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Abstract: Managing indoor environmental quality (IEQ) is a challenge in educational buildings in the
wake of the COVID-19 pandemic. Adequate indoor air quality is essential to ensure that indoor spaces
are safe for students and teachers. In fact, poor IEQ can affect academic performance and student
comfort. This study proposes a framework for integrating occupants’ feedback into the building
information modelling (BIM) methodology to assess indoor environmental conditions (thermal,
acoustic and lighting) and the individual airborne virus transmission risk during teaching activities.
The information contained in the parametric 3D BIM model and the algorithmic environment of
Dynamo were used to develop the framework. The IEQ evaluation is based on sensor monitoring
and a daily schedule, so the results show real problems of occupants’ dissatisfaction. The output of
the framework shows in which range the indoor environmental variables were (optimal, acceptable
and unacceptable) and the probability of infection during each lecture class (whether or not 1% is
exceeded). A case study was proposed to illustrate its application and validate it. The outcomes
provide key information to support the decision-making process for managing IEQ and controlling
individual airborne virus transmission risks. Long-term application could provide data that support
the management of ventilation strategies and protocol redesign.

Keywords: building information modelling; COVID-19; educational building; indoor environmental
quality; sensor monitoring

1. Introduction

Nowadays, one of the goals of contemporary society is to achieve sustainable devel-
opment and performance of the built environment [1]. Buildings have to not only meet
the required standards for an indoor environment but also meet the occupants’ needs and
ensure their satisfaction (including social, economic and environmental aspects) [2]. Since
people are always surrounded by a physical environment, maintaining comfort, wellbeing
and health poses a great challenge [3]. The role of indoor environmental conditions in
buildings is essential, since people tend to spend 90% of their time indoors [4]. Such is its
importance that previous research has even stated that indoor environmental quality (IEQ)
is key in determining the success or failure of buildings [5]. Building occupants interact
with their surrounding environments, and their feedback, as building users, helps deter-
mine the requirements for a comfortable IEQ [6]. Accordingly, if the indoor environment
ensures up to 80% satisfaction of the occupants, the built environment can be assumed to
be performing well [4,7].

However, buildings do not always meet the required indoor environmental condi-
tions, which has a negative impact on their users [8]. These circumstances are critical in
educational buildings, where students, teachers and staff spend long periods of the day.
Primary and secondary school students spend more time at school than any other building
except at home [9]; some studies claim that they spend around one-third of their day inside
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school [10]. In contrast, university students spend less time in classrooms (at least 3 h a day)
compared to the two other educational stages [9]. Thermal, acoustic and lighting sensations
are influenced by physical variables such as temperature, sound pressure level (SPL) and
lighting, and therefore, overall satisfaction is also influenced. Previous studies have shown
that poor IEQ in educational buildings is common and adversely influences the attendance,
performance and health of students [11,12]. In addition, the recent events caused by the
COVID-19 pandemic highlighted that a suitable IEQ is essential in educational buildings.
Minimising the transmission of the SARS-CoV-2 virus led governments to implement
measures to ensure that students could use spaces safely. For example, the measures
introduced by the Spanish government included reducing contact time, distance social
distancing and using facemasks in educational buildings. Furthermore, the ventilation rate
(VR) inside the classroom had to be increased by continuous ventilation [13]. However,
since most educational buildings in European countries are naturally ventilated, achieving
high values of VRs (e.g., 6–10 ACH) is hard through a natural ventilation strategy [14].
In this context, several researchers have assessed if the VR required by governments for
educational buildings could be achieved through natural ventilation strategies during the
pre-pandemic scenario [7,15,16] and during the post-pandemic scenario [17–21]. Although
the results presented by these studies showed that a continuous natural ventilation strategy
could provide effective air renewal, they also showed that other indoor environmental
variables were influenced. Wind speed and outdoor temperatures are critical variables
that significantly affect the indoor environmental conditions if doors and windows are
continuously opened. In addition, students who are seated close to windows are more
exposed to drafts. Moreover, indoor acoustic quality can be affected by outdoor noise [22].
As a result, students’ comfort, health and productivity could contribute to a poor IEQ [11].

This situation poses a challenge to building facility managers who have to analyse
and manage operation strategies to ensure that indoor spaces are safe for students and
to guarantee a suitable IEQ. The Federation of European Heating, Ventilation and Air
Conditioning Associations (REHVA) recommended installing CO2 sensors to evaluate the
effectiveness of ventilation [14]. However, the calculation of the individual COVID-19
infection risk depends on more variables, including the ACH, type of activity conducted
during the class, time of exposure, and size and occupancy of the room. Managing this
information in a non-centralised database is complex and time-consuming.

