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Abstract

In real world, it is very common that some objects or concepts have properties with a time-variant or time-
related nature. Modelling this kind of objects or concepts in a (relational) database schema is possible,
but time-variant and time-related attributes have an impact on the consistency of the entire database and
must be appropriately managed. Therefore, temporal database models have been proposed to deal with
this problem in the literature. Time can be affected by imprecision, vagueness and / or uncertainty, since
existing time measuring devices are inherently imperfect. Additionally, human beings manage time using
temporal indications and temporal notions, which may also be imprecise. However, the imperfection
in human-used temporal indications is supported by human interpretation, whereas information systems
need appropriate support in order to accomplish this task. Several proposals for dealing with such imper-
fections when modelling temporal data exist. Some of these proposals transform the temporal data into
a compact representation but there is not a formal model for managing and handling uncertainty regard-
ing temporal information. In this work we present a novel model to deal with imprecision in valid-time
databases together with the definition and implementation of the data manipulation language, DML.
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1. Introduction

The concept of time is very complex to handle and
interpret 27,45, though it is very natural and om-
nipresent in real world data. As information systems
attempt the modelling of natural objects, concepts
or processes, they often require modelling temporal
aspects or concepts. Thus, several proposals have
arisen to obtain theoretical models that allow the

modelling or representation of time 3,8.

A very specific type of information systems are
database systems. A database contains data repre-
senting real objects or concepts. In real world, some
aspects or properties of objects are time-variant or
time-related. E.g., the moment of a bank transac-
tion and the status of an employee in a company, are
time-related and time-variant notions, respectively.
A temporal database schema is a database schema
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that models objects with time-related or time-variant
properties. However, the modelling of temporal as-
pects has a direct impact on the consistency of the
temporal database, because the temporal nature of
these aspects imposes extra integrity constraints and
suitable ways of interaction with the human user.

For example, let us consider a library database
and, concretely, the modelling of the presence of
books in the library. Two dates are stored: the loan
and the return date. It is clear that a book cannot be
loaned again until it is returned. Without further cau-
tions, a library employee could loan the same book
several times even if it is not returned. A temporal
database model will typically constrain record inser-
tion and prevent similar modelling inconsistencies.

A lot of research concerns temporal database
models and their approaches to the modelling of
time. The first efforts were towards the repre-
sentation of historical information related to ob-
jects represented by records in a database 7. Some
proposals tried to extend the Entity Relationship
Model 28, without impact on any database standards
like SQL 43.

An interesting issue in temporal modelling con-
cerns relationships between temporal notions. In
this sense, Allen 1 studied temporal relationships
between time intervals (and as a special case time
points). Among others, the querying of temporal
databases has greatly profited from these tempo-
ral relationships, because they allow more powerful
user-specified temporal query demands, by allowing
to express more complex relationships between the
temporal notions in the temporal expressions in the
query. For example, a query like ‘who were the de-
partment heads when Thomas worked for the insti-
tution’ can be evaluated using operators similar to
Allen’s ones.

Humans handle temporal information using cer-
tain temporal notions like time intervals or time
points 17, and they often have to deal with imperfec-
tions like imprecision, vagueness, uncertainty or in-
consistencies possibly contained in the descriptions
of these temporal notions. These imperfections in
descriptions of temporal notions determine an im-
portant issue in temporal modelling. Consider as an
example the description of the temporal notion in a

sentence like ‘The Belfry of Bruges was finished be-
tween 01/01/1201 A.D. and 31/12/1300 A.D.’. This
sentence contains imperfection because of the un-
certainty in the used time-related expression. It is
known that the building was finished on a single day,
but this day is not precisely known.

To allow information systems to cope with these
and similar data imperfections, many approaches
adopt fuzzy sets 46 for the representation and man-
agement of temporal information 32,33,2,14,12. The
temporal relationships studied by Allen were fuzzi-
fied by several authors 35,33,44. Garrido et al. 21 pre-
sented a compact representation for the time and de-
fined different relationships among time intervals by
using a combination of regular fuzzy comparisons.
Also 21,40 studied uncertainty in temporal expres-
sions concerning time intervals. Other approaches,
like 41, use rough sets 37 to represent time intervals.

In addition to temporal modelling, some atten-
tion has been paid to temporal reasoning 1. Although
temporal reasoning is not discussed in this paper,
it should be noted that, among others, Dubois and
Prade et al. 12,16 have dealt with fuzziness and uncer-
tainty in temporal reasoning. Finally, in 5,4, an ap-
proach to the linguistic summarization of data with
time dimension is presented.

