y) > α}+ {z | µ0
2(z) > α}

= σ̃(µ1)(α) + σ̃(µ2)(α).

(52)

The same holds if we consider either the product or the intersection.

The proof of the following proposition is straightforward.

Proposition 7. For any family of fuzzy ideals {µi | i ∈ I} we have:

(1) σ̃(∑i µi) = ∑i σ̃(µi).
(2) σ̃(∩iµi) ⊆ ∩iσ̃(µi).

In a similar way, we can develop this theory for fuzzy submodules of A–modules.

4.2. How to Associate Fuzzy Ideals to Gradual Right Ideals

We have studied how to associate a right P–ideal to each fuzzy ideal in such a way
that we have homomorphism with respect to the sum, intersection and product. In addition,
this association preserves arbitrary sums. Presently, we deal with the reciprocal problem:
associate a fuzzy ideal to a gradual right ideal.

Indeed, for any fuzzy ideal µ (satisfying µ = µ0) the right P–modules σ(µ) and σ̃(µ)
below are torsionfree, i.e., they belong to the class J and, by [4], they can be identified with
decreasing gradual right ideals of A, i.e., maps σ from (0, 1] to the lattice of all ideals L(A) of
A such that σ(β) ⊆ σ(α) whenever α ≤ β.

The problem is that not every decreasing gradual right ideal come from a fuzzy ideal;
hence, first we need to know how to characterize those which are images of a fuzzy ideal.

Let µ be a fuzzy ideal; for any x ∈ A we have that µ(x) = Max{β | x ∈ σ(µ)(β)}. For
any decreasing gradual right ideal σ, we say σ satisfies property (max–F) if for any x ∈ A
there exists Max{β | x ∈ σ(β)}.

In the same way, if we consider σ̃(µ), for any x ∈ A we have µ(x) = Inf{γ | x /∈ µ̃α},
and it is not the minimum. Thus, for any decreasing gradual right ideal σ, we say σ satisfies
property property (inf–F) if for any x ∈ A there exists Inf{γ | x /∈ σ(γ)}, and it is not the
minimum. See Lemma (22) below.

Let σ be a decreasing gradual right ideal satisfying property (max–F), we define a map
µ(σ) : A −→ [0, 1] as follows:

µ(σ)(x) = Max{α | x ∈ σ(α)}. (53)
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First, we demonstrate that µ(σ) is a fuzzy ideal.

Lemma 17. If σ is a decreasing gradual right ideal satisfying property (max–F), then µ(σ) is a
fuzzy ideal and µ(σ) = µ0.

Proof. Let x1, x2 ∈ A; if Max{γ | x ∈ σ(γ)} = µ(σ)(x1) = α1 ≤ α2 = µ(σ)(x2) =
Max{β | x2 ∈ σ(β)}, then x2 ∈ µ(σ)α2 ⊆ µ(σ)α1 , hence x1, x2 ∈ µ(σ)α1 , and x1 − x2 ∈
µ(σ)α1 , i.e., µ(σ)(x1 − x2) ≥ α1.

Otherwise, for any x, y ∈ A, if µ(σ)(x) = α, then xy ∈ µ(σ)α, hence µ(σ)(xy) ≥ α.

Lemma 18. With the above notation, the maps µ 7→ σ(µ) and σ 7→ µ(σ) establish a bijective
correspondence between

(i) Equivalence classes of fuzzy ideals and
(ii) Decreasing gradual right ideals satisfying the property (max–F).

Proof. Let µ be a fuzzy ideal, and consider µ(σ(µ)); for any x ∈ A, we have:

µ(σ(µ))(x) = Max{γ | x ∈ σ(µ)(γ)} = Max{γ | µ(x) ≥ γ} = µ(x). (54)

Otherwise, let σ be a decreasing gradual right ideal and consider σ(µ(σ)); for any
α ∈ (0, 1], we have:

σ(µ(σ))(α) = {x | µ(σ)(x) ≥ α} = {x | Max{γ | x ∈ σ(γ)} ≥ α}
= {x | x ∈ σ(α)} = σ(α). (55)

Unfortunately, these maps are not homomorphisms when we consider the sum or
product of ideals.