Nevertheless, new methodologies are emerging in the architecture, engineering, con-
struction and operation (AECO) sector as building information modelling (BIM). BIM
is a methodology that offers new challenges and opportunities in the process of design,
construction and maintenance of buildings [23,24]. BIM covers all phases of the building
life cycle, and previous studies have shown its potential application during the building
operation phase. Marzouk and Abdelaty [25] proposed the use of BIM to monitor IEQ
in subway stations. Cheung et al. [26] developed a system to integrate a hazardous gas
sensor network into BIM methodology. Nojedehi et al. [27] defined a methodology to
integrate maintenance management systems and BIM to improve building management.
Alavi et al. [28] proposed a probabilistic approach to evaluate occupants’ comfort using
BIM. Artan et al. [29] defined a BIM-integrated post-occupancy evaluation system for office
buildings. In this sense, this study starts from the premise that the integration of data
obtained from indoor environmental monitoring into the BIM model could facilitate the
process of data collection and subsequent analysis. However, to the best of our knowledge,
no previous study has developed a framework for integrating occupants’ feedback in order
to conduct the assessment of the individual airborne virus transmission risk and IEQ. This
study aims to fill this research gap. In this context, the main objective of this study is to
develop a framework based on BIM methodology for integrating the assessment of the
IEQ and airborne virus transmission risk in higher educational buildings. To achieve this
objective, a methodology has been defined to obtain the occupants’ feedback and integrate
it into the BIM model. Subsequently, a BIM-based framework has been developed as a
platform that can be used to support decision making by building managers and improve
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operational strategies. Finally, the proposed framework has been applied to a university
building case study.

2. Material and Methods
2.1. Research Approach

The proposed framework is based on four main phases: (1) obtaining occupants’
feedback on IEQ; (2) monitoring of the building’s IEQ variables; (3) integration of the data
obtained in phases 1 and 2 into the BIM model and performing the evaluation; and (4)
visualising the results in the BIM software interface and generating reports. Figure 1 shows
the automation process of integrating the indoor environmental assessment and occupants’
feedback into BIM. The following subsections show the materials and methods used in
each of the phases.

Phase 1: occupants’ feedback. The occupant comfort in existing buildings is directly
determined from indoor environmental measurements and the responses of occupants
through a questionnaire survey. The questionnaire used in this study was divided into two
parts and was based on the recommendations for the evaluation of indoor environmental
quality stated in UNE-CEN/TR 16798-2:2019 and UNE-EN ISO 28802:2012 standards [30,31].
The first part of the questionnaire was related to personal information (age, gender and
clothing), while the second part contained questions related to physical environmental
parameters. A 7-point Likert scale was used to evaluate the occupants’ indoor environ-
mental perception: the thermal sensation vote (TSV, from −3 for ‘cold’ to 3 for ‘hot’), the
acoustic sensation vote (ASV, from −3 for ‘very noisy’ to 3 for ‘very quiet’) and the lighting
sensation vote (LSV, from −3 for ‘very bright’ to 3 for ‘very dark’). In addition, occupants
were asked whether they were satisfied with the indoor thermal, acoustic and lighting
environment, with a scale ranging from −3 (‘very dissatisfied’) to 3 (‘very satisfied’), with 0
being neutral.

Simultaneously with the survey, the measurement of indoor environmental variables
was carried out. For this purpose, sensors were placed to record the radiant temperature,
air temperature, air velocity, lighting, relative humidity (RH), CO2 concentration and SPL.
Table A1 in Appendix A shows the sensors used to measure the indoor environmental
conditions in the classrooms.

Phase 2: IEQ monitoring. In this phase, the indoor environmental conditions in
classrooms are monitored during teaching activities. The indoor environmental variables
are monitored continuously at 1 min logging intervals. The sensors should be placed in the
middle of the classroom at 0.6 m above floor level, following the recommendations in ISO
7726:1998. Figure A1 in Appendix A shows an example of the layout of the sensor location.
The sensors indicated in Table A1 in Appendix A were used for this purpose. In addition,
the occupation and the type of activity conducted in the classrooms are considered. These
parameters are taken into account due to their impact on the occupants’ IEQ perception
and the airborne virus infection risk.

Phase 3: IEQ assessment and evaluation of airborne virus infection risk. The data
obtained in phases 1 and 2 and the geometric data contained in the BIM model are used as
inputs in this phase. Subsequently, the evaluation process is divided into two parts.

Firstly, the evaluation of the airborne virus infection risk is carried out. In this regard,
the measures implemented by governments to contain COVID-19 virus transmission
in public buildings during the pandemic period are considered [13]. The probability
of infection (P) due to the SARS-CoV-2 virus during teaching activities in educational
buildings is calculated using the Wells–Riley airborne disease transmission model (see
Equation (1)) [32].
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P =
Ci
Cs

= 1− e(
−I q p t

ACH ) (1)

where Ci is the number of occupants who develop an infection, Cs is the number of
susceptible occupants, I is the number of infectors, q is the quantum generation rate (h−1),
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p is the pulmonary VR of susceptible people, t is the exposure time (h), and ACH is the air
changes per hour (h−1). This model assumes a steady-state infectious particle concentration
that varies with the VR and a well-mixed room air. Therefore, the ventilation of indoor
spaces is a key factor to control the airborne virus transmission.

