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Abstract   
Nowadays, many people worldwide suffer from brain disorders, and their health is in danger. So far, 

numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and attention deficit 

hyperactivity disorder (ADHD), among which functional magnetic resonance imaging (fMRI) 

modalities are known as a popular method among physicians. This paper presents an SZ and ADHD 

intelligent detection method of resting-state fMRI (rs-fMRI) modality using a new deep learning 

method. The University of California Los Angeles dataset, which contains the rs-fMRI modalities of 

SZ and ADHD patients, has been used for experiments. The FMRIB software library toolbox first 

performed preprocessing on rs-fMRI data. Then, a convolutional Autoencoder model with the proposed 

number of layers is used to extract features from rs-fMRI data. In the classification step, a new fuzzy 

method called interval type-2 fuzzy regression (IT2FR) is introduced and then optimized by genetic 

algorithm, particle swarm optimization, and gray wolf optimization (GWO) techniques. Also, the results 

of IT2FR methods are compared with multilayer perceptron, k-nearest neighbors, support vector 

machine, random forest, and decision tree, and adaptive neuro-fuzzy inference system methods. The 

experiment results show that the IT2FR method with the GWO optimization algorithm has achieved 

satisfactory results compared to other classifier methods. Finally, the proposed classification technique 

was able to provide 72.71% accuracy. 
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1. Introduction  
The human brain consists of a complex and large network of neurons responsible for controlling and 

monitoring all parts of the body [1-2]. The brain network has different areas that are constantly 

connected. Many neurons in different parts of the brain are connected and coordinated to perform any 

function in the body, creating complex brain patterns [3-4]. Whenever connectivity is not well-

connected in different areas of the brain, it can cause changes in the function of the brain and disorders 

such as attention deficit hyperactivity (ADHD) [5], Schizophrenia (SZ) [6-7], epilepsy [8-10], and 

Parkinson's disease (PD) [11]. Initially, the diagnosis of various brain disorders was based on the DSM. 

The experience of a specialist physician plays a critical role in diagnosing the type of brain disorder 

[12-13]. Therefore, examining and diagnosing the type of brain disorder is not possible for all physicians 



 

[14]. For example, ADHD has some of the same symptoms as other brain disorders, such as PD and 

SZ, and is difficult for some specialists to diagnose [15-16]. 

To overcome these challenges, functional neuroimaging modalities have been developed to diagnose a 

variety of brain disorders that are highly popular with physicians [17-18]. Functional neuroimaging 

modalities include electroencephalography (EEG) [19], functional magnetic resonance imaging  (fMRI) 

[20], positron emission tomography (PET) [21], single-photon emission computed tomography 

(SPECT) [22], magnetoencephalography (MEG) [23] and functional near-infrared spectroscopy 

(fNIRS) [24]. FMRI modalities are the most important non-invasive techniques for assessing brain 

function during brain disorders [20]. fMRI includes task fMRI (T-fMRI) and resting-state fMRI (rs-

fMRI) modalities and shows spatial resolution in the brain, making fMRI modalities popular for 

examining functional connectivity in different parts of the brain [25]. The fMRI data contains a 4-

dimensional tensor so that the 3D volume of the brain is segmented into small areas, and the activity of 

each area is recorded for a certain period of time [25]. In this modality, the two brain regions are 

functionally related if they have simultaneous functional activity [25]. FMRI modalities have been used 

to analyze brain connectivity patterns in diagnosing various brain disorders by physicians and have 

yielded promising results [26-28]. 

In recent years, studies have shown that functional connectivity analysis based on fMRI modalities 

plays a significant role in the diagnosis of brain disorders such as SZ [6], Alzheimer's disease (AD) 

[29], epilepsy [30-31], ADHD [5], and BD [32]. Brain disorders alter functional connectivity in the 

brain, which fMRI modalities can see. However, diagnosis of brain disorders with fMRI modalities is 

a difficult and time-consuming task for physicians [25]. For example, ADHD is a developmental 

disorder with some of the same symptoms as other brain disorders, such as SZ [7], making it difficult 

for physicians to diagnose the type of brain disorder. The main issue with only relying on physicians 

for the diagnosis of mental disorders such as ADHD and Schizophrenia is that it is time-consuming and  

subjective measures may influence the final assessments of subjects.  Hence, the possibility of  

misdiagnosis  may increase. Application of machine learning approaches for the diagnosis, can 

overcome these limitations and provide fast, and accurate classification.    

In some cases, both ADHD and SZ disorders have been observed simultaneously in patients, but it does 

not mean that one disease necessarily causes the other [106-107]. Other research has shown that people 

with close relatives with ADHD are more likely to develop SZ [108-109]. Dopamine is known as one 

of the causes of ADHD and SZ. Dopamine, as a neurotransmitter, may affect attention, concentration, 

pleasure, happiness, and motivation [110]. In addition, other researchers have shown that perinatal risk 

factors may be involved in both diseases [111]. According to references [112-113], there may be an 

overlap between ADHD and SZ. ADHD and SZ disorders usually have a detrimental effect on memory 

and attention [114]. Similar to ADHD, SZ sufferers may experience challenges such as clarity of 

thinking. On the other hand, there are distinct differences between ADHD and SZ disorders regarding 

symptoms, diagnosis, and treatment [115-116]. To address these challenges, in recent years, artificial 

intelligence (AI) methods have been used to diagnose various brain disorders from fMRI data, and 

researchers are trying to create working tools to diagnose these diseases [33-34]. In this paper, the 

authors aim to present new deep learning (DL)-based method for the simultaneous diagnosis of SZ and 

ADHD, so a brief description of SZ and ADHD is provided below. 

SZ is a severe and chronic mental disorder characterized by impaired thinking, perception, and behavior. 

In addition, SZ causes psychosis, which is associated with significant disability [7]. DSM-5 is a guide 

for assessing and diagnosing mental disorders [12-13]. According to the DSM-5, two or more of the 

symptoms of delusions, hallucinations, disorganized speech, grossly disorganized or catatonic behavior, 

and negative symptoms must frequently occur over one month [12-13]. Numerous factors in SZ include 

genetic factors, environmental factors, and brain structure and function. While there is still no cure for 

SZ, research has led to more innovative and safer treatments. Researchers are also trying to diagnose 



 

the disease and identify its causes by studying and conducting research and using fMRI neuroimaging 

techniques to study the function of the brain. 

ADHD is a neurodevelopmental disorder that is very common in children ages 3 and 6 [35-36]. ADHD 

includes three types of inattention, hyperactivity-impulsivity, and combination [35-36]. ADHD always 

causes many challenges for children, including forgetting simple things, talking non-stop, being 

distracted, etc. [35]. ADHD has different symptoms for each person. Therefore, its accurate diagnosis 

is challenging for specialist doctors [36]. 

Nowadays, a lot of research is being done to diagnose brain disorders using DL techniques [37-39]. The 

DL models are inspired by the human nervous system, consisting of several interconnected layers of 

processing units with nonlinear activation functions called artificial neurons [40-42]. One of the 

advantages of DL networks is their ability to directly process large raw data or data with little 

preprocessing on them to automatically extract the best features for the task [40-42].  

So far, various researches have been done on diagnosing SZ [7] and ADHD [43] using fMRI modalities 

and DL techniques. The main purpose of these pieces of research is to increase the performance for SZ 

or ADHD detection using MRI modalities. In addition, the researchers hope to be able to provide a 

working DL-based tool for the diagnosis of SZ and ADHD in the future. Further details of these studies 

are summarized in Table (6). However, among the presented studies, simultaneous diagnosis of SZ and 

ADHD from fMRI data using DL techniques has not been performed. 

 
Fig. 1. Block diagram of the proposed method.  

This paper presents a new SZ and ADHD detection method in rs-fMRI modality using 2D convolutional 

Autoencoder (CNN-AE) and interval type-2 fuzzy regression (IT2FR)- gray wolf optimization (GWO) 

methods. First, rs-fMRI data from the University of California Los Angeles (UCLA) dataset were used 

for SZ and ADHD detection [44]. The FMRIB software library (FSL) [45] toolbox is used to preprocess 

rs-fMRI data. The preprocessing performed on rs-fMRI data includes various steps that are discussed 

in detail in the next section of this manuscript. Afterward, a CNN-AE model with the proposed layers 

is used to extract features from preprocessed fMRI data. Finally, the classification of features is done 

by different classifier methods, namely, decision tree (DT) [57], multilayer perceptron (MLP) [46], k-

nearest neighbors (KNN) [47], support vector machine (SVM) [48], random forest (RF) [49], adaptive 



 

neuro-fuzzy inference system (ANFIS) [50], ANFIS-GA (genetic algorithm), ANFIS-PSO (particle 

swarm optimization), ANFIS-GWO, IT2FR-GA, IT2FR-PSO, and IT2FR-GWO. In this step, the 

IT2FR technique is introduced as a pioneering work and optimized using GA [51], PSO [52], and WGO 

[53] optimization algorithms. Also, combining the IT2FR with WGO is another novelty of this paper. 
In the following, other sections of the paper are described. The second section introduces the proposed 

method of SZ detection from rs-fMRI data and the CNN-AE model. The third section is dedicated to 

the introduction of evaluation parameters. In the fourth section, the test results of the proposed method 

are presented. Finally, the discussion, conclusions, and future work are presented in the fifth section. 

 

2. Proposed Method  
The proposed methods for SZ and ADHD detection from rs-fMRI modalities are introduced in this 

section. In Figure (1), the steps of the proposed method are shown in the form of a diagram. First, the 

UCLA dataset containing rs-fMRI modalities was used. In the second step, preprocessing is performed 

on rs-fMRI data using FSL software. This step is based on standard preprocessing methods for rs-fMRI 

modalities. The following feature extraction method is based on the CNN-AE architecture with the 

suggested number of layers. Finally, various classification algorithms including MLP, KNN, SVM, RF, 

ANFIS, ANFIS-GA, ANFIS-PSO, ANFIS-GWO, IT2FR-GA, IT2FR-PSO, and IT2FR-GWO are used. 

In the following, each of these sections is presented. 

(A) 

   

(B) 

   

Fig. 2. Sample rs-fMRI data from HC subjects (row A) and patients (row B). 

2.1. Dataset  
This paper used the UCLA dataset for our experiments [44]. This dataset has different versions; the first 

version is presented in reference [134]. The dataset includes fMRI data from 138 healthy subjects, 

patients with Schizophrenia (58), Bipolar disorder (49), and ADHD (45). Additional information about 

the dataset (sex, age and etc.) can be found in [134] [44]. In this paper, we used the healthy control (60 

subjects), SZ (58 subjects), and ADHD (45 subjects) classes. We selected 60 HC subjects randomly 

from 138 subjects to make the dataset balanced between different classes. Figure (2) depicts some 

samples of rs-fMRI data from the UCLA dataset. 