In the following, we shall consider the map µ 7→ σ̃(µ), which will be a homomorphism
with respect to sum, product and intersection of ideals. We are working for building an
inverse to the map σ̃. Since σ̃(µ) satisfies the property (inf-F), we can define

µ̃(σ̃(µ))(x) = Inf{γ | x /∈ σ̃(µ)(γ)}, (56)

being Inf∅ = 1.

Lemma 19. Let µ be a fuzzy ideal, then

(1) µ̃(σ̃(µ)) is a fuzzy ideal.
(2) µ0 = µ̃(σ̃(µ)).

Proof. For any 0 6= x ∈ A we have:

µ̃(σ̃(µ))(x) = Inf{γ | x /∈ σ̃(µ)(γ)} = Inf{γ | µ(x) ≤ γ} = µ(x). (57)

In particular, we can see the class of fuzzy ideals inside of the class of decreasing
gradual right ideals via the map µ 7→ σ̃(µ).

This means that µ 7→ σ̃(µ) is an injective map from the set of equivalence classes of
all fuzzy ideals into the set of all decreasing gradual right ideals satisfying the property
(inf–F). Otherwise, for any fuzzy ideal µ, we have σ̃(µ) ⊆ σ(µ), and the equality does not
necessarily hold.

The problem is to determine those decreasing gradual right ideals σ, such that σ = σ̃(µ)
for some fuzzy ideal µ: we know that σ satisfies the following property:

(1) satisfies property (inf–F).
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To characterize them, we define an operator, σ 7→ σd, in the set of all gradual right
ideals, i.e., maps σ from (0, 1] to the lattice of all ideals of A together with maps σ( fα,β :
σ(β) −→ σ(α), whenever α ≤ β, satisfying σ( fβ,γ)σ( fα,β) = σ( fα,γ), if α ≤ β ≤ γ. For any
gradual right ideal σ, we define a new gradual subset σd as follows:

σd(α) =

{
σ(1), if α = 1,
∑{σ(β) | β > α}, for any α ∈ (0, 1).

(58)

Lemma 20. If σ is a gradual right ideal, then

(1) σd is a decreasing gradual right ideal.
(2) Not necessarily, we have σ ⊆ σd.
(3) σdd = σd.

Proof. (1). For every α ∈ (0, 1) we have σd(α) = ∑{σ(β) | β > α} as a sum of submodules.
(2). It is easy.
(3). For every α ∈ (0, 1) we have:

σdd(α) = ∑{σd(β) | β > α} = ∑{∑{σ(γ) | γ > β} | β > α}
= ∑{σ(γ) | γ > β > α} = σd(α). (59)

We name strictly decreasing gradual right ideal any gradual right ideal σ such that σd = σ.
Since σdd = σd, it seems that we have a kind of closure operator; we only need to be

situated in the suitable framework. In this case, it is the set of all decreasing gradual right
ideals. Indeed, we have:

Lemma 21. Let σ be a decreasing gradual right ideal, then we have:

(1) σd ⊆ σ.
(2) σdd = σd.

If σ ⊆ τ are decreasing gradual right ideals, in addition then

(3) σd ⊆ τd.
(4) σd is the largest strictly decreasing gradual right ideal contained in σ.

In consequence, we have an interior operator, σ 7→ σd, on decreasing gradual right
ideals, which characterizes strictly decreasing gradual right ideals.

We shall relate the properties (max–F) and (inf–F) in the sense that one of them is
the proper one of the decreasing gradual right ideals and the other of strictly decreasing
gradual right ideals.

Lemma 22. Let σ be a decreasing gradual right ideal, and the following statements are equivalent:

(a) σ satisfies property (max–F),
(b) σd satisfies property (inf–F).

