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Abstract: The various facets of the internal disorder of quantum systems can be described by means
of the Rényi entropies of their single-particle probability density according to modern density func-
tional theory and quantum information techniques. In this work, we first show the lower and upper
bounds for the Rényi entropies of general and central-potential quantum systems, as well as the
associated entropic uncertainty relations. Then, the Rényi entropies of multidimensional oscillator
and hydrogenic-like systems are reviewed and explicitly determined for all bound stationary po-
sition and momentum states from first principles (i.e., in terms of the potential strength, the space
dimensionality and the states’s hyperquantum numbers). This is possible because the associated
wavefunctions can be expressed by means of hypergeometric orthogonal polynomials. Emphasis
is placed on the most extreme, non-trivial cases corresponding to the highly excited Rydberg states,
where the Rényi entropies can be amazingly obtained in a simple, compact, and transparent form.
Powerful asymptotic approaches of approximation theory have been used when the polynomial’s
degree or the weight-function parameter(s) of the Hermite, Laguerre, and Gegenbauer polynomials
have large values. At present, these special states are being shown of increasing potential inter-
est in quantum information and the associated quantum technologies, such as e.g., quantum key
distribution, quantum computation, and quantum metrology.

Keywords: Rényi entropy inequalities; Rényi entropies of multidimensional oscillator systems; Rényi
entropies of multidimensional hydrogenic systems; Rényi entropies of highly excited Rydberg states;
hypergeometric orthogonal polynomials; asymptotics of Hermite; Laguerre and Gegenbauer polynomials
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1. Introduction

The Rényi entropies [1,2] for the probability densities ρ(r) and γ(p) are the most
appropriate measures of quantum uncertainty, a property of fundamental relevance for
the precise characterization of the position and momentum single-particle densities of
quantum systems and the basic variables of the modern density-functional theory [3,4] in
the two complementary spaces. For D-dimensional systems, they are

Rq[ρ] =
1

1− q
ln
∫
RD

[ρ(r)]q dr, 0 < q < ∞, q 6= 1, (1)

and
Rq∗ [γ] =

1
1− q∗

ln
∫
RD

[γ(p)]q
∗

dp, 0 < q∗ < ∞, q∗ 6= 1, (2)

respectively. They supply a family of entropic measures of quantum states, depending
on a real parameter q. This order parameter controls the concentration of the probability
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density over different regions of the hyperspace. Higher values of q indicate that the
function [ρ(r)]q is more concentrated around the local maxima of the distribution, while
the lower values have the effect of smoothing that functions over its whole domain of
definition. The Rényi entropies quantify a great deal of spreading facets of ρ(r) over RD,
and describe numerous information-theoretical quantities as special cases, such as, e.g.,
the disequilibrium D[ρ] = exp(−R2[ρ]) and the Shannon entropy S[ρ] = limq→1 Rq[ρ] [5].
The Tsallis entropies Tq[ρ] =

1
1−q [q

(1−q)Rq [ρ] − 1] [6,7] and various generalized complexity
measures [8–13]. These quantities are known to be the basic variables of the classical
and quantum information theory of physical systems [6,14,15], and they characterize the
uncertainty measures of these systems in a much better way than the Heisenberg-like
measures since they do not depend on a specific point of the domain of the density and
do not give a large weight to the tails of the distribution (see, e.g., [16]), which is only true
for some particular distributions such as those that fall off exponentially. Moreover, they
have allowed for gaining a much deeper knowledge of many scientific and technological
phenomena ranging from the uncertainty principle of quantum physics [17–22], quantum
entanglement and Bose–Einstein condensates [23–27], statistical mechanics [28–35], free
and confined quantum systems [36–40], and Aharonov–Bohm rings in external fields [41,42]
to biology and medicine [43–45].

The Rényi entropies of general quantum systems, which are power-like functionals of
the single-particle probability density, cannot be exactly determined from first principles
because the associated Schrödinger equation in both position and momentum spaces is un-
solvable. Since the analytical properties of the Rényi quantities have been widely examined
(see, e.g., [17,46–48]) and reviewed (see, e.g., [18,19,31]), a number of rigorous bounds have
been found for general and central-potential quantum systems as it is described below,
beginning with the entropic uncertainty relation.

Even though the Schrödinger equation is solvable, which happens for a small bunch
of quantum-mechanical potentials such as the infinite-well potential [37] and the rigid rota-
tor [38] and in the oscillator (harmonic-like) and hydrogenic (Coulomb-like)
systems [49–53], the exact determination of the Rényi entropies for their stationary states
is a formidable task except for the first few lowest-lying energetic states of some specific
systems and for a few one-dimensional exponential densities (see, e.g., [54]). In the last
few years, however, it has been recently solved for the multidimensional oscillator and
hydrogenic sytems as it is discussed in this work. This has been possible because the Rényi
quantities of these systems are integral functionals of the known hypergeometric orthogo-
nal polynomials (see, e.g., [55–57]), which control the state’s wavefunctions. They can be
algorithmically calculated in terms of the potential strength, the space dimensionality, and
the state’s hyperquantum numbers [58,59] by using linearization methods of orthogonal
polynomials [60,61].

Nevertheless, when applied to the hardest extreme high-energy (Rydberg) [62–64] and
high-dimensional (quasiclassical) states, the resulting general expressions are computation-
ally demanding because the corresponding Rényi integral functional kernels are highly
oscillatory when the radial hyperquantum number and the space dimensionality become
large. For such special states, it is much more convenient and physically transparent to use
the degree and parameter asymptotics [65–69] of the Laguerre and Gegenbauer polyno-
mials, which control the radial and angular parts of corresponding state’s wavefunctions.
Indeed, these asymptotical techniques have allowed us to express the Rényi entropies of
the high-lying excited Rydberg states [70–75] and high-dimensional states [70,76,77] of
oscillator and hydrogenic systems in a simple, compact way. Due to their extraordinary
properties (large dipole polarizability, long-range dipolar interactions,....), we will focus on
the Rydberg states because not only are they a fertile laboratory to investigate the order-
to-chaos transitions through the applications of electric fields [63,78] and to explore the
strongly interacting systems [79], but they are also one of the most promising neutral-atom
platforms in various quantum-information tasks (see, e.g., [80–84]).
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The structure of the paper is as follows: In Section 2, we fix the notation used and
give the physical solutions in both position and momentum space for the Schrödinger
equation of the multidimensional oscillator-like and hydrogenic systems in terms of the
hyperspherical quantum numbers and the potential strength. In Section 3, we show the
lower and upper bounds for the Rényi entropies of general and central-potential quantum
systems, as well as the associated entropic uncertainty relations. In Section 4, we show how
to determine the Rényi entropies for arbitrary states of the multidimensional oscillator-like
systems in both spherical and cartesian coordinates. In Section 5, the Rényi entropies for
general states of the multidimensional hydrogenic systems are analytically found and
discussed. In Section 6, powerful asymptotical techniques are used to obtain the Rényi
entropies for the highly-excited Rydberg states of the multidimensional oscillator and
hydrogenic states. Finally, some conclusions and open problems are given.

2. The D-Dimensional Oscillator and Hydrogenic Eigenvalue Problems

The time-independent non-relativistic equation of a D-dimensional (D > 1) single-
particle system subject to the quantum-mechanical potential VD(r) is given by the Schrödinger
equation (

−1
2
~∇2

D + VD(r)
)

Ψ(r) = EΨ(r), (3)

where ~∇D denotes the D-dimensional gradient operator, and the position vector r =
(x1, . . . , xD) = (r, θ1, θ2, . . . , θD−1) in Cartesian and hyperspherical units, respectively.

