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Abstract. A family of nonlinear partial differential equations of divergence form is consid-

ered. Each one is the Euler–Lagrange equation of a natural Riemaniann variational problem of

geometric interest. New uniqueness results for the entire solutions of these equations on a parabolic

Riemaniann manifold of arbitrary dimension are given. In particular, several Moser–Bernstein type

theorems are proved.

1. Introduction

Among the elliptic quasi-linear PDEs, the equation of minimal hypersurfaces in
Euclidean space

(1) div

(
Du√

1 + |Du|2

)
= 0,

has a long and fruitful history and has deserved the attention of many researchers.
From a geometric viewpoint, it is the Euler–Lagrange equation of a classical varia-
tional problem. In fact, for each u ∈ C∞(Ω), Ω an open domain in R

n, the n-form√
1 + |Du|2 dV on Ω represents the volume element of the induced metric from R

n+1

on the graph Σu = {(u(x), x) : x ∈ Ω} and the critical points of the n-volume func-

tional u 7→
´

√
1 + |Du|2 dV are characterized by equation (1).

The early seminal result of Bernstein in 1914 for n = 2 [2], amended by Hopf in
1950 [12], is the well-known uniqueness theorem:

The only entire solutions to the minimal surface equation in R
3 are

the affine functions

u(x, y) = a x+ b y + c,

where a, b, c ∈ R.

Actually, Bernstein obtained his result as an application of the so called Bern-
stein’s geometric theorem:
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If the Gauss curvature of the graph of u ∈ C∞(R2) in R
3 satisfies

K ≤ 0 everywhere and K < 0 at some point, then u cannot be
bounded.

As an application, Bernstein proved a very general Liouville theorem:

Any bounded solution u ∈ C∞(R2) of the equation

Auxx + 2B uxy + C uyy = 0,

where A,B,C ∈ C∞(R2) such that AC −B2 > 0, must be constant.

The possible extension of the classical Bernstein theorem to higher dimension is
known as the Bernstein conjecture. It has been an amusing research topic for a long
time and it made many advances on geometric analysis (see [23] for a detailed survey
until 1984).

A remarkable contribution to the Bernstein conjecture in 1961, due to Moser [20],
was the following general result:

The only entire solutions u to the minimal surface equation in R
n+1

such that |Du| ≤ C, for some C ∈ R
+, are the affine functions

u(x1, . . . , xn) = a1x1 + . . .+ anxn + c,

ai, c ∈ R, 1 ≤ i ≤ n, with

n∑

i=1

a2i ≤ C2.

This theorem is called the Moser’s weak Bernstein theorem, or the Moser–

Bernstein theorem in short. On the other hand, Bers proved in 1951 [3] that a
solution u of the minimal surface equation in R

3 defined on the exterior of a closed
disc in R

2 has bounded |Du|. Therefore, the Moser–Bernstein theorem for n = 2
and Bers’ result provided another proof of the Bernstein theorem.

In 1968, Simons [28] proved a result which in combination with theorems of
De Giorgi [9] and Fleming [7] yield a proof of the Bernstein conjecture for n ≤ 7.
Moreover, there is a counterexample u ∈ C∞(Rn) to the Bernstein conjecture for
each n ≥ 8, (of course, with unbounded |Du|).

For a Riemannian product R ×Mn, a graph {(u(x), x) : x ∈ Mn} is minimal if
and only if the function u satisfies formally the same differential equation (1), i.e.,

(2) div

(
Du√

1 + |Du|2

)
= 0,

where Du is the gradient of u, | Du | its length and div the divergence in the
Riemannian manifold (Mn, g).

In the context of 3-dimensional Riemannian product spaces R × M2, where
M2 denotes a complete Riemannian surface with non-negative Gaussian curvature,
Rosenberg [26] showed that an entire minimal graph in R×M2 must be totally ge-
odesic. In [1], Alías, Dajczer and Ripoll completed Rosenberg’s result showing that
an entire minimal graph in R ×M2, with M2 a complete Riemannian surface with
non-negative Gaussian curvature K, and K(p0) > 0 at some point p0 ∈M2, must be
a slice {t0} ×M2, t0 ∈ R.

