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Hydrological modeling for landscape and catchment scale applications

requires upscaling of soil hydraulic parameters which are generally only

available at point scale. We present a case study where hourly root zone

soil water content and drainage observations from nine flat, pastoral sites

(Waikato and Canterbury regions in New Zealand) were used to develop an

upscaling approach to parameterize the soil water balance module of the

TopNet catchment model, based on scaling multi-layer soil profile information

from the national soil data base, S-map, to the single-layer soil profile used

in TopNet. Using a Bayesian calibration approach, the hydraulic behavioral

parameters of TopNet’s soil water balance module were identified. Of the

eleven calibration parameters considered three were found to be insensitive

to data (stress point, unsaturated hydraulic conductivity and infiltration rate);

three were correlated and could be determined from specific soil water

content observations (wilting point, field capacity and drainable water); and

five were correlated and could be determined from combined specific soil

water content and drainage observations (drainage rate, saturated hydraulic

conductivity profile, e�ective soil depth, soil water holding capacity and

wetting front suction). Based on the eight correlated parameters, upscaling

functions were then developed to derive suitable model parameters from

S-map-hydro for each site. The validity of the upscaling functions was verified

at each site. The approach used in this research can be used to parameterize
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the TopNet model at other similar locations, and also provides a transferable

framework to parameterize other catchment-scale hydrology models where

point-scale soil hydraulic data available.

KEYWORDS

soil water balance, upscaling of soil hydraulic properties, S-map, New Zealand, 1D

hydrological model, parameterization

Highlights

- Point-scale soil hydraulic parameters can be upscaled using

soil water state and flux data.

- Bayesian calibration allows prior information to be

combined with uncertainty in the model input.

- A simple upscaling scheme was developed to estimate

representative model parameters from the high-resolution

point scale observations, using inverse modeling.

- The upscaled parameters produce seasonal patterns and

annual totals of water fluxes, but do not match uncalibrated

soil water content measurements.

Introduction

Water is one of the fundamental resources required for

food production, and is frequently the resource that limits

production, either because crop water demand exceeds water

supply from rain and/or irrigation, or because agricultural

activities that adversely affect water quality (e.g., effluent

application) are tightly regulated (FAO, 2011; MfE, 2021).

Understanding and optimizing the availability and use of

water to grow crops requires accurate knowledge of water

supply, use and loss that can be used to estimate water

availability, particularly soil water content, at a suitable scale

for management and policy decisions (Vereecken et al., 2007;

Curk and Glavan, 2021). TopNet is one such tool (Bandaragoda

et al., 2004; Clark et al., 2008) that has been developed by

National Institute of Water and Atmospheric Research (NIWA,

New Zealand) to link spatial rainfall and irrigation supply, with

water use at catchment scale, to aquifer, stream, river and lake

hydrology up to a national scale. Although TopNet has been

successfully used in several national studies (McMillan et al.,

2013; Griffiths et al., 2021), its accuracy at catchment scale is

currently limited by the scale of data available on soil properties.

The national S-map data set (MWLR, 2022) provides soil survey

polygons that are linked to point-scale soil properties for up to

six layers down to a maximum of 1m depth from surface. As

soil-water hydraulic parameters greatly vary with spatial scale

(Bresler and Dagan, 1983; Gelhar, 1986; Gómez-Hernández and

Gorelick, 1989; Flury et al., 1994; Iversen et al., 2001), the S-map

soil data need to be scaled vertically as well as laterally for use

in TopNet. The objective of the current work focuses on the

first task which is to develop a scheme by which the detailed

multi-layer point-scale soil properties from S-map could be

vertically upscaled for use in the single-layer TopNet model.

This upscaling of detailed vertical soil profile data will also

have application in other hydrological and agricultural models

currently in use in New Zealand and elsewhere.

Several approaches exist for parameter upscaling. In this

paper, the differences between field observations and the model

simulated outputs are used to infer the scale and selection

of parameters to be estimated, using an inverse upscaling

method (Šimunek and Van Genuchten, 1996; Abbaspour et al.,

1997; Lehmann and Ackerer, 1997; Zhang et al., 2000a,b;

Zhang et al., 2003; Ward et al., 2006; Pollacco et al., 2022b).

The inverse method of Bayesian calibration in particular is

used, which allows prior information to be combined with

uncertainty in the model input, model parameters, model

structure, and calibration data, and also quantifies the resulting

predictive uncertainty. However, associated numerical methods,

such as Markov Chain Monte Carlo (MCMC) sampling,

are numerically demanding, and their use is consequently

limited to relatively fast models with few parameters (e.g.,

Schoups and Vrugt, 2010; Li et al., 2012; Jiang et al.,

2015). An overview of the history of MCMC methods

is provided by Wu and Zeng (2013), leading up to the

development of the Differential Evolution Adaptive Metropolis

algorithm, DREAM (Vrugt et al., 2009), a variant of which

(DREAMZS) is used in this study (Ter Braak and Vrugt,

2008).

Aims

The S-map-hydro database within the New Zealand

digital national soil database (S-map) holds soil-hydraulic

data (Lilburne et al., 2012). However, the database contains

more spatial and vertical detail than is generally required

by catchment models. The overarching aim of this study

is to develop a method for upscaling multilayer vertical

soil-hydraulic parameters for use in less vertically detailed

modeling and analysis. Here upscaling refers to simplifying

the high resolution (multi-layer) soil information into a low
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FIGURE 1

Conceptual model for upscaling soil hydraulic properties.

resolution (single layer) in accordance with the hydrological

model requirements.

The approach taken in this study was to develop a simple

upscaling technique for S-map-hydro soil water parameters

to use in the single soil-layer TopNet model (Bandaragoda

et al., 2004; Clark et al., 2008). This preliminary upscaling

scheme was developed with data from flat, grass pasture

sites. Extension to other sites, soils, and vegetation types will

require additional testing. The scaling method is depicted in

Figure 1.

Materials and methods

The S-map and S-map-hydro databases

S-map is a digital, multi-layer soil database that was

developed to capture soil survey information describing soil

variability down to 1m depth, along with the associated

uncertainty (Lilburne et al., 2012). S-map-hydro is an

extension of S-map (Lilburne et al., 2012, 2014; McNeill

et al., 2018). S-map-hydro provides data for describing

the soil water retention θ(ψ) (Kosugi, 1994, 1996), and

unsaturated hydraulic conductivity K(θ) functions (Pollacco

et al., 2017, 2022a; Fernández-Gálvez et al., 2021), for

up to six functional horizons to a maximum depth of

100 cm, for a 150 × 150m spatial grid. Vertical soil data

is provided for 14 fixed depth layers (2.5, 5, 10, 15, 20,

25, 30, 40, 50, 60, 70, 80, 90, and 100 cm) across much of

New Zealand.