Moreover, r ≡ |r| =
√

∑D
i=1 x2

i ∈ [0, +∞) and xi = r
(

∏i−1
k=1 sin θk

)
cos θi for 1 ≤ i ≤ D and

with θi ∈ [0, π), i < D− 1, θD−1 ≡ φ ∈ [0, 2π). Atomic units (i.e., h̄ = me = e = 1) are used
throughout the paper.

In this section, we give the wavefunctions (i.e., the eigenfunctions Ψ and the energetic
eigenvalue E) and the associated probability densities for the bound stationary states of the
D-dimensional isotropic harmonic oscillator and hydrogenic systems in both position and
momentum spaces.

2.1. The D-Dimensional Oscillator Eigenvalue Problem

This problem corresponds to an isotropic harmonic oscillator [85] described by the
potential V(O)

D (r) = 1
2 ω2r2, where ω is the oscillator strength. In Cartesian units, the

wavefunctions are described (see, e.g., [58]) by the Cartesian quantum numbers {ni} ≡
(n1, n2, ..., nD), since the energetic eigenvalues

E(O)
{ni}

=

(
N +

D
2

)
ω, with N =

D

∑
i=1

ni ; ni = 0, 1, 2, . . . (4)

and the associated eigenfunctions

Ψ(O)
{ni}

(r) = N e−
1
2 α′(x2

1+...+x2
D)Hn1(

√
α′ x1) · · ·HnD (

√
α′ xD), (5)

where α′ = ω
1
4 , Hni (x) denotes the Hermite polynomial of degree ni orthogonal [55–57])

with respect the weight function ω(x) = e−x2
in (−∞, ∞), and N denotes the normaliza-

tion constant

N =
1√

2Nn1!n2! · · · nD!

(
α′

π

)D/4

.

The probability density of the D-dimensional isotropic harmonic oscillator is given by the
modulus squared of the corresponding eigenfunctions, obtaining the expressions

ρ
(O)
{ni}

(r) = |ψ{ni}(r)|
2 = N 2 e−α′(x2

1+x2
2+...+x2

D)H2
n1
(
√

α′ x1) · · ·H2
nD

(
√

α′ xD), (6)
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in position space. Working similarly in momentum space, one has

γ
(O)
{ni}

(p) = Ñ 2e−
1
α′ (p2

1+p2
2+...+p2

D)H2
n1

(
p1√
α′

)
· · ·H2

nD

(
pD√

α′

)
= α′−DρN

( p
α′

)
(7)

with the normalization constant

Ñ =
1√

2Nn1!n2! · · · nD!

(
1

πα′

)D/4
.

In hyperspherical units, the oscillator wavefunctions (E(O)
n,l , Ψ(O)

nr ,l,{µ}(r)) are equivalently
described [85] by the D hyperquantum integer numbers (nr, l, {µ}) ≡ (nr, µ1, µ2, . . . , µD−1)
with the values nr = 0, 1, 2, . . . , l = 0, 1, 2, . . . , and l ≥ µ1 ≥ µ2 ≥ . . . ≥ |µD−1| ≡ |m|, so
that the energies

E(O)
n,l = (η +

3
2
)ω =

(
2nr + l +

D
2

)
ω, with η = n +

D− 3
2

, n = 2nr + l (8)

and the associated position eigenfunctions

Ψ(O)
nr ,l,{µ}(r) =

[
2nr! ωl+ D

2

Γ(nr + l + D
2 )

] 1
2

rle−
ω r2

2 L(l+D/2−1)
nr (ω r2) ×Yl,{µ}(ΩD), (9)

where the angular part is given by the hyperspherical harmonics [85–87]

Yl,{µ}(Ω) =
1√
2π

eimθD−1
D−2

∏
j=1

C̃
(αj+µj+1)
µj−µj+1

(cos θj)
(
sin θj

)µj+1 , (10)

with 2αj = D− j− 1. The symbol C̃(λ)
n (x), λ > − 1

2 , denotes the Gegenbauer polynomial

orthonormal [55,57]) with respect to the weight function ω′λ(x) =
(
1− x2)λ− 1

2 , so that
it fulfills ∫ 1

−1
C̃(λ)

n (x)C̃(λ)
m (x)ωλ(x)dx = δmn, (11)

Note that the radial part is controlled by the Laguerre polynomials L(α)n (x)
orthogonal [55–57] with respect to the weight function ωα(x) = xαe−x, α = l + D

2 − 1,
on the interval [0, ∞). Then, the position probability density of the D-dimensional isotropic
harmonic oscillator in hyperspherical units is given by

ρ
(O)
nr ,l,{µ}(r) =

2nr! ωl+ D
2

Γ(nr + l + D
2 )

r2le−ω r2
[
L(l+D/2−1)

nr (ω r2)
]2
× |Yl,{µ}(ΩD−1)|2

≡ ρ
(O)
nr ,l (r)× ρl,{µ}(ΩD−1) (12)

where r̃ = ω r2. Moreover, since the momentum wavefunctions Ψ̂nr ,l,{µ}(p) are the Fourier
transform of the position ones Ψnr ,l,{µ}(r), we have that the following expressions

Ψ̂(O)
nr ,l,{µ}(p) =

[
2nr! ω−l− D

2

Γ(nr + l + D
2 )

] 1
2

ple−
p2
2ωL(l+D/2−1)

nr

(
p2

ω

)
×Yl,{µ}(ΩD−1), (13)
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and

γ
(O)
nr ,l,{µ}(p) =

2n! ω−l− D
2

Γ(n + l + D
2 )

p2le−
p2
ω

[
L(l+D/2−1)

n

(
p2

ω

)]2

× |Yl,{µ}(ΩD−1)|2

=
1

ωD ρ
(O)
nr ,l,{µ}

( p
ω

)
, (14)

give the momentum wavefunctions and the associated probability densities of the D-
dimensional isotropic harmonic oscillator in hyperspherical units, respectively.

Finally, note that the wavefunctions are normalized to unity so that
∫ ∣∣∣Ψ(O)

nr ,l,{µ}(r)
∣∣∣2dr =∫ ∣∣∣Ψ(O)

nr ,l,{µ}(p)
∣∣∣2dp = 1, where the D-dimensional volume element is dr = rD−1dr dΩD−1

and dp = rD−1dr dΩD−1, respectively, with the generalized solid angle element

dΩD−1 =

(
D−2

∏
j=1

(sin θj)
2αj dθj

)
dθD−1,

and we have also used the normalization of the hyperspherical harmonics given by∫
|Yl,{µ}(ΩD−1)|2dΩD−1 = 1.

2.2. The D-Dimensional Hydrogenic Eigenvalue Problem

This problem corresponds to a particle moving under a D-dimensional (D > 1)
central potential of the Coulomb form V (H)

D (r) = − Z
r , where Z is the nuclear charge. In

hyperspherical units, the wavefunctions of the stationary bound hydrogenic states are
known [85] to be described by the hyperquantum numbers (n, l, {µ}). This is because the
energetic eigenvalues E(H)

η = − Z2

η2 (with the grand quantum number η = n + D−3
2 , and

n = 1, 2, . . .) and the associated eigenfunctions are given by

Ψ(H)
n,l,{µ}(r) = R

(H)
n,l (r)×Yl,{µ}(ΩD−1), (15)

where the radial part is given as

R(H)
n,l (r) =

(
λ′−D

2η

) 1
2
[

ω2L+1(r̃)
r̃D−2

] 1
2
L̃(2L+1)

η−L−1(r̃) (16)

where the grand orbital angular momentum quantum number L = l + D−3
2 , 2L + 1 =

2l + D− 2, the parameter λ′ = η
2Z , and r̃ = r

λ′ . The symbols L(α)m (x) and L̃(α)m (x) denote
the orthogonal and orthonormal Laguerre polynomials with respect to the weight ωα(x) =
xαe−x on the interval [0, ∞), respectively, so that

L̃(α)m (x) =
[

m!
Γ(m + α + 1)

] 1
2
L(α)m (x). (17)

Then, the associated probability density is given by

ρ
(H)
n,l,{µ}(r) =

λ′−D

2η

ω2L+1(r̃)
r̃D−2 [L̃(2L+1)

η−L−1(r̃)]
2 × |Yl,{µ}(ΩD−1)|2

≡ ρ
(H)
n,l (r)× ρl,{µ}(ΩD−1) (18)

in position space, where the hyperquantum numbers (n, l, {µ}) = (n, l ≡ µ1, . . . , µD−1)
corresponding to the polar hyperspherical coordinates r = (r, θ1, θ2, . . . , θD−1), have the
values {l = 0, 1, 2, . . . , n− 1; l ≥ µ2 ≥ . . . ≥ µD−1 ≡ |m| ≥ 0}.