Images were acquired using a 3T Siemens Trio scanner. The rs-fMRI data with 304 seconds (eyes-

open) was collected from each subject using T2*-weighted echo-planar imaging (EPI) pulse sequence 



 

with parameters: axial slices, number of slices=34, slice thickness=4mm, TR=2s, TE=30ms, flip 

angle=90°, matrix=64×64, FOV=192×192 mm2. Also, a T1-weighted high-resolution anatomical scan 

(MPRAGE) was acquired from each subject with the following parameters: sagittal slices, number of 

slices=176, slice thickness=1mm, TR=1.9s, TE=2.26ms, matrix=256×256, FOV=250×250 mm2. The 

traditional statistical analyses (i.e., ANOVA and t-test) are conducted on demographic information  and 

functional connectivity. Table (1) provides the details about the data used in this work with statistical 

analysis.  

Table 1. Details about the  data used in this work with statistical analysis. 

Variables HC SZ ADHD P Value 

No.  60 58 45 - 

Age (mean ± s.t.d) 31.59 ± 8.78 36.46 ± 8.78 32.05 ± 10.27 0.019 

Hand Score (mean ± s.t.d)** 0.91 ± 0.15 0.95 ± 0.09 0.91 ± 0.10 0.23 

Sex (Male : Female)*** 29 : 23 38 : 12 21 : 19 0.03 
* The P value was computed using a one-way Anova analysis 
** A measure between 0 and 1. 1: Completely right-handed, 0: completely left-handed 
*** P Value computed using chi Square test 

 

 

A one-way ANOVA (p-value <0.0005, Uncorrected) has been conducted on the functional 

connectivities. Table (2) shows the summary of one-way ANOVA results obtained for the functional 

connectivity. 

Table 2. Summary of one-way ANOVA results obtained for the functional connectivity.  

Region Pairs P value 

Right Temporal Pole--Right Frontal Medial Cortex 0.0004 

Right Frontal Medial Cortex--Right Frontal Orbital Cortex 0.0001 

Right Subcallosal Cortex--Right Frontal Orbital Cortex 0.0002 

Left Central Opercular Cortex--Left Thalamus 0.0002 

Left Central Opercular Cortex--Left Brain-Stem 0.0002 

Left Central Opercular Cortex--Right Brain-Stem 0.0001 

 

 
Fig. 3. Overview of the preprocessing steps. 

2.2. Preprocessing  
All preprocessing steps were conducted using the FSL software [45]. A general overview of the 

preprocessing steps can be seen in figure (3) and are as follow: 

• Eliminating non-brain regions from the T1 high-resolution images using BET  

• Eliminating the first 10 volume images to allow for magnetization equilibrium 

• Applying a temporal Gaussian high-pass filter with a cut-off frequency of 0.01 HZ 



 

• Applying motion correction using FSLs MCFLIRT  

• Applying interleaved slice timing correction 

• Applying a Gaussian Smoothing with FWHM = 5mm for noise reduction 

• Registering all images to standard space (MNI152_T1_2mm) 

The outcome of the main preprocessing steps (filtering and registration) on a sample image can be seen 

in figures (4) and (5). 

(A) 

   

(B) 

   

         Fig. 4. Sample images before and after applying BET on raw T1-images. 

 

 

(A) 

   

(B) 

   

(C) 

   
Fig. 5. Sample images after three main preprocessing steps. Row (A): raw rs-fMRI data. Row (B): Raw 

rs-fMRI data after brain extraction, slice timing correction, and filtering. Row (C): Registered Image to 

standard space. 

2.2.1. Connectivity 



 

In fMRI modalities, functional connectivity expresses the temporal correlation between the time series 

of different brain regions [117-118]. In other words, the presence of statistical dependencies between 

two neurophysiological data is investigated by functional connectivity [117-118]. Assuming that the 

data fit Gaussian assumptions, then second-order dependencies are discussed and include covariance's 

or correlations [117-118]. For non-Gaussian processes, higher-order dependencies are also investigated 

by some methods such as independent component analysis (ICA) [119]. The most important methods 

of functional connectivity are correlation [120], coherence [121], mutual information [122], transfer 

entropy [123], directed coherence [124], Granger causality [125], generalized synchronization [126], 

and Bayes net [127]. 

In this paper. the Pearson correlation coefficient was used to estimate the functional connectivity 

between regions. Regions of interest (ROI) were defined according to the Harvard-Oxford cortical and 

sub-cortical (lateralized) atlas. Based on this atlas, a total of 118 ROIs were considered. Next, regional 

time series were obtained by averaging the time series of all voxels inside each of the 118 ROIs. Finally, 

the Pearson correlation coefficient between the time series was used to extract the connectivity matrices 

for each subject. In conclusion, a connectivity matrix with a shape of 118×118 is obtained. Figures (6) 

to (8) demonstrate connectivity heat maps from healthy control (HC) and SZ subjects. 

  

  

Fig. 6: Sample correlation matrices obtained for HC subjects. 



 

  

  

Fig. 7.  Sample correlation matrices obtained for SZ subjects. 

  

  

Fig. 8. Sample correlation matrices obtained for ADHD subjects. 



 

2.3. Proposed CNN-AE Model  
The introduction of DL techniques in various fields, including medicine [25-30], has made significant 

progress, and valuable results have been achieved in detecting different diseases [33-34]. So far, several 

models of DL techniques have been proposed, with different training schemes, including supervised, 

semi-supervised, and unsupervised methods [54-55]. Autoencoders (AEs) are an important class of DLs 

trained unsupervised and are widely used for feature extraction [55-56]. AE architectures consist of two 

important parts: decoder and encoder [55]. 

 
Fig. 9. Proposed CNN-AE model for diagnosis of SZ from rs-fMRI modality. 

AEs have different architectures [55], and the idea of this paper is based on the CNN-AE technique 

with the proposed layers. In the proposed model, the connectivity matrices are fed to the input of the 

encoder section. Then, it passes through the convolutional layers to reach the last layer of the encoder. 

Afterwards, this data is entered into the decoder, which aims to perform data reconstruction. This paper 

uses seven convolutional layers in the encoder and decoder; three of these are in the encoder (along 

with activation function and followed by a max pooling), and four are in the decoder (the first three are 

followed by an upsampling layer, while the last one is used to generate images with the same shape as 

input). The output of the forth convolution layer (before upsampling) is used for feature extraction. This 

structure was picked by empirically testing a few alternatives. Figure (9) and Table (3) detail the 

proposed CNN-AE model.  

Table 3. Details for the proposed CNN-AE model. 
Activation Param  Stride Kernel Size Output Shape  Layers Architecture 

Depth Width 
-- 0 -- -- 1 (118, 118) Input Layer  

 

 

Encoder 

ReLU 320 1 32 32 (118, 118) Conv2D 
-- 0 1 -- 32 (59, 59) Max Pooling 

ReLU 9248 1 32 32 (59, 59) Conv2D 
-- 0 1 -- 32 (30, 30) Max Pooling 

ReLU 289 1 32 1 (30, 30) Conv2D 

-- 0 1 -- 1 (15, 15) Max Pooling  

ReLU 10 1 32 1 (15, 15) Conv2D   

 

 

 

Decoder  

-- 0 1 -- 1 (30, 30) Upsampling  

ReLU 320 1 32 32 (30, 30) Conv2D  

-- 0 1 -- 32 (60, 60) Upsampling  

ReLU 9248 1 32 32 (60, 60) Conv2D  

-- 0 1 -- 32 (120, 120) Upsampling 

-- 0 -- -- 1 (118, 118) Zero Pad  

Tanh 289 1 1 1 (118, 118) Conv2D  

 

 

 



 

2.4. Classifiers  
First, the decoder part is deleted to use an autoencoder for feature extraction. Next, a dense layer 

followed by a SoftMax classifier is inserted after the encoder, and the encoder is fine-tuned. Afterward, 

the representations from the last convolutional layer (last layer of the encoder) are extracted as features 

for each image. Figure (10) shows the overall structure of the fine-tuned network. After performing 

these steps, a representation for each image is generated which can be fed to different classifier methods. 

In this paper, the used classification algorithms consist of MLP, KNN, SVM, RF, ANFIS, ANFIS-GA, 

ANFIS-PSO, ANFIS-GWO, IT2FR-GA, IT2FR-PSO, and IT2FR-GWO. In the following, the details 

of classifier algorithms are presented.  

 
Fig. 10. AE-based Classifier block diagram.   

2.4.1. Machine learning classifiers  

To compare the results of the proposed method and show its superiority, several classification 

algorithms are picked and evaluated on the dataset. Decision trees (DT) [57], KNN [47], MLP [46], 

SVM [48] and Random Forest [49] are used. These methods have different complexities, and each has 

its strength and weaknesses; for example, random forest is fast and robust against outliers but tends to 

fail where features are highly entangled, whereas SVM with the proper kernel can solve those problems, 

but its performance decreases for massive datasets. Moreover, some of these methods have hyper-

parameters, k in KNN and kernel in SVM; these values are picked as three and RBF, respectively. 

 

2.4.2. ANFIS Models  

Nowadays, various applications use fuzzy systems, including medical data classification [50]. The 

ANFIS model is one of the most popular classification methods, which combines fuzzy logic and 

adaptive network. More information about the ANFIS method is given in [50]. In this work, the Genfis-

3 function is used to implement ANFIS based on the FCM clustering algorithm. Furthermore, this 

function uses the Gaussian membership function for input data. Finally, the training step is based on 

the hybrid method. In [50], ANFIS model training with intelligent optimization methods is presented, 

and we have done the same in this research. 

2.4.3. Improving Type-2 Fuzzy Regression Based on TSK 
Linear regression (LR) has been extensively utilized in many applications, such as the medical one [58-

59]. According to the definition of LR, there will be a linear relationship between independent variables 

and the dependent variable. LR-based approaches are among well-known and widely used machine 

learning tools (ML) [60]. 

Due to uncertainty in medical data and the capability of Fuzzy Logic Systems (FLSs) in modelling 

uncertainties, Type-1 and Type-2 Fuzzy Regression methods have been proposed, which have more 

potential and efficiency to outperform LR techniques . 



 

Moreover, taking advantage of additional degrees of freedom provided by the footprint of uncertainty 

(FOU), Interval Type-2 Fuzzy Logic Systems (IT2 FLSs) are able to effectively handle the high levels 

of uncertainty in comparison with T1 FLS [61].  

The following definitions will be presented before analyzing the Interval Type-2 Fuzzy Regression (IT2 

FR). 