Proof. (a) ⇒ (b). Let x ∈ A, and α = Inf{γ | x /∈ σd(x)} = Inf{γ | x /∈ σ(γ)}. Let
β = Max{γ | x ∈ σ(γ)}; hence β ≤ α, for any β ≤ δ < α we have x ∈ σ(δ) as δ < α, hence
β = δ; as a consequence β = α.

(b)⇒ (a). Let x ∈ A, and α = Sup{γ | x ∈ σ(γ)}. If x /∈ σ(α), then β = Inf{γ | x /∈
σ(γ)} ≤ α. For any β < δ < α, we have x ∈ σ(δ), because δ < α, and x /∈ σ(δ) because
β < δ, which is a contradiction. Therefore, x ∈ σ(α).

Presently, the following result is immediate.
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Lemma 23. For any fuzzy ideal µ, we have σ(µ)d = σ̃(µ).

Our aim is to establish a bijective correspondence between the sets of equivalence cla-
sses of fuzzy ideals and strictly decreasing gradual right ideals satisfying property (inf–F).
With this in mind, for any gradual right ideal σ, we define a fuzzy subset µ̃(σ) as follows:

µ̃(σ)(x) = Inf{γ | x /∈ σ(γ)}. (60)

To establish a well founded correspondence between fuzzy ideals and a class of
decreasing gradual right ideals, we need another definition. We continue with a use-
ful Lemma.

Lemma 24. Let σ be a decreasing gradual right ideal, if
(

σ(α) \ σd(α)
)
∩
(

σ(β) \ σd(β)
)
6= ∅,

then α = β, for any α, β ∈ P.

Proof. Let us assume α < β, and let x in the intersection, then x ∈ σ(α) and x /∈ σd(α), i.e.,
x /∈ σ(β) for any β > α, hence x /∈ σ(β) \ σd(β).

Let σ, τ be a decreasing gradual right ideal, and the pair (σ, τ) is an E–pair if the
following statements hold.

(i) σ ⊆ τ, σ(1) = τ(1), and σ is d–open.
(ii) {τ(α) \ σ(α) | 1 6= α ∈ P} ∪ {τ(1)} is a set of mutually disjoint subsets, i.e., any two

non–empty sets have an empty intersection.

Lemma 25. For any E–pair (σ, τ) we have σ ⊆ τd.

Proof. We have σ = σd ⊆ τd ⊆ τ, hence σ ⊆ τd.

Proposition 8. If (σ, τ) is an E-pair, then σ = τd.

Proof. We always have τ(α) \ τd(α) ⊆ τ(α) \ σ(α). Otherwise, if x ∈ τ(α) \ σ(α), and
x /∈ τ(α) \ τd(α), then x ∈ τd(α), and there exists β > α such that x ∈ τ(β) ⊆ τ(α). Since
x /∈ σ(α), then x /∈ σ(β), and x ∈ τ(β) \ σ(β). We have (τ(α) \ σ(α)) ∩ (τ(β) \ σ(β)) 6= ∅,
which is a contradiction by Lemma (24). As a consequence, τ(α) \ σ(α) = τ(α) \ τd(α), i.e.,
σ(α) = τd(α).

An E–pair (σ, τ) is an F–pair if, in addition, it satisfies:

(iii) ∪{τ(α) \ σ(α) | 1 6= α ∈ P} ∪ F(1) = ∪τα(α).

Remark 5. Observe that if σ is a d–open gradual right ideal, then (σd, σ) is an E–pair but it is not
an F–pair.

Let (σ, τ) be an F–pair, then for any x ∈ ∪ασ(α), we define

µ(σ,τ)(x) =
{

1, if x ∈ σ(1),
α, if x ∈ τ(α) \ σ(α).

(61)

Theorem 1. For any F–pair (σ, τ) we have that µ(σ,τ) is a fuzzy ideal satisfying µ(σ,τ)(0) = 1.

Proof. It follows from the following fact: with this definition, for any α ∈ (0, 1], the α–level
of µ(σ,τ) is just τ(α).