Working similarly in momentum space, one has the following expression [85,88]
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γ
(H)
n,l,{µ}(p) =

( η

Z

)D
(1 + y)3

(
1 + y
1− y

) D−2
2

ω∗L+1(y)[C̃
(L+1)
η−L−1(y)]

2 × [Yl,{µ}(ΩD−1)]
2

= K2
n,l

(η p̃)2l

(1 + η2 p̃2)2L+4

[
C(L+1)

η−L−1

(
1− η2 p̃2

1 + η2 p̃2

)]2

|Yl,{µ}(ΩD−1)|2 (19)

≡ γ
(H)
n,l (r)× ρl,{µ}(ΩD−1)

for the probability density of these systems in the D-dimensional momentum space with

the notation p̃ = p
Z , the variable y ≡ 1−η2 p̃2

1+η2 p̃2 , the constant

Kn,l = Z−
D
2 22L+3

[
(η − L− 1)!
2π(η + L)!

] 1
2
Γ(L + 1)η

D+1
2 . (20)

and the symbol C(λ)
n (x), λ > − 1

2 denotes the Gegenbauer polynomial orthogonal [57] with

respect to the weight function ω′λ(x) =
(
1− x2)λ− 1

2 .

3. Rényi Entropies of General and Central-Potential Quantum Systems: Lower and
Upper Bounds

In this section, we first describe the lower and upper bounds [48,89] on the Rényi
entropies (1) and (2) of general multidimensional quantum systems in position and momen-
tum spaces, and the corresponding entropic uncertainty relations [17,20,21,90,91]. Then,
we show the improvement of these properties for central potentials, and we point out some
open problems [89,92,93].

The most relevant property of the Rényi entropies (1) and (2) of general D-dimensional
quantum systems is the entropic uncertainty relation

Rq[ρ{ni}] + Rq∗ [γ{ni}] ≥ D ln
(

πq
1

2q−2 q∗
1

2q∗−2

)
(21)

which is saturated by the Gaussian distributions. This relation was proved by Zozor, Portesi
and Vignat [21] for arbitrary indices, extending the one-dimensional relation previously
found by Bialynicki-Birula [20] and Zozor and Vignat [90] for conjugated indices (i.e., when
1
q +

1
q∗ = 2); see [17,91] for further details. See [94,95] for other related inequality relations.
Moreover, the Rényi entropies fulfill the monotonicity relations given by

Rp[ρ] ≥ Rq[ρ], if p ≤ q; and
p− 1

p
Rp[ρ] ≥

q− 1
q

Rq[ρ], if p ≥ q > 1, (22)

which, among many other consequences [30,48], allows one to lowerbound all the Rényi
entropies by means of the second-order entropy as Rq[ρ] ≥ 1

2 R2[ρ], for q > 0. See [96] for
further related inequalities. In addition, the position Rényi entropies (1) can be upper-
bounded [93] in terms of the Heisnberg measure 〈r2〉 as

Rq[ρ] ≤ BD(q) +
D
2

ln
(
〈r2〉
D

)
, (23)

with
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BD(q) =



D
2 ln

(
π((2+D)q−D)

q−1

)
+ 1

q−1 ln
(
(2+D)q−D

2q

)
+ ln

(
Γ
(

q
q−1

)
Γ
(
(2+D)q−D

2(q−1)

)
)

if q > 1,

D
2 ln

(
π((2+D)q−D)

1−q

)
− q

1−q ln
(
(2+D)q−D

2q

)
− ln

(
Γ
(

q
1−q

)
Γ
(
(2+D)q−D

2(1−q)

)
)

if q ∈
(

D
D+2 , 1

)
,

(24)

A similar upper bound can be obtained for the momentum Rényi entropies (2), as given by

Rq∗ [γ] ≤ BD(q∗) +
D
2

ln
(
〈p2〉

D

)
, (25)

The combination of the upper bounds (23) and (25) gives rise to the following inequal-
ity between the position–momentum Rényi-entropy sum and the position–momentum
Heisenberg uncertainty

〈
r2〉〈p2〉:

Rq[ρ] + Rq∗ [γ] ≤ BD(q) + BD(q∗)− D ln D +
D
2

(〈
r2
〉〈

p2
〉)

, (26)

which extends the corresponding three-dimensional result [89] to D dimensions, em-
phasizes the uncertainty character of the position–momentum Rényi-entropy sum, and
complements the entropic uncertainty relation (21).

The expression (23) has been variationally extended [97,98] in both conjugated spaces
by using the Heisenberg measures 〈rk〉 and 〈pk〉, respectively, with integer k < D

q (q− 1).
The resulting general expressions generalize (see also [99]) previous bounds obtained in
the one-dimensional [100,101] and three-dimensional [102] cases used in various contexts,
ranging from financial and quantum technologies.

Let us now consider the improvement of all these previous properties for quantum sys-
tems subject to a central potential, whose Schrödinger equation is given by Equation (3). In
this case, the position and momentum probability densities of the D-dimensional stationary
state (n, l, {µ}) are given by the modulus squared of the two corresponding eigenfunc-
tions as

ρn,l,{µ}(r) =
∣∣∣Ψn,l,{µ}(r)

∣∣∣2 = |Rnl(r)|2 × |Yl,{µ}(ΩD−1)|2 (27)

= r1D |unl(r)|2 × |Yl,{µ}(ΩD−1)|2 (28)

in position space, and

γn,l,{µ}(p) =
∣∣∣Ψ̃n,l,{µ}(p)

∣∣∣2 = |Mn,l(p)|2 ×
∣∣∣Yl,{µ}(Ω̂D−1)

∣∣∣2 (29)

= p1D |ũnl(p)|2 × |Yl,{µ}(ΩD−1)|2 (30)

in momentum space, where the reduced radial momentum eigenfunction

ũnl(p) = (−i)l
∫ ∞

0

√
r p Jl+D/2−1(r p) u(r)dr, (31)

is the Hankel transform of the reduced radial position eigenfunction unl(r).
To improve the upper bounds (23) and (25) for central potentials in terms of the

expectation values
〈
r2〉 and

〈
p2〉, respectively, we use the Rényi maximization procedure

of Costa et al. [103] to find [93] the following sharp inequality:

Rq[ρ] ≤ BD(q) +
D
2

ln
(
〈r2〉
D

)
+ L(ΩD−1), (32)
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where the central-potential effects are contained in the quantity L(ΩD−1), which represents
the loss of entropy due to the angular part of the state’s wavefunction, is given by

L(ΩD−1) =
1
2

D−2

∑
k=1

(
(D− k) ln〈sin2 θk〉+ ln〈cos2 θk〉

)
− ln 2 +

D
2

ln D, (33)

and

〈cos2 θk〉 =
2µk(µk + D− k− 1)− 2µk+1(µk+1 + D− k− 2) + D− k− 3

4µk(µk + D− k− 1) + (D− k + 1)(D− k− 3)
. (34)

and, of course, 〈sin2 θk〉 = 1− 〈cos2 θk〉. The similar upper bound on the momentum Rényi
entropy of central potentials is found to be

Rq∗ [γ] ≤ BD(q∗) +
D
2

ln
(
〈p2〉

D

)
+ L(ΩD−1) (35)

Thus, the position–momentum Rényi entropy sum and the position–momentum Heisen-
berg uncertainty

〈
r2〉〈p2〉 are related as

Rq[ρ] + Rq∗ [γ] ≤ BD(q) + BD(q∗)− D ln D +
D
2

(〈
r2
〉〈

p2
〉)

+ 2L(ΩD−1) (36)

for central potentials with dimensionality D ≥ 3, which considerably improves the previous
inequality (26) valid for general quantum systems.

