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Abstract. The search for a dyslexia diagnosis based on exclusively
objective methods is currently a challenging task. Usually, this disorder
is analyzed by means of behavioral tests prone to errors due to their sub-
jective nature; e.g. the subject’s mood while doing the test can affect the
results. Understanding the brain processes involved is key to proportion-
ate a correct analysis and avoid these types of problems. It is in this task,
biomarkers like electroencephalograms can help to obtain an objective
measurement of the brain behavior that can be used to perform several
analyses and ultimately making a diagnosis, keeping the human interac-
tion at minimum. In this work, we used recorded electroencephalograms
of children with and without dyslexia while a sound stimulus is played.
We aim to detect whether there are significant differences in adaptation
when the same stimulus is applied at different times. Our results show
that following this process, a machine learning pipeline can be built with
AUC values up to 0.73.
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1 Introduction

Developmental Dyslexia (DD) is a learning disorder with an estimate prevalence
of 7% [17]. It is characterized by slow and inaccurate word recognition and by
poor spelling and decoding abilities, despite individuals having adequate intel-
ligence and sensory abilities. Diagnosis is usually made by means of behavioral
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tests. These tests, although performed by specialists, are not free from human
error. For example, children’s mood can affect results and the test analysis is
subjective to some degree. In addition, this type of testing can only be done by
children who already have writing and reading skills, thus limiting the impact
of a possible intervention. This is why approaches using biomarkers are stud-
ied; they are an objective way to obtain information of the processes underlying
the disorder and at the same time provide a method to diagnose those children
in pre-read age, giving the opportunity to make an early intervention. Several
biomarkers such as those obtained from electroencephalograms (EEG) and mag-
netoencephalograms (MEG), among others, have been used in the literature to
further study the disorder and its causes. Additionally, it is common to derive
connectivity metrics from these markers to determine how brain areas collabo-
rate. A review of some of these metrics can be found in [10]. In this work, we use
spectral phase lag index (PLI) that it is described in more detail in the methods
section.

As mentioned above, the use of biomarkers such as EEG and MEG is widely
used in the search for answers in neurological disorders and brain behavior.
Proof of that are the works [1,2,8,9,13] where the signal brains are used to
explore different diseases such as Alzheimer’s disease, Parkinsonian syndromes
or epileptic disorders. In a closer approach to this work, where auditory stim-
uli are used to trigger a reaction in the brain in the study of DD, Molinaro
et al. [14] found that atypical neural entrainment at different rates may arise in
affected subjects. Other works try to found the origin of DD is caused by the
atypical synchronization in the right hemisphere [4,6]. Typically, these works
are based on composing a set of features, from the entire EEG and comparing
the differences between groups, without taking into account the possible brain
adaptation of the brain over time.

In this work, we hypothesize that a stimulus adaptation must occur and
be different in the control group and the dyslexic one, thus providing a way
to differentiate both groups. This has to be reflected by a change in the brain
behavior that can be analyzed through EEG signals. The metrics used here are
typically used to measure the degree of synchronization between different EEG
channels and bands, whereas in this work we take a different approach. Instead,
we split the EEG in several segments and compute the same metrics this time
between different segments representing different time slots.

The rest of the paper is organized as follows: In the next section, the materials
and methods used in this work are explained, as well as the data acquisition.
In addition, the synchrony metric is presented and the classification pipeline
is detailed. The next section shows the results obtained applying the so-called
methodology, and in the last section are discussed.
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2 Methods

2.1 Data

The EEG data was recorded1 by the Leeduca group at the University of Málaga.
The signals were recorded by a Brainvision actiCHamp Plus with a 32 channels
amplifier with a sampling rate 500 Hz. The montage 10–20 standardized system
can be consulted in Fig. 1. EEG were obtained while several auditory stimuli
were presented to the subject. These stimuli consisted of white noise, amplitude
modulated at 4.8 Hz, 16 Hz and 20 Hz. They were presented to the subject in
2.5-min sessions each in the next order: 4.8 Hz–16 Hz–20 Hz–20 Hz–16 Hz–4.8 Hz
for a total of 15 min. Stimuli were determined by expert linguistic psycholo-
gists studying the main frequency components present in voice, corresponding
to syllables and phonemes.

Fig. 1. Electrode montage in the extended 10–20 system used in the experiments. All
32 channels plus GND. Cz is used as reference.

In the next table we show the subjects recorded in this experiment. They were
extracted from a cohort (N = 700) of children from different primary schools of
Andalućıa (Spain). Comorbidities with other neurodevelopmental disorders such
as Language Impairment (LI), Speech Sound Disorder (SSD), Attention Deficit
Hyperactivity Disorder (ADHD), Autism, and other auditory or visual sensory
deficit disorders were taken into account in the screening process, along with
information about other relevant conditions which can affect reading achieve-
ment, as immigration or bilingualism [3] (Table 1).
1 The study was carried out with the understanding and written consent of each

child’s legal guardian and in the presence thereof, and was approved by the Medical
Ethical Committee of the Malaga University (ref. 16-2020-H) and according to the
dispositions of the World Medical Association Declaration of Helsinki.
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Table 1. Database. Age range: 88–100 (t(1) = −1.4, p > 0.05).