One of the parameters used to monitor the VR and indoor air quality in the classroom
is the CO2 concentration. The methods using CO2 as a tracer gas to estimate VRs are based
on a fully mixed mass balance model (Equation (2)):

V
dC
dt

= E + Q·Coutdoor −Q·C (2)

where V is the volume of the indoor space under study, E is the CO2 emission rate of the
occupants per hour, Q is the outdoor air flow rate, Coutdoor is the CO2 concentration in the
outdoor air, and C is the CO2 concentration in the indoor space.

The approach proposed in this study relies on the assessment of the probability of
airborne virus infection and the effectiveness of ventilation based on the ACH assessment
for each scenario. For this purpose, the build-up VR technique is used. This technique
uses the series of measurements of CO2 concentration over time with a solution to the fully
mixed model (Equation (3)):

Ct = (CS − Coutdoor)
(

1− e−ACH t
)
+ Coutdoor (3)

Equation (4) may be linearised as the following expression (Equation (4)):

ln(CS − Ct) = −ACH t + ln(CS − Coutdoor) (4)

Therefore, the ACH can be calculated as the slope of the ln(CS − Ct) versus time t.
The ACH derived using this method assumes that the VR is constant over a specific time
period, and it is applied only to a single and fully mixed zone. For this purpose, the
CO2 measurement sequence over time is required, from which the ACH is calculated by
minimising the squared residuals. The build-up method has been used by previous studies
to obtain the VR in an occupied classroom [33–35].

Secondly, the IEQ evaluation is conducted. For this purpose, the feedback obtained
from the first phase is used to determine if the students are satisfied with the indoor environ-
mental parameters. To this end, the indoor variables measured during the teaching activity
in the classroom are compared with the values indicated as suitable by the occupants (in
this case, the students).

Phase 4: output generation. The results obtained in phase 3 are shown to the facility
managers in two different formats: (1) the results are shown in the same interface as the
BIM software and (2) a report. The first one is shown automatically in the BIM software
interface after the application of the framework. This format shows the results in two
different charts (the first one shows the assessment of IEQ for each lecture, and the second
one shows the probability of infection). In addition, the report is automatically generated
in .csv format. It contains all the data obtained from the evaluation.

2.2. Case Study

The polytechnic building of the University of Granada was used as a case study
to evaluate the proposed BIM framework (Figure A2 in Appendix A). The building is
located at the Fuentenueva campus, in the urban area of the city of Granada. Granada
is characterised by a climate classified as Csa according to the Köppen–Geiger climate
classification. The temperature is generally in the range 0–34 ◦C and rarely rises above
38 ◦C or drops below −4 ◦C during the course of the year.

The polytechnic building was built in 2000 and has seven floors with a concrete
structure (waffle slab), concrete wall and flat roof with a sloping section. Classrooms
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are naturally ventilated and have heating systems (radiators). Table 1 shows the main
characteristics of the classrooms.

Table 1. Characteristics of the classrooms in the polytechnic building.

Finishing Materials Type of
Windows

Mean Area
(m2)

Mean Occupancy
Ratio (m2/Person)

Wall: Gypsum plaster/Ceramic tile Aluminium
glazed windows

(sliding)
170 ± 40.5 1.6 ± 0.9Floor: Natural stone

Ceiling: Registrable suspended ceiling

The occupants’ feedback survey was conducted during the academic year 2021–2022
(four times a month, 10 months from September 2021 to June 2022). The questionnaires
were filled out by students in middle morning or middle afternoon, during the last fifteen
minutes of the lecture class. This decision was intended to minimise the lecture disturbance
and to maximize the exposure of the students to the indoor environmental conditions
(students had been sitting for at least 1 h in the classroom). This field study followed the
recommendations stated in UNE-CEN/TR16798-2:2019 and ISO 10551:2019 [30,36]. A total
of 930 responses were obtained.

2.3. Statistical Analysis

A statistical analysis was carried out with the data obtained from the field measure-
ment campaign. The subjective data collected in combination with the objective data
obtained from the sensors’ field measurements were used to relate the occupants’ per-
ception to the indoor environmental conditions of the buildings. To evaluate the IEQ
affecting the building occupants, regression methods were applied to the related objective
and subjective results obtained. SPSS software (v.23.0) was used to perform this analysis.