Now we can build the announced correspondence.

Proposition 9. Let A be a ring, then:
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(1) If σ is a strictly decreasing gradual right ideal satisfying property (inf-F), then µ̃(σ) is a fuzzy ideal.
(2) The maps µ 7→ σ̃(µ) and σ 7→ µ̃(σ) establish a bijective correspondence between

(a) Equivalence classes of fuzzy ideals.
(b) Strictly decreasing gradual right ideals satisfying the property (inf–F).
(c) Gradual right ideals satisfy (max–F).
(d) F–pairs in A.

Proof. Let x1, x2 ∈ A, if Inf{γ | x1 /∈ σ(γ)} = µ̃(σ)(x1) = α1 ≤ α2 = µ̃(σ)(x2) = Inf{β |
x2 /∈ σ(β)}, then x1 − x2 ∈ σ(α1), and

µ̃(σ)(x1 − x2) = Inf{γ | x1 − x2 /∈ σ(γ)} ≥ α1 = α1 ∧ α2 = µ̃(σ)(x1) ∧ µ̃(σ)(x2). (62)

Let x1, x2 ∈ A, if Inf{γ | x1 /∈ σ(γ)} = µ̃(σ)(x1) = α1, then x1x2 ∈ σ(α1), and
µ̃(σ)(x1x2) ≥ µ̃(σ)(x1).

4.3. Fuzzy and Gradual Submodules

We have studied fuzzy ideals and related them with gradual right ideals; in the same
way, we can perform these notions for fuzzy modules and gradual right modules.

Let M be an A–module, a fuzzy subset µ of M is a fuzzy submodule if for any x, y ∈ M
we have:

(1) µ(x− y) ≥ min{µ(x), µ(y)},
(2) µ(xr) ≥ µ(x) for any r ∈ A and
(3) µ(0) 6= 0, to avoid the trivial case.

In the same way, we define α–levels, strong α–levels, and gradual right submodules
associated to a given fuzzy submodule. In this way, we obtain a similar result to the case of
fuzzy and gradual right ideals.

Proposition 10. Let A be a ring, and M be an A–module, then:

(1) If µ is a fuzzy submodule of M, then σ(µ) and σ̃(µ) are decreasing gradual right submodules
of M.

(2) If σ is a decreasing gradual right submodule satisfying property (F), then µ(σ) is a fuzzy submodule.
(3) If σ is a strictly decreasing gradual right ideal satisfying property (inf-F), then µ̃(σ) is a

fuzzy ideal.
(4) The maps µ 7→ σ̃(µ) and σ 7→ µ̃(σ) establish a bijective correspondence between

(i) Equivalence classes of fuzzy ideals.
(ii) Strictly decreasing gradual right ideals satisfying the property (inf–F).
(iii) Decreasing gradual right ideals satisfy (max–F).
(iv) F–pair in M.

(5) In the case of strictly decreasing gradual right submodules, the bijection defined by µ 7→ σ̃(µ)
and σ 7→ µ̃(σ) preserves sums, intersections and products by ideals.

5. Conclusions

In this paper we have built several object and categories with the aim of providing a
categorical framework for fuzzy modules.

(1) Starting from a directed poset P, we have constructed a preadditive category P and
the functor category P−Mod as ambient to study fuzzy submodules.

(2) If P is (0, 1], this module category has a special class of objects: J which is a torsionfree
class in P−Mod.

(3) Using this class, we have built a pair of modules, or equivalently, of gradual submodules.
(4) To assure that the sum of fuzzy submodules is a good operation, we have introduced

an equivalence relation and demonstrated that we can restrict ourselves to consider
operations on equivalence classes, to finally establish a bijective correspondence
between equivalence classes of fuzzy submodules and certain pairs: the F-pairs.
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(5) With this correspondence, we have shown that it is a homomorphism for the usual
operations of fuzzy ideals: the sum, the product, the union and the intersection, improving
the results obtained when using the usual α–levels associated to a fuzzy submodule.
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