Group Male/Female Mean age (months)

Control 17/15 94.1 ± 3.3

Dyslexia 7/9 95.6 ± 2.9

The raw EEGs were preprocessed in order to remove eye-blinking artifacts
related as well as impedance variations due to movements. Also, ocular arti-
facts were removed by source separation using Independent Component Analy-
sis (ICA) [11]. Finally, all channels were reference to the Cz channel and band-
pass filtered by means of a finite response filter (FIR) to extract 5 different
brain waves: Delta, 1.5–4 Hz; Theta, 4–8 Hz, Alpha, 8–13 Hz; Beta, 13–30 Hz;
and Gamma, 30–80 Hz.

2.2 Connectivity Metric

As stated in the introduction section, there are several metrics that can be used
to assess the connectivity. These metrics represent the synchronization strength
between two signals. When both signals are from distinct brain areas, this can
be seen as a measurement of cooperation between the areas, allowing a way of
studying the brain behavior. However, in this work, we use them to compare the
same signal at different times.

Phase Lag Index. Phase Lag Index (PLI) is defined as follows:

PLIxy =
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where imag(Stxy) is the imaginary part of the cross-spectral density at time
t and sgn is the sign function (−1 for negative values, +1 for positive val-
ues and 0 for zero values). The cross-spectral density Stxy can be computed
as Stxy = abs(x)abs(y)eiθx − θy. This is a metric that mitigates the effects of
volume conduction. That is, spurious connectivity caused by the recording of the
same source by two different electrodes [18]. These connections will have phase
lags of zero or π.

Hilbert Transform. Usually, the connectivity metrics use the instantaneous
amplitude or phase, that can be computed from the analytic version of the raw
(time) signal. This is a complex version of the signal obtained by means of the
Hilbert Transform (HT). Once computed, it is possible to obtain the instanta-
neous amplitude and phase. Instantaneous frequency can be also obtained by
differentiating the instantaneous phase. Hilbert Transform is defined as follows:

H[x(t)] =
1
π

∫ +∞

−∞

x(t)
t − τ

dτ (2)
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and the analytic signal zi(t) for a signal x(t) can be obtained as

zi(t) = xi(t) + jH{xi(t)} = a(t)ejφ(t) (3)

From zi(t), it is straightforward to compute the instantaneous amplitude as

a(t) =
√

re(zi(t))2 + im(zi(t))2 (4)

and the instantaneous, unwrapped phase is

φ(t) = tan−1 im(zi(t))
re(zi(t))

(5)

2.3 Classification Pipeline

After processing the EEGs as shown in Sect. 2.1. The next steps in the pipeline
are summarized in Fig. 2 and are as follows:

– First, we split and compute the metrics for each subject. We split the signal
into 10 segments. That is, for each subject, we have 2 sets 40 Hz EEG records.
We call 40 Hz UP (obtained by applying the auditory stimuly in an ascending
frequency way, up 40 Hz) 40 Hz DOWN (obtained during the application of
auditory stimuli in a descending frequency way, down to 4.8 Hz). Each one
composed of 32 EEG channels, filtered to obtain 5 different bands. Following
this method, we compute the metrics described in Sect. 2.2 between the first
segment and the rest of them by pairs, thus obtaining 9 metric values for
every channel and band.

– The following steps are done inside a cross-validation loop:
• In this step, we performed the selection of the best channels and bands

separately for the dyslexic and control groups. We do this by an anomaly
detection approach using a one class support vector machine (OCSVM).
The goal is to detect which channels present significant differences
between the applications of the different stimuli, 40 Hz [UP—DOWN].
For each channel and band, we train a OCSVM with the UP data and test
it with the DOWN data. If there are differences, the DOWN data should
be detected almost entirely as outliers. To ensure that those anomalies are
not occurring by chance, a permutation test is performed. The criterion
is based on the following equation:

PERMS + 1
N + 1

(6)

where N is the number of permutation test run (1000) and PERMS are
the number of those permutations whose classification score is equal or
higher than the ground classification score. The threshold at which we
consider a channel significant is 0.05.
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• The last stage is the classification with two different classifiers: KNeigh-
borsClassifier and Support Vector Machine (SVM). We take the most sig-
nificant channels from the previous step and use them to create a mask
that is applied to the dataset. The significant channels are multiplied by
1 and non-significant by 0. In order to avoid biasing the data, the mask
for dyslexia and the control group is applied to each subject regardless of
the group to which he or she belongs, although data are duplicated.

Fig. 2. Pipeline overview. The classification task is done per band and for every stim-
ulus (40 HzUP, 40 HzDOWN).

3 Results

In this section, the results of applying the methods of the last section are pre-
sented. We carried out experiments exploring all the possible combinations of
bands and classifiers for 40 Hz stimulus. The classification strategy follows a
cross validation pattern with 5 folds. This is true for both, mask and classifica-
tion stage (Fig. 2).