3. Integration of the Proposed Methodology into BIM

As indicated in the previous section, a framework was developed to integrate the
occupants’ feedback and the data obtained from the sensor monitoring into the BIM model.
In this study, the software BIM Revit® (v. 2023) and its open-source visual programming
language Dynamo (v. 2.13) were used. Figure 2 shows the workflow of the system de-
veloped in the BIM. Firstly, a BIM model of the building under study was required to
implement the developed framework. This model had to incorporate all the geometric and
non-geometric information of the building. Therefore, a BIM level of detail (LOD) 300, as
the minimum, was required to run the assessment process.

In addition, several shared parameters needed to be defined during the design of the
BIM model (Table 2). These parameters were used to store and communicate information
about the components of the BIM model.

Table 2. Shared parameters used in the model.

Parameter Definition Parameter Type Category

Classroom_Id Name of the classroom String Room

Max_occup Maximum number of occupants Number Room

ID_Sensors Identifier number of each sensor
located in the classroom String Room
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The proposed system developed in BIM included six main Dynamo packages or
scripts, which are classified as follows (Figure 3):

• Scripts-1: Inputs.
• Scripts-2: Building data extraction.
• Scripts-3: Data extraction from sensors and schedule database.
• Scripts-4: Virus transmission risk assessment.
• Scripts-5: IEQ assessment.
• Scripts-6: Data visualisation and report.

The set of Scripts-1 Inputs allowed the selection of the classroom under study as well
as the date considered for the evaluation. This information was used to identify the indoor
environmental conditions of the selected classroom during the period under study. The
classroom was selected directly in the BIM model. Subsequently, the period of analysis
(start and end date) was entered through a string.

Scripts-2 Building data extraction obtained the geometric data (dimensions, volume
and area) and the non-geometric data (Classroom_Id, Max_occup and ID_sensors) of the
selected classroom.

The next set, Scripts-3 Data extraction from sensors and schedule database, connected
and imported the data obtained from the sensors placed in the classroom (temperature,
lighting, SPL and CO2 concentration) for the period under study. The parameter ID_sensors
was used to link the sensor located in each classroom with the virtual model of the build-
ing. In addition, this process also imported the schedule of teaching activities that were
conducted in the classroom during the selected period. The information imported for each
teaching activity is shown in Table 3.
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Table 3. Characteristics of teaching activities.

Element Definition Data-Type

Classroom_Id Name of the classroom where the teaching activity is
carried out String

Subject Name of the subject String

Start time Day and time when the class starts Date

End time Day and time when the class ends Date

Type Type of teaching learning activity (e.g., lecture,
laboratory class, etc.) String

Occupation Number of students attending the class Integer

Subsequently, based on the information incorporated by the previous sets of scripts,
the assessment of the virus transmission risk was carried out in Scripts-4. For this purpose,
the methodology defined in Section 2 was applied, and the probability of infection due to
the SARS-CoV-2 virus was calculated using the Wells–Riley airborne disease transmission
model (Equation (1)). According to the type of activity carried out during the teaching
activity, the breathing rate of the students and professors (p) was selected: lectures where
students were seated (p = 0.50 m3/h), laboratory activities where students were carrying
out experiments (p = 0.65 m3/h), etc. These breathing rate values were obtained from
REHVA COVID-19 guidance [14].

In addition, since the probability of transmission of the SARS-CoV-2 virus (Omicron
variant) was considered in this study, two possible scenarios were evaluated when selecting
the quanta emission: (1) q = 4.0 quanta/h, assuming that there is an infected student
(Ci = 1), and (2) q = 10.8 quanta/h, assuming that the infected person is the professor
(Ci = 1) [37]. However, if another variant or airborne virus transmission is assessed, the
model will have to be modified and the appropriate quanta emission rate selected. The
number of susceptible occupants (Cs) was equal to the classroom’s occupation minus the
number of infected occupants. The pulmonary VR was assumed as 0.54 m3/h for students
and 0.65 m3/h for the professor [37]. The exposure time (t) was equal to the duration of
each lecture. This script automatically evaluated, as a function of the occupation pattern
obtained from the schedule database and the CO2 time series measured by the sensors,
the VRs during each class (ACH). Equation (4) (shown in Section 2) was used for this
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purpose. The ACH obtained value was used to calculate the probability of airborne virus
transmission during each class.