On the other hand, Rosenberg, Schulze and Spruck [27], shown that an entire
minimal graph with non-negative height function in a Riemannian product R×Mn,
such that Mn is complete with non-negative Ricci curvature and sectional curvature
bounded from below, must be a slice {t0} ×Mn, t0 ∈ R.
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More recently, Oliveira and de Lima [21] obtain a new Moser–Bernstein type
result for a Riemannian product R×Mn, where Mn is complete with non-negative
Ricci curvature and sectional curvature bounded from below, under the additional
assumption of boundedness of the norm of the second fundamental form of the entire
graph of a function u ∈ C∞(Mn), whose gradient is bounded. So, they shown that if
the graph has constant mean curvature, then it is minimal. Moreover, if the function
u is bounded from below, then the corresponding graph must be a slice {t0} ×Mn,
t0 ∈ R.

The main aim of this paper is to prove several Moser–Bernstein type results
in ambient Riemannian manifolds more general than a product Riemannian space
R×Mn. Namely, we consider certain warped Riemannian spaces defined as follows
[22]: given a positive smooth function f on I, consider the warped product with
base (I, dt2), fiber (M, g) and warping function f , i.e., the product manifold I ×M ,
endowed with the Riemannian metric

(3) ḡ = π∗

I
(dt2) + f(π

I
)2π∗

M
(g),

where π
I

and π
M

denote the projections onto I and M , respectively. Following the
terminology of [22], let us denote this Riemannian manifold by I ×f M .

For each u ∈ C∞(M) such that u(M) ⊂ I, the graph of u in the Riemannian
warped product I ×f M defines a hypersurface which is minimal if and only if u
satisfies

(4) div

(
Du

f(u)
√
f(u)2 + |Du|2

)
=

f ′(u)√
f(u)2 + |Du|2

{
n − |Du|2

f(u)2

}
,

which is a non-linear elliptic equation of divergence form. In accordance to the
classical terminology, we will refer it as the minimal surface (MS) equation in I×fM .
Note that if M = R

n and f = 1, then the MS equation (4) agrees to the classical
MS equation (1).

Here, we are mainly interested in the case that I ×f M is far from a Riemannian
product manifold, i.e., the warping function f is not constant on any non empty
open subset of I. Moreover, we also assume log f is convex, which gets that f is also
convex. Thus, the Riemannian manifold I ×f M admits a global convex function.
This kind of functions were widely used, but mostly along curves or locally defined
until the significant paper of Bishop and O’Neill [4] was published. In this paper,
the authors extensively studied how the existence of a convex function affects the
topology and the curvature of a Riemannian manifold. Moreover, convex functions
are used to construct Riemannian warped products of negative sectional curvature
[4, Th. 7.5]. On the other hand, under suitable assumptions on the fiber of I ×f M ,
the condition (log f)′′ ≥ 0 may be interpreted in terms of curvature (see Remark
6(b)).

As in [1] and [26] we will show that a complete hypersurface becomes parabolic
under several assumptions. In these references the well-known strong relation be-
tween Gauss curvature and parabolicity in dimension two is used in the minimal
case. However, we will follow here an analogous procedure to obtain parabolicity for
a pointwise conformally related metric to the induced one on a complete hypersur-
face as in [25] without assuming before minimality of the hypersurface. Recall that,
for higher dimensions there are no clear relation with assumptions on the sectional
curvature and parabolicity (for instance, Rn is parabolic if and only if n ≤ 2). Thus,
the fiber (Mn, g) of I ×f M

n will be assumed to be parabolic. Then, the strategy
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we will follow along this paper is to show that the parabolicity of the fiber provides
the parabolicity of certain Riemannian metric pointwise conformally related to the
induced one on an entire graph in I ×f M

n , when some natural assumptions are
fulfilled (Lemma 1). Next, a distinguished positive function on the entire graph is
considered and its Laplacian respect to the conformal metric is computed (see [23]).
Under several natural assumptions, this function becomes super-harmonic, leading
that it is constant.

First of all, we get (Theorem 5):

Let (M, g) be an n(≥ 2)-dimensional parabolic Riemannian manifold
and f ∈ C∞(I), I ⊆ R, positive, non-locally constant and which
satisfies (log f)′′ ≥ 0. The only entire solutions u ∈ C∞(M) to the
MS equation (4), which satisfy |Du| ≤ c f(u), for some c ∈ R

+, are
the constants.

When the warping function is monotone, stronger results are obtained (Subsec-
tion 5.1). For instance we prove (Theorem 13):

Let (M, g) be an n(≥ 2)-dimensional parabolic Riemannian manifold
and f ∈ C∞(I), I = (a, b) ⊆ R, positive and monotone.

i) If f is non-increasing and f ∈ L1(a), or
ii) if f is non-decreasing and f ∈ L1(b),

then, the only entire solutions u ∈ C∞(M) to the MS equation (4),
whose gradient satisfies |Du| ≤ c f(u), for some c ∈ R

+, are the
constants.