In Table 2 the results of these combinations are shown. The best overall
values are obtained in the Alpha band. Although both of the classifiers used
show similar AUC results, KNN discriminates better between both groups, thus
yielding better sensitivity values. This is better seen in the Fig. 3.
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Table 2. Results

Band Classifier AUC Sensitivity Specificity Accuracy

Alpha KNN 0.76 ± 0.15 0.82 ± 0.15 0.76 ± 0.18 0.73 ± 0.11

SVM 0.71 ± 0.15 0.07 ± 0.13 0.97 ± 0.07 0.71 ± 0.07

Beta KNN 0.48 ± 0.06 0.20 ± 0.25 0.78 ± 0.25 0.60 ± 0.12

SVM 0.54 ± 0.13 0.00 ± 0.00 1.00 ± 0.00 0.71 ± 0.05

Delta KNN 0.50 ± 0.13 0.20 ± 0.27 0.89 ± 0.17 0.69 ± 0.11

SVM 0.59 ± 0.11 0.00 ± 0.00 1.00 ± 0.00 0.71 ± 0.05

Gamma KNN 0.66 ± 0.13 0.47 ± 0.45 0.79 ± 0.18 0.67 ± 0.05

SVM 0.37 ± 0.14 0.20 ± 0.4 0.80 ± 0.4 0.60 ± 0.20

Theta KNN 0.46 ± 0.09 0.00 ± 0.0 0.91 ± 0.17 0.65 ± 0.11

SVM 0.54 ± 0.09 0.00 ± 0.00 1.00 ± 0.00 0.71 ± 0.05

Fig. 3. ROC comparative between KNN and SVM for the Alpha band

4 Discussion

The proposed method seeks to find differences in adaptation through time of
the brain when exposed to certain stimuli. To this end, a metric usually used to
determine the synchronization of different brain regions is applied but between
different time instants instead. First, we get the most discriminative channels
and bands through an anomaly detection approach. Then, a mask is applied to
the entire dataset to highlight these channels and bands and proceed with the
classification stage. The results show the best values for the Alpha band and
using a KNN classifier.



20 M. A. Formoso et al.

Table 3. Comparative table

Method Channels Accuracy Sensitivity Specificity AUC

MRI + SVC [19] T1-MRI 0.8 ± * 0.82 ± * 0.78 ± * *

MEG + SVC + GC [5] 253 0.63 ± 0.04 0.64 ± 0.04 0.65 ± 0.04 *

MEG + SVC + GE [5] 253 0.94 ± 0.02 0.93 ± 0.01 0.93 ± 0.02 *

MEG + SVC + CI [5] 253 0.80 ± 0.01 0.80 ± 0.02 0.79 ± 0.02 *

MEG + SVC + wIFCG [5] 253 0.97 ± 0.01 0.96 ± 0.02 0.95 ± 0.02 *

EEG + SVC [16] (Writing) 32 0.59 ± * 0.64 ± * 0.53 ± * *

EEG + SVC [16] (Typing) 32 0.78 ± * 0.88 ± * 0.66 ± * *

EEG + OCSVC [15] 32 0.71 ± * 0.53 ± * 0.78 ± * 0.79 ± *

EEG + DAE [12] 32 0.56 ± * 0.76 ± * 0.66 ± * 0.74 ± *

Proposed (EEG + KNN) 32 0.73 ± 0.15 0.82 ± 0.15 0.76 ± 0.18 0.73 ± 0.11

Although the majority of works focused in dyslexia are based on an
exploratory analysis, it is worth noting the efforts made in the search of an
automatic diagnosis method using biomarkers. In Table 3 our method is com-
pared with previous ones in this context. Works varying in the use of biomarkers
from using structural imaging [19], MEG [5] to EEG [7,12,15,16]. The best val-
ues are often found when the features are extracted from MEGs, but it requires
a 252 channel acquisition system, and MEG data is usually harder to obtain.
Works using EEG like in [16] use interactive task like writing and typing, lim-
iting the diagnosis age like the behavioural tests. The use of auditory stimuli
overcomes this limitation and avoid possible bias introduced by the task. Works
in which these kinds of stimuli are applied are found in works [12,15]. Although
all of them search for the differences/synchrony in between several brain regions
at a same time instant, unlike our work.

5 Conclusions

In this work, we present a method to detect differences in how dyslexic children
vs non-dyslexic adapt to auditory stimuli at different frequencies (4.8 Hz, 16 Hz,
20 Hz) while recording an EEG. The same frequency stimulus were presented
to the children twice. Then, we measure the synchrony through time at both
stimulus application and seek for differences in adaptation. To this end, PLI is
used as connectivity metric and a two steps pipeline is built to automate the
classification process. The first step is an anomaly detection approach step to
detect which channels and bands present the most significant differences, and
the last step being a classification step. We found that there are differences in the
Alpha band that allow a classifier to distinguish between control and dyslexic
group with sensitivity values up to 0.82, specificity up to 0.76 and AUC of
0.76. These differences imply that dyslexic children adapt different when certain
stimulus is applied to them and afterwards.

As a future work, a more intensive exploratory analysis of the rest of the
stimuli is planned, as well as try other metrics others than PLI.
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