Parallel to this process, the set of Scripts-5 assessed the indoor environmental condi-
tions. The occupants’ feedback obtained from the field survey (TSV, ASV and LSV) was
analysed alongside the indoor environmental variables measured simultaneously (tempera-
ture, SPL and lighting), and the comfort zones were identified for each variable. In the case
of thermal comfort, the ANSI/ASHRAE 55-2020 and the ISO 7730 standards [4,38] were
followed according to the comfort zone method. These standards state that, to maintain a
percentage of dissatisfied occupants below 10%, the TSV should be between +0.5 and −0.5,
while to maintain it below 20%, the TSV should be between +1 and −1. Therefore, three
thermal comfort ranges were established (Equation (5)) [4]:

a. −0.5 < TSV < 0.5 Optimum
b. −1.0 < TSV < 1.0 Acceptable
c. TSV〈−1.0 or TSV〉1.0 Unacceptable

(5)

The same strategy was assumed for the indoor light quality (Equation (6)):

a. −0.5 < LSV < 0.5 Optimum
b. −1.0 < LSV < 1.0 Acceptable
c. LSV〈−1.0 or LSV〉1.0 Unacceptable

(6)

However, regarding the indoor acoustic quality, this study evaluated the indoor
background noise to conduct the assessment. In this case, since the objective was to keep
the background noise SPL at a level that did not interfere with the teaching learning activity,
the three ranges were assumed as follows (Equation (7)):

a. 0.5 < ASV Optimum
b. 0 < ASV < 0.5 Acceptable
c. ASV < 0 Unacceptable

(7)

The final step of the system generated in Dynamo was Scripts-6 Data visualization and
report. This set of nodes made it possible to visualise the data obtained from the assessment
process in the same BIM software, as well as to export a report of these data in a .csv format
file. With respect to the IEQ assessment, the data are displayed in a stacked bar chart with
the results obtained. The diagram shows the comfort zone and, for each time slot of the
classroom under study, the thermal, lighting and acoustic conditions. The python library
matplotlib is used for this purpose. In addition, with respect to the results obtained from
the virus transmission risk assessment, a percentage of probability of infection is plotted
using a range of colours depending on the value obtained.

4. Results: Case Study
4.1. Occupants’ Feedback Survey

The occupants’ feedback survey and IEQ measurement were carried out simultane-
ously during the 2021/2022 academic year. A total of 930 questionnaires were collected
in this study, of which 908 were valid (22 were incomplete). Therefore, the feedback from
908 students was analysed and subsequently incorporate into the BIM model. The par-
ticipants (university students) were sitting and listening to the lecturers during the field
measurements. Figure 4 shows the distribution of the respondents’ general information.
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Regarding the participants’ characteristics, 87% were aged between 18 and 24, a figure
that rose to 97% when participants aged between 25 and 30 were included. The results
obtained from the sensor monitoring are summarised in Table 4.

Table 4. Results obtained from the field measurements during heating season (HS) and non-heating
season (NHS).

Type
Operative Temperature

(Top) (◦C) RH (%) Air Velocity (m/s) CO2
Concentration

(ppm)

Lighting
(lux)

SPL
(dBA)

HS NHS HS NHS HS NHS

Max 26.3 28.3 49.4 50.1 0.15 0.22 1676 594 52.2

Min 14.5 19.1 26.9 21.3 0.01 0.01 400 110 30.0

Mean 18.4 23.6 38.3 37.7 0.04 0.04 592 409 44.6

Median 16.9 22.9 39.4 38.2 0.02 0.02 511 420 44.1

SD 3.3 3.0 6.5 7.8 0.05 0.05 233 101 4.3

Figure 5 shows the relationships between the sensation vote values and satisfaction
vote values. In terms of indoor thermal quality during heating season (Figure 5a), the
values obtained show that between 98% and 100% of the students who voted that the
indoor thermal conditions were cold/cool or hot were dissatisfied. The values obtained of
indoor thermal quality during the non-heating season (Figure 5b) show that between 92%
and 100% of the students who voted that the indoor thermal conditions were cold/cool
or hot were also dissatisfied, while dissatisfaction dropped to 70% for warm TSVs. These
values may indicate a greater adaptation to warm environments than to cold environments.
Figure 5c shows the relationship of student acoustic satisfaction and ASV. These values
reveal that for a ‘very noisy’/’noisy’ ASV, 100–97% of students were dissatisfied, while
for a ‘slightly noisy’ ASV, the percentage of dissatisfied students dropped to 46%. With
respect to the indoor lighting quality (Figure 5d), about 63–64% of students who indicated
dissatisfaction also indicated a ‘very bright’ or ‘very dark’ LSV. In fact, it was the less
well-lit environments that caused the most dissatisfaction among students.
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Moreover, with respect to the relationship between the objective variables and sensa-
tion votes for each of the environmental factors studied, the results obtained are shown
in Figure 6. Since the thermal adaptation and clothing level affect TSV, the relationship
between the temperature and the subjective thermal perception of students was analysed
separately for the winter and summer seasons. Figure 6a,b show the results obtained for
the heating season (R2 = 0.85, p < 0.001) and non-heating season (R2 = 0.84, p < 0.001),
respectively. It was found that the neutral temperature was 22.2 ◦C for the winter season
and 23.5 ◦C for the summer season. Figure 6c shows the relationship between the LSV and
the lighting values (R2 = 0.44, p < 0.001). In addition, Figure 6d shows the relationship be-
tween the ASV and the background noise measured in the classrooms (R2 = 0.40, p < 0.001).
Based on the equation obtained from this regression analysis, the comfort zone was defined
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(Table 5). The sensation votes equal to ‘−1’, ‘−0.5’, ‘0’, ‘0.5’ and ‘1’ were calculated for each
environmental factor.
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vs. lighting.