In another setting, under certain boundedness assumption of the Ricci curvature
we can give new results to the minimal hypersurface equation (2) on some parabolic
Riemannian manifolds. (Theorem 18):

Let (M, g) be an n(≥ 2)-dimensional parabolic Riemannian manifold
with non-positive definite Ricci tensor. If u ∈ C∞(M) is an entire
solution to the minimal hypersurface equation (2), whose gradient
satisfies |Du| ≤ c, for some c ∈ R

+, then the graph Σu is totally
geodesic in I ×M . Moreover, if the Ricci tensor is negative definite
at some point p0, then u must be constant.

It should be noted that, in the very particular but important case M2 = R
2, this

result provides a new proof of the Bernstein theorem (Remark 19). Finally, when
M2 is a complete cylinder on an n(≥ 2)-dimensional compact Riemannian manifold
Mn, g), the topology of Mn may be used to characterize all the solutions of the
minimal hypersurface equation (2). (Theorem 20):

Let (Mn, g) be an n-dimensional compact Riemannian manifold with
non-positive definite Ricci tensor and assume the Euler–Poincaré char-
acteristic of M is non zero. The only entire solutions u to the minimal
hypersurface equation (2) on R×M , with bounded length of its gra-
dient, are the functions u(s, x) = as + b, a, b ∈ R.

2. Preliminaries

Let us consider the warped product M := I ×f M of base (I, dt2), fiber the
Riemannian manifold (M, g) and warping function f . The vector field K := f(π

I
) ∂t,

where ∂t is the coordinate vector field, satisfies [22, Prop. 7.35],

(5) ∇XK = f ′(π
I
)X,
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for any X ∈ X(M), where ∇ is the Levi–Civita connection of ḡ. Thus, the vector
field K is conformal, with LK ḡ = 2 f ′(π

I
) ḡ, its metrically equivalent 1-form is closed

and its divergence satisfies div(K) = (n+ 1)f ′(π
I
).

For each u ∈ C∞(M) let Σu = {(u(p), p) : p ∈M} be the entire graph defined by
u on M . The subset Σu is a regular hypersurface in M and it inherits a Riemannian
metric g

Σu
from M which, on M , has the following expression,

(6) gu = du2 + f(u)2 g,

where f(u) := f ◦ u. If we put τ := π
I
◦ i, where i is the inclusion of Σu in M , then

it is no difficult to obtain that the gradient of τ satisfies

(7) ∇τ = ∂t
T ,

where ∂t
T denotes the projection of ∂t on Σu.

A unit normal vector field of Σu in M is

(8) N =
f(u)√

f(u)2 + |Du|2
(
∂t −

1

f(u)2
Du
)
,

where Du is the gradient of the function u in (M, g), and |Du|2 := g(Du,Du).
Clearly,

(9) cos θ =
f(u)√

f(u)2 + |Du|2
,

where θ is the angle between N and ∂t. Therefore, from (7) we have

(10) ‖∇τ‖2 := g
Σu
(∇τ,∇τ) = sin2 θ.

The Gauss and Weingarten formulas of Σu in M are respectively written

(11) ∇XY = ∇XY + g
Σu
(AX, Y )N

(12) AX = −∇XN

for all X, Y ∈ X(Σu), where ∇ is the Levi–Civita connection of the induced metric on
Σu andA is the shape operator associated toN . The mean curvature function relative
to N is H = 1

n
trace(A). As it is well-known, H = 0 if and only if Σu is locally a

critical point of the n-dimensional volume functional for compactly supported normal
variations. The graph Σu is said to be minimal when H = 0.

In M the graphs of any constant function u = t0, t0 ∈ I (i.e., the level hypersur-
faces of the projection π

I
−→ I) constitute a distinguished family of hypersurfaces

in M , the so-called slices t = t0. The normal vector field N of a slice t = t0 is the
restriction of ∂t to t = t0. From (5), the shape operator with respect to N is given
by A = −f ′(t0)/f(t0)I, where I denotes the identity transformation. Therefore, a
slice t = t0 is a totally umbilical hypersurface of constant mean curvature

(13) H = −f ′(t0)/f(t0).

Thus, a slice t = t0 is minimal if and only if f ′(t0) = 0 (i.e., if and only if it is
totally geodesic). Note that a slice t = t0, with f ′(t0) = 0 gives a trivial entire solution
to the minimal hypersurface equation (2). Under several geometric assumptions we
will prove that these slices provide the only entire solutions to minimal hypersurface
equation (2).
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Coming back to an arbitrary graph Σu in M , consider the tangential component
KT := K − ḡ(N,K)N on Σu of K. From (5) and using the Gauss and Weingarten
formulas we get

∇XK
T = f ′(τ)X + f(τ) ḡ(N, ∂t)AX

for any X ∈ X(Σu). Making use of (7), the Laplacian of τ on Σu is given by

(14) ∆τ =
f ′(τ)

f(τ)
{n− ‖∇τ‖2}+ nH ḡ(N, ∂t).