Point-scale soil water balance model

To assess the extent to which soil hydraulic parameters

provided by S-map-hydro can be used effectively in a

parsimonious soil hydrology and catchmentmodel, a point-scale

soil water balance submodule from the distributed hydrological

model TopNet (version 10) (Bandaragoda et al., 2004; Clark

et al., 2008) was parameterised for case study soil types in

Waikato and Canterbury regions of New Zealand. TopNet is

a single layer (tipping bucket) catchment-scale rainfall-runoff

model built on the concepts of TOPMODEL (Beven and

Kirkby, 1979; Beven et al., 1995). TopNet uses sub-surface water

storage to control the dynamics of saturation excess runoff and

baseflow recession.

The parameters of the point-scale soil water balance

submodule of TopNet model are listed in Table 1. Canopy

moisture parameters represent a very small portion of the water

balance at the grazed pasture study sites, so were set to fixed

values. An exponential hydraulic conductivity profile option

was used [TOPMODF parameter (Beven et al., 1995)] so the

TOPMODM and TOPMODN parameters were not needed.

The TOPMODEL subbasin slope ratio parameter ALAMBDA

(Bandaragoda et al., 2004; Clark et al., 2008) was also not

required for the point-scale water balance model used here.

The remaining parameters were calibrated within the ranges

shown in Table 1, assuming a symmetrical beta-distribution

prior. The following parameters control the soil water content

range: DTHETA0, DTHETA2, DTHETA1, SOILCAP. In theory,

DTHETA0 corresponds to permanent wilting point, below

which water cannot be extracted by plants (ostensibly −1,500
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TABLE 1 TopNet soil water balance module parameters.

Parameter Typical value Units Lower bound Upper bound Type Description

CANENHF 1 0.5 1.5 Fixed Canopy evaporation enhancement factor

CANSCAP 0.0005 m 0 0.005 Fixed Canopy storage capacity

CANSTOR 0.5 m 0 1 Fixed Initial canopy storage

SOILH2O 0.5 m 0 1 Calibrated Initial soil storage

ZBARH2O 1.25 m 0.5 2 Calibrated Initial average depth to the water table

DTHETA0 0.15 m3/m3 0.0 0.3 Calibrated Soil water content at permanent wilting point

DTHETA1 0.05 m3/m3 0.01 0.15 Calibrated Drainable pore space

DTHETA2 0.15 m3/m3 0.05 0.4 Calibrated Soil water content available for plants

CH_CEXP 40 25 100 Calibrated Clapp-Hornberger exponent

SOILCAP 0.2 m 0.05 0.3 Calibrated Soil water capacity (= effective soil depth

*[DTHETA1+ DTHETA2])

TOPMODF 10 1/m 0.001 25 Calibrated TOPMODEL F parameter

TOPMODM 0.7 m 0.01 1,000 Not used TOPMODEL M, effective soil depth

TOPMODN 0.1 0 100 Not used TOPMODEL N, power in transmissivity profile

HYDCON0 0.05 m/s 10−8 0.1 Calibrated saturated hydraulic conductivity at soil surface

GA_PSIF 0.25 m 0 0.5 Calibrated Green-Ampt wetting front suction

RPAWSTR 0.75 0.2 1.0 Calibrated Relative plant available water at stomatal closure

ALAMBDA 7 0 300 Not used Mean value of wetness index (ln[a/tan(b)]) for a

subcatchment (where a is upstream catchment area

and b is the local slope)

Further information on these parameters are available in Bandaragoda et al. (2004) and Clark et al. (2008).

kPa); DTHETA2 represents plant available water, theoretically

the difference between field capacity (−10 kPa) and permanent

wilting point; DTHETA1 represents water content in the

soil above field capacity up to saturation (0 kPa); and

SOILCAP corresponds to water content within the soil column,

which equates to effective soil depth times (DTHETA1 +

DTHETA2). RPAWSTR controls plant soil water stress response;

HYDCON0, CH_CEXP, and TOPMODF control the drainage

response; GA_PSIF controls the surface runoff response; and the

initial conditions are defined by SOILH2O and ZBARH2O.

Case study sites

High resolution soil moisture data were collated from

nine field monitoring sites with contrasting soil types, five

in the Waikato region of New Zealand’s North Island, and

four in the Canterbury region of New Zealand’s South Island

(Figure 2). Site climate data is summarized in Table 2. The

Waikato sites are dryland pasture sites and were monitored

with tipping bucket rain gauges, and supplemented with hourly

potential evapotranspiration values (the latter stochastically-

disaggregated from daily values from the National Institute

of Water and Atmospheric Research’s (NIWA) virtual climate

station network (VCSN) (Tait et al., 2006). No drainage

measurements were made at the Waikato sites. The Canterbury

sites were irrigated pastures and were monitored with tipping

bucket rain gauges and lysimeters to 70 cm depth as described in

Duncan et al. (2016).

Surface runoff was not measured at any of the sites, but all

sites were located on flat terrains. Rubber collars were placed

on the lysimeters to prevent flow from entering or leaving the

lysimeter surface at the Canterbury sites. Surface runoff was

therefore assumed to be nominally zero at all sites.

Soils were selected to represent both being spatially extensive

in each case study area, as well as a range in key soil attributes,

as summarized in Table 3.

Waikato sites

Details of the five Waikato sites are presented in Table 4.

Soil sampling has been collected for five horizons, and in the

laboratory dry bulk density (for three sites only) and water

contents at 0, −5, −10, −20, −40, −100, and −1,500 kPa

were determined (McLeod et al., 2015, 2016). At each site, five

Decagon 5TM (www.decagon.com) soil moisture sensors have

been installed at depths to coincide with soil horizons, from 5.5

to 100 cm below ground level.

The ground cover at all sites is ryegrass/white clover

dominated pasture. All five sites are unirrigated.
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FIGURE 2

Location of Canterbury and Waikato field sites. Canterbury: four irrigated sites (soil water content and lysimeters) at Methven, Dorie, Larundel

(Swannanoa), and Omarama. Waikato: five non-irrigated sites (soil moisture only) at Waihou, Otorohanga, Hingarae (Taupo), Henderson

(Hamilton), and Waitoa.

Canterbury sites

The study sites in Canterbury were selected to represent

a range of soils and management regimes. Unlike Waikato

sites, all Canterbury sites are spray irrigated regularly

between the months of October and April. Time domain

transmissometry (TDT, www.acclima.com) soil water content

sensors were installed at up to three depths (varying from

9.5 to 70 cm below ground level). Soil and TDT soil water

content probes information are listed in Table 5, and

Figure 3 shows a schematic of the instrument layout at the

lysimeter sites.

Similar to the Waikato sites, land cover at the Canterbury

sites is ryegrass/white clover dominated pasture. For all sites, the

lysimeters represent soil water movement correctly with respect

to capillary rise. Maximum groundwater levels at Methven and

Dorie for example are 39 and 6m below the surface, respectively,

so the water table is too deep for to have any capillary rise effect

on those lysimeters (Duncan et al., 2016).
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TABLE 2 Summary of climate and soil water content data at case study sites.