Finally, let us mention that the improvement of the general entropic uncertainty
relation (21) for central potentials is an open problem yet. However, an heuristic method [92]
has recently allowed us to find the following uncertainty relation

Rq[ρn,l,{µ}] + Rq∗[γn,l,{µ}] ≥
2q ln A(2q)

q− 1
+

2q∗ ln A(2q∗)
q∗ − 1

+ Rq[Yl,{µ}] + Rq∗[Yl,{µ}], (37)

where the constant

A(q) = 2
2D
2q

q
1
2

(
1
2+l+ D

2 −1+ D−1
2

2−q
q + 1

q

)

Γ
((

l + D
2 − 1 + D−1

2
2−q

q + 1
2

)
q
2 + 1

2

) 1
q

,

and the angular Rényi entropies are given by

Rq[Yl,{µ}] :=
1

1− q
ln Λq[Yl,{µ}] (38)

with the integral functionals of the hyperspherical harmonics [77]

Λq[Yl,{µ}] =
∫
SD−1

|Yl,{µ}(ΩD−1)|2q dΩD−1

= 2πN 2q
l,{µ}

D−2

∏
j=1

∫ π

0
[C

(αj+µj+1)
µj−µj+1

(cos θj)]
2q(sin θj)

2qµj+1+2αj dθj, (39)

and the normalization constant Nl,{µ} is given by

N 2
l,{µ} =

1
2π

D−2

∏
j=1

(αj + µj)(µj − µj+1)![Γ(αj + µj+1)]
2

π 21−2αj−2µj+1 Γ(2αj + µj + µj+1)
. (40)

This heuristic uncertainty relation (37) is not valid for all central potentials [92]. How-
ever, it has been numerically shown to be fulfilled by various large classes of qualitatively
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different central potentials such as, e.g., the oscillator and hydrogenic-like potentials. Note
that, according Equations (10) and (59)–(40), the hyperspherical harmonics Yl,{µ}(ΩD−1)
and consequently the angular Rényi entropies Rq[Yl,{µ}] do not depend on the principal
hyperquantum number n, but they do depend on the angular hyperquantum numbers
(l, {µ}) and the dimensionality D. Moreover, the integral functionals involved in (39)
are the Rényi-like functionals of the Gegenbauer polynomials, which are under control
since they can be analytically calculated by two recent methodologies: one based on the
Srivastava’s linearization method [60,61] and another one based on the combinatorial Bell
polynomials [104].

4. The Rényi Entropies of Multidimensional Harmonic Systems

In this section, we examine the position and momentum Rényi entropies, Rq[ρ
(O)
nr ,l,{µ}]

and Rq[γ
(O)
nr ,l,{µ}], respectively, for any D-dimensional harmonic state. Then, the correspond-

ing position–momentum entropic uncertainty sums are explicitly shown, which allows
for a quantitative discussion of quantum uncertainty much richer than the conventional
Heisenberg-like uncertainty [20,21] and its extension [105]. We first realize that these
quantities cannot be explicitly expressed by hyperspherical quantum numbers (nr, l, {µ}),
basically because they naturally depend on some power-like integral functionals of the
Laguerre and Gegenbauer orthogonal polynomials whose analytical evaluation is not
yet known (see, e.g., [85,106]). This is because the position Rényi entropies for an arbi-
trary D-dimensional oscillator-like state, which is characterized by the probability density
ρ
(O)
nr ,l,{µ}(r), can be expressed according to Equations (1) and (12) as

Rq[ρ
(O)
nr ,l,{µ}] =

1
1− q

log
∫
RD

[ρ
(O)
nr ,l,{µ}(r)]

q dr (41)

= Rq[ρ
(O)
nr ,l ] + Rq[ρ

(O)
l,{µ}], (42)

where the symbols Rq[ρ
(O)
nr ,l ] and Rq[ρ

(O)
l,{µ}] denote the radial and angular Rényi entropies

for the D-dimensional harmonic state, respectively. The angular quantities R(O)
q [ρl,{µ}] =

Rq[Yl,{µ}] are given by the above-mentioned expressions (38)–(40), which do not depend on
the principal hyperquantum number nr, but they do depend on the hyperangular numbers
(l, {µ}) and the dimensionality D. In addition, the radial quantities are given [76] by

Rq[ρ
(O)
nr ,l ] =

1
1− q

log
∞∫

0

[ρ
(O)
nr ,l (r)]

p rD−1dr

=
1

1− q
log N(nr, l, D, q)− D

2
log ω− log 2 (43)

where the the weighted Lq-norm N(nr, l, D, q) for the orthogonal and orthonormal Laguerre
polynomials are given by

N(nr, l, D, q) =

(
nr!

Γ(α + nr + 1)

)q ∫ ∞

0
rα+lq−le−qr

[
L(α)nr (r)

]2q
dr

=

∞∫
0

([
L̃(α)nr (x)

]2
wα(x)

)q
xβ dx , q > 0 (44)

respectively, with α = l + D
2 − 1 l = 0, 1, 2, . . . , q > 0 and β = (1− q)(α − l) = (q −

1)(1D/2); these values guarantee the convergence of the integral functional because the
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condition β + qα = D
2 + lq− 1 > −1 is always satisfied for physically meaningful values

of the parameters. Similarly, from Equation (14), one has

Rq[γ
(O)
nr ,l,{µ}] = Rq[ρ

(O)
nr ,l,{µ}] + D log ω (45)

for the momentum Rényi entropies Rq[γ
(O)
nr ,l,{µ}] of any D-dimensional harmonic state.

Thus, from expressions (59)–(45), we realize that, in hyperspherical coordinates, the
Rényi entropies of the D-dimensional harmonic systems are controlled by some power-like
integral functionals of the Gegenbauer and Laguerre polynomials as given by Equations (39)
and (44), respectively, which have not yet been explicitly determined. Nevertheless, they
can be analytically found in an algorithmic way by means of some generalized multivariate
hypergeometric functions of a Srivastava–Karlsson type [60,61,107] or the multivariable
Bell polynomials used in Combinatorics [104]; see also [108,109]. This has been recently
illustrated in detail for the second-order Rényi entropies (thus the disequilibrium) of the
D-dimensional harmonic systems [70].

The resulting algorithmic expressions are somewhat highbrow for the highly excited
Rydberg states because of the large values of their principal hyperquantum numbers. For
such extreme states, a powerful method based on the strong asymptotics of Laguerre
polynomials [65,110] is much more convenient because it gives simple, transparent, and
compact analytical expressions for the Rényi entropies of the D-dimensional harmonic
systems. This is shown below in Section 6.1.