Observe that n− ‖∇τ‖2 > 0 by (10) and n ≥ 2. A direct computation from (7) and
(14) gives

(15) ∆f(τ) = n
f ′(τ)2

f(τ)
+ f(τ)(log f)′′(τ)‖∇τ‖2 + nH f ′(τ) ḡ(N, ∂t).

3. The minimal hypersurface equation

From Weingarten formula and taking into account [22, Prop. 7.35], the shape
operator A of a graph Σu = {(u(p), p) : p ∈ Mn} of I ×f M

n, corresponding to N
given in (8), satisfies,

A(X) =
−f ′(u)√

f(u)2+ | Du |2

{
f ′(u)

f(u)
X +

f ′(u) g(Du,X)

f(u)
√
f(u)2+ | Du |2

Du

− g(DXDu,Du)

f(u)2(f(u)2+ | Du |2)Du−
1

f(u)2
DXDu

}
,

for all X tangent to the graph. The contraction of this formula when H = 0 leads
to the minimal hypersurface equation (2).

Alternatively, let Ω be an open domain in a Riemannian manifold Mn, let
f : I −→ R be a positive smooth function and let u : Ω → R be a smooth func-
tion such that u(Ω) ⊂ I. The volume of the graph restricted to a compact subset Q
in Ω is computed as follows,

(16) vol(Σu, Q) =

ˆ

Q

f(u)n−1
√
f(u)2 + |Du|2 dµgu,

where dµgu is the canonical measure associated to gu.
Consider a smooth function v : Ω → R with compact support Q in Ω. The

volume of the graph of the function u+ tv, t ∈ R, is

(17)

ˆ

Q

f(u+ tv)n−1
√
f(u+ tv)2 + |Du+ tDv)|2 dµgu .

Assume

(18)
d

dt

∣∣∣
t=0

vol(Σu+tv, Q) = 0

for every smooth function v on Ω with compact support. A standard argument from
(18) gets (2).
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4. Parabolicity in Riemannian manifolds

A non-compact Riemannian manifold is said to be parabolic if it admits no
non-constant positive superharmonic function (see [17], for instance). In the two
dimensional case, this notion is very close to the classical parabolicity for Riemann
surfaces. Moreover, it is strongly related to the behaviour of the Gauss curvature
of the surface. First of all, the seminal result by Ahlfors and Blanc–Fiala–Huber
states that a complete 2-dimensional Riemannian manifold with non-negative Gauss
curvature is parabolic (see [13, 17]). There are another results in this direction,
for example if the Gauss curvature of a complete Riemannian surface satisfies K ≥
−1/(r2 log r), for r, the distance to a fixed point, sufficiently large, then the surface
is parabolic [10]. And if a complete Riemannian surface is such that the negative
part of its Gauss curvature is integrable, then the surface must be parabolic [18].

For higher dimensions, parabolicity of Riemannian manifolds has a di different
behaviour and, in particular, it has no clear relation with assumptions on the sectional
curvature. In fact, the Euclidean space R

n is parabolic if and only if n ≤ 2. Even
more, if (M1, g1) is any compact Riemannian manifold and (M2, g2) is a parabolic
Riemannian manifold, then M1 × M2 endowed with the product metric g1 + g2 is
parabolic, [17]. In particular, the product of a compact Riemannian manifold and
the real line R is always parabolic. On the other hand, parabolicity is closely related
with the volume growth of the geodesic balls in an n(≥ 2)-dimensional non-compact
complete Riemannian manifold (M, g); indeed, if it has moderate volume growth,
then (M, g) must be parabolic [16].