Region Site Period Years of data Annual

rainfall (mm)

Annual PET (mm) Annual

drainage (mm)

Soil water content

range (m3/m3)

Waikato Henderson 13/10/2017–19/7/2018 0.8 1,191 934 No data 0.19–0.49

Hingarae 25/3/2017–9/8/2018 1.4 1,393 794 No data 0.13–0.43

Otorohanga 25/3/2017–19/7/2018 1.3 2,275 887 No data 0.21–0.37

Waihou 24/3/2017–7/8/2018 1.4 1,286 799 No data 0.18–0.44

Waitoa 23/3/2017–9/8/2018 1.4 951 964 No data 0.17–0.39

Canterbury Dorie 9/7/2010–29/9/2015 5.2 655 866 169 0.19–0.47

Larundel 23/8/2011–29/9/2015 4.1 743 944 231 0.19–0.45

Methven 30/9/2015–20/5/2020 4.6 916 786 506 0.19–0.46

Omarama 23/8/2016–13/3/2020 3.6 536 934 118 0.05–0.40

Annual rainfall at Henderson was estimated using the available measured data.

Annual rainfall at the Otorohanga site, 2,275mm appears high. Rainfall data from NIWA’s Otorohanga site shows the average annual rainfall for the period is 1,703 mm.

Soil water content ranges are for uncalibrated sensor values.

Methven data prior to 30/9/2015 was not used due to unexpected abnormality in data.

TABLE 3 Summary of soil classification and key features at each site.

Region Site New Zealand soil

classificationa
Soil depth to >35%

gravels (cm)

Dominant soil

texture

Soil drainage

classd
Soil permeability class

Waikatob Henderson Granular >90 Silty over clayey Imperfect Slow

Hingarae Pumice >90 Silty over sandy Well Moderate over rapid

Otorohanga Allophanic >90 Silty over silty clay Well drained Moderate

Waihou Allophanic >90 Silty over silty clay Well drained Moderate

Waitoa Gley >90 Silty Poor Slow

Canterburyc Dorie Pallic 70 Silty Moderately-well Moderate

Larundel Pallic 40 Stony silty Imperfect Moderate over slow

Methven Brown 30 Stony silty over stony sand Well Moderate over rapid

Omarama Recent 25 Stony silty over stony sand Well Moderate over rapid

aBased on New Zealand Soil Classification Soil Order (Hewitt, 2010).
bMore detailed description of these soils is available in Pollacco et al. (2022a).
cMore detailed description of these soils is available in Duncan et al. (2016) and Graham et al. (2018).
dDetailed description of drainage class and permeability classification used in New Zealand based on Vogeler et al. (2019).

Each lysimeter site consists of three cylindrical, non-

weighing, drainage lysimeters 0.5m in diameter and 0.7m in

depth (similar dimensions to those in White et al., 2003).

Data preparation

For each site, the soil water content, drainage, rainfall, and

potential evapotranspiration (PET) data were aggregated (or in

case of potential evapotranspiration, disaggregated from daily

values) into hourly data, to match the simulation time step of

TopNet. The units of the data were volume of water over a

volume of soil (m3/m3) for the soil water content data (see

following paragraph) and mm/h for drainage, rainfall and PET.

Soil water content measurements based on TDT and

5TM sensors are considered uncalibrated. Although neutron

probe measurements were available for calibration, this is not

straightforward, due to the infrequency of the measurements.

The accuracy of neutron probe measurements close to the soil-

air interface is generally low due to the fact that the sphere

of influence (radius) of the neutron probe instrument extends

into the air above the soil surface (Chanasyk and Naeth, 1996),

and neutron probe data themselves were not calibrated with

in situ measurements. For this reason, the uncalibrated soil

water content data was used for model calibration, with the

understanding that the soil water content data represent trends

rather than absolute values (Srinivasan et al., n.d.). In addition,

the daily difference in mean soil water content over successive

days (see Section Soil water content measurements and tension

profiles) was used an additional data set for model calibration.

Experience shows that in calibration, daily soil water content

time series information primarily infers the seasonal patterns of

soil water content, while the fine detail of soil water response

to rain or irrigation events is poorly reproduced. Including
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TABLE 4 Soil and soil water content probe information at Waikato sites.

Site Soil horizon Depth (cm) Texture Bulk density (t/m3) Sil water content

probe depth (cm)

Hingarae 1 0–11 Sandy loam 0.62 5.5

2 11–26 Sandy loam 0.80 18.5

3 26–47 Sandy loam with gravel 0.88 36.5

4 47–87 Sandy loam with gravel 0.82 67.0

5 87–100 Greasy silt loam 0.77 100

Otorohanga 1 0–19 Silt loam 0.62 9.5

2 19–41 Silt loam 0.60 30.0

3 41–56 Silt loam 0.64 48.5

4 56–79 Silt loam 0.71 67.5

5 79–110 Silt loam 0.74 100.0

Waitoa 1 0–20 Silt loam 0.76 10.0

2 20–38 Silt loam 1.27 29.0

3 38–74 Silt loam 1.28 56.0

4 74–93 Silt loam 1.11 83.5

5 93–115 Loamy sand 1.34 100.0

Henderson 1 0–24 Silty clay No data 10.0

2 24–36 Clay No data 26.0

3 36–51 Clay No data 40.0

4 51–68 Clay No data 58.0

5 68–95 Clay No data 80.0

Waihou 1 0–20 Silt loam No data 10.0

2 20–30 Silt loam No data 25.0

3 30–47 Silt loam No data 38.0

4 47–74 Silt loam No data 60.0

5 74–106 Silt loam No data 86.0

TABLE 5 Soil and soil water content probe information at Canterbury sites.

Site Soil horizon Depth (cm) Texture Stone content (%) Bulk density

(t/m3)

Soil water content

probe depth (cm)

Methven 1 0–10 Stony silt loam 17 1.06 10 (3 probes)

2 10–30 Stony silt loam 26 1.43 None

3 30–50 Very stony silt loam 54 1.86 None

4 50–70 Very stony loamy sand 64 2.01 None

Dorie 1 0–20 Silt loam 0 No data 9.5

2 20–50 Silt loam 0 No data 30

3 50–70 Silt loam 0 No data 54

Larundel 1 0–18 Stony silt loam 7 1.35 10

2 18–40 Stony silt loam 20 1.47 20 (2 probes)

3 40–52 Very stony silt loam 50 No data None

4 52–70 Very stony sandy loam 50 No data None

Omarama 1 0–16 Loamy silt 0 1.2 None

2 16–25 Loamy silt 0 1.3 20

3 25–50 Very stony loamy sand 45 1.9 50

4 50–70 Loamy sand 70 2.1 70
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FIGURE 3

Schematic of lysimeter instrument (Source: Duncan et al., 2016).

the difference as an additional calibration variable allows the

calibration to more accurately infer the parameters controlling

the daily response.