The present work defines and implements a
model for properly representing and managing un-
certainty in valid-time specification in a relational
database. Our work is focused on both the proposal
of an appropriate formal framework to suitably man-
age time in databases and the implementation of a
DML that allows to the user the transparent use of
this proposal. None of the previous research offers a
database model to accomplish this task.

This way, together with the theoretical model,
we also present and explain the main operations of
the manipulation language for a temporal database
which stores the valid-time periods of the objects
affected by imprecision. The rest of the work is or-
ganized as follows. Section 2 presents some back-
ground concepts about both possibility theory and
temporal databases. In section 3 the representa-
tion of the valid-time intervals in the database is ex-
plained. Section 4 explains the main concepts of the
temporal Data Manipulation Language (DML) and
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its implementation. Finally, Section 5 presents the
conclusions and some guidelines for future research
work.

2. Preliminaries

In this section, the framework of set evaluation
by ill-known constraints 40 is explained. The sec-
tion also includes a brief introduction to temporal
databases.

2.1. Interval Evaluation by Ill-known
Constraints

In our case, we need to know if all points in a crisp
interval I reside between the boundaries of an ill-
known interval [X ,Y ], where X e Y are possibilistic
variables represented by triangular possibility distri-
butions

D,a,b

, where D is the modal value and a and b are the left
and right spreads respectively. To compute that, we
introduce the concept of ill-known constraint40.

Definition 1. Given a universe U , an ill-known con-
straint C on a set A ⊆U is specified by means of a
binary relation R ⊆ P̃(U)2 and a fixed ill-known
value denoted by its possibilistic variable V over U ,
i.e.:

C , (R,V ) (1)

Set A satisfies the constraint if and only if:

∀a ∈ A : (a,V ) ∈ R (2)

An example of an ill-known constraint is Cex =
(<,X). Some set A satisfies Cex if ∀a ∈ A : a < X ,
given the possibilistic variable X .

The satisfaction of a constraint C , (R,V ) by a
set A is still a Boolean matter, but due to the uncer-
tainty about the ill-known value V , it can be uncer-
tain whether C is satisfied by A or not 40. In fact, this
satisfaction now behaves as a proposition. Based on
the possibility distribution πV of V , the possibility
and necessity that A satisfies C can be computed.

This proposition can thus be seen as a possibilistic
variable on B. The required possibility and neces-
sity are:

Pos(A satisfies C) = (3)

min
a∈A

(
sup

(a,w)∈R
πV (w)

)
Nec(A satisfies C) = (4)

min
a∈A

(
inf

(a,w)/∈R
1−πV (w)

)
So far, we have shown how it can be verified

whether a set satisfies or not an ill-known constraint.
The interval evaluation problem is explained in a
more general context in 40.

0 1 2 3 4 5 6 7 8 9

1

0 A

X
Pos(A satisfies C) 

0 1 2 3 4 5 6 7 8 9

1

0

X

Nec(A satisfies C)
0 1 2 3 4 5 6 7 8 9

1

0 A

X
Pos(A satisfies C) 

A

Fig. 1. Example of the evaluation of the ill-known con-
straint C , (6,X),X = [5,3,2].

Example 1. Consider X = [5,3,2] and let C = (6
,X) the ill-known constraint. Then, the evaluation of
the possibility and the necessity are obtained from
(3) and (4) respectively. (See Figure 1).

Pos(A satisfies C) = (5)

min
a∈A

(
sup
a6w

πX(w)
)

Nec(A satisfies C) = (6)

min
a∈A

(
inf
a>w

1−πX(w)
)
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It is observed that Boolean combinations of con-
straints are required. For example, the problem of
interval evaluation (explained earlier) requires that
all the elements of an interval [a,b] are larger than a
value X and, at the same time, smaller than a value
Y , which implies that a conjunctive Boolean combi-
nation of both constraints must be satisfied. To allow
Boolean combinations of constraints, the following
definitions are introduced.

Definition 2. Consider a universe U , an n-ary vector
C of constraints and a Boolean function B :Bn→B.
An evaluation function is defined by:

λ : P(U)→ B : λ (A) 7→B
(

C1(A), ...,Cn(A)
)
.

(7)
Definition 2 presents a function that evaluates a

Boolean combination of some basic constraints. In-
formally, it states that a set A passes the evalua-
tion made by λ if the Boolean combination of some
propositions equals T . This crisp definition can be
generalized to the case of ill-known constraints.