Table 5. Values calculated for the comfort zones based on the sensation votes.

Parameter Sensation Votes

Values −1 −0.5 0 +0.5 +1

Thermal (winter) 18.2 ◦C 20.2 ◦C 22.2 ◦C 24.2 ◦C 26.2 ◦C

Thermal (summer) 19.7 ◦C 21.6 ◦C 23.5 ◦C 25.4 ◦C 27.3 ◦C

Lighting 611 lux 486 lux 361 lux 236 lux 111 lux

Acoustic - - 48.9 43.0 dBA 37.2 dBA



Int. J. Environ. Res. Public Health 2022, 19, 13756 13 of 21

4.2. Implementation in the BIM Model

This section shows an example of the application of the system developed in BIM
to one of the classrooms of the building under study. Classroom 110 was selected on 30
May 2022 (non-heating season), whose teaching activity time schedule is shown in Table 6.
Figure 7 shows the classroom selected.

Table 6. Schedule of the teaching activities in classroom 110.

Date Time Subject Type of Activity Occupation

30 May 2022 09:30–11:30 Sanitary Engineering (Group A) Lecture 28

30 May 2022 11:30–12:30 Sanitary Engineering (Group B) Lecture 30

30 May 2022 13:30–14:30 Structural analysis Lecture 40
Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 7. (a) BIM model of polytechnic building. (b) Plan of the first floor. Blue colour indicates 
classroom 110. 

Protocols in this educational building include that classes must end ten minutes 
before the scheduled time to provide a rest interval for students and renew the air in the 
classroom. The results obtained from the IEQ evaluation in classroom 110 are shown in 
Figure 8 and Table 7. Green, blue and red colours indicate that the variables are in the 
optimum, acceptable and unacceptable ranges, respectively. 

 
Figure 8. IEQ evaluation results of classroom 110. 

Figure 7. (a) BIM model of polytechnic building. (b) Plan of the first floor. Blue colour indicates
classroom 110.

Protocols in this educational building include that classes must end ten minutes before
the scheduled time to provide a rest interval for students and renew the air in the classroom.
The results obtained from the IEQ evaluation in classroom 110 are shown in Figure 8
and Table 7. Green, blue and red colours indicate that the variables are in the optimum,
acceptable and unacceptable ranges, respectively.

Table 7. Mean values of indoor environmental conditions.

Time 8:30–9:30 09:30–11:30 11:30–12:30 12:30–13:30 13:30–14:30

Temperature (◦C) 24.1 24.9 25.2 25.6 27.8

Lighting (lux) 249 368 447 434 408

SPL (dBA) 40.3 44.5 50.1 44.3 49.5
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In the analysed case, the indoor thermal conditions were acceptable during the first two
lectures (the mean indoor temperature was 24.9 ◦C and 25.2 ◦C during Sanitary Engineering
Group A and B lectures, respectively) and unacceptable during Structural analysis (27.8 ◦C,
higher than the 26.2 ◦C limit value of the acceptable comfort zone). It should be noted that
the last lecture took place during the warmest hours of the day, which, together with the
fact that it was the most occupied lecture class, resulted in a higher indoor temperature.

Regarding indoor acoustic conditions, these were unacceptable during Sanitary En-
gineering (Group B) and structural analysis, and acceptable during Sanitary Engineering
(Group A). Since this building is located in the urban area of Granada, natural ventilation
strategies affect the indoor environmental conditions: outside urban noise (e.g., disturbing
traffic noises such as sirens, trucks, etc.) and people talking in common areas (e.g., corri-
dors) affect the acoustic conditions. In contrast, the indoor lighting conditions were optimal
during all the lectures (all the mean values were in the optimum range).