The soil water content time series at the different sites are

shown in Figure 4. Sensors closer to the surface (e.g., at 55,

95, or 100mm below the surface) often had extremely dynamic

(flashy) signals, presumably due to short term ponding and

infiltration lags, whereas sensors below 100mm tended to have

much subdued variation.

The various configurations of soil water content sensors

at the different sites made it difficult to establish a consistent

approach across sites for summarizing the multi-sensor soil

water content data into a single hourly value. The Waikato

sites had five sensors down to about 1,000mm, whereas several

of the Canterbury sites only had very shallow sensors (due

to the shallow topsoil and stony subsoil). Furthermore, the

shallowest sensors at each site often had extremely dynamic data.

To achieve a consistent approach, only data from near-surface

soil water content sensor from the surface was used for model

calibration to identify behavioral parameter sets. As a result, for

the Waikato sites, the second sensor was used (located at depths

ranging from 185mm at Hingarae to 300mm at Otorohanga).

For the Canterbury sites, the hourly average soil water content

from all sensors no deeper than 300mm were used.

Model calibration

The purpose of model calibration was to establish what

model parameter sets were consistent with the measured field

data. This was done by adjusting the model parameters until

the model simulations match the observed field data. The

field data to be matched should reflect the desired use of the

model. In the current study, we wish to use the TopNet soil

water balance model primarily to predict surface runoff, plant

water stress, and drainage (in order to drive a catchment scale

hydrological model).

Calibration was performed using aggregated (daily) data.

This was the temporal resolution of the climate data (other than

precipitation) used to drive the TopNet model (stochastically

downscaled to an hourly time step), and a suitable time step

for matching the model predictions to the drainage data, since

in TopNet excess water drains immediately (within an hourly

timestep) but drainage occurs gradually in the monitored data.

No surface runoff observation data were available, but all of the

soils were deemed to likely have sufficient infiltration capacity, so

surface runoff was calibrated against a nominal value of 0mm.

Drainage was only measured and used for calibration at the

Canterbury sites.

Model calibration at each site was carried out following

the Bayesian calibration method described in Woodward

et al. (2020). Bayesian calibration identifies the distribution

of parameter sets for which the observed data have a high

likelihood of having occurred. The likelihood is conditioned by

prior assumptions about the parameter ranges. The resulting

(“posterior”) parameter sets express the uncertainty of the

calibration and can be used tomakemodel predictions including

uncertainty bounds.

The prior parameter ranges used for TopNet calibration are

given in Table 1. The model was calibrated to four observation
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FIGURE 4

Soil water content data at each site. Sensor depths (mm) are shown as colored labels.

time series at each site: daily mean soil water content (m3/m3),

difference in daily mean soil water content over successive

days (m3/m3/d), daily total drainage (mm/d), where available,

and daily total surface runoff (mm/d) (assumed to be always

zero). The standard errors of these measurements (sie, cie,

di
e, ri

e, respectively) were assumed to be 0.02, 0.005, 1.0,

and 1.0. Autocorrelation between the daily measurements was

discounted by weighting the likelihood components with equal

weights (ws, wc, wd, wr, respectively) of 1/30. It is assumed that

the residuals are not autocorrelated on a monthly (30 day) time

scale (see Schoups and Vrugt, 2010), following Woodward et al.

(2017).

The log-likelihood (LL) was then calculated as:

LL = ws

i=ns
∑

i=1

f (
soi − smi

sei
)+ wc

i=nc
∑

i=1

f (
coi − cmi

cei
)

+wd

i=nd
∑

i=1

f (
doi − dmi

dei
)+ wr

i=nr
∑

i=1

f (
roi − rmi

rei
) (1)

where:

• ws,wc,wd, andwr are weights (all equal to 1/30) to account

for auto-correlation between the residuals,

• ns, nc, nd, and nr are the number of hourly observations

for soil water content (s), soil water content change (c),

drainage (d), and surface runoff (r), respectively,

• si
◦, sim and si

e, are the soil water content observations (o),

model predictions (m), and errors (e), respectively,

• ci
◦, cim and ci

e, are the soil moisture change observations

(o), model predictions (m), and errors (e), respectively,

• di
◦, dim, and di

e are the soil drainage observations (o),

model predictions (m), and errors (e), respectively,

• ri
◦, rim, and ri

e are the surface runoff observations (o),

model predictions (m), and errors (e), respectively, and

• f(z) is the log probability density function (Student’s-t

distribution with 7 degrees of freedom, see Woodward

et al., 2020).

Calibration was carried out using BayesianTools (Hartig

et al., 2019) package in R (R Core Team, 2022) with three

independent DREAMZS chains run in parallel (each containing

three internal chains that give nine Markov chains in total) in
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increments of 10,000 samples, until the Gelman-Rubin MCMC

convergence statistic (Gelman and Rubin, 1992) was below 1.1

for all parameters. The last 10,000 samples from each of the

nine chains were then combined and taken as the posterior

distribution. The maximum a posteriori (MAP) parameter set

was also recorded, which is the parameter set corresponding to

themode of the posterior, and can be thought of as the parameter

set giving the best fit to the data and the prior (with the caveat

that the other posterior parameter sets may be quite different,

and yet give a fit that is almost as good). Plots were prepared

using the ggplot2 package (Wickham, 2016) in R.

Model performance evaluation

Model calibration performance was summarized by

calculating two measures of goodness of fit: root-mean-squared

error (RMSE), which is the standard deviation of the residuals,

and the Nash-Sutcliffe model efficiency (NSE) (Nash and

Sutcliffe, 1970), which is the proportion of the variation in the

data which is explained by the model. RMSE is measured in

the same units as the data and can be compared directly to

the assumed standard errors in Equation (1): if the RMSE is

much smaller than the standard errors of the data this indicate

overfitting, and if the RMSE is much larger than the standard

errors of the data this indicates underfitting. NSE is a more

popular measure of goodness of fit (being a generalization of

the coefficient of determination, R2) but is more difficult to

interpret. This is because NSE depends on the variation in the

data, whereas RMSE does not. NSE tends to be high when the

variation in the data is high, and low when the variation in

the data is low, regardless of model performance. NSE values

therefore cannot be compared across different data series.

Scaling S-map parameters

Following model calibration (Section Model calibration),

parameter upscaling was done based on data from the soil

parameter database S-map-hydro. This data was obtained by

using the field descriptions of the nine sites to enter nine site-

specific soil siblings into the S-map database. Pedo-transfer

functions were used to derive the estimates of water content at

seven tensions (McNeill et al., 2018). By fitting a Kosugi curve

to these estimates, other hydrological parameters can be derived,

e.g., hydraulic conductivity at saturation, Green-Ampt and other

TopNet parameters in Table 1 (Green and Ampt, 1911; Pollacco

et al., 2017). These soil parameters were extracted for each of the

nine sites at the 14 fixed depths described in Section The S-map

and S-map-hydro databases.