An important property of parabolicity is that it is invariant under quasi-isometries
[11, Cor. 5.3], [15]. Let us recall that given Riemannian manifolds (P, g) and (P ′, g′),
a diffeomorphism ϕ from P onto P ′ is called a quasi-isometry if there exists a constant
c ≥ 1 such that

c−1|v|g ≤ |dϕ(v)|g′ ≤ c |v|g

for all v ∈ TpP , p ∈ P (see [14] for more details). Moreover, this result can be
used to construct new parabolic Riemannian manifolds as follows. Consider a par-
abolic Riemannian manifold (M, g) and let h ∈ C∞(M) such that inf(h) > 0 and
sup(h) < ∞. Then, the Riemannian manifold (M,h2 g) is quasi-isometric to (M, g)
and, therefore, it is also parabolic. On the other hand, suppose that (M1, g1) and
(M2, g2) are parabolic Riemannian manifolds such that (M1 × M2, g1 + g2) is also
parabolic (of course, a Riemannian product of parabolic manifolds is not parabolic
in general). For any h ∈ C∞(M1) such that inf(h) > 0 and sup(h) < ∞, we have
that (M1 ×M2, g1 + h2 g2) is parabolic. In fact, writing c = inf(h) and d = sup(h),
the following inequalities holds,

(g1 + h2 g2)(X,X) ≤ g1(X1, X1) + d2 g2(X2, X2) ≤ (1 + d2)(g1 + g2)(X,X),

(g1 + h2 g2)(X,X) ≥ g1(X1, X1) + c2 g2(X2, X2) ≥ min{1, c2} (g1 + g2)(X,X),

where X = (X1, X2), which mean that (M1×M2, g1+g2) and (M1×M2, g1+h
2 g2) are

quasi-isometric. Observe that the same argument shows that if (M1, g1) is a compact
Riemannian manifold, (M2, g2) a parabolic Riemannian manifold and h ∈ C∞(M1),
h > 0, then (M1 ×M2, g1 + h2 g2) is also parabolic.
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5. Main results

We begin this section with the statement of a technical result to get the parabol-
icity of certain conformal metric of an entire graph Σu in M = I ×f M from the
parabolicity of the fiber.

Lemma 1. Let (M, g) be a parabolic Riemannian manifold and let f be a pos-
itive smooth function on the interval I. If u ∈ C∞(M) satisfies u(Mn) ⊂ I and
|Du| ≤ C f(u), for some c ∈ R

+, for some c ∈ R
+, then the metric

(19) ĝ :=
1

f(u)2
gu

where gu is given in (6), is also parabolic on Mn; i.e., the graph Σu endowed with
the metric

(20) g̃ :=
1

f(τ)2
g
Σu

is parabolic.

Proof. From (6) we easily get

(21) ĝ(X,X) ≥ g(X,X),

for any X ∈ X(M). Now, taking into account the Schwarz inequality for g, we have

ĝ(X,X) ≤
(
1 +

|Du|2
f(u)2

)
g(X,X),

which turns into

(22) ĝ(X,X) ≤ (1 + C2) g(X,X),

from our assumption. Therefore, from (21) and (22) we conclude that the identity
map is a quasi-isometry from (M, ĝ) onto (M, g) which ends the proof. �

Remark 2. The assumption on |Du| in Lemma 1 has a clear geometrical mean-
ing. In fact, from (9), the angle between the coordinate vector field ∂t and the unit
normal vector field N , given in (8), is bounded away from π/2.

Using again the invariance by quasi-isometries of parabolicity, we get:

Corollary 3. Let (Mn, g) be a parabolic Riemannian manifold and let f be a
positive smooth function on I such that inf f > 0. If u ∈ C∞(M) satisfies u(Mn) ⊂ I
and |Du| ≤ C f(u), for some c ∈ R

+, for some c ∈ R
+, then the metric gu, given in

(6), is parabolic on Mn.

Corollary 4. Let (Mn, g) be a parabolic Riemannian manifold. If u ∈ C∞(M)
satisfies |Du| ≤ c, for some c ∈ R

+, then the product metric gu = du2+g is parabolic
on Mn.

Now observe that the equations (14) and (15) may be rewritten for a minimal
hypersurface in term of the conformal metric g̃, given in (1), as follow,

∆̃τ = n f(τ) f ′(τ)− (n− 1)
f ′(τ)

f(τ)
||∇̃τ ||2g̃,(23)

∆̃f(τ) = nf(τ) f ′(τ)2 +

{
f(τ) (log f)′′(τ)− (n− 2)

f ′(τ)2

f(τ)

}
||∇̃τ ||2g̃.(24)

Now, we can give some uniqueness results using previous work in this section.
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Theorem 5. Let (Mn, g) be an n(≥ 2)-dimensional parabolic Riemannian man-
ifold and f ∈ C∞(I), I ⊆ R, positive, non-locally constant and which satisfies
(log f)′′ ≥ 0. The only entire solutions u ∈ C∞(M) to the MS equation (4), which
satisfy |Du| ≤ c f(u), for some c ∈ R

+, are the constants.