Alternatively, we can calculate in Cartesian units [58] the oscillator Rényi entropies
Rq[ρ

(O)
{ni}

], q 6= 1, for a generic state characterized by the Cartesian quantum numbers
{ni} ≡ (n1, n2, ..., nD). This quantity, according to Equations (1) and (6), is given by

Rq[ρ
(O)
{ni}

] =
1

1− q
log

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxD [ρ

(O)
{ni}

](r)]q

=
1

1− q
log

(
N 2q

[
ΠD

i=1

∫ ∞

−∞
e−α′qx2

i

∣∣∣Hni (
√

α′ xi)
∣∣∣2q

dxi

])
(46)

Now, to solve these integral functionals, we use the Srivastava-like linearization
relation for the (2q)-th power of the Hermite polynomials [60], obtaining the following
expression for the Rényi entropy of order q for the oscillator-like state

Rq[ρ
(O)
{ni}

] = −D
2

log
[
α′
]
+Kq D +Kq NO +

q
q− 1

D

∑
i=1

(−1)ni log

[(
ni + 1

2

)
1
2

]

+
1

1− q

D

∑
i=1

log
[
Fq(ni)

]
, (47)

where (z)a =
Γ(z+a)

Γ(z) is the known Pochhammer’s symbol,

Kq =
log[πq− 1

2 q
1
2 ]

q− 1
; Kq =

1
1− q

log

4q Γ
(

1
2 + q

)
π

1
2 qq

, (48)

the symbol Fq(ni) denotes the following multivariate Lauricella function of type A [107]:

Fq(n) =

n−ν
2

∑
j1,...,j2q=0

(
qν + 1

2

)
j1+...j2q

( ν−n
2 )j1 · · · (

ν−n
2 )j2q

(ν + 1
2 )j1 · · · (ν + 1

2 )j2q

(
1
q

)j1 · · ·
(

1
q

)j2q

j1! · · · j2q!
, (49)
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and the notation NO = ∑D
i=1 νi is used for the amount of odd numbers ni, so that NE =

D− NO gives the number of the even ones.
Note that the general expression (47) allows for the analytical determination of the

Rényi entropies (with positive integer values of q) of a generic D-dimensional oscillator-like
state. In particular, for the ground state (i.e., ni = 0, i = 1, · · · , D, so N = 0), this general
expression gives rise to the value

Rq[ρ
(O)
{0} ] =

D
2

log

π q
1

q−1

α′

, q > 0, (50)

as one can also obtain directly from Equation (46).
Moreover, since the position and momentum densities are mutually rescaled, we have

the following expression

Rq̃[γ
(O)
{ni}

] =
D
2

log
[
α′
]
+Kq̃ D +Kq̃ NO +

q̃
q̃− 1

D

∑
i=1

(−1)ni log

[(
ni + 1

2

)
1
2

]

+
1

1− q̃

D

∑
i=1

log
[
Fq̃(ni)

]
, (51)

for the associated momentum Rényi entropy (q̃ ∈ N). Although Equations (47) and (51)
rigorously hold for q 6= 1 and q ∈ N only, it is reasonable to conjecture its general validity
for any q > 0 and q 6= 1.

Then, from Equations (47) and (51), we have that the general expression for the
position–momentum Rényi entropic sum is

Rq[ρ
(O)
{ni}

] + Rq̃[γ
(O)
{ni}

] = (Kq +Kq̃) D + (Kq +Kq̃) NO

+

(
q

q− 1
+

q̃
q̃− 1

) D

∑
i=1

(−1)ni log

[(
ni + 1

2

)
1
2

]

+
1

1− q

D

∑
i=1

log
[
Fq(ni)

]
+

1
1− q̃

D

∑
i=1

log
[
Fq̃(ni)

]
, (52)

which verifies the Rényi-entropy-based uncertainty relation of Zozor–Portesi–Vignat [21]
when 1

q +
1
q̃ ≥ 2 for arbitrary quantum systems. In the conjugated case, q̃ = q∗ such that

1
q +

1
q∗ = 2, and one obtains

Rq[ρ
(O)
{ni}

] + Rq∗ [γ
(O)
{ni}

] = D log
(

πq
1

2q−2 q∗
1

2q∗−2

)
+ (Kq +Kq∗) NO

+
1

1− q

D

∑
i=1

log
[
Fq(ni)

]
+

1
1− q∗

D

∑
i=1

log
[
Fq∗(ni)

]
. (53)

We highlight that the first term of the right side of this relation is the sharp bound of
the general uncertainty relation (21) valid for stationary states of arbitrary quantum
systems [20,21]. In addition, the positivity for the sum of the remaining three terms
can be shown, as expected.

5. The Rényi Entropies of Multidimensional Hydrogenic Systems

In this section, we show the analytical expressions for both position and momentum
Rényi entropies Rq[ρ

(H)
n,l,{µ}], Rq[γ

(H)
n,l,{µ}] (with natural p other than unity) for all discrete sta-

tionary states of the D-dimensional hydrogenic system in an algorithmic way. They are are
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expressed by means of some multiparametric hypergeometric functions of Lauricella and
Srivastava–Daoust types [60,61,107]. We start with Equations (1), (18) and (19) obtaining

Rq[ρ
(H)
n,l,{µ}] =

1
1− q

log
∫
RD

[ρ
(H)
n,l,{µ}(r)]

q dr (54)

= Rq[ρ
(H)
n,l ] + Rq[Yl,{µ}] (55)

in position space and

Rq[γ
(H)
n,l,{µ}] =

1
1− q

log
∫
RD

[γ
(H)
n,l,{µ}(p)]

q dp (56)

= Rq[γ
(H)
n,l ] + Rq[Yl,{µ}] (57)

in momentum space, where the angular Rényi entropies Rq[Yl,{µ}] are given by the expres-

sions (38)–(40), and the radial Rényi entropies Rq[ρ
(H)
n,l ] and Rq[γ

(H)
n,l ] are given as

Rq[ρ
(H)
n,l ] =

1
1− q

ln
∫ ∞

0
[ρ

(H)
n,l ]qrD−1 dr (58)

and
Rq[γ

(H)
n,l ] =

1
1− q

ln
∫ ∞

0
[γ

(H)
n,l ]q pD−1 dp (59)

for the D-dimensional hydrogenic state in the two conjugated spaces, respectively.
Let us now determine the position radial entropy Rq[ρ

(H)
n,l ] given by Equations (58)

and (18), which is

Rq[ρ
(H)
n,l ] =

1
1− q

ln
[( η

2Z

)D(1−q)
(

Γ(n− l)
2ηΓ(n + l + D− 2)

)q]
+

1
1− q

ln q−D−2lq
∫ ∞

0
x2lq+D−1e−x

[
L(2l+D−2)

n−l−1

(
x
q

)]2q
dx, (60)

Then, we use the linearization formula [59,60] of the (2q)th-power of the Laguerre polyno-
mial L(2l+D−2)

n−l−1

(
x
q

)
obtaining after some algebraic manipulations the expression

Rq[ρ
(H)
n,l ] = D ln

( η

2Z

)
+

q
1− q

ln
(
(η − L)2L+1

2η

)
+

1
1− q

lnFq(D, η, L) +
1

1− q
lnAq(D, L) (61)

with Aq(D, L) ≡ Γ(D+2lq)
qD+2lqΓ(2L+2)2q , and

Fq(D, n, l) ≡ F(2q)
A


2lq + D;

2q︷ ︸︸ ︷
−n + l + 1, . . . ,−n + l + 1

;
1
q

, . . . ,
1
q︸ ︷︷ ︸

2q2l + D− 1, . . . , 2l + D− 1︸ ︷︷ ︸
2q


, (62)
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where the symbol F(s)
A (x1, . . . , xr) denotes the Lauricella function of type A of s variables

and 2s + 1 parameters defined [107] as

F(s)
A

 a; b1, . . . , bs
; x1, . . . , xs

c1, . . . , cs

 =
∞

∑
j1,...,js=0

(a)j1+...+js(b1)j1 · · · (bs)js
(c1)j1 · · · (cs)js

xj1
1 · · · x

js
s

j1! · · · js!
. (63)