As described earlier, most soil water models for catchment

or regional scale application are not designed to use such high-

resolution data. These parameters must therefore be simplified

(“upscaled”) for application to larger scale simulations.

Following model calibration, the posterior distributions of the

model parameters (shown in Table 1) were compared with

the S-map-hydro parameters for the sites. Due to the small

number of sites, a simple upscaling relationship was developed

to estimate suitable TopNet parameters from the S-map-hydro

parameters (by matching the parameter distributions derived

during model calibration to the field data). This upscaling

scheme was based on data from flat, pastoral sites only, and

is provisional contingent on further validation in future. In

principle, the upscaling relationship can then be used to derive

suitable model parameters for other sites and allow TopNet

to be applied more widely to sites where high-resolution time

series data are not available.

Results

Soil water content measurements and
tension profiles

The soil water content-tension profiles for the nine

sites in the current study are shown in Figure 5 alongside

laboratory measurements made on cores. Superimposed on

these parameters and data are violin plots showing the soil water

content data ranges from the current study (by depth in blue,

and as summarized in black).

In general, the lab measurements of soil water content

match the S-map-hydro parameters at these sites, although there

are exceptions. In some cases, the 0 kPa (saturated) points

did not match well, and the range between −10 and 0 kPa

seems large. Since the S-map-hydro parameters were estimated

based on pedo-transfer functions from laboratory data, it is

not surprising that they might be inaccurate under saturated

conditions. The soil water content sensor data are generally in

the ranges expected from the S-map-hydro database and lab

measurements (the nominal range generally quoted for field

conditions is −1,500 to −10 kPa), however they are often in

the >-10 kPa range (drainable porosity) at Dorie, Larundel,

and Methven. At other sites the values are too low (near or

below −1,500 kPa) which should rarely happen in the field, e.g.,

Henderson, Otorohanga, Waihou, and Waitoa.

Fit to data

The calibrated model successfully reproduced the observed

patterns of soil water content and drainage data for all data sets.

For example, the fit to the Methven data is shown in Figure 6

(fits for other field sites along with their results are provided in

the Appendix). The four plots show soil water content (SOILM),

drainage (DRAINGE), surface runoff (INXSROF) and plant

water stress (STRESSMM), respectively. In each sub-plot, red

traces show the observed data (where available), blue shows
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FIGURE 5

Soil water content ranges with depth, comparing the uncalibrated soil water content probes (Figure 4, blue violin plots), with the S-map-hydro

parameter database (lines), and laboratory measurements (dots). The black violin plots show the range of soil water content data used for model

calibration, as described in the text.

the calibrated model traces, and gray shows the simulation

based on the upscaled parameter values (derived as explained

in Section Upscaling of soil hydraulic parameters). The large

numbers on the left of each plot gives the average values

of observed data, calibrated model and upscaled parameter

model, in red, blue, and gray, respectively. We desire that the

model faithfully reproduces the seasonal patterns of SOILM,

DRAINAGE, INXSROF and STRESSMM data, as well as the

annual totals (apart from the average SOILM value, since the

sensor data was uncalibrated).

Including the change in soil water content as an additional

calibration variable allowed the model to reproduce the short-

term dynamics of the observed soil water content trace, even

though the absolute match to the uncalibrated soil water content

sensors was less consistent, perhaps due to a combination of

instrument drift, which introduces measurement uncertainty,

and model parsimony. Drainage predictions were relatively

consistent with the observed data, although the model generally

was not able to represent summer drainage (as in a tipping

bucket model, drainage can only occur when the soil water

content exceeds field capacity, which is rare in summer). Surface

runoff was close to zero, as desired (this is assumed to be rare

in free draining soils) and water content stress patterns follow

climatic conditions with stress periods concentrated in summer.

The calibrated model vs. measured hourly soil water content

and drainage for the Methven site are shown in Figure 7, where

model values represent the median of the model predictions

for 10,000 realizations at each time step. The scatter around

this line indicates the model misfit, including any systematic

bias. The inclusion of soil water content change as an additional

“data” series allowed the modeled soil water content to generally

vary in a parallel direction to the 1:1 line. Modeled drainage

coincides with rainfall inputs, with only few cases where data and

model drainage occurred at different times, a situation which our

simple model is unable to reproduce.

Figure 8 shows the marginal posterior parameter

distributions for the calibrated model. Parameters with a

narrow posterior distribution were able to be determined

from the data. Parameters with a wide posterior distribution

matching the prior distribution were not able to be determined
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FIGURE 6

Model output after calibration to Methven data. Red, blue and gray traces indicate the data, calibration and upscaled prediction, respectively.

Colored numbers indicate annual averages or totals. Units: SOILM (m3/m3), DRAINGE (m/d), INXSROF (mm/d) and STRESSMM (m3/m3).

FIGURE 7

Calibration to Methven soil water content and drainage data. X-axis shows the median of the model predictions for 10,000 realizations at each

time step. The shaded area is the 95% region for the residuals. Units: SOILM (m3/m3), DRAINGE (m/d).

from the data. Correlations between the parameters can also

be checked using a “pairs” plot (see Figure A1). The median

parameter values are shown in Figure 8 as vertical lines, whereas

the maximum a posteriori (MAP) parameter set is shown as

blue dots. Although the MAP parameter set is technically

the “best fit”, in practice it is much better to use the entire

posterior distribution to represent the model calibration. The

MAP parameter set may be somewhat different to the median

posterior value, and model predictions based on the MAP

parameter set may also not be particularly near the median

predicted value. See Figure A2 for an example.

NSE and RMSE are given in Figure 9 for each of the four

calibration data series (uncalibrated soil moisture, change in soil

moisture, drainage and surface runoff). NSE is not defined for

surface runoff (since the daily runoff “data” were all zero); the

proportion of days with zero runoff was used instead (PZERO).

The perfect fit value (1) is shown as a dotted line on the NSE

and PZERO subplots. RMSE results for each data series were
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FIGURE 8

Calibration to Methven data. Parameter (see Table 1) prior distributions (dark green curve), marginal posterior distributions (light green vertical

bars), median values (dark green line), maximum a posteriori (MAP) values (blue dot) and upscaled values (black circle). The X-axis units for each

subplot are given in Table 1 and the Y-axis is density.

compared with the assumed standard errors for the four data

series, which were 0.02 (m3/m3), 0.005 (m3/m3/d), 1.0 (mm/d),

and 1.0 (mm/d), respectively; these are shown as dotted lines on

the RMSE subplots.

The low NSE for change in soil water content at Henderson

reflects the short time period and unusual pattern of the soil

water content data at this site (Figure 4). The Henderson soil

has a dense clay subsoil (Figure 5), which may result in soil

water content patterns that cannot be reproduced with the

current model.