Definition 3. Consider a universe U , an n-ary vector
C of ill-known constraints and a Boolean function
B : Bn → B. The uncertainty about the evaluation
of a set A by an evaluation function λ is then given
by:

∀A ∈P(U) : πλ (A) = B̃
(

πC1(A), ...,πCn(A)

)
(8)

Hereby, B̃ is the possibilistic extension of B. It
is well known that any Boolean function B can
be cast to a canonical form 29, requiring only log-
ical conjunction ∧, logical disjunction ∨ and logical
negation. Therefore, only those connectives will be
treated within the scope of this paper. By applying
the possibilistic extensions of ∧, ∨ and ¬, concrete
equations are obtained for the calculations of uncer-
tainty about the evaluation of a set by means of an
evaluation function λ . In the case of conjunction
(i.e., B = ∧), the inference of uncertainty about the
evaluation of a set reduces to:

∀A ∈P(U) : Pos(λ (A)) = (9)
min

i=1...n
Pos(Ci(A))

∀A ∈P(U) : Nec(λ (A)) = (10)
min

i=1...n
Nec(Ci(A)) .

In the case of disjunction (i.e. B =∨), the inference
of uncertainty about the evaluation of a set reduces
to:

∀A ∈P(U) : Pos(λ (A)) = (11)
max

i=1...n
Pos(Ci(A))

∀A ∈P(U) : Nec(λ (A)) = (12)
max

i=1...n
Nec(Ci(A)) .

Note that by using the functions min and max here,
there is an implicit assumption that the possibilistic
variables πCi are mutual min-dependent in the sense
of De Cooman (i.e. non-interactive). For an exten-
sive reading on (in)dependency of possibilistic vari-
ables, the reader is referred to 22,23,24. In case of ¬,
we get:

∀A ∈P(U) : Pos(¬λ (A)) = (13)
1−Nec(λ (A))

∀A ∈P(U) : Nec(¬λ (A)) = (14)
1−Pos(λ (A)).

Example 2. Consider that we want to check if the
crisp interval I = [ j,k] is included in [X ,Y ]. In this
situation, two ill-known constraints are constructed.

C1 , (>,X) (15)
C2 , (6,Y ) (16)

To calculate the possibility and necessity con-
cerning a conjunction of constraints, the min oper-
ator can be used. The possibility and necessity of I
being included in [X ,Y ] are now:

Pos(I satisfies C1 and C2) = (17)

min
a∈I

(
sup
a>w

πX(w),sup
a6v

πY (v)
)

Nec(I satisfies C1 and C2) = (18)

min
a∈I

(
inf
a<w

1−πX(w), inf
a>v

1−πY (v)
)
.

There is a special boolean combination of con-
straints that is of particular interest; let us see it.
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Definition 4. Conjunctive combination of ill-known
constraints. Consider a universe U . Let R1,R2 be
two binary relations in P̃(U). Let X1,X2 be two
fixed ill-known values in U . Let C1 = (R1,X1) and
C2 = (R2,X2) be two ill-known constraints. A con-
junctive combination of both constraints is given by:

CC , {C1∧C2} (19)

In a more general way, it is possible to define the
conjunctive combination of an n-ary vector of con-
straints:

CC , {C1∧ . . .∧Cn} (20)

Theorem 1. Consider the conjunctive combina-
tion CC of any n-ary vector

{
C1Z1

, . . . ,CnZn

}
of

constraints over the ill-known variables Z1, . . . ,Zn.
Then, if πC1(Z1), . . . ,πCn(Zn) are convex, then πCC is
also convex.

Proof. Let CC ,
{

C1Z1
∧ . . .∧CnZn

}
. Then:

πCC (λx1 +(1−λ )x2) = (21)

min
(
πC1(Z1) (λx1 +(1−λ )x2) , . . . ,

πCn(Zn) (λx1 +(1−λ )x2)
)

Since πC1(Z1), . . . ,πCn(Zn) are convex:

πC1(Z1) (λx1 +(1−λ )x2)= (22)

min
(
πC1(Z1) (x1) ,πC1(Z1) (x2)

)
...