In addition, the VRs inside classroom 110 during the teaching activities were calculated,
and the probability of COVID-19 virus transmission was estimated assuming two scenarios:
(1) a student was infected, and (2) the professor was infected. In addition, Figure 9 is
plotted in the Dynamo environment. The results obtained for this case indicated that the
probability exceeded 1% only during the first lecture (9:30–11:30) and assuming the scenario
where the infected person was a professor. This lecture had the longest exposure time
(2 h) and the second lowest ventilation rate. These conditions, together with the fact that
the professor’s quantum generation rate was higher (they talked more during the lecture),
determine that the probability of COVID-19 infection is higher in this scenario (above 1%)
than during the rest of the lectures.
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5. Discussion
5.1. Field Measurement Campaign

In relation to the occupants’ feedback survey, since the statistics published by the
University of Granada in the report for the academic year 2020/2021 indicated that 95%
of students on university degrees were aged between 18 and 30 [39], the values shown in
Figure 4 were to be expected. With regard to the operative temperature during the heating
season, the measured values ranged from 14.5 ◦C to 26.3 ◦C, and the RH ranged from 26.9%
to 49.4%. In contrast, during the non-heating season, the operative temperature ranged
from 19.1 ◦C to 28.3 ◦C, and the RH ranged from 21.3% to 50.1%. Regarding air velocity,
this variable ranged between 0.01 and 0.15 m/s and 0.01 and 0.22 m/s during the heating
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and non-heating seasons, respectively. These environmental factors were influenced by
the continuous natural ventilation through the opening of doors and windows [40]. Both
operative temperature and RH reached values that were out of the ranges defined by the
Spanish state regulation [41] (21–23 ◦C and 40–50% in heating season, and 23–25 ◦C and
45–60% in the non-heating season). These obtained results from the field measurement cam-
paign were similar to those found in other studies conducted during the pandemic scenario.
In fact, other studies conducted in Spain found that there was a significant period with
out-of-range temperature conditions in natural ventilated classrooms during the COVID-19
pandemic [19,42]. Regarding CO2 concentration, values between 400 ppm and 1676 ppm
were recorded. Some of these concentration values were above the limits indicated by
the Spanish regulations (900 ppm), as well as exceeding the REVHA recommendations
for educational buildings for indoor climate during the COVID-19 pandemic (800 ppm).
Similar CO2 concentration values were reported by studies conducted in classrooms where
natural ventilation strategies were implemented [42,43]. With regard to the indoor acoustic
quality, values between 30.0 dBA and 52.2 dBA SPL were observed. Since background noise
is an essential factor in educational buildings due to its effects on the quality of the learning
process, previous research considered that the level of 35 dBA should not be exceeded in
order to guarantee good speech intelligibility [44]. In this sense, the natural ventilation
protocols implemented because of the COVID-19 pandemic have also influenced the indoor
acoustic quality inside classrooms, increasing the background SPL [22]. The opening of
doors and windows can increase the background noise level in the classroom, as it decreases
sound insulation with neighbouring spaces (traffic noise, people talking in neighbouring
areas, etc.). In the case of lighting, the measured values ranged from 110 to 594 lux. The
UNE-EN 16798-1:2020 standard [45] recommends an illumination of 500 lux for classrooms.
Therefore, the low lighting values observed may affect students’ academic performance.

5.2. BIM-Based Framework

The obtained results from the case study evidence that the proposed framework can be
used to assess the IEQ comfort requirements and the individual airborne transmission risk
of COVID-19 in the BIM methodology. One of the advantages of the proposed framework
that was identified is that the use of the BIM model of existing buildings together with
its linkage to IEQ data allows the generation of a centralised database of the building
characteristics. Therefore, the barrier to collecting the different information required is
eliminated. The proposed methodology encourages the use of BIM models, which are
currently mainly used in the design phase and throughout the whole of the building
operation phase. In fact, the feedback obtained from groups of building occupants can
be used by facility managers to evaluate indoor environmental conditions. The proposed
methodology provides key information for post-occupancy IEQ evaluation and strategies
for the control of ventilation. The framework automatically estimates the acoustic, lighting
and thermal comfort of occupants based on the reading of sensor data. The results are
shown in the software BIM interface, reducing the data processing time. The fact that
all the information is available in a single database provides building managers with
the necessary tool to analyse the facilities for any given period of time. This process
provides valuable information for the building management and planning of the different
subjects and classrooms. As a result, facility managers can use these results to support
decision-making processes and improve building performance.

Moreover, the evaluation is based on occupant feedback, and the results therefore show
real problems of occupants’ dissatisfaction. Facility managers can make decisions based on
this information from an occupant-centric point of view. In fact, the proposed framework
can be applied to other type of spaces (e.g., offices, library, labs, etc.) as long as the subjective
responses of the occupants of the spaces under evaluation are obtained. Therefore, the
building manager can choose the room to be analysed with the proposed framework and
use the generated output to support the building management decision-making process.
Furthermore, the methodology presented in this study not only provides information to
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assess whether indoor spaces are safe for occupants (by assessing the risk of airborne
virus infection), but also assesses whether the protocols implemented result in poor indoor
environmental conditions. Therefore, the obtained results also show the potential use of
the proposed framework and BIM methodology. This fact is in line with the conclusions
provided by previous studies applying BIM and field environmental measurement data
during the operational phase of the building. For example, Chang et al. [46] developed a
BIM-based platform using Dynamo to visualize sensor data in BIM and help in making
energy-saving management decision. Valinejadshoubi et al. [47] evaluated the applicability
of BIM for an efficient sensor failure management system during the operational phase of a
building and concluded that the information within BIM allows better and more effective
decision making for building facility managers. In addition, Desogus et al. [48] tested the
integrated use of BIM methodology and IoT systems using Dynamo, and concluded that
the BIM model allows the management of useful information about the building, which is
key for effective and accurate building management.