The negative NSE for drainage at Larundel may reflect

differences in timing between observed and modeled drainage

events. Drainage data is difficult to calibrate to, because drainage

events are infrequent and flashy. Furthermore, the model can

only simulate drainage on the same day that rainfall or irrigation

occurs, whereas in reality, drainage may be delayed and/or

continue for several days. Even though the RMSE for drainage

at this site is not particularly high, the negative NSE indicates

that it is higher than the standard deviation of the drainage

data. Nevertheless, the pattern of soil water content change and

drainage were reasonably simulated at this site, and the average

annual drainage was matched reasonably well. This suggests that

the negative NSE value is not of concern, and highlights the

difficulty of interpreting NSE values in isolation.

Overall, the model fits were reasonable at all sites. The

absence of drainage data at the Waikato sites however could

result in unrealistic drainage predictions at these sites. This was

assessed (below) by comparing the annual predictions across

all sites.

The predictive performance of the model calibration across

all nine sites was assessed in a simple way by comparing the

annual mean or total values of the variables shown in Figure 6

with the field data. The results are shown as filled triangles in

Figure 10 (all nine sites had soil water content data, and the four

Canterbury sites also had drainage data). As measured soil water

content data are uncalibrated, we present plots of calibration

vs. measurements (triangles) and calibration vs. upscaled values

(circles), rather than data vs. upscaled. However, calibration

did a good job of recreating the mean soil water content

(SOILM) at each site (although these are uncalibrated sensor
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FIGURE 9

Good of fit across at sites. Nash-Sutcli�e model e�ciency (NSE), proportion of zero values (PZERO, for surface runo� only), and

root-mean-squared error of predictions (RMSE) for each of the four calibration data series (soil water content, change in soil water content,

drainage and surface runo�). Dotted lines show 1 for NSE and PZERO and assumed standard error for RMSE (see Equation 1).

measurements). It also did a good job of reproducing the annual

drainage (DRAINGE) at the Canterbury sites. The accuracy

of the drainage predictions at the Waikato sites is unknown,

however. Simulated surface runoff (INXSROF) was also low at

all sites, as required.

These results give us confidence that the calibrated

parameter distributions at each site (e.g., Figure 8) can be used

as the basis for developing an upscaling scheme.

Upscaling of soil hydraulic parameters

The calibrated model parameters were used to develop a

simple parameter upscaling scheme to parameterise TopNet

(Table 1) for these and other sites (i.e., a transferable method).

The posterior parameter distributions for all sites are shown as

boxplots in Figure 11. The upscaling scheme is as follows:

• Some parameters were insensitive to the site data,

and so could be reasonably set to constant values:

HYDCON0 = 0.05 m/s, ZBARH2O = 1.25m, SOILH2O

= 0.5m, RPAWSTR= 0.75, TOPMODF= 10m, GA_PSIF

= 0.25m, CH_CEXP = 40, zsoil = 0.75m (where

zsoil = effective soil depth = SOILCAP / (DTHETA1

+ DTHETA2).

• The soil water content parameters DTHETA0, DTHETA1

and DTHETA2 were set from the S-map-hydro soil

moisture tension points for the near-surface soil layers

(see Figure 5 and Section Data preparation). DTHETA0

is not required for model simulations (it is only used for

calibration to field data); nevertheless, it was set to the

soil water content at −1,500 kPa tension. DTHETA2 was

set to the difference between the soil water content at

−20 and −1,500 kPa. DTHETA1 was set to the difference

between the soil water content at −5 and −20 kPa (this

difference yielded the best results). Assuming an effective

soil depth (zsoil) of 0.7m for all sites, this resulted in

SOILCAP= zsoil ∗(DTHETA1+DTHETA2) values which

were similar to the calibrated values across all sites as shown

in Figure 11.
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FIGURE 10

Calibration and upscaling performance. Model annual summaries compared with data [triangles: mean soil water content (SOILM) (m3/m3) at

nine sites, and total drainage (DRAINGE) (mm/y) at four sites] and predictions of these variables as well as INXSROF (mm/d) and STRESSMM

(m3/m3) based on upscaled parameters (circles).

• RPAWSTR is the proportion of DTHETA2 below which

plant water stress occurs, this was set to a constant value

of 0.75 (as all sites are covered by grass).

The upscaled parameter values are shown as black dots in

Figure 11. These parameters were used to generate the gray

colored simulations in Figure 6, and shown by black circles in

Figure 8.

The overall performance of the parameter upscaling across

all nine sites was assessed by comparing the annual mean or

total values of the variables shown in Figure 6 with the calibrated

prediction and with the field data. The results are shown as

open circle in Figure 10, which shows the upscaled mean soil

water content (SOILM) was not strongly related to data, as these

were uncalibrated. However, as shown in Figure 11 the upscaled

soil water parameters (except DTHETA0, which is not required

for model simulations) do match the S-map-hydro parameters.

Drainage predictions from the model using upscaled parameters

closely matched the field data, and the calibrated model at sites

where no field data was available. In general, drainage was much

higher at the Waikato sites, despite the Canterbury sites being

relatively shallower and irrigated. This could be explained by

higher Waikato rainfall compared to Canterbury, which average

annual rainfall is approximately half that of Waikato. Predicted

surface runoff was low at all sites except Otorohanga. Drainage

was also high at Otorohanga, while water stress was low; these

results reflect the very high rainfall at this site (see Table 4).

Water stress (STRESSMM) was relatively low at the irrigated

Methven, Doire and Larundel sites, as well as at the Hingarae

site. Stress was predicted to be higher at the Waikato’s Waihou

and Waitoa sites, but Omarama is surprising, since it was

irrigated. The very high stress at Henderson may reflect the clay

soil at this site, with a low plant water availability, as well as the

data period which ran over a very dry summer (2017–2018).

Discussion

This work showed that a simple upscaling technique

can be developed to parameterise a single-layer soil water
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FIGURE 11

Calibrated and upscaled parameters for all sites. Boxplots show the marginal posterior parameter distributions corresponding to Figure 8.

Upscaled parameter values derived from the S-map-hydro soil database (as described in the text) are shown as black dots. The Y-axis units for

each subplot are given in Table 1.

balance module frommultilayer (high resolution) data. Previous

research (Bresler and Dagan, 1983; Iversen et al., 2001) has

illustrated how effective soil water parameters vary with scale.

For this reason, we used a calibration scheme to identify the

relevant parameters that reflect the system behavior at the

scale of interest. Identifying soil parameters using a calibration

scheme, however, requires accurate observed data to reduce

uncertainty. We used a range of soil water measurements (soil

water content); water flux estimates (runoff and drainage); and

second order variables (e.g., change in soil water content);

to ensure that the calibration scheme resulted in an accurate

water balance and associated parameter values. Use of the

Bayesian calibration method (Woodward et al., 2020) allowed

identification of the most sensitive parameters for soil water

content prediction. The Bayesian calibration scheme was used

to develop both the “best fit” maximum a posteriori (MAP)

parameter set, and a posterior parameter distribution which was

utilized for subsequent development of scaling functions. Given

the uncertainty of the extent of water flow in the unsaturated

zone [primarily due to soil structural heterogeneity and spatial

variability (Mallants et al., 1996; Tuli et al., 2001)], use of

a posterior distribution allowed incorporation of a range of

parameter values rather than using a single parameter set.