Let us emphasize that the function Fq(D, n, l) is a finite sum because of the properties of the
involved Pochhammer symbols with negative integer arguments. Moreover, for l = n− 1,
the function Fq(D, n, l) in Equation (61) is equal to unity, so that the third term on the right
side vanishes. Then, for the ground state n = 1, we have the simple values

Rq[ρ
(H)
1,0 ] = Γ(D) + D ln

 D− 1

4Z q
1

1−q


Working similarly with Equations (59), (19), and (20), we can also determine the

momentum radial entropy which has the expression

Rq[γ
(H)
n,l ] =

1
1− q

ln

ZD

ηD

K2q
n,l

2q(L+2)


+

1
1− q

ln
∫ 1

−1
(1− y)lq+ D

2 −1(1 + y)D(q− 1
2 )+q(l+1)−1C(L+1)

n−l−1(y)
2q dy (64)

Then, we use the linearization formula for the (2q)th-power of the Gegenbauer polynomial
C(L+1)

n−l−1(y), which is a particular case of the corresponding formula for Jacobi polynomi-
als [59,60], obtaining the following expression

Rq[γ
(H)
n,l ] = D ln

Z
η
+

q
1− q

ln[2η (η − L)2L+1]

+
1

1− q
lnF q(D, η, L) +

1
1− q

lnAq(D, L) (65)

where

Aq(D, L) ≡ 22q−1
Γ
(

D
2 + ql

)
Γ
(
−D

2 + q(D + l + 1)
)

Γ
(

D
2 + l

)2q
Γ(q(D + 2l + 1))

(66)

and the symbol F q(D, η, L) denotes the following multivariate Srivastava–Daoust func-
tion [60,61]

F q(D, η, L) ≡ F1:2;...;2
1:1;...;1

 a : b, c; . . . ; b, c
; 1, . . . , 1

d : e; . . . ; e


=

n−l−1

∑
i1,...,i2q=0

(a)i1+...i2q

(d)i1+...+i2q

(b)i1(c)i1 · · · (b)i2q(c)i2q

(e)i1 · · · (e)i2q i1! · · · i2q!
(67)
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with a = (L + 3
2 )q +

D
2 (1− q), b = −(η − L− 1), c = η + L + 1, d = q(2L + 4), e = L + 3

2 .
Note that, when l = n− 1 the function Fq(D, η, L) = 1. In particular, for the ground state
n = 1, we have that the radial Rényi entropy has the value

Rq[γ
(H)
1,0 ] = D ln

[
2Z

D− 1

]
+

q
1− q

ln[4 Γ(D)]

+
1

1− q
ln

Γ
(

D
2

)1−2q
Γ
(

D(q− 1
2 ) + q

)
2Γ(Dq + q)


Finally, taking into account the expressions (55) and (57), it only remains to determine the
expression of the angular Rényi entropies Rq[Yl,{µ}] defined by Equations (38)–(40). The
latter quantities can be algebraically calculated as before, obtaining the following analytical
expression for the angular Rényi entropy

Rq[Yl,{µ}] = ln(2π
D
2 ) +

1
1− q

ln

 Γ(l + D
2 )

q

Γ
(

ql + D
2

) Γ(qm + 1)
Γ(m + 1)q


+

1
1− q

D−2

∑
j=1

ln
[
Bq(D, µj, µj+1) Gq

(
D, µj, µj+1

)]
(68)

where

Bq
(

D, µj, µj+1
)
=

1
[(µj − µj+1)!]q

(2αj + 2µj+1 + 1)q
2(µj−µj+1)

(2αj + µj + µj+1)
q
µj−µj+1

(qµj+1 + αj + 1)q(µj−µj+1)

(αj + µj+1 + 1)q
µj−µj+1

(69)

and

Gq(D, µj, µj+1) = F1:2;...;2
1:1;...;1

 aj : bj, cj; . . . ; bj, cj
; 1, . . . , 1

dj : ej; . . . ; ej


=

µj−µj+1

∑
i1,...,i2q=0

(aj)i1+...i2q

(dj)i1+...+i2q

(bj)i1(cj)i1 · · · (bj)i2q(cj)i2q

(ej)i1 · · · (ej)i2q i1! · · · i2q!
(70)

with aj = αj + qµj+1 +
1
2 , bj = −µj + µj+1, cj = 2αj + µj+1 + µj, dj = 2qµj+1 + 2αj + 1

and ej = αj + µj+1 +
1
2 . Note that the sum becomes finite because bj is a negative integer

number, and so (bj)i =
Γ(bj+i)

Γ(bj)
= 0, ∀i > |bj|. Let us also highlight that, when µj = µj+1,

the function Bq(D, µj, µj+1) = Gq(D, µj, µj+1) = 1. Moreover, for the particular states with
l = µ1 = µ2 . . . = µD−1 = 0, we have the following value

Rq[Y0,{0}] = ln

 2 π
D
2

Γ
(

D
2

)


In conclusion, from Equations (54), (61), and (65), and Equations (56), (65), and (68),
we obtain the following expressions for the total Rényi entropies of the D-dimensional
hydrogenic system in terms of the hyperquantum numbers, the nuclear charge, and the
space dimensionality:
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Rq[ρ
(H)
n,l,{µ}] = D ln

(
π

1
2 η

2Z

)
+

q
1− q

ln
(
(η − L)2L+1

2η

)

+
1

1− q
lnFq(D, η, L)Aq(D, L) +

1
1− q

ln

 Γ(l + D
2 )

q

Γ
(

ql + D
2

) Γ(qm + 1)
Γ(m + 1)q


+

1
1− q

D−2

∑
j=1

ln
[
Bq(D, µj, µj+1) Gq

(
D, µj, µj+1

)]
+ ln 2 (71)

in position space, and

Rq[γ
(H)
n,l,{µ}] = D ln

(
π

1
2 Z
η

)
+

q
1− q

ln[2η (η − L)2L+1]

+
1

1− q
ln

F q(D, η, L)Aq(D, L)
Γ(l + D

2 )
q

Γ
(

ql + D
2

) Γ(qm + 1)
Γ(m + 1)q


+

1
1− q

D−2

∑
j=1

ln
[
Bq(D, µj, µj+1) Gq

(
D, µj, µj+1

)]
+ ln 2 (72)

in momentum space, respectively. For numerical details and applications to some particular
D-dimensional hydrogenic states, we refer to [59], where it is also shown that the multidi-
mensional hydrogenic position–momentum Rényi entropy sum, Rq[ρ

(H)
n,l,{µ}] + Rq∗ [γ

(H)
n,l,{µ}],

fulfills the general Rényi-entropy uncertainty relation (21) [20,21].

6. Rényi Entropies of Rydberg Oscillator and Hydrogenic States

The general expressions for the position and momentum Rényi entropies of arbitrary
stationary states of multidimensional oscillator and hydrogenic systems are somewhat
highbrow and computationally demanding as described in the two previous sections be-
cause they require the evaluation of non-trivial multivariate generalized hypergeometric
functions. This is especially true for the highly-excited Rydberg states, since then the
principal hyperquantum number is very large and the corresponding Rényi integral ker-
nels are highly oscillatory. These extreme states play a very relevant role in the modern
quantum technologies, partially due to the fact that then the system is metastable with
large lifetimes and only weakly bound. For example, they are atrractive candidates for
quantum simulators and quantum sensors of electromagnetic fields in the microwave and
teraherz regions.