Proof. First of all, Lemma 1 may be called to obtain that Mn endowed with the
conformal metric ĝ = (1/f(u)2)gu given in (19) is parabolic. Now, using equation
(24), we have that the g̃-Laplacian of the positive and bounded function

arccot f(τ) : M → [0, 2π)

satisfies,

∆̃ arccotf(τ) = − f(τ)

1 + f(τ)2
(log f)′′(τ) ||∇̃τ ||2g̃ −

f ′(τ)2

f(τ)2 (1 + f(τ)2)

·
{
n(f(τ)2 − ||∇̃τ ||2g̃)f(τ) +

2

f(τ) (1 + f(τ)2)
||∇̃τ ||2g̃

}
.

Taking into account (10) we get ||∇̃τ ||2g̃ < f(τ)2. From the assumptions, we have
that the function arccotf(τ) is g̃-superharmonic. Then, as a consequence of the
g̃-parabolicity of Σu, f(τ) must be constant and, consequently, τ is constant. �

Remark 6. (a) The assumption “non-locally constant” on f cannot be removed
clearly as the entire solutions to the MS equation (1) shows. (b) The assumption
(log f)′′ ≥ 0 has also a clear geometrical meaning. It guarantees that the Ricci
curvature of I ×f M in non-positive whenever the Ricci curvature of the fiber is non-
positive [22, Cor. 7.43]. On the other hand, taking into account (13), it implies that
the mean curvature of the leaves is a non-increasing function.

Corollary 7. Let (Mn, g) be an n(≥ 2)-dimensional parabolic Riemannian man-
ifold and f ∈ C∞(I), I ⊆ R, non-locally constant and such that inf f > 0 and
(log f)′′ ≥ 0. The only entire solutions u ∈ C∞(M) to the MS equation (4), which
satisfy |Du| ≤ c, for some c ∈ R

+, are the constants.

For the case of a more general warping function, we have:

Theorem 8. Let (Mn, g) be an n(≥ 2)-dimensional parabolic Riemannian man-
ifold and f ∈ C∞(I), I ⊆ R, positive and such that (log f)′′ ≥ 0. The only entire
solutions u ∈ C∞(M) to the MS equation (4), which satisfy |Du| ≤ c f(u), for some
c ∈ R

+, and which are bounded from below or from above, are the constants.

Proof. We already know by the previous theorem that f(τ) is constant, now (15)
implies f ′(τ) = 0. Therefore, from (14), τ is harmonic on M , ending the proof. �

In the the case of f = 1, i.e., for an ambient Riemannian product, the previous
theorem specializes to the following result:

Corollary 9. Let (M, g) be an n(≥ 2)-dimensional parabolic Riemannian man-
ifold. The only entire solutions u ∈ C∞(M) to the MS equation (2), which satisfy
|Du| ≤ C, for some C ∈ R

+, and which are bounded from below or from above, are
the constants.

Counterexample 10. (a) Consider the family of complete Riemannian mani-
folds R ×f R (completeness follows from [22, Lem. 7.40]). A function u = u(x) is
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solution of the MS equation (1) on R×f R if and only if it satisfies

f(x)
u′(x)√

1 + u′(x)2
= C

for some C ∈ R and any x ∈ R. If we choose f(x) =
√

1 + cosh4(x), then the cor-

responding metric dx2 + f(x)2dy2 is not parabolic (the function v(x) = −1/ cosh2 x,
x ∈ R, satisfies ∆v = 2

[
(cosh2 x− 1)2 + 2

]
/
[
cosh4 x(1 + cosh4 x)

]
< 0). Now, the

function
u(x) = tanhx

is a solution of the MS equation (1) on R×fR. It is trivially bounded and the norm of
its gradient is found also to be bounded. (b) Now consider the complete Riemannian
manifold R×h R where h(x) = (

√
2x4 + 6x2 + 5)/(x2 + 2). As the warping function

h satisfies
√
5/2 ≤ h(x) <

√
2, at any x ∈ R, from the considerations showed in

Section 4 we conclude that R×h R is parabolic. The function

w(x) = x+ arctan x

is a solution of the MS equation (1) on R×h R, with bounded length of its gradient.
Note that w is unbounded neither from below nor from above.

5.1. The case of monotone warping function. Recall that a positive con-
tinuous function f on (a, b), −∞ ≤ a < b ≤ ∞, is said to satisfy f ∈ L1(a) (resp.

f ∈ L1(b)) if
´ c

a
f(s)ds <∞ (resp.

´ b

c
f(s)ds <∞) for some c ∈ (a, b).