Definition 1[62]: The T2FS is represented by a type-2 membership function  𝜇�̃�(𝑥, 𝑢) as follows: 

�̃� = {((𝑥, 𝑢), 𝜇𝐴(𝑥, 𝑢))|∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽𝑥 ⊆ [0,1]} (1) 

where 𝑥  is the primary variable in 𝑋, 𝑢 is the second variable which has the domain 𝐽𝑥 ⊆ [0,1], and the 

amplitude of 𝜇�̃�(𝑥, 𝑢) is known as the second grade. The T2FS can also denoted as: 

�̃� = ∫
𝑥∈𝑋

∫
𝜇∈𝐽𝑥

𝜇𝐴(𝑥, 𝑢) (𝑥, 𝑢)⁄  (2) 

Definition 2: The footprint of uncertainty (FOU) of a T2FS �̃� is defined as 

�̃� = {(𝑥, 𝑢)|𝑥 ∈ 𝑋, 𝑢 ∈ [𝑢𝐴, 𝑢𝐴]} (3) 

Definition 3[62]: Due to the complexity and abstraction of T2FS, IT2FS is defined by setting all 

𝜇�̃�(𝑥, 𝑢) = 1, which can be shown as 

�̃� = ∫
𝑥∈𝑋

∫
𝜇∈𝐽𝑥

1 (𝑥, 𝑢)⁄  (4) 

The 𝑖th IF-THEN rule of T2 FLSs is expressed by 

𝑖𝑓 𝑥1 𝑖𝑠 �̃�1
𝑖  𝑎𝑛𝑑 𝑥2 𝑖𝑠 �̃�2

𝑖  𝑎𝑛𝑑, … , 𝑥𝑛 𝑖𝑠 �̃�𝑛
𝑖 , 𝑡ℎ𝑒𝑛 𝑦𝑖 = �̃�𝑖 , 𝑖 = 1, … , 𝑀 (5) 

where �̃�𝑗
𝑖(𝑗 = 1, … 𝑛) are antecedent type-2 sets, �̃�𝑖 are consequent type-2 sets. Further studies about 

the structure of T2FLSs and their applications are proposed in [63].  Figure (11) demonstrates that IT2 

FS could adopt the Gaussian MFs for its premise parts. 

Definition 4 [62]: Gaussian IT2FS is a special case of IT2FS which has a fixed mean (𝑚), and an 

uncertain standard deviation that takes on values in [𝜎1, 𝜎2]. The lower membership function (LMF) 
𝜇�̃�(𝑥) and Upper membership function (UMF) 𝜇�̃�

(𝑥) of the Gaussian IT2FS are expressed as follows: 

𝜇𝐴(𝑥) = 𝑒
− 

1
2

(
𝑥−𝑚(𝐴)

𝜎1(𝐴)
)2

 
(6) 

 

𝜇
𝐴

(𝑥) = 𝑒
− 

1
2

(
𝑥−𝑚(𝐴)

𝜎2(𝐴)
)2

 
(7) 

 

Figure (12) shows LMFs and UMFs of an IT2FS with three Gaussian MFs. 



 

 
 

 

 
Fig. 12. Upper MFs and lower MFs of Gaussian IT2F. 

 

When data in a regression problem follow an almost certain linear trend in a region, linear regression 

methods will be efficient. On the other hand, piecewise linear regression is employed if the linear trend 

does not exist. The number and location of breakpoints need to be detected in the estimation process. 

This issue raises complexity and additionally leads to an algorithm whose behavior changes due to 

added data. This issue could be the leading cause of repeating all calculations. 

In this section, IT2 FR is developed to overcome the abovementioned difficulty. Moreover, this method 

will be independent of the behavior of a trend in a data set. For IT2FR, output 𝑌𝑖 is defined by an interval 

type-2 fuzzy linear model in which �̃�𝑗 and 𝑋𝑗
(𝑖)

 are fuzzy coefficients and crisp inputs: 

�̃�𝑖 = �̃�1𝑋1
(𝑖)

+ ⋯ + �̃�𝑛𝑋𝑛
(𝑖)

= ∑ �̃�𝑗𝑋𝑗
(𝑖)

𝑛

𝑗=1

 
(8) 

The above equation does not apply to data with various behavior patterns. To solve this problem, data 

with similar behavior will be allocated to a cluster, and then linear IT2FR will be used for each cluster. 

Only that particular cluster will be trained in analyzing new data if new data is placed in the existing 

Fig. 11. Gaussian IT2F membership functions.  

 



 

clusters. Otherwise, a new cluster will be generated, and IT2FR associated with this cluster will be 

studied. As a result, the previous calculations are valid, while new behavior patterns are also 

investigated with minimum computational cost. 
Assume that 𝑁 and 𝑀 are the number of data and clusters, respectively, for 𝑟th cluster with 𝑀𝑟 

members, the following rule could be expressed: 

𝑖𝑓 𝑥1
(𝑖)

𝑖𝑠 �̃�1
𝑟 𝑎𝑛𝑑 𝑥2

(𝑖)
𝑖𝑠 �̃�2

𝑟  𝑎𝑛𝑑 … 𝑥𝑛
(𝑖)

𝑖𝑠 �̃�𝑛
𝑟    , 𝑡ℎ𝑒𝑛 �̃�𝑖

𝑟
= ∑ �̃�𝑗

𝑟
𝑥𝑗

(𝑖)
 

𝑛

𝑗=1

 
(9) 

 𝑖 = 1, … , 𝑀𝑟 , 𝑟 = 1,2, … , 𝑀, ∑ 𝑀𝑟

𝑀

𝑟=1

= N  

In fact, one rule is defined for each cluster in which �̃�𝑗
𝑟 are interval type-2 fuzzy sets (IT2FSs) for 𝑟th 

rule and will be determined as follows:  

First, with the help of Fuzzy C-Mean clustering (FCM) method, the optimal number of clusters, the 

cluster members and T2Fs �̃�𝑗
𝑟 are determined. 

The fuzzy regression function based on input and output variables is obtained for each cluster. 

Consequently, the fuzzy coefficients �̃�𝑗
𝑟
 are calculated. 

The final output is defined as follows:  

�̃�𝒊 = ∑ ℎ𝑟(𝑥1
(𝑖)

, … , 𝑥𝑛
(𝑖)

)�̃�𝒊
𝑟

𝑀

𝑟=1

= ∑ ∑ ℎ𝑟(𝑥1
(𝑖)

, … , 𝑥𝑛
(𝑖)

)�̃�𝑗
𝑟
𝑥𝑗

(𝑖)

𝑛

𝑗=1

𝑀

𝑟=1

= ∑ ∑[ℎ𝑟(𝑥1
(𝑖)

, … , 𝑥𝑛
(𝑖)

)�̃�𝑗
𝑟
]𝑥𝑗

(𝑖)

𝑀

𝑟=1

𝑛

𝑗=1

= ∑ �̃�𝑗
′
(𝑥1

(𝑖)
, … , 𝑥𝑛

(𝑖)
)𝑥𝑗

(𝑖)

𝑛

𝑗=1

 

(10) 

Where 

�̃�𝒋
′
(𝒙𝟏

(𝒊)
, … , 𝒙𝒏

(𝒊)
) = ∑ 𝒉𝒓(𝒙𝟏

(𝒊)
, … , 𝒙𝒏

(𝒊)
)�̃�𝒋

𝒓
𝑴

𝒓=𝟏

 
(11) 

 

ℎ𝑟(𝑥1
(𝑖)

, … , 𝑥𝑛
(𝑖)

) =
𝑇(�̃�𝑗

𝑟)

∑ 𝑇(�̃�𝑗
𝑟)𝑀

𝑟=1

, ℎ𝑟 ∈ (0,1)  
(12) 

The above relation demonstrates a nonlinear fuzzy regression dealing with data complexity.  ℎ𝑟 is a 

coefficient to activate 𝑟th rule and 𝑇(�̃�𝑗
𝑟) is: 

𝑇(�̃�𝑗
𝑟) = 𝜋𝑗=1

𝑛 𝜇(�̃�𝑗
𝑟(𝑥𝑗)) (13) 

When data belongs only to a single cluster, it could obviously determine only one FR relation in the 

output part. 

Data patterns that simultaneously belong to many clusters affect more than one FR relations. The degree 

of each data effectiveness could be specified by its membership grade.  

Remark 1: If a cluster's members do not overlap another cluster's members, then ℎ𝑟 ∈ {0,1}, and we 

have exclusive fuzzy linear regression.  

The output of FS 𝑌𝑖 after type-reduction and defuzzification [64] stages will be 

𝑌𝑖 = ∑ ℎ𝑟(𝑥1
(𝑖)

, … , 𝑥𝑛
(𝑖)

)𝒂𝒋
𝑟

𝑀

𝑟=1

∈ [𝑌𝑖
𝐿 , 𝑌𝑖

𝑅] 
(14) 

 

where  𝐚𝒋
𝑟 is the center of T2FS �̃�𝑗

′
. The final output is 



 

𝑌𝑖
∗ =

𝑌𝑖
𝐿 + 𝑌𝑖

𝑅

2
 

(15) 

2.4.4. Optimal IT2FR Classifiers  

Fuzzy c-mean clustering (FCM) method [50] is the most useful approach to generating a primary fuzzy 

inference system (FIS) among the ANFIS and IT2FR classifiers. In FIS, direct learning methods 

influence the Gaussian membership functions (MFs), inputs, and outputs of FIS. This section employs 

PSO, GA, and GWO methods to train IT2FR and ANFIS models. Firstly, based on FCM, the proposed 

FR model obtains T1 and T2 Gaussian MFs, and then optimization algorithms are used to decrease the 

error. Finally, the objective function is defined by [50]:  

𝐸𝑟𝑟𝑜𝑟𝜃
𝑚𝑖𝑛 =

1

𝑁
∑ 𝑒𝑖

2

𝑛

𝑖=1

 
(16) 

Where 

𝑒𝑖 = 𝑡𝑖 − 𝑓(𝑥𝑖|𝜃) (17) 

and we have 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑡𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 

(18) 

where 𝑁 and 𝑒𝑖 are the number of FS inputs and error, respectively. 𝑥𝑖 are inputs (features) [50]. 𝜃, 𝑛, 

and 𝑦𝑖 denote the IT2FR and ANFIS method parameters, the number of samples, and the output of FS, 

respectively.  

A)  Genetic Algorithm  

The genetic algorithm (GA) is one of the most important optimization methods developed by John 

Holland [51]. This algorithm starts with a set of chromosomes called populations. Chromosomes are 

taken from a population and used as a new population. Then, the hypothesis begins with a unique 

random population and continues through generations [51]. The fitness of the whole population is 

assessed in each generation. Then, several individuals are randomly selected from the current generation 

(based on fitness) and modified to form a new generation. The next iteration converts the algorithm to 

the current generation [51]. You can find more information on GA in [51]. 