In this section, we use some powerful methods based on the strong (degree)-asymptotics
of Laguerre and Gegenbauer polynomials to determine the Rényi entropies of Rydberg
oscillator and hydrogenic systems. These methods are very useful because they do not
require to work with any multivariate hypergeometric function, and they allow for ob-
taining simple and compact expressions for the Rényi entropies, where the physics can be
transparently read, at least at first order, in terms of the principal hyperquantum number.

6.1. Rényi Entropies of Rydberg Oscillator States

Taking into account the expressions (42) and (43), the Rényi entropies for the stationary
D-dimensional oscillator-like state, which are characterized by the hyperspherical quantum
numbers (nr, l, {µ}) ≡ (nr, µ1, µ2, . . . , µD−1), have the values

Rq[ρ
(O)
nr ,l,{µ}] =

1
1− q

log N(nr, l, D, q) + Rq[Yl,{µ}]−
D
2

log ω− log 2 (73)
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where the symbol N(nr, l, D, q) denotes the radial Rényi-like functional of Laguerre poly-
nomials given by Equation (44). To estimate this expression for Rydberg states, we have to
determine the asymptotical value N∞(nr, l, D, q) of the Laguerre functional N(nr, l, D, q) in
the limit nr → ∞. Then, we have that the Rényi entropies R(Ry)

q [ρ
(O)
nr ,l,{µ}] of the Rydberg-like

D-dimensional harmonic states are given by

R(Ry)
q [ρ

(O)
nr ,l,{µ}] +

D
2

log ω ' 1
1− q

log N∞(nr, l, D, q) + Rq[Yl,{µ}], (74)

with

N∞(nr, l, D, q) = lim
nr→∞

∞∫
0

([
L̃(l+

D
2 −1)

nr (x)
]2

wl+ D
2 −1(x)

)q

x(q−1)(1D/2) dx (75)

This limiting expression can be calculated [72] by means of the theory of the strong asymp-
totics of Laguerre polynomials [65,110], obtaining when D > 2 that

N∞(nr, l, D, q) =


C(β, q) (2nr)(1−q) D/2 (1 + o(1)), q ∈ (0, q∗)

2

πq+1/2nq/2
r

Γ(q + 1/2)
Γ(q + 1)

(log nr + O(1)) q = q∗

CB(α, β, q) n(q−1)D/2−q
r (1 + o(1)), q > q∗

(76)

for q > 0, nr >> 1 and l = 0, 1, 2, . . . [72]. The symbols q∗ := D
D−1 , α = l + D

2 − 1, β =
(1− q)(α− l) = (q− 1)(1D/2), and the constants C(β, q) and CB(α, β, q) are given by

C(β, q) :=
2β+1

πq+1/2
Γ(β + 1− q/2) Γ(1− q/2) Γ(q + 1/2)

Γ(β + 2− q) Γ(1 + q)
; CB(α, β, q) := 2

∞∫
0

t2β+1|Jα(2t)|2q dt, (77)

where Jα(z) denotes the Bessel function of order α [57]). Note that N∞(nr, l, D, q) does
not depend on nr, and is equal to CB(α, β, q) only when (q− 1)D/2− q = 0; then, this
constancy occurs either when D = 2q

q−1 or q = D
D−2 . Moreover, keep in mind in (83) that the

explicit expressions of the angular Rényi entropies Rq[Yl,{µ}], which are given by (38)–(40),
can be analytically found [60,108,109]; however, they are negligible at first order because
they do not depend on nr except in the special case q = D

D−2 . Therefore, for D > 2 and
q 6= D

D−2 , the Rényi entropies of the Rydberg-like D-dimensional harmonic states are
given by

R(Ry)
q [ρ

(O)
nr ,l,{µ}] '

1
1− q

log N∞(nr, l, D, q)− D
2

log ω, (78)

where the symbol N∞(nr, l, D, q) is given by (76). Particularly, for the Rydberg states of
three-dimensional isotropic harmonic oscillator, the Rényi entropies are discussed mono-
graphically in [71]. In addition, for D = 2 and D ∈ [0, 2), the Rényi entropies of any
D-dimensional oscillator-like state of Rydberg type (nr >> 1, l, {µ} are given by Equa-
tion (83), where the asymptotical value N∞(nr, l, D, q) is explicitly given in Refs. [39,72],
respectively. Finally, let us also mention that the one-dimensional case is studied in detail
in [39] by use of the strong asymptotics of the weighted Lq-norm of the Hermite polyno-
mials, since these polynomials control the wavefunctions of all the stationary states of the
one-dimensional isotropic harmonic oscillator when we use Cartesian coordinates.

Finally, taking into account (45), one has that the position–momentum Rényi-entropy
sum for the Rydberg harmonic states is

R(Ry)
q [ρ

(O)
nr ,l,{µ}] + R(Ry)

p [γ
(O)
nr ,l,{µ}] '

2
1− q

log N∞(nr, l, D, q), (79)
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which holds for q > 0, nr >> 1, l = 0, 1, 2, . . . and the asymptotical value N∞(nr, l, D, q)
has been given above. We observe that this sum does not depend on the oscillator strength
ω (as expected [111]), and it fulfills not only the general Rényi entropy uncertainty rela-
tion for multidimensional quantum systems (21) [20,21], but also the (conjectured) Rényi
entropy uncertainty relation for multidimensional quantum systems subject to a central
potential [92].

6.2. Rényi Entropies of Rydberg Hydrogenic States

Taking into account the expressions (55) and (58), the position Rényi entropies for the
stationary D-dimensional hydrogenic states, which are characterized by the hyperspherical
quantum numbers (n, l, {µ}) ≡ (n, µ1, µ2, . . . , µD−1), have the values

Rq[ρ
(H)
n,l,{µ}] =

1
1− q

log
[

1
(2η)q N(n, l, D, q)

]
+ Rq[Yl,{µ}] + D log

η

2Z
(80)

where η = n + D−3
2 and the symbol N(n, l, α, p, β) ≡ N(n, l, D, q) denotes the Rényi-like

functional of Laguerre polynomials given by

N(n, l, D, q) =
∞∫

0

([
L̃(α)n−l−1(x)

]2
wα(x)

)q
xβ dx, (81)

with the parameters

α = 2L + 1 = 2l + D− 2 l = 0, 1, 2, . . . , n− 1, q > 0 and β = (2D)q + D− 1 (82)

which guarantee the convergence of integral (81); i.e., the condition β + qα = 2lq + D− 1 >
−1 is always satisfied for physically meaningful values of the parameters. In addition,
realize that the angular part Rq[Yl,{µ}] of the Rényi entropy, given by Equations (38)–(40),
does not depend on the principal quantum number n as previously mentioned.