Theorem 11. Let (Mn, g) be an n(≥ 2)-dimensional parabolic Riemannian
manifold and f ∈ C∞(I), I = (a, b) ⊆ R, positive and monotone.

i) If a ∈ R and f is non-increasing with f ∈ L1(a), or
ii) if b ∈ R and f is non-decreasing with f ∈ L1(b),

then, the only entire solutions u ∈ C∞(M) to the MS equation (4), whose gradient
satisfies |Du| ≤ c f(u), for some c ∈ R

+, are the constants.

Proof. Under the assumption i), we consider the function F(τ) on Σu, defined
by

F(τ) =

ˆ τ

s0

f(s) ds,

where s0 = inf (τ). Clearly, F(τ) ≥ 0 and the Laplacian of F(τ) respect to the
conformal metric g̃ satisfies

(25) ∆̃F(τ) = f ′(τ)f(τ)2

{
n− (n− 2)

||∇̃τ ||2g̃
f(τ)2

}
≤ 0.

Using now the parabolicity of g̃, we get that u must be constant.

The case ii) follows analogously changing F(τ) to the function F̃(τ) given by

F̃(τ) =

ˆ s0

τ

f(s) ds,

where s0 = sup(τ). �

Corollary 12. Let (Mn, g) be an n(≥ 2)-dimensional parabolic Riemannian
manifold and f ∈ C∞(I), I = (a, b) ⊆ R, positive, monotone and inf f > 0.

i) If a ∈ R and f is non-increasing with f ∈ L1(a), or
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ii) if b ∈ R and f is non-decreasing with f ∈ L1(b),

then, the only entire solutions u ∈ C∞(M) to the MS equation (4), whose gradient
satisfies |Du| ≤ c, for some c ∈ R

+, are the constants.

Observe that if only bounded from below (or from above) solutions to the MS
equation (4) are considered, the L1 assumptions on f can be dropped.

Theorem 13. Let (M, g) an n(≥ 2)-dimensional parabolic Riemannian manifold
and f ∈ C∞(I), I ⊆ R, positive and non-increasing (resp. non-decreasing). The
only entire solutions u ∈ C∞(M) to the MS equation (4), bounded from below (resp.
bounded from above), whose gradient satisfies |Du| ≤ C f(u), for some C ∈ R

+, are
the constants.

We can give a nice direct consequence of the last theorem,

Corollary 14. Let (M, g) be an n(≥ 2)-dimensional parabolic Riemannian man-
ifold and f ∈ C∞(I), I ⊆ R, positive and monotone. The only entire bounded
solutions u ∈ C∞(M) to the MS equation (4), whose gradient satisfies |Du| ≤ C, for
some C ∈ R

+, are the constants.

Next, in order to make use of a basic result on the ϕ-Laplacian, [24, Ch. 5], we
will transform MS equation (4) by means of a suitable change of variable. In fact,
let u ∈ C∞(M) an entire solution to the MS equation and define

v = ψ(u), where ψ(t) :=

ˆ t

u0

1

f(s)
ds,

and u0 is some value of u. Taking into account f(u)Dv = Du, equation (4) can be
written, in terms of v as follows,

(26) div

(
Dv√

1 + |Dv|2

)
= n

f ′((ψ−1)(v))√
1 + |Dv|2

,

whose right hand side can be seen as the ϕ-Laplacian of v, where ϕ ∈ C∞([0,∞)) is
given by ϕ(x) = x/

√
1 + x2. Now, we can state:

Theorem 15. Let (M, g) be an n(≥ 2)-dimensional complete Riemannian man-
ifold with quadratic volume growth, and let f ∈ C∞(I), I ⊆ R, a smooth positive
non-increasing (resp. non-decreasing) function. The only entire bounded below (resp.
above) solutions to the MS equation (4), are the constants.

Proof. Let u ∈ C∞(M) an entire solution to the MS equation (4). Up reversing
the t coordinate if it is necessary, we only consider the case that u is bounded below
and f ′ ≤ 0. Now, making use of (26), the transformed function v of u is a bounded
below ϕ-subharmonic function on the complete Riemannian manifold (M, g) which
has quadratic volume growth. The result follows directly from [24, Th. 5.1]. �

As a particular case:

Corollary 16. Let (M, g) be an n(≥ 2)-dimensional complete Riemannian mani-
fold with quadratic volume growth. The only entire bounded above or below solutions
to the MS equation (1), are the constants.