πCn(Zn) (λx1 +(1−λ )x2)=

min
(
πCn(Zn) (x1) ,πCn(Zn) (x2)

)
Then, by using equation (21):

πCC (λx1 +(1−λ )x2)= (23)

min
(

min
(
πC1(Z1) (x1) ,πC1(Z1) (x2)

)
,

. . . ,min
(
πCn(Zn) (x1) ,πCn(Zn) (x2)

))
Which is equivalent to the following:

πCC (λx1 +(1−λ )x2)= (24)

min
(

min
(
πC1(Z1) (x1) , . . . ,πCn(Zn) (x1)

)
,

. . . ,min
(
πC1(Z1) (x2) , . . . ,πCn(Zn) (x2)

))

Finally we obtain:

πCC (λx1 +(1−λ )x2)= (25)

min
(
πCC (x1) ,πCC (x2)

)

Sometimes, an ill-known value might be spec-
ified by a convex combination of ill-known con-
straints. This allows to define ill-known values
by means of relationships with respect to other ill-
known points.

Definition 5. Ill-known value defined by conjunc-
tive combination of constraints. Consider a universe
U , CC ,

{
C1Z1
∧ . . .∧CnZn

}
a conjunctive combi-

nation of ill-known constraints over the variables
Z1, . . . ,Zn. The uncertainty about the evaluation of
an ill-known value X is given by:

X ∈ P̃(U) : πX = πCC (26)

The definition of the ill-known value X with re-
spect to the conjunctive combination of ill-known
constraints, is written as:

X ,CC (27)

Note that πX is convex since πCC is convex as
demonstrated in Theorem 1.

Example 3. As an example, consider a historical
database containing data about diplomatic medieval
documents. The starting and ending dates when a
diplomatic document was valid, are not precisely
known. Consider now that the time granularity are
years. Then X = [1112,2,2] is the starting year for
the validity of a document. A new diplomatic doc-
ument was valid in the year Y = [1118,2,1]. Then,
it is possible to obtain Z (the period of time between
the starting of both documents) by using a conjunc-
tive combination of constraints.

CC = {C1 (>,X)∧C2(6,Y )}
Z =CC
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Z is a fuzzy interval defined by a trapezoidal shape
given by [1112, 1114, 1118, 1119]. Figure 2 illus-
trates the relations among the variables X , Y and Z.

1110 1112 1114 1116 1118 1119

years

1

0

possibility
YX

Z

Fig. 2. Ill-known values X and Y . The grey area represents
the ill-known value Z defined by the convex combination of
the two ill-known constraints C1 and C2.

We have seen the main theoretical concepts
about ill-known values. Now, we are going to ex-
plain the main concepts about the treatment of time
and the imperfection related to the time in databases.
These two preliminary analysis will be the pillars of
our proposal in section 3.

2.2. Time in Databases

The concept of time has been studied in the database
framework for a long time. A true standard for
adding temporal aspects to relational databases does
not exist, but there is a consensus in the literature
17 on what is called a temporal database: a tem-
poral database is a database dealing with some as-
pects of time in its schema. In a temporal DBMS,
a chronon is the shortest duration of time supported
by the system. In temporal databases, some tempo-
ral attributes can be managed without treating the at-
tribute differently from non-temporal attributes. The
time described by such an attribute is called user
defined time (UDT). In addition to UDT, the fol-
lowing types of time can be discerned in a temporal
database, all of which are handled exceptionally by
the DBMS:

• Transaction time (TT) 42,25 denotes the time
when the fact (object) is stored in the database.
It is usually append-only: as the past cannot be
changed, TT cannot be changed either. Further-
more, at the moment of insertion, a TT can be
neither in the past nor in the future.

• Valid time (VT) 26,43,30 denotes the time when
the fact (object) is true in the modelled reality. A
fuzzy extension has been proposed by 21.

• Decision time (DT) 34,6,19,36 denotes the time
when an event was decided to happen.

For example, consider a database containing em-
ployee contract descriptions. The time when the em-
ployee’s contract is valid, represented by an interval,
is the VT. The time when the employee’s contract is
stored in the database is the TT. The time when the
decision for hiring this employee was made is a DT.

When working with these time concepts, the
Data Manipulation Language (DML, which is part
of the standard database querying language SQL) is
extended to deal with possible temporal inconsisten-
cies within the data and to handle more complex
(temporal) queries. Depending on the time man-
aged, a database is classified as either a Valid Time
Database (VTDB), a Transaction Time Database
(TTDB), a bi-temporal database (both valid and
transaction time are managed) or a tri-temporal or
multitemporal database (valid time, transaction time
and decision time are managed).

2.2.1. Imperfection and time

The representation of imprecision and its semantics
when dealing with time has been studied for a long
time. Several proposals for representing and han-
dling imprecise time indications can be found in