The posterior parameter distribution developed for model

calibration was used to provide a simple parameter upscaling

scheme. Our approach aligned with previous research which

have shown that complex small-scale perturbations are reduced

at larger scales (Vogel and Roth, 2003; Vogel, 2019). The

scaling scheme used to determine “initial” effective parameters

for the TopNet model are suitable for simulating multiple

soil water properties (e.g., soil water content, drainage and

runoff). While the use of observed data is paramount

for generating credible soil water parameter values, various

configurations of field instruments (soil water content sensors)

at the different sites made it difficult to establish a consistent

approach across all sites for which measurements were available.

For example, soil water content sensors were available for

depths up to 1,000mm at some sites but just 400mm at

other sites. To overcome the challenge posed by various

configurations of field instruments, and to develop a consistent

approach, only data from near-surface soil water content

sensors were used. Again, to be consistent within the upscaling
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scheme, only S-map-hydro data from near-surface soil layers

were used.

It is likely that some of the uncertainty associated with the

upscaled parameters is due to the practical limitations imposed

by the different configuration of field instruments at each site.

While use of the near-surface soil layers does not provide

conclusive evidence that the scheme is accurate for the whole

profile, we consider that the near-surface dynamics are more

important for downward water movement in free draining soils

and influence change in soil water behavior in deeper layers

within the root zone. However, given the potential uncertainty

with the model parametrisation process the upscaled parameters

may be treated as “initial representative” parameters, which

can be adjusted (preferably within the posterior distribution

range described above) during the calibration of the larger

hydrological model (i.e., not just the soil water balance

submodule). This is also important as field data may not closely

match parameters from large scale databases such as S-map-

hydro (as shown in Figure 5). Further, as soil heterogeneity exists

at all spatial scales and drives most of the parameter uncertainty,

the value of soil water properties determined by using measured

data at any site should be treated as estimates for other sites, even

for soils of the same (soil) series.

Another limitation of the upscaling scheme demonstrated

in this study is that the upscaled S-map-hydro parameters

cannot be directly used in other hydrological models. For

example, the derived parameters would likely need to be altered

for use in models with more than one-layer, e.g., the 2-layer

LISEM model (De Roo et al., 1996). Our methodology used

a Bayesian calibration approach to identify the effective soil

water parameters at the scale of interest, and TopNet’s soil

water balance submodule for calibration. However, the inverse

Bayesian calibration and upscaling technique used here can be

used for other models using a similar approach.

Other study limitations include: case studies represent only

flat grassland, only nine sites were used (i.e., small sample

size), soil moisture data used are uncalibrated, drainage data

not available at some of the sites, and surface runoff was not

measured to close water balance.

The upscaling scheme described in this study develops

suitable vertical parameters for the single layer bucket

submodule of the TopNet model. However, TopNet is a

catchment scale hydrological model. Thus, the suitability of the

vertical point-scale soil water parameters at catchment scale

needs be further investigated in the future. Further research can

also include extending the upscaling framework developed here

to other vegetation or land use types, non-free draining soils,

soils with contrasting layers down the vertical profile, and use

of deeper soil water content data (if available), rather than only

from near-surface soil layers.

Conclusion

A Bayesian-based upscaling technique was developed

to determine suitable single-layer soil water parameters

for a catchment hydrology model, TopNet, based on

high resolution S-map-hydro parameters. The technique

included two steps: (1) inverse modeling using Bayesian

calibration to identify behavioral parameter sets; and

(2) an upscaling scheme to estimate suitable soil

hydraulic parameters.

In the first step, the single-layer soil-water submodule

from TopNet was calibrated using observation data: rainfall,

potential evapotranspiration, soil water content, and drainage

data. Surface water runoff was assumed to be zero on the

free draining soils. The data were also used to develop sets

of “best fit” model results and associated posterior parameter

distributions. Using the Bayesian calibration process, with

10,000 parameter samples, observed patterns of soil water

content change and drainage were able to be simulated

reasonably well. However, the model unsurprisingly failed to

replicate the exact timing of drainage peaks. This is because

the single layer soil module simulates drainage in the same

timestep (day) that rainfall or irrigation occurs, even though

drainage may actually be delayed or occur over several

days. Eleven parameters were considered in the calibration

process, however, only eight TopNet parameters were found to

be sensitive.

In the second step, a simple parameter upscaling scheme

was developed using the posterior distribution of parameters

obtained from the calibration procedure described above. Based

on S-map-hydro data for the near-surface soil layers, the soil

water content parameters of TopNet (DTHETA0, DTHETA1,

and DTHETA2) were determined. DTHETA0 represents soil

water content at permanent wilting point and was set equal

−1,500 kPa (though it was not required for model simulation).

Plant available soil water content parameter (DTHETA2) was set

to equal the difference between soil water content at tension−20

and−1,500 kPa. DTHETA1, which represents the drainable soil

water content, was set to equal the difference between soil water

content at tension−5 and−20 kPa. The scaling scheme showed

that 0.75 was a suitable value for the relative plant available water

at stomatal closure (RPAWSTR) at all nine of the sites modeled.

The upscaling scheme developed in this study demonstrates

the effectiveness of combining Bayesian calibration and

upscaling to make defensible predictions at ungauged sites. The

upscaled model gave realistic predictions of soil water content,

drainage, surface runoff, plant water stress patterns and annual

totals compared with the field data and the calibrated model.

The method could be extrapolated to additional sites where

S-map-hydro parameters are available.
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Glossary

DTHETA0 Volumetric (m3/m3) water content at permanent wilting

point in the TopNet model. Soil profile is very dry and no

soil water is available for plant extraction below –1,500 kPa.

DTHETA1 Drainable soil water content parameter in the TopNet model

(mm or m3/m3).

DTHETA2 Plant available soil water content parameter in the TopNet

model that reflects the soil’s capacity down to the rooting

depth of the crop to hold water that is available for the crop

to use (mm or m3/m3).

INXSROF Surface runoff parameter in the TopNet model.

PET Potential evapotranspiration. Water lost by soil evaporation

and crop transpiration (mm/day).

RPAWSTR Parameter in the TopNet model that represents the relative

plant available water at stomatal closure (dimensionless,

often expressed as a percentage).

S-map New Zealand’s national digital and multi-layer soil database.

S-map-hydro S-map soil hydraulic database that contains data for up to six

functional horizons at 150× 150 m spatial grid.

SOILCAP Parameter in the TopNet model that represents soil’s

capacity to hold water (=zsoil *[DTHETA1 + DTHETA2]).

SOILM soil moisture content variable in the TopNet model.

STRESSMM Plant water stress variable in the TopNet model.