Observe that the integral assumption needed in [24, Th. 5.1] is satisfied for a
wide family of Riemannian manifolds bigger than the quadratic volume growth ones.
Moreover, for the considered ϕ-Laplacian, this assumption is in fact equivalent to
condition (7.15) in [11, Th. 7.5]. In the same reference, it is shown that this is



792 Alfonso Romero, Rafael M. Rubio and Juan J. Salamanca

also a necessary condition for the parabolicity for spherically symmetric manifolds.
Therefore, we can derive the following consequence:

Corollary 17. Let (M, g) be an n(≥ 2)-dimensional spherically symmetric par-
abolic Riemannian manifold, and let f ∈ C∞(I), I ⊆ R, a smooth positive non-
increasing (resp. non-decreasing) function. The only entire bounded below (resp.
above) solutions to the MS equation (4), are the constants.

5.2. The case of constant warping function. When a product ambient space
I ×M is considered, some extra curvature assumption on the Riemannian manifold
(M, g), besides its parabolicity, is needed to arrive to a result of uniqueness.

Theorem 18. Let (M, g) be an n(≥ 2)-dimensional parabolic Riemannian man-
ifold with non-positive definite Ricci tensor. If u ∈ C∞(M) is an entire solution to
the MS equation (1), whose gradient satisfies |Du| ≤ C, for some C ∈ R

+, then the
graph Σu is totally geodesic in I ×M . Moreover, if the Ricci tensor of M is negative
definite at some point p0, then u must be constant.

Proof. Consider the function cos θ on the graph Σu and note that

∇ cos θ = −A∇τ,
from (5) and (7), and consequently

∆cos θ = − div
Σu
(A∇τ).

Now the Gauss and Codazzi equations can be claimed to get,

(27) ∆cos θ = − cos θRicM(NM , NM) + cos θ trace(A2),

where NM means the projection onto M of the unit normal vector field N . Now,
the use of the curvature assumption in (27) gives that cos θ is subharmonic. Using
now the parabolicity of (M, g), we conclude that θ must be constant. Consequently,
A = 0. Finally, the last assertion follows taking into account that if the function
cos θ is constant, then cos θ(p0) = 0, which implies that u must be also constant. �

Remark 19. Coming back to the classical Bernstein theorem for n = 2, observe
that an entire solution u to the MS equation (1) satisfies |Du| ≤ C, for some C ∈ R

+

according Bers’ theorem [3]. Therefore, u lies under the assumptions of Theorem
18 and consequently Σu must be a plane in Euclidean space R

3. Alternatively, it is
possible to give another argument, using also Theorem 18, leading to the classical
Bernstein theorem. Namely, let Σu be the graph of an entire solution u to the MS
equation (1). The parabolicity of the graph can be deduced directly as follows. Let
p0 ∈ Σu be and consider the closed ball B̄R3(p0, r) ⊂ R

3, centered at p0, with radius
r. Clearly

Area
(
B̄R3(p0, r) ∩ Σu

)
≤ 2πr2,

because Σu is a minimizing surface area. On the other hand, the geodesic disk
DΣu

(p0, r) in Σu satisfies

DΣu
(p0, r) ⊂ B̄R3(p0, r) ∩ Σu,

and as a consequence
Area(DΣu

(p0, r)) ≤ 2πr2,

which in particular means that the area of the geodesic disk has quadratic growth,
and this implies that Σu is parabolic [5]. Now, Theorem 18 can be claimed again to
get that θ is constant, which ends the argument.
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Theorem 20. Let (F, gF ) be an (n−1)-dimensional compact Riemannian man-
ifold with non-positive definite Ricci tensor and assume the Euler–Poincaré charac-
teristic of F is non zero. The only entire solutions u to the MS equation (1) on R×F ,
with bounded length of its gradient, are the functions u(s, x) = as+ b, a, b ∈ R.

Proof. The Riemannian manifold M = R×F is parabolic because F is compact.
Corollary 4 can be then claimed to obtain that the graph Σu is parabolic. On the
other hand, it is easy to see that the Ricci tensor of M is also non-positive definite.
Therefore, as a consequence of Theorem 18, Σu must be totally geodesic.

The projection NM of the unitary normal vector field N onto R× F is parallel.
Therefore, its F -component is also parallel on F and vanishes because the Euler–
Poincaré characteristic of F is non zero. Hence, this leads to NM = a ∂s, for some
a ∈ R. �

We end the paper showing that the class of Riemannian manifolds under the
assumptions of Theorem 20 is very wide.

Remark 21. In the previous result, we may take F as the Riemannian product
T k × R, where T k is a k-dimensional flat torus and R is either a compact Ricci-flat
Riemannian manifold [6] or a compact negatively Ricci curved Riemannian manifold
[8, 19].
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