B) Particle Swarm Optimization (PSO) 

The PSO optimizes a problem by trying iteratively to enhance a candidate solution to an estimated 

quality in computational science [52]. It moves the particles in the search space using a mathematical 

formula over the particle’s velocity and position. The local best-known position influences the particle's 

movement, but the best-known positions in the search space also guide them. Hence, the better positions 

found by other particles are also updated. This makes the swarm move toward the best solutions [52]. 

One of the most significant advantages of this algorithm is that it does not use the gradient of the 

problem being optimized, eliminating all the overheads of gradient calculation and derivative 

computation. Nevertheless, given the nature of the local search, it does not guarantee an optimal solution 

[52].  

C) Gray Wolf Optimization 

The GWO algorithm was first proposed in 2014 by Mirjalili et al. [53]. GWO is a metaheuristic 

optimization method inspired by how gray wolves hunt [53]. This technique is in the category of swarm 

intelligence algorithms, and it is based on population. Gray wolves are predators and often prefer to live 

in groups [53]. Each group consists of 5 to 12 wolves on average in a hierarchical manner. This 

hierarchy is divided into four categories: alpha (group leaders), beta (advisors and orders to lower 

groups), delta (observers and hunters), and omega (protectors) [53]. The GWO algorithm is based on 

the mass hunting of wolves, which will be examined in detail below. 



 

 
Fig. 13. Block diagram of GWO optimization method. 

 

For the design of GWO, the most important factors include best position (α), second solution (β), third 

solution (δ), and other solutions (ω). For example, the mathematical equation for the siege of prey by 

gray wolves is defined as follows [53]: 
𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴 ∗ 𝐷(𝑡) 

 

𝐷(𝑡) = |𝐶 ∗ 𝑋𝑝(𝑡) − 𝑋(𝑡)|, 𝑡 = 1,2, … , 𝑡𝑀𝑎𝑥 
 

𝐴 = 𝑎(2𝑟1 − 1), 𝐶 = 2𝑟2, 𝑟1&𝑟2 𝑎𝑟𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑒𝑐𝑡𝑜𝑟 ∈ [−1,1] 
 

In the above relations, 𝑋(𝑡)  represents the position of the gray wolf in the i-th repeat, and 𝑋𝑝(𝑡) 

represents the hunting position in the t repeat. Also, component α is reduced linearly from 2 to zero 

[53]. 
 

In the search space, we do not know 𝑋𝑝(𝑡), so we consider the hunting position α. Therefore, hunting 

equations are presented as follows [53]: 

 

𝑋1(𝑡) = 𝑋𝛼(𝑡) − 𝐴1 ∗ 𝐷𝛼(𝑡), 𝐷𝛼(𝑡) = |𝐶1 ∗ 𝑋𝛼(𝑡) − 𝑋(𝑡)| 
 

𝑋2(𝑡) = 𝑋𝛽(𝑡) − 𝐴2 ∗ 𝐷𝛽(𝑡), 𝐷𝛽(𝑡) = |𝐶2 ∗ 𝑋𝛽(𝑡) − 𝑋(𝑡)| 
 

𝑋3(𝑡) = 𝑋𝛿(𝑡) − 𝐴3 ∗ 𝐷𝛿(𝑡), 𝐷𝛿(𝑡) = |𝐶3 ∗ 𝑋𝛿(𝑡) − 𝑋(𝑡)| 
 



 

𝑋(𝑡 + 1) =
(𝑋1(𝑡) + 𝑋2(𝑡) + 𝑋3(𝑡))

3
 

Figure (13) shows the steps of the GWO algorithm. More details of the GWO method are provided in 

[53]. 
2.5. Statistical Metrics   

This section introduces the statistical parameters for evaluating the proposed method of SZ detection 

from the rs-fMRI modality. In this research, the K-Fold cross-validation with k = 10 is used. Evaluation 

parameters include accuracy (Acc), precision (Prec), recall (Rec), and F1-Score (F1). The equations of 

evaluation parameters are shown below [65-66]. 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃 + 𝑇𝑁
 (19) 

 

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 (20) 

 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (21) 

 

  
 

𝐹1 =
2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (22) 

 

3. Experiment Results  

This section reports the results of the proposed SZ and ADHD detection method from the rs-fMRI 

modality. To implement the proposed method, a PC with NVidia 1070 GPU, 16 GB RAM, and Core i7 

CPU is used. The rs-fMRI preprocessing steps are performed by the FSL toolbox. Also, all the 

simulations were done by Scikit-learn [67] and TensorFlow 2 toolboxes [68] in Python 3.7 environment. 

As mentioned in the previous sections, all simulations are performed on the UCLA dataset [44], which 

contains rs-fMRI data from HC, BD, ADHD, and SZ subjects. Then, as explained in previous sections, 

preprocessing, feature extraction and classification steps are performed. For model evaluation, we used 

k-fold cross validation with k = 10. The authors introduced the proposed CNN-AE method, which is 

the paper's primary novelty. Also, the hyperparameters of the conventional ML classifiers  are selected 

by trial and error to obtain the highest performance. In section 2-3, the details for the proposed CNN-

AE model is provided. The experiment results of the proposed CNN-AE model with ML classifier 

techniques are shown in Table (4). It can be noted from the table that the KNN algorithm has achieved 

better results than other ML classifiers . The confusion matrix for the KNN model is shown in Figure 

(14); given that we have used k-fold cross-validation, we have averaged the confusion matrices of each 

fold to get a final one. Also, Figure (15) displayed the results of statistical metrics for all ML classifiers.  
 

Table 4. Results for ML classification methods  

F1-score (%)  Rec(%)  Prec(%) Acc(%) Methods  
64.27  54.83 64.66 60.90 DT 

55.63 52.03 51.678 57.18 MLP 

68.45 71.94 65.61 67.72 KNN 

67.70 64.20 64.57 66.90 SVM 

63.61 55.92 65.21  62.72 RF 
 

 

 



 

P
er

fo
rm

an
ce

 (
%

) 

 
Fig. 14. Confusion matrix for KNN method.  

 
Fig. 15. Comparison of performances (%) for SZ and ADHD detection.  

In the following, the experiment results of the proposed CNN-AE model with ANFIS classifier methods 

are presented. The ANFIS is one of the most important type-1 fuzzy systems [69]. This method is based 

on a Takagi-Sugeno-Kang (TSK) system [50] and has achieved successful results in various medical 

research [70-71]. There are several training methods for ANFIS, and the hybrid technique is used in 

this paper. Also, in another part of the simulations, the GA [51], PSO [52], and GWO [53] optimization 

algorithms were used for the training of the ANFIS model.  

In different studies, the researchers have used optimization techniques in ANFIS training and achieved 

promising results [72-74]. To implement the ANFIS model, the FCM method is first used, which is 

based on Gaussian MFs [50]. Since it is a classification problem, three Gaussian MFs are provided for 

each input data. Figure (16) shows several Gaussian MFs for SZ and ADHD detection. Then, the hybrid 

method and optimization techniques expressed to train the ANFIS model were tested and compared. In 

Table (5), the hyper-parameters of GA [51], PSO [52], and GWO [53] algorithms are presented for 

ANFIS training. Finally, the results of the CNN-AE model with ANFIS, ANFIS-GA, ANFIS-PSO, and 

ANFIS-GWO classifier algorithms are shown in Table (6).  



 

 
Fig. 16. Three Gaussian membership functions in ANFIS classifier. 

 

Table 5. Hyper-parameters to optimization methods. 

PSO GA GWO 

C1=2 Selection = tournament Search agents = 5 

C2=2 Mutation rate = 0.05 Dimension = 30 

W=0.2 Crossover fraction = 0.8 -- 

-- Elite Count = 5 -- 

N_pop=60 

Var_min = min (Feature_Matrix) 

Var_max = max (Feature_Matrix) 

MAX_IT=400 

The experiment results in Table (6) show the superiority of the ANFIS-GWO method compared to the 

other ANFIS algorithms. The reason for the high accuracy of ANFIS-GWO compared to other ANFIS 

models is the use of the GWO method in the training step. Researchers have not used the GWO 

algorithm to train fuzzy systems such as ANFIS [50], which is another novelty of this paper. The 

confusion matrix for the ANFIS-GWO technique is displayed in Figure (17). Also, Figure (18) displays 

the results of statistical metrics for the ANFIS classifier. 

Table 6. Results for ANFIS classifier models.  

F1 (%) Rec (%) Prec (%) Acc (%) Methods  
64.54 65.01 64.58 64.91 ANFIS 

66.20 66.31 66.37 67.05 ANFIS-GA 

66.88 67.48 67.04 67.22 ANFIS-PSO 

67.64 68.17 67.65 68.15 ANFIS-GWO 
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Fig. 17. Confusion matrix for ANFIS-GWO. 

 

In the following, we present the results of the proposed CNN-AE model alongside IT2FR classifiers. 

The authors have proposed the IT2FR model for the first time, and it is considered the most important 

novelty of this paper. Similar to ANFIS, the proposed IT2FR technique is optimized by GA [51], PSO 

[52], and GWO [53] methods. To implement of IT2FR model, three interval type-2 Gaussian MFs are 

provided for each input data. Figure (19) shows several intervals of type-2 Gaussian MFs for SZ and 

ADHD detection. Table (7) reports the results obtained from IT2FR, IT2FR-GA, IT2FR-PSO, and 

IT2FR-GWO methods. According to Table (7), it is clear that the IT2FR-GWO method has achieved 

the most accuracy. The confusion matrix for the IT2FR-GWO method is shown in Figure (20). Also, 

Figure (21) displayed the results of statistical metrics for IT2RF classifiers.  

 
Fig. 18. Comparison of ANFIS classifiers results for SZ and ADHD detection. 

 



 

 

Fig. 19. Three Gaussian membership functions in IT2FR classifier. 

 

Table 7. Results for IT2FR classifier models. 

  F1 (%) Rec (%)  Prec (%) Acc (%) Methods  
68.27 68.84 68.29 68.61 IT2FR 

70.87 71.43 70.94 71.27 IT2FR-GA 

71.34 71.64 71.56 71.90 IT2FR-PSO 

72.41 72.81 72.52 72.71 IT2FR-GWO 

 

Fig. 20. Confusion matrix for IT2FR-GWO. 

In this section, the results of the proposed method for the diagnosis of SZ and ADHD disorders were 

discussed. The proposed method of this research has three important novelties, including introducing 

the CNN-AE model with proposed layers, the IT2FR method, and the GWO optimization method to 

train the proposed IT2FR technique. In Tables (4), (6), and (7), the accuracy of different classification 

algorithms are shown and compared. It can be seen that the IT2FR-GWO method has achieved state-

of-the-art results in comparison with other classification methods. 
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Fig. 21. Comparison of IT2RF classifiers results for SZ and ADHD detection.  

4. Limitations of Study 

This section is dedicated to the limitations of this study. The UCLA dataset has limited rs-fMRI data to 

diagnose various brain disorders, including SZ and ADHD. This challenge has made it still impossible 

to provide advanced DL models for the diagnosis of SZ and ADHD. Also, this dataset contains rs-fMRI 

data and does not have T-fMRI modalities from subjects with mental disorders. The UCLA dataset is 

used to diagnose SZ, BD, and ADHD disorders, while diagnosing brain disorders of varying severity is 

very important. The proposed method of this paper consists of DL, fuzzy logic, and optimization 

algorithms. Implementing the proposed method is very complicated because the CNN-AE model, 

IT2FR, and GWO methods have different adjustment parameters. Also, the proposed method has a long 

execution time, which is another limitation.   

5. Discussion, Conclusion, and Future works  

Brain disorders such as SZ and ADHD are among the most important brain diseases that seriously 

threaten many people's health worldwide [7][43]. ADHD and SZ disorders have many differences and 

similarities. In some studies, the presence of ADHD symptoms has been reported in people who are 

diagnosed with SZ in adulthood [115-116]. Also, ADHD is diagnosed in many children at genetic risk 

for SZ [128-130]. People with SZ in early adolescence often have symptoms of other mental disorders 

such as ADHD [128-130]. A diagnosis of ADHD in childhood may be a better predictor of adult SZ. 

For example, the risk of SZ in children with ADHD is approximately 4.3 times higher than in other 

adults [128-130]. The co-occurrence of ADHD and SZ may be due to shared genetic factors. ADHD 

and SZ may also have similarities in clinical treatment [106-107]. ADHD is often diagnosed during 

childhood, while SZ is often diagnosed in the 20s or 30s [115-116]. ADHD is treated with behavioral 

therapy methods, while SZ can be controlled with cognitive and emotional therapy (CET) [131]. ADHD 

does not require medication to treat it, but doctors may prescribe a stimulant to help the patient to focus 

[132-133]. SZ can be treated with antipsychotic drugs [115-116].   

ADHD and SZ negatively affect brain function. So, various diagnostic methods have been introduced 

by specialist physicians to treat them [25]. Currently, the most used methods for the diagnosis of SZ 

and ADHD disorders include psychological tests and neuroimaging techniques [7] [43]. fMRI 

modalities are one of the best functional neuroimaging modalities, and physicians and doctors can use 

them to diagnose brain disorders [25]. Diagnosis of SZ and ADHD disorders using fMRI modalities is 

challenging. To overcome this, there has been significant growth over the years in research to diagnose 

various brain disorders, including SZ [6-7], ADHD [43,], etc. using AI (ML and DL) techniques. 



 

|In this paper, we presented a new computer-aided diagnosis system (CADS) based on the proposed 

CNN-AE architecture and IT2FR-GWO classifier for diagnosing SZ and ADHD disorders using rs-

fMRI data. The steps of the proposed method comprise the dataset, preprocessing, feature extraction, 

and classification. First, the UCLA dataset [44] is used for experiments. As mentioned earlier, this 

dataset has rs-fMRI modality from HC, SZ, ADHD, and BD patients. We used the HC, SZ, and ADHD 

data for our experiments. In the second step, the rs-fMRI modality is preprocessed using FSL toolbox 

[45]. Then, we extracted the correlation coefficients matrices with 118 × 118 size as 2D images from 

rs-fMRI data of each subject for post-processing.    
The third step is dedicated to feature extraction, which is performed by a proposed 2D CNN-AE 

architecture. In this step, the 2D images are fed to the input of the proposed CNN-AE model. The first 

novelty of this paper is an improved CNN-AE architecture. Figure (9) and Table (1) show that the 

proposed CNN-AE architecture has 7 CNN layers. 
The last step of the proposed method is classification. A few ML-based, fuzzy type-1, and fuzzy type-

2 methods are used for the classification of CNN-AE features. The DT [57], MLP [46], KNN [47], 

SVM [48], and RF [49] are ML classifier methods. Also, Type-1 fuzzy classification techniques include 

ANFIS [50], ANFIS-GA, ANFIS-POS, and ANFIS-GWO. The IT2FR, IT2FR-GA, IT2FR-PSO, and 

IT2FR-GWO are type-2 fuzzy classifier techniques. In this work, the IT2FR method was first 

introduced by the authors and is considered the most important novelty of the paper. In addition, another 

novelty of this paper is combining the IT2FR and GWO methods for classification. It should be noted 

that in the classification section, the K-Fold cross-validation with k = 10 is also used. The experiment 

results of the proposed method show that the use of the CNN-E model and the IT2FR-GWO method 

has led to increased accuracy in diagnosing SZ and ADHD disorders. Our findings suggest that 

significant different functional connectivity exists within these regions which are in line with previous 

literature [135-138]. 
In Table (8), the proposed method results are compared with related works in the diagnosis of SZ and 

ADHD using fMRI modalities. Table (8) shows that the researchers used different MRI datasets for SZ 

and ADHD detection. In related works, researchers have identified SZ from HC. However, our paper 

uses the UCLA dataset; the classes presented to the classifier in this paper include HC, SZ, and ADHD. 

Table (8) shows that this paper's proposed method has higher accuracy than other related works. 

The proposed method of this paper can help physicians accurately diagnose SZ and ADHD from rs-

MRI data. Also, the proposed method can be used in the future as application software for diagnosing 

SZ or ADHD in hospitals or specialized medical centers. Furthermore, in future works, new DL models 

such as transformers [100-101], attention mechanism [102-103], graph theory [104-105], etc., can be 

used for the diagnosis of SZ and ADHD.   

Table 8. Comparison of the proposed method with past works. 

Works Dataset Modality 
Type of Classes  

Feature Extraction 
Feature 

Selection 
Classifier Acc (%) 

[75] Clinical T-fMRI 
HC and SZ Multivariate 

Connectome Features 

Chi-Squared 

Test 
SVM Acc=71.6 

[76] COBRE rs-fMRI 
HC and SZ Different Graph 

Theoretical Features 
-- SVM Acc=65 

[77] COBRE 
rs-fMRI, 

sMRI 

HC and SZ  Dynamic Functional 

Connectivity 
 ENR LR Acc=71 

[78] Multi-Site 
rs-fMRI, 

T-fMRI 

HC and SZ 
Different Features -- Backus-Gilbert Acc=58.6 

[79] 

COBRE 

sMRI 

HC and SZ 
Local Grey Matter 

Volume 
LASSO Enet-TV 

Acc=68 

 
NMorphCH 

NUSDAST 

[80] Clinical rs-fMRI 

HC and SZ Brain-wide Seed 

Based Voxel-Wise 

Analysis 

SelectFdr GBDT Acc=72.28 

[81] Clinical rs-fMRI 
HC and SZ T-Test 

Majority Voting Acc=73 
PCA 



 

Spatial–Temporal 

Reconstruction Based 

on the ICA  

Fisher  

[82] Clinical sMRI 
HC and SZ Structure’s Brain 

Volumes 
--  MLDA Acc=73 

[83] Different  rs-fMRI 
HC and SZ Demographic and 

Clinical Features 
PCA FCM Acc=73 

[84] COBRE 
rs-fMRI, 

sMRI 

HC and SZ 
FCM 

Mann–Whitney 

U test 
SVM Acc=69 

[85] COBRE rs-fMRI 

HC and SZ Consensus Functional 

Connections with High 

Discriminative Power 

T-Test LDA Acc=76.34 

[86] 
NUSDAST 

sMRI 
HC and SZ 

Inception ResNet -- SVM Acc=70.98 
IMH 

[87] SchizConnect  sMRI HC and SZ 3D-CNN -- Softmax Acc=70 

[88] OpenfMRI rs-fMRI HC and SZ GAN -- Different Methods Acc=71.3 

[89] 
COBRE 

rs-fMRI 
HC and SZ 

Weighted Deep Forest -- Softmax Acc=61 
UCLA 

[90] COBRE rs-fMRI HC and SZ DNN -- Softmax Acc=77.8 

[91] ADHD-200 rs-fMRI HC and ADHD 1D-CNN -- Softmax Acc=71.3 

[92] ADHD-200 rs-fMRI HC and ADHD DBN -- Softmax Acc=69.83 

[93] 

ADHD-200 

rs-fMRI 

 
HC and ADHD 3D-CNN -- -- Acc=65.67 R-fMRI Maps 

Project 

[94] 
Different 

Datasets 
rs-fMRI 

HC and ADHD 
DBN -- SVM Acc=72.72 

[95] ADHD-200 rs-fMRI HC and ADHD DBN -- Softmax Acc=72.73  

[96] ADHD-200 rs-fMRI HC and ADHD 3D-CNN -- Softmax  Acc=69.15 

[97] ADHD-200 rs-fMRI HC and ADHD DCNN  -- Sigmoid Acc=71.30 

[98] ADHD-200 rs-fMRI HC and ADHD SC-CNN-Attention  -- Softmax  Acc=68.60 

[99] ADHD-200 rs-fMRI HC and ADHD C4D Network -- Softmax Acc=70.4 

Proposed 

Method  
UCLA rs-fMRI 

HC, SZ, and ADHD 
CNN-AE -- IT2FR-GWO Acc=72.71 

 

 

 

References  

[1] Górriz, J. M., Jimenez-Mesa, C., Romero-Garcia, R., Segovia, F., Ramirez, J., Castillo-Barnes, D., ... & 

Suckling, J. (2021). Statistical Agnostic Mapping: A framework in neuroimaging based on concentration 

inequalities. Information Fusion, 66, 198-212.  

[2] Villringer, A., & Chance, B. (1997). Non-invasive optical spectroscopy and imaging of human brain 

function. Trends in neurosciences, 20(10), 435-442.  

[3] Rogers, G. B., Keating, D. J., Young, R. L., Wong, M. L., Licinio, J., & Wesselingh, S. (2016). From gut 

dysbiosis to altered brain function and mental illness: mechanisms and pathways. Molecular psychiatry, 21(6), 

738-748.  

[4] Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. J. (2009). Default-

mode brain dysfunction in mental disorders: a systematic review. Neuroscience & biobehavioral reviews, 33(3), 

279-296.  

[5] Konrad, K., & Eickhoff, S. B. (2010). Is the ADHD brain wired differently? A review on structural and 

functional connectivity in attention deficit hyperactivity disorder. Human brain mapping, 31(6), 904-916. 

[6] Shoeibi, A., Sadeghi, D., Moridian, P., Ghassemi, N., Heras, J., Alizadehsani, R., ... & Gorriz, J. M. (2021). 

Automatic Diagnosis of Schizophrenia in EEG Signals Using CNN-LSTM Models. Frontiers in 

Neuroinformatics, 15.  

[7] Sadeghi, D., Shoeibi, A., Ghassemi, N., Moridian, P., Khadem, A., Alizadehsani, R., ... & Acharya, U. R. 

(2022). An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic 

resonance imaging modalities: Methods, challenges, and future works. Computers in Biology and Medicine, 

105554. 

[8] Shoeibi, A., Ghassemi, N., Khodatars, M., Jafari, M., Moridian, P., Alizadehsani, R., ... & Nahavandi, S. 

(2021). Applications of epileptic seizures detection in neuroimaging modalities using deep learning techniques: 

methods, challenges, and future works. arXiv preprint arXiv:2105.14278.  



 

[9] Shoeibi, A., Ghassemi, N., Alizadehsani, R., Rouhani, M., Hosseini-Nejad, H., Khosravi, A., ... & Nahavandi, 

S. (2021). A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic 

seizures detection in EEG signals. Expert Systems with Applications, 163, 113788.  

[10] Ghassemi, N., Shoeibi, A., Rouhani, M., & Hosseini-Nejad, H. (2019, October). Epileptic seizures detection 

in EEG signals using TQWT and ensemble learning. In 2019 9th International Conference on Computer and 

Knowledge Engineering (ICCKE) (pp. 403-408). IEEE.  

[11] Pagano, G., Niccolini, F., & Politis, M. (2016). Imaging in Parkinson’s disease. Clinical Medicine, 16(4), 

371.  

[12] Volkow, N. D., & O’Brien, C. P. (2007). Issues for DSM-V: should obesity be included as a brain 

disorder?. American Journal of Psychiatry, 164(5), 708-710. 

[13] Wortzel, H. S., & Arciniegas, D. B. (2014). The DSM-5 approach to the evaluation of traumatic brain injury 

and its neuropsychiatric sequelae. NeuroRehabilitation, 34(4), 613-623. 

[14] Bracha, H. S. (2006). Human brain evolution and the “Neuroevolutionary Time-depth Principle:” 

Implications for the Reclassification of fear-circuitry-related traits in DSM-V and for studying resilience to 

warzone-related posttraumatic stress disorder. Progress in Neuro-Psychopharmacology and Biological 

Psychiatry, 30(5), 827-853.  

[15] Tandon, R., Gaebel, W., Barch, D. M., Bustillo, J., Gur, R. E., Heckers, S., ... & Carpenter, W. (2013). 

Definition and description of schizophrenia in the DSM-5. Schizophrenia research, 150(1), 3-10.  

[16] DO AUSTERMAN, J. O. S. E. P. H. (2015). ADHD and behavioral disorders: Assessment, management, 

and an update from DSM-5. Cleveland Clinic journal of medicine, 82, S3.  

[17] Shoeibi, A., Khodatars, M., Jafari, M., Moridian, P., Rezaei, M., Alizadehsani, R., ... & Acharya, U. R. 

(2021). Applications of deep learning techniques for automated multiple sclerosis detection using magnetic 

resonance imaging: A review. Computers in Biology and Medicine, 136, 104697. 

[18] Shoeibi, A., Khodatars, M., Ghassemi, N., Jafari, M., Moridian, P., Alizadehsani, R., ... & Acharya, U. R. 

(2021). Epileptic seizures detection using deep learning techniques: a review. International Journal of 

Environmental Research and Public Health, 18(11), 5780.  

[19] Sanei, S., & Chambers, J. A. (2013). EEG signal processing. John Wiley & Sons.  

[20] Wang, S., Celebi, M. E., Zhang, Y. D., Yu, X., Lu, S., Yao, X., ... & Tyukin, I. (2021). Advances in data 

preprocessing for biomedical data fusion: an overview of the methods, challenges, and prospects. Information 

Fusion, 76, 376-421. 

[21] Choi, H., Ha, S., Kang, H., Lee, H., Lee, D. S., & Alzheimer's Disease Neuroimaging Initiative. (2019). Deep 

learning only by normal brain PET identify unheralded brain anomalies. EBioMedicine, 43, 447-453. 

[22] Mohammed, F., He, X., & Lin, Y. (2021). Retracted: An easy-to-use deep-learning model for highly accurate 

diagnosis of Parkinson's disease using SPECT images.  

[23] Aoe, J., Fukuma, R., Yanagisawa, T., Harada, T., Tanaka, M., Kobayashi, M., ... & Kishima, H. (2019). 

Automatic diagnosis of neurological diseases using MEG signals with a deep neural network. Scientific 

reports, 9(1), 1-9. 

[24] Fernandez Rojas, R., Huang, X., & Ou, K. L. (2019). A machine learning approach for the identification of 

a biomarker of human pain using fNIRS. Scientific reports, 9(1), 1-12.  

[25] Khodatars, M., Shoeibi, A., Sadeghi, D., Ghaasemi, N., Jafari, M., Moridian, P., ... & Berk, M. (2021). Deep 

learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review. Computers 

in Biology and Medicine, 139, 104949.  

[26] Eslami, T., Mirjalili, V., Fong, A., Laird, A. R., & Saeed, F. (2019). ASD-DiagNet: a hybrid learning 

approach for detection of autism spectrum disorder using fMRI data. Frontiers in neuroinformatics, 13, 70. 

[27] Shoeibi, A., Rezaei, M., Ghassemi, N., Namadchian, Z., Zare, A., & Gorriz, J. M. (2022). Automatic 

Diagnosis of Schizophrenia in EEG Signals Using Functional Connectivity Features and CNN-LSTM Model. In 

International Work-Conference on the Interplay Between Natural and Artificial Computation (pp. 63-73). 

Springer, Cham. 

[28] Suk, H. I., Wee, C. Y., Lee, S. W., & Shen, D. (2016). State-space model with deep learning for functional 

dynamics estimation in resting-state fMRI. NeuroImage, 129, 292-307.  

[29] Castillo-Barnes, D., Su, L., Ramírez, J., Salas-Gonzalez, D., Martinez-Murcia, F. J., Illan, I. A., ... & 

Dominantly Inherited Alzheimer Network. (2020). Autosomal dominantly inherited alzheimer disease: Analysis 

of genetic subgroups by machine learning. Information Fusion, 58, 153-167.  

[30] Luckett, P. H., Maccotta, L., Lee, J. J., Park, K. Y., Dosenbach, N. U., Ances, B. M., ... & Leuthardt, E. C. 

(2022). Deep learning resting state fMRI lateralization of temporal lobe epilepsy. Epilepsia.  



 

[31] Anter, A. M., Abd Elaziz, M., & Zhang, Z. (2022). Real-time epileptic seizure recognition using Bayesian 

genetic whale optimizer and adaptive machine learning. Future Generation Computer Systems, 127, 426-434.  

[32] Highland, D., & Zhou, G. (2022). A review of detection techniques for depression and bipolar disorder. Smart 

Health, 100282.  

[33] Feng, W., Liu, G., Zeng, K., Zeng, M., & Liu, Y. (2021). A review of methods for classification and 

recognition of ASD using fMRI data. Journal of neuroscience methods, 109456. 

[34] Khosla, M., Jamison, K., Ngo, G. H., Kuceyeski, A., & Sabuncu, M. R. (2019). Machine learning in resting-

state fMRI analysis. Magnetic resonance imaging, 64, 101-121.  

[35] Loh, H. W., Ooi, C. P., Barua, P. D., Palmer, E. E., Molinari, F., & Acharya, U. (2022). Automated detection 

of ADHD: Current trends and future perspective. Computers in Biology and Medicine, 105525.  

[36] Zhao, K., Duka, B., Xie, H., Oathes, D. J., Calhoun, V., & Zhang, Y. (2022). A dynamic graph convolutional 

neural network framework reveals new insights into connectome dysfunctions in ADHD. NeuroImage, 246, 

118774.  

[37] Rivera, M. J., Teruel, M. A., Maté, A., & Trujillo, J. (2021). Diagnosis and prognosis of mental disorders by 

means of EEG and deep learning: a systematic mapping study. Artificial Intelligence Review, 1-43.  

[38] Shoeibi, A., Ghassemi, N., Heras, J., Rezaei, M., & Gorriz, J. M. (2022). Automatic Diagnosis of Myocarditis 

in Cardiac Magnetic Images Using CycleGAN and Deep PreTrained Models. In International Work-Conference 

on the Interplay Between Natural and Artificial Computation (pp. 145-155). Springer, Cham. 

[39] Vieira, S., Pinaya, W. H., & Mechelli, A. (2017). Using deep learning to investigate the neuroimaging 

correlates of psychiatric and neurological disorders: Methods and applications. Neuroscience & Biobehavioral 

Reviews, 74, 58-75.  

[40] Sharifrazi, D., Alizadehsani, R., Joloudari, J. H., Shamshirband, S., Hussain, S., Sani, Z. A., ... & Alinejad-

Rokny, H. (2020). CNN-KCL: Automatic myocarditis diagnosis using convolutional neural network combined 

with k-means clustering. 

[41] Alizadehsani, R., Sharifrazi, D., Izadi, N. H., Joloudari, J. H., Shoeibi, A., Gorriz, J. M., ... & Acharya, U. R. 

(2021). Uncertainty-Aware Semi-Supervised Method Using Large Unlabeled and Limited Labeled COVID-19 

Data. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(3s), 1-24.  

[42] Buchlak, Q. D., Milne, M. R., Seah, J., Johnson, A., Samarasinghe, G., Hachey, B., ... & Brotchie, P. (2022). 

Charting the potential of brain computed tomography deep learning systems. Journal of Clinical 

Neuroscience, 99, 217-223. 

[43] Loh, H. W., Ooi, C. P., Barua, P. D., Palmer, E. E., Molinari, F., & Acharya, U. (2022). Automated detection 

of ADHD: Current trends and future perspective. Computers in Biology and Medicine, 105525.  

[44] https://legacy.openfmri.org/dataset/ds000030/   

[45] Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). 

Fsl. Neuroimage, 62(2), 782-790. 

[46] Windeatt, T. (2006). Accuracy/diversity and ensemble MLP classifier design. IEEE Transactions on Neural 

Networks, 17(5), 1194-1211. 

[47] Liao, Y., & Vemuri, V. R. (2002). Use of k-nearest neighbor classifier for intrusion detection. Computers & 

security, 21(5), 439-448.  

[48] Noble, W. S. (2006). What is a support vector machine?. Nature biotechnology, 24(12), 1565-1567. 

[49] Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future 

directions. ISPRS journal of photogrammetry and remote sensing, 114, 24-31.  

[50] Shoeibi, A., Ghassemi, N., Khodatars, M., Moridian, P., Alizadehsani, R., Zare, A., ... & Gorriz, J. M. (2022). 

Detection of epileptic seizures on EEG signals using ANFIS classifier, autoencoders and fuzzy 

entropies. Biomedical Signal Processing and Control, 73, 103417.  

[51] Whitley, D. (1994). A genetic algorithm tutorial. Statistics and computing, 4(2), 65-85.  

[52] De Oca, M. A. M., Stutzle, T., Birattari, M., & Dorigo, M. (2009). Frankenstein's PSO: a composite particle 

swarm optimization algorithm. IEEE Transactions on Evolutionary Computation, 13(5), 1120-1132. 

[53] Sun, X., Zhang, Y., Tian, X., Cao, J., & Zhu, J. (2021). Speed sensorless control for IPMSMs using a modified 

MRAS with grey wolf optimization algorithm. IEEE Transactions on Transportation Electrification. 

[54] Shoeibi, A., Khodatars, M., Alizadehsani, R., Ghassemi, N., Jafari, M., Moridian, P., ... & Shi, P. (2020). 

Automated detection and forecasting of covid-19 using deep learning techniques: A review. arXiv preprint 

arXiv:2007.10785.  

[55] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. 

https://legacy.openfmri.org/dataset/ds000030/


 

[56] Khozeimeh, F., Sharifrazi, D., Izadi, N. H., Joloudari, J. H., Shoeibi, A., Alizadehsani, R., ... & Islam, S. M. 

S. (2021). Combining a convolutional neural network with autoencoders to predict the survival chance of COVID-

19 patients. Scientific Reports, 11(1), 1-18. 

[57] Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE transactions 

on systems, man, and cybernetics, 21(3), 660-674. 

[58] Schober, P., & Vetter, T. R. (2020). Linear regression in medical research. Anesthesia and analgesia, 132(1), 

108. 

[59] Marill, K. A. (2004). Advanced statistics: linear regression, part II: multiple linear regression. Academic 

emergency medicine, 11(1), 94-102.  

[60] Maulud, D., & Abdulazeez, A. M. (2020). A review on linear regression comprehensive in machine 

learning. Journal of Applied Science and Technology Trends, 1(4), 140-147.  

[61] Bajestani, N. S., Kamyad, A. V., Esfahani, E. N., & Zare, A. (2017). Nephropathy forecasting in diabetic 

patients using a GA-based type-2 fuzzy regression model. Biocybernetics and Biomedical Engineering, 37(2), 

281-289. 

[62] Pan, X., Wang, Y., & He, S. (2021). The evidential reasoning approach for renewable energy resources 

evaluation under interval type-2 fuzzy uncertainty. Information Sciences, 576, 432-453.  

[63] Mittal, K., Jain, A., Vaisla, K. S., Castillo, O., & Kacprzyk, J. (2020). A comprehensive review on type 2 

fuzzy logic applications: Past, present and future. Engineering Applications of Artificial Intelligence, 95, 103916.  

[64] Runkler, T. A., Chen, C., & John, R. (2018). Type reduction operators for interval type–2 

defuzzification. Information Sciences, 467, 464-476. 

[65] Ayoobi, N., Sharifrazi, D., Alizadehsani, R., Shoeibi, A., Gorriz, J. M., Moosaei, H., ... & Mosavi, A. (2021). 

Time series forecasting of new cases and new deaths rate for COVID-19 using deep learning methods. Results in 

Physics, 27, 104495.  

[66] Appaji, A., Harish, V., Korann, V., Devi, P., Jacob, A., Padmanabha, A., ... & Rao, N. P. (2022). Deep 

learning model using retinal vascular images for classifying schizophrenia. Schizophrenia Research, 241, 238-

243.  

[67] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). 

Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.  

[68] Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., ... & Saurous, R. A. (2017). 

Tensorflow distributions. arXiv preprint arXiv:1711.10604.  

[69] Coupland, S., & John, R. (2007). Geometric type-1 and type-2 fuzzy logic systems. IEEE Transactions on 

Fuzzy Systems, 15(1), 3-15. 

[70] Thirumurugan, P., & Shanthakumar, P. (2016). Brain tumor detection and diagnosis using ANFIS 

classifier. International Journal of Imaging Systems and Technology, 26(2), 157-162.  

[71] Al-Ali, A., Elharrouss, O., Qidwai, U., & Al-Maaddeed, S. (2021). ANFIS-Net for automatic detection of 

COVID-19. Scientific Reports, 11(1), 1-13.  

[72] Wei, L. Y. (2013). A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast 

TAIEX. Economic Modelling, 33, 893-899. 

[73] Suleymani, M., & Bemani, A. (2018). Application of ANFIS-PSO algorithm as a novel method for estimation 

of higher heating value of biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental 

Effects, 40(3), 288-293.  

[74] Tien Bui, D., Khosravi, K., Li, S., Shahabi, H., Panahi, M., Singh, V. P., ... & Bin Ahmad, B. (2018). New 

hybrids of anfis with several optimization algorithms for flood susceptibility modeling. Water, 10(9), 1210. 

[75] Yang, J., Pu, W., Wu, G., Chen, E., Lee, E., Liu, Z., & Palaniyappan, L. (2020). Connectomic underpinnings 

of working memory deficits in schizophrenia: Evidence from a replication fMRI study. Schizophrenia 

bulletin, 46(4), 916-926. 

[76] Singh, M., Badhwar, R., & Bagler, G. (2016, December). Graph theoretical biomarkers for schizophrenic 

brain functional networks. In 2016 International Conference on Signal Processing and Communication 

(ICSC) (pp. 289-294). IEEE. 

[77] Sendi, M. S., Zendehrouh, E., Fu, Z., Mahmoudi, B., Miller, R. L., & Calhoun, V. D. (2020, March). A 

machine learning model for exploring aberrant functional network connectivity transition in schizophrenia. 

In 2020 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI) (pp. 112-115). IEEE. 

[78] Dillon, K., & Wang, Y. P. (2016, August). An image resolution perspective on functional activity mapping. 

In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC) (pp. 1139-1142). IEEE. 



 

[79] de Pierrefeu, A., Löfstedt, T., Laidi, C., Hadj-Selem, F., Leboyer, M., Ciuciu, P., ... & Duchesnay, E. (2018, 

June). Interpretable and stable prediction of schizophrenia on a large multisite dataset using machine learning with 

structured sparsity. In 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI) (pp. 1-4). 

IEEE. 

[80] Liang, S., Deng, W., Li, X., Wang, Q., Greenshaw, A. J., Guo, W., ... & Li, T. (2020). Aberrant posterior 

cingulate connectivity classify first-episode schizophrenia from controls: A machine learning 

study. Schizophrenia research, 220, 187-193. 

[81] Cai, X. L., Xie, D. J., Madsen, K. H., Wang, Y. M., Bögemann, S. A., Cheung, E. F., ... & Chan, R. C. (2020). 

Generalizability of machine learning for classification of schizophrenia based on resting‐state functional MRI 

data. Human brain mapping, 41(1), 172-184. 

[82] de Moura, A. M., Pinaya, W. H. L., Gadelha, A., Zugman, A., Noto, C., Cordeiro, Q., ... & Sato, J. R. (2018). 

Investigating brain structural patterns in first episode psychosis and schizophrenia using MRI and a machine 

learning approach. Psychiatry Research: Neuroimaging, 275, 14-20. 

[83] Chen, J., Patil, K. R., Weis, S., Sim, K., Nickl-Jockschat, T., Zhou, J., ... & Visser, E. (2020). Neurobiological 

divergence of the positive and negative schizophrenia subtypes identified on a new factor structure of 

psychopathology using non-negative factorization: an international machine learning study. Biological 

psychiatry, 87(3), 282-293. 

[84] Ramkiran, S., Sharma, A., & Rao, N. P. (2019). Resting-state anticorrelated networks in 

Schizophrenia. Psychiatry Research: Neuroimaging, 284, 1-8. 

[85] Li, J., Sun, Y., Huang, Y., Bezerianos, A., & Yu, R. (2019). Machine learning technique reveals intrinsic 

characteristics of schizophrenia: an alternative method. Brain imaging and behavior, 13(5), 1386-1396. 

[86] Hu, M., Sim, K., Zhou, J. H., Jiang, X., & Guan, C. (2020, July). Brain MRI-based 3D Convolutional Neural 

Networks for Classification of Schizophrenia and Controls. In 2020 42nd Annual International Conference of the 

IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1742-1745). IEEE. 

[87] Oh, J., Oh, B. L., Lee, K. U., Chae, J. H., & Yun, K. (2020). Identifying schizophrenia using structural MRI 

with a deep learning algorithm. Frontiers in psychiatry, 11, 16. 

[88] Matsubara, T., Tashiro, T., & Uehara, K. (2019). Deep neural generative model of functional MRI images 

for psychiatric disorder diagnosis. IEEE Transactions on Biomedical Engineering, 66(10), 2768-2779. 

[89] Zhu, Y., Fu, S., Yang, S., Liang, P., & Tan, Y. (2020). Weighted deep forest for schizophrenia data 

classification. IEEE Access, 8, 62698-62705. 

[90] Hashimoto, Y., Ogata, Y., Honda, M., & Yamashita, Y. (2021). Deep Feature Extraction for Resting-State 

Functional MRI by Self-Supervised Learning and Application to Schizophrenia Diagnosis. Frontiers in 

neuroscience, 15. 

[91] Riaz, A., Asad, M., Al Arif, S. M. R., Alonso, E., Dima, D., Corr, P., & Slabaugh, G. (2018, April). Deep 

fMRI: An end-to-end deep network for classification of fMRI data. In 2018 IEEE 15th International Symposium 

on Biomedical Imaging (ISBI 2018) (pp. 1419-1422). IEEE. 

[92] Farzi, S., Kianian, S., & Rastkhadive, I. (2017, August). Diagnosis of attention deficit hyperactivity disorder 

using deep belief network based on greedy approach. In 2017 5th International Symposium on Computational and 

Business Intelligence (ISCBI) (pp. 96-99). IEEE. 

[93] Zou, L., Zheng, J., & McKeown, M. J. (2017, November). Deep learning based automatic diagnoses of 

attention deficit hyperactive disorder. In 2017 IEEE Global Conference on Signal and Information Processing 

(GlobalSIP) (pp. 962-966). IEEE. 

[94] Hao, A. J., He, B. L., & Yin, C. H. (2015). Discrimination of ADHD children based on Deep Bayesian 

Network. 

[95] Kuang, D., Guo, X., An, X., Zhao, Y., & He, L. (2014, August). Discrimination of ADHD based on fMRI 

data with deep belief network. In International Conference on Intelligent Computing (pp. 225-232). Springer, 

Cham 

[96] Zou, L., Zheng, J., Miao, C., Mckeown, M. J., & Wang, Z. J. (2017). 3D CNN based automatic diagnosis of 

attention deficit hyperactivity disorder using functional and structural MRI. IEEE Access, 5, 23626-23636. 