To determine the position Rényi entropies R(Ry)
q [ρ

(H)
n,l,{µ}] for Rydberg hydrogenic states,

we have to estimate the asymptotics n→ ∞ of the Laguerre functional N(n, l, D, q). Indeed,
we have that the Rényi entropies of the Rydberg-like D-dimensional harmonic states are
given by

R(Ry)
q [ρ

(H)
n,l,{µ}] '

1
1− q

log N∞(n, l, D, q) + Rq[Yl,{µ}] + D log
η

2Z
− q

1− q
log(2η) (83)

' 1
1− q

log N∞(n, l, D, q) + D log
n

2Z
− q

1− q
log(2n) (84)

with

N∞(n, l, D, q) = lim
n→∞

∞∫
0

([
L̃(α)n (x)

]2
wα(x)

)q
xβ dx (85)

with α = 2l + D − 2 and β = (2D)q + D − 1. It remains to evaluate this asymptotical
value for all possible values of D and q > 0. This is a non-trivial task [74] which requires
an extensive use of the strong asymptotics of Laguerre polynomials [65,110]. The use
of this technique shows that the dominant contribution to the asymptotical value of the
integral (81) comes from different regions of integration defined according to the values
(α, β, q), which characterize various asymptotic regimes. Consequently, we must use various
asymptotical representations for the Laguerre polynomials at the different scales. See [74]
for further details. In particular, for D > 2, we have obtained that

N∞(n, l, D, q) = C(β, q) (2(n− l − 1))1+β−q (1 + ¯̄o(1)), (86)
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for q ∈
(

0, D−1
D−2

)
and the constant

C(β, q) :=
2β+1

πq+1/2
Γ(β + 1− q/2) Γ(1− q/2) Γ(q + 1/2)

Γ(β + 2− q) Γ(1 + q)
. (87)

In addition, if D = 2 (so β = 1), we have

N∞(n, l, D, q) =



C(1, q) (2(n− l − 1))2−q (1 + ¯̄o(1)) , q ∈ (0, 2)
ln(n− l − 1) + O(1)

π2 , q = 2
CA(q)

πq (4(n− l − 1))
2
3 (2−q)(1 + ¯̄o(1)), q ∈ (2, 5)(

CA(q)
πq42 + CB(α, 1, q)

)
(n− l − 1)−2, q = 5

CB(α, 1, q) (n− l − 1)−2 , q ∈ (5, ∞).

(88)

with α = 2l + D− 2 and β = (2D)q + D− 1 and the constants

CA(q) :=
∫ +∞

−∞

[
2π
3
√

2
Ai2
(
− t 3
√

2
2

)]q

dt; CB(α, β, q) := 2
∞∫

0

t2β+1|Jα|2q(2t) dt. (89)

Note that, in these two cases (D > 2; D = 2), it happens that β > 0. For the remaining pairs
(D, q) fulfilling that β < 0 and β = 0, the asymptotics N∞(n, l, D, q) has also been found [74].
Moreover, let us highlight that the position Rényi entropies of the three-dimensional
hydrogenic system has been monographically studied analytically and numerically [73].

Working similarly in momentum space [75], we have from (64) that the Rényi en-
tropies are

Rq[γ
(H)
n,l,{µ}] =

1
1− q

log I(n, l, q, D) + Rq[Yl,{µ}] + D log
Z
η

(90)

where the symbol I(n, l, q, D) denotes the following functional of the orthonormal Gegen-
bauer polynomials:

I(n, l, q, D) =
∫ 1

−1

{
[C̃(l+ D−1

2 )
n−l−1 (y)]2 ωl+ D−1

2
(y)
}q

(1− y)a(1 + y)b dy, (91)

with the weight function ωα(y) = (1− y2)α− 1
2 and the parameters a ≡ a(q, D), b ≡ b(q, D)

given by

a := (1− q)
(

D
2
− 1
)

, b := −(1− q)
(

D
2
+ 1
)
+ q. (92)

Now, for the Rydberg states, the last three expressions show that the Rényi entropies of the
D-dimensional hydrogenic system can be expressed as

R(Ry)
q [γ

(H)
n,l,{µ}] '

1
1− q

log I∞(n, l, q, D) + Rq[Yl,{µ}] + D log
Z
η

, (93)

where the symbol I∞(n, l, q, D) denotes the limiting expression

I∞(n, l, q, D) = lim
n→∞

I(n, l, q, D)

= lim
n→∞

∫ 1

−1

{
[C̃(l+ D−1

2 )
n−l−1 (y)]2 ωl+ D−1

2
(y)
}q

(1− y)a(1 + y)b dy, (94)
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which has ben recently estimated [75] at first order, obtaining

I∞ � nq−2(b+1); for
1
2

D
l + D + 1

< q <
D

D + 3
, (95)

I∞ ∼ log n; for q =
D

D + 3
, (96)

I∞ = c(q, D); for
D

D + 3
< q <

D
D− 1

, (97)

I∞ ∼ log n; for q =
D

D− 1
, (98)

I∞ � nq−2(a+1) for
D

D− 1
< q , (99)

where the symbol c(q, D) denotes the constant

c(q, D) =
2a+b+1

πq+1
Γ(q + 1

2 )Γ(
1
2 )

Γ(q + 1)
Γ(a− q

2 + 1)Γ(b− q
2 + 1)

Γ(a + b− q + 2)
.

Taking into account this result and that the angular part Rq[Yl,{µ}] given by Equation (59)
does not depend on n, the momentum Rényi entropies of the Rydberg hydrogenic states
have the following asymptotical behavior

R(Ry)
q [γ

(H)
n,l,{µ}] '

1
1− q

log I∞(n, l, q, D) + D log
Z
n

, (100)

and finally

R(Ry)
q [γ

(H)
n,l,{µ}]



∼ − 3q
1−q log n q ∈ (q∗, q∗)

= −D log n + 1
1−q log log n + O(1), q = q∗

= −D log n + 1
1−q log c(q, D) + o(1) q ∈ (q∗, q+)

= −D log n + 1
1−q log log n + O(1), q = q+

� (−2D− q
1−q ) log n q > q+

(101)

for n >> 1, l = 0, 1, 2, . . . and D > 0. The symbols q∗ := 1
2

D
l+D+1 , q∗ := D

D+3 and
q+ := D

D−1 . Moreover, q∗ = q∗ for D = 1 and l = 0, and q∗ < q∗ for D > 1. Note that
the momentum Rényi entropies of Rydberg hydrogenic states grow logarithmically with
n for all q > q∗. Finally, it is interesting to remark from Equations (84)–(88) and (101)
that the total position–momentum Rényi entropies R(Ry)

q [ρ
(H)
n,l,{µ}] + R(Ry)

p [γ
(H)
n,l,{µ}] of the

Rydberg multidimensional hydrogenic states do not depend on the nuclear charge Z of
the system (as expected [111]) and fulfills not only the general Rényi entropy uncertainty
relation for multidimensional quantum systems (21) [20,21], but also the (conjectured)
Rényi entropy uncertainty relation for multidimensional quantum systems subject to a
central potential [92].

7. Conclusions

First, we have shown the rigorous bounds for the Rényi entropies of general and
central-potential multidimensional quantum systems, beginning with the associated en-
tropic uncertainty relations. Then, we have analytically shown and discussed the exact de-
termination of the Rényi entropies of the multidimensional oscillator and hydrogenic states
in terms of the potential strength, the spatial dimensionality, and the state’s hyperquantum
numbers. We have used some linearization techniques of powers of hypergeometric or-
thogonal polynomials to solve the involved Rényi-like integral functionals of the Laguerre
and Gegenbauer polynomials which control the wavefunctions of the quantum states.
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We have obtained the analytical expressions for the Rényi entropies of the stationary
states of both oscillator and hydrogenic systems by means of some multivariate hyper-
geometric functions. These expressions are somewhat highbrow and computationally
demanding, especially when the principal hyperquantum number becomes large because
then the Rényi integral kernel is highly oscillatory; this occurs, e.g., for the relevant class of
highly-excited Rydberg multidimensional states: they are promising elements to store and
manipulate quantum information for both quantum computation and simulation among
many other applications due to their extraordinary properties (see, e.g., [80–84]).

Finally, the Rényi entropies for the highly-excited Rydberg states of the multidimen-
sional oscillator and hydrogenic states are analytically calculated by using some powerful
techniques of approximation theory which are based on the strong (degree) asymptotics of
the Laguerre and Gegenbauer polynomials. This method allows for the exact determination
of the dominant contribution to the Rényi entropies of both multidimensional oscillator
and hydrogenic states in a compact form, which shows the dependence of these entropic
quantities on the spatial dimensionality and the principal hyperquantum number in a
simple and transparent way.
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