TopNet Catchment-scale rainfall-runoff model built in New Zealand

on the concepts of the TOPMODEL (Beven and Kirkby,

1979; Beven et al., 1995).

zsoil Effective soil depth parameter in the TopNet model (mm).

Appendix

Appendix A: TopNet point-scale soil
water balance model formulation

There are two components of storage of water considered

in TopNet as soil column: canopy storage (Sc) and soil or

root zone storage (Sr). The movement of water in time t into

and out of those storages is described by the following two

differential equations:

dSc

dt
= p− pt − ec (A1)

dSr

dt
= i− er − d (A2)

For each discrete time step 1t, the individual equations above

are solved in order from top to bottom, not simultaneously to

greatly reduce computation time.

Canopy storage

The time rate of change in canopy storage (Ibbit, 1971) is

simulated as:

dSc

dt
= p− pt − ec (A3)

where p is the precipitation rate above the canopy, pt is the

rate of throughfall out of the canopy, and ec is the rate of

evaporation from the canopy. Precipitation rate p and the

potential evapotranspiration rate are used as model inputs, while

throughfall pt and canopy evaporation ec are modeled as a

quadratic function of canopy storage.

The rate of through fall, pt is calculated as

pt = pf (SC) (A4)

where

f (SC) =
Sc

Cc

(

2−
Sc

Cc

)

(A5)

and Cc is the water holding capacity of the canopy (CANSCAP

parameter in Table 1) and f(Sc) represents the fraction of the leaf

area that is wet (relative to its maximum).

Canopy evaporation, ec is calculated as

ec = epotcrf (SC) (A6)

where cr is a parameter (CANENHF parameter in Table 1) used

to quantify higher evaporation losses from interception relative

to the potential evapotranspiration rate epot , that is computed

using the Priestly-Taylor method (Priestley and Taylor, 1972),

with radiation terms estimated empirically using the methods in

(Shuttleworth, 1993).

Soil storage

The soil or root zone equation is

dSr

dt
= i− er − d (A7)

where i is the infiltration rate, er is the soil evaporation rate and

d is the rate of drainage below the root zone to the aquifer.

Infiltration

The infiltration rate i is limited by the canopy throughfall

rate pt minus the evaporation rate of the throughfall et , and the

maximum infiltration rate i max.

i = min
[

imax, pt − et
]

(A8)
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where the evaporation from throughfall is determined by

the potential evaporative demand (epot-ec) not met by the

canopy evaporation

et = min
[

epot − ec, pt
]

(A9)

The maximum infiltration rate, i max, is modeled using a (Green

and Ampt, 1911) formulation

imax = K0e
−zf
m

zf +9f

zf
zf < zr (A10)

where Ψf is the Green-Ampt wetting suction (GA_PSIF

parameter in Table 1), zf is the depth of the wetting front and

zr is the soil depth. The parameters K0 (HYDCON0 parameter

in Table 1) and m (inverse of TOPMODF parameter in Table 1)

define the vertical saturated hydraulic conductivity profile of the

subsurface (Beven et al., 2021). When zf reaches zr the soil is

completely saturated and i max =0. The depth to the wetting

front is approximate by

zf =
Sr

θsat
(A11)

where Sr = θzr, and θ and θsat are the relative soil water

contents at actual and saturated condition, respectively.

Soil evaporation

Evaporation from the soil, er, is driven by the potential

evaporative demand not met by either the canopy or throughfall

evaporation, or epot-(ec+et). It is a function of the relative

water content

et =
(

epot − ec − et
)

min





θ

R∗pawθpa
, 1



 (A12)

Where θpa is the plant available relative water content when

the available water storage is saturated and R∗paw is the relative

plant available water at stomatal closure (RPAWSTR parameter

in Table 1).

Drainage

The drainage rate, d, is a power function of the relative soil

water content and is given by

d = Krθ
c (A13)

where Kr is the saturated hydraulic conductivity at zr

(bottom of the soil layer) and the exponent c (CH_EXP

parameter in Table 1) is a function of the unsaturated

hydraulic properties of the soil. The value of Kr is

calculated as

Kr = Kr0e
−

zr
m (A14)

Appendix B: Additional results

The “pairs” plots that were used to check the correlation

between parameters calibrated to soil water content and

drainage data, and calibrated TopNet model simulations to

the observations for the Methven site are presented below.

Similar results along with calibration and upscaling results

for other field sites are available for download: https://www.

dropbox.com/s/iawctg8o5fl50mk/Supplementary%20Material_

Upscaling%20Smap%20hydro.pdf?dl=0.

Figure A1 illustrates the use of a “pairs” plot to check

the correlation between parameters calibrated to soil water

content and drainage data (for the Methven site). Colinear

parameters may appear poorly identified in the marginal

posterior plot (Figure 8) but the colinear combination with

another parameter may actually be well identified, indicating

that two parameters being correlated. On the other hand, non-

correlated parameters are also useful, as these can be determined

independently.

Figure A2 shows the model simulations for the TopNet

model calibrated to the Methven data (which are shown in the

red DRAINDATA and SOILMDATA traces). Model predictive

uncertainty is shown for serval variables, including ZBARH2O,

which is the depth to groundwater (mm). ZBARH2O is

interesting because it illustrates that the model simulation using

the maximum a posteriori (MAP) parameter set (shown in dark

blue) may be quite different from the median of the ensemble

simulation using all the posterior parameter sets (shown in

medium blue). In this case the prediction of ZBARH2O is quite

uncertain, but the uncertainty is not symmetrical; the median

prediction lies between 1 and 2 metres deep, whereas the MAP

prediction is deeper at 1.5 to 2.5 metres deep, as well as having a

greater range. This shows that, while reporting the MAP results

might appear to be an attractive way to summarise a calibration,

these results can be biased in some situations.
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FIGURE A1

Correlation between parameters calibrated to Methven soil water content and drainage data.
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FIGURE A2

TopNet model simulations calibrated to Methven soil water content and drainage data, with calibration in dark blue, observation data in red,

S-map-hydro in grey, and median of the ensemble simulation in medium blue.

Frontiers inWater 24 frontiersin.org

https://doi.org/10.3389/frwa.2022.986496
https://www.frontiersin.org/journals/water
https://www.frontiersin.org

	Upscaling point-scale soil hydraulic properties for application in a catchment model using Bayesian calibration: An application in two agricultural regions of New Zealand
	Highlights
	Introduction
	Aims

	Materials and methods
	The S-map and S-map-hydro databases
	Point-scale soil water balance model
	Case study sites
	Waikato sites
	Canterbury sites

	Data preparation
	Model calibration
	Model performance evaluation

	Scaling S-map parameters

	Results
	Soil water content measurements and tension profiles
	Fit to data
	Upscaling of soil hydraulic parameters

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References
	Glossary
	Appendix
	Appendix A: TopNet point-scale soil water balance model formulation
	Canopy storage
	Soil storage
	Infiltration
	Soil evaporation
	Drainage
	Appendix B: Additional results