[97] Mao, Z., Su, Y., Xu, G., Wang, X., Huang, Y., Yue, W., ... & Xiong, N. (2019). Spatio-temporal deep learning 

method for ADHD fMRI classification. Information Sciences, 499, 1-11. 

[98] Zhang, T., Li, C., Li, P., Peng, Y., Kang, X., Jiang, C., ... & Xu, P. (2020). Separated Channel Attention 

Convolutional Neural Network (SC-CNN-Attention) to Identify ADHD in Multi-Site Rs-fMRI 

Dataset. Entropy, 22(8), 893. 

[99] Dou, C., Zhang, S., Wang, H., Sun, L., Huang, Y., & Yue, W. (2020). ADHD fMRI short-time analysis 

method for edge computing based on multi-instance learning. Journal of Systems Architecture, 111, 101834. 



 

[100] Rodriguez-Rivero, J., Ramirez, J., Martínez-Murcia, F. J., Segovia, F., Ortiz, A., Salas, D., ... & Górriz, J. 

M. (2020). Granger causality-based information fusion applied to electrical measurements from power 

transformers. Information Fusion, 57, 59-70.  

[101] Li, C., Zhang, S., Qin, Y., & Estupinan, E. (2020). A systematic review of deep transfer learning for 

machinery fault diagnosis. Neurocomputing, 407, 121-135. 

[102] Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep 

learning. Neurocomputing, 452, 48-62. 

[103] Liu, X., & Milanova, M. (2018). Visual attention in deep learning: a review. Int Rob Auto J, 4(3), 154-155.  

[104] Ma, G., Ahmed, N. K., Willke, T. L., & Yu, P. S. (2021). Deep graph similarity learning: A survey. Data 

Mining and Knowledge Discovery, 35(3), 688-725. 

[105] Georgousis, S., Kenning, M. P., & Xie, X. (2021). Graph deep learning: State of the art and challenges. IEEE 

Access, 9, 22106-22140. 

[107] Park, M. T. M., Raznahan, A., Shaw, P., Gogtay, N., Lerch, J. P., & Chakravarty, M. M. (2018). 

Neuroanatomical phenotypes in mental illness: identifying convergent and divergent cortical phenotypes across 

autism, ADHD and schizophrenia. Journal of Psychiatry and Neuroscience, 43(3), 201-212. 

[108] Groom, M. J., Jackson, G. M., Calton, T. G., Andrews, H. K., Bates, A. T., Liddle, P. F., & Hollis, C. (2008). 

Cognitive deficits in early-onset schizophrenia spectrum patients and their non-psychotic siblings: a comparison 

with ADHD. Schizophrenia research, 99(1-3), 85-95.  

[109] Ross, R. G., Olincy, A., Harris, J. G., Sullivan, B., & Radant, A. (2000). Smooth pursuit eye movements in 

schizophrenia and attentional dysfunction: adults with schizophrenia, ADHD, and a normal comparison 

group. Biological psychiatry, 48(3), 197-203.  

[110] Grimm, O., Thomä, L., Kranz, T. M., & Reif, A. (2022). Is genetic risk of ADHD mediated via dopaminergic 

mechanism? A study of functional connectivity in ADHD and pharmacologically challenged healthy volunteers 

with a genetic risk profile. Translational Psychiatry, 12(1), 1-9.  

[111] Verdoux, H., & Sutter, A. L. (2002). Perinatal risk factors for schizophrenia: diagnostic specificity and 

relationships with maternal psychopathology. American journal of medical genetics, 114(8), 898-905.  

[112] Marsh, P. J., & Williams, L. M. (2006). ADHD and schizophrenia phenomenology: visual scanpaths to 

emotional faces as a potential psychophysiological marker?. Neuroscience & Biobehavioral Reviews, 30(5), 651-

665. 

[113] Vovou, F., Hull, L., & Petrides, K. V. (2021). Mental health literacy of ADHD, autism, schizophrenia, and 

bipolar disorder: a cross-cultural investigation. Journal of Mental Health, 30(4), 470-480.  

[114] Bitsch, F., Berger, P., Fink, A., Nagels, A., Straube, B., & Falkenberg, I. (2021). Antagonism between brain 

regions relevant for cognitive control and emotional memory facilitates the generation of humorous 

ideas. Scientific reports, 11(1), 1-12.  

[115] https://www.wjgnet.com/2220-3206/full/v5/i1/47.htm  

[116] Pallanti, S., & Salerno, L. (2015). Raising attention to attention deficit hyperactivity disorder in 

schizophrenia. World journal of psychiatry, 5(1), 47.  

[117] Wang, H. E., Bénar, C. G., Quilichini, P. P., Friston, K. J., Jirsa, V. K., & Bernard, C. (2014). A systematic 

framework for functional connectivity measures. Frontiers in neuroscience, 8, 405.  

[118] Bastos, A. M., & Schoffelen, J. M. (2016). A tutorial review of functional connectivity analysis methods 

and their interpretational pitfalls. Frontiers in systems neuroscience, 9, 175.  

[119] Kelly, R. E., Wang, Z., Alexopoulos, G. S., Gunning, F. M., Murphy, C. F., Morimoto, S. S., ... & Hoptman, 

M. J. (2010). Hybrid ICA-seed-based methods for fMRI functional connectivity assessment: a feasibility 

study. International Journal of Biomedical Imaging, 2010.  

[120] Cisler, J. M., Bush, K., & Steele, J. S. (2014). A comparison of statistical methods for detecting context-

modulated functional connectivity in fMRI. Neuroimage, 84, 1042-1052.  

[121] Sun, F. T., Miller, L. M., & D'esposito, M. (2004). Measuring interregional functional connectivity using 

coherence and partial coherence analyses of fMRI data. Neuroimage, 21(2), 647-658. 

[122] Wang, Z., Alahmadi, A., Zhu, D., & Li, T. (2015, December). Brain functional connectivity analysis using 

mutual information. In 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP) (pp. 

542-546). IEEE.  

[123] Mäki-Marttunen, V., Diez, I., Cortes, J. M., Chialvo, D. R., & Villarreal, M. (2013). Disruption of transfer 

entropy and inter-hemispheric brain functional connectivity in patients with disorder of consciousness. Frontiers 

in neuroinformatics, 7, 24.  

https://www.wjgnet.com/2220-3206/full/v5/i1/47.htm


 

[124] Astolfi, L., Cincotti, F., Mattia, D., Marciani, M. G., Baccala, L. A., Fallani, F. D. V., ... & Babiloni, F. 

(2006). Assessing cortical functional connectivity by partial directed coherence: simulations and application to 

real data. IEEE Transactions on Biomedical Engineering, 53(9), 1802-1812.  

[125] Havlicek, M., Jan, J., Brazdil, M., & Calhoun, V. D. (2010). Dynamic Granger causality based on Kalman 

filter for evaluation of functional network connectivity in fMRI data. Neuroimage, 53(1), 65-77.  

[126] Lombardi, A., Tangaro, S., Bellotti, R., Bertolino, A., Blasi, G., Pergola, G., ... & Guaragnella, C. (2017). 

A novel synchronization-based approach for functional connectivity analysis. Complexity, 2017. 

[127] Warnick, R., Guindani, M., Erhardt, E., Allen, E., Calhoun, V., & Vannucci, M. (2018). A Bayesian 

approach for estimating dynamic functional network connectivity in fMRI data. Journal of the American 

Statistical Association, 113(521), 134-151.  

[128] Dalsgaard, S., Mortensen, P. B., Frydenberg, M., Maibing, C. M., Nordentoft, M., & Thomsen, P. H. (2014). 

Association between attention-deficit hyperactivity disorder in childhood and schizophrenia later in 

adulthood. European Psychiatry, 29(4), 259-263. 

[129] Peralta, V., de Jalón, E. G., Campos, M. S., Zandio, M., Sanchez-Torres, A., & Cuesta, M. J. (2011). The 

meaning of childhood attention-deficit hyperactivity symptoms in patients with a first-episode of schizophrenia-

spectrum psychosis. Schizophrenia research, 126(1-3), 28-35.  

[130] Jepsen, J. R. M., Rydkjaer, J., Fagerlund, B., Pagsberg, A. K., Glenthøj, B. Y., & Oranje, B. (2018). 

Overlapping and disease specific trait, response, and reflection impulsivity in adolescents with first-episode 

schizophrenia spectrum disorders or attention-deficit/hyperactivity disorder. Psychological medicine, 48(4), 604-

616.  

[131] O'Driscoll, C., Laing, J., & Mason, O. (2014). Cognitive emotion regulation strategies, alexithymia and 

dissociation in schizophrenia, a review and meta-analysis. Clinical Psychology Review, 34(6), 482-495.  

[132] Langberg, J. M., Epstein, J. N., & Graham, A. J. (2008). Organizational-skills interventions in the treatment 

of ADHD. Expert review of neurotherapeutics, 8(10), 1549-1561. 

[133] Castle, L., Aubert, R. E., Verbrugge, R. R., Khalid, M., & Epstein, R. S. (2007). Trends in medication 

treatment for ADHD. Journal of attention disorders, 10(4), 335-342.  

[134] Poldrack, R.A., Congdon, E., Triplett, W., Gorgolewski, K.J., Karlsgodt, K.H., Mumford, J.A., Sabb, F.W., 

Freimer, N.B., London, E.D., Cannon, T.D. and Bilder, R.M., 2016. A phenome-wide examination of neural and 

cognitive function. Scientific data, 3(1), pp.1-12. 

[135] Culbreth, A. J., Wu, Q., Chen, S., Adhikari, B. M., Hong, L. E., Gold, J. M., & Waltz, J. A. (2021). 

Temporal-thalamic and cingulo-opercular connectivity in people with schizophrenia. NeuroImage: Clinical, 29, 

102531.  

[136] Johnsen, L. K., Ver Loren van Themaat, A. H., Larsen, K. M., Burton, B. K., Baare, W. F. C., Madsen, K. 

S., ... & Plessen, K. J. (2020). Alterations in Task-Related Brain Activation in Children, Adolescents and Young 

Adults at Familial High-Risk for Schizophrenia or Bipolar Disorder-A Systematic Review. Frontiers in 

Psychiatry, 11, 632.  

[137] Salmi, J., Metwaly, M., Tohka, J., Alho, K., Leppämäki, S., Tani, P., ... & Laine, M. (2020). ADHD 

desynchronizes brain activity during watching a distracted multi-talker conversation. NeuroImage, 216, 116352.  

[138] Hilland, E., Johannessen, C., Jonassen, R., Alnæs, D., Jørgensen, K. N., Barth, C., ... & Agartz, I. (2022). 

Aberrant default mode connectivity in adolescents with early-onset psychosis: A resting state fMRI 

study. NeuroImage: Clinical, 33, 102881. 

 

 