It should be highlighted that managing IEQ data has become critical in the aftermath
of the COVID-19 pandemic, and ensuring the good ventilation of educational spaces is
a challenge today. In this sense, this framework provides an analysis of data obtained
from CO2 sensors and estimates the VR of each classroom. These data are used to assess
the probability of infection by different airborne viruses, such as the SARS-CoV-2 virus.
Regarding the probability infection results obtained from the case study, it should be
noted that although Sanitary Engineering (Group A, 9:30–11:30) was the lecture that had
the second lowest ventilation rate, it also had the longest exposure time (2 h), and the
professor’s quantum generation rate was higher than that of the students (as professors
spend more time talking during lectures). In fact, Equation (1) of the Wells–Riley model
shows this relationship: infection rate increases as the exposure time increases, while
infection rate decreases as ventilation rate increases. In contrast, the results obtained from
the last lecture show the highest ventilation rate and a probability of infection of less than
1%. However, the outdoor environmental conditions and surrounding spaces have a greater
influence on the indoor environmental conditions of the classroom (acoustic and thermal
conditions are outside the range of acceptable zone values for both variables). In addition,
the threshold for the probability of infection was fixed at 1% because previous studies that
analysed natural ventilation strategies and COVID-19 transmission considered 1% as a
reference value of infection probability [49]. Nevertheless, this percentage can be modified
in the framework at the discretion of the building manager.

Finally, the long-term application of the proposed methodology could provide data
that can support the evaluation of the ventilation and management strategies implemented
in buildings. This information is crucial for redesigning protocols and minimising the
impact of poor IEQ conditions on building occupants.

6. Conclusions

This research has developed a framework to assess IEQ and the risk of infection by
airborne viruses integrated into the BIM environment. The proposed system has been
applied to an educational building of the University of Granada for validation. The main
contributions of this study are as follows:

• The framework allows the integration of IEQ parameters and models to evaluate
thermal, light and acoustic comfort into the BIM model.

• The system automatically calculates the thermal, acoustic and light sensation values for
each of the classes in the selected period. It also avoids the possibility of information
losses and errors in the process of assessment. Furthermore, the results are visualised
in the same interface of the BIM software, facilitating the identification and detection
of possible problems in the classrooms.

• The proposed system is an effective tool for building managers to manage IEQ and
control airborne virus transmission. Its implementation supports decision making
by providing useful information for the continuous assessment of the building. In
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addition, it is worth noting that it allows the building to be evaluated continuously
over time and can be applied at any time as long as the time series measured by the
sensors are available, as well as the evaluation and preventive diagnosis of buildings.

• The results presented in the case study showed that the proposed framework is a
useful tool for building managers. The framework allows the identification of indoor
environmental conditions out of the comfort range, such as thermal conditions (during
“Structural Analysis”) and acoustic conditions (during “Sanitary Engineering Group
B” and “Structural Analysis”). It can also identify and visualise the risk of infection as
shown in the scenario of an infected professor (with a probability of 2.1%).
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Figure A2. Polytechnic building of University of Granada: (a) location, (b) façade. Red dotted line
indicates the location of the polytechnic building.

Table A1. Characteristics of the sensors used to measure the indoor environmental parameters.

Variable Sensor Range Accuracy

Air temperature FHAD 46-C41A AHLBORN −20 to +80 ◦C
Typical ±0.2 K at 5 to 60 ◦C

Maximum ±0.4 K at 5 to 60 ◦C
Maximum ±0.7 K at −20 to +80 ◦C

Mean radiant temperature FPA805GTS AHLBORN –50 to 200 ◦C 0.1 ◦C
Air velocity HD403TS2 Delta OHM® 0.1 to 5 m/s ±0.2 m/s + 3% f.s

RH FHAD 46-C41A AHLBORN 0 to 98% RH ±2.0% RH in range from 10 to 90% RH
CO2 concentration HOBO® MX1102 0 to 5000 ppm ±50 ppm ±5% of reading

Lighting HOBO® MX1104 0 to 167,731 lux ±10% typical for direct sunlight

SPL Imperum-R TECNITAX®

Ingeniería
35 to 115 dBA ±1 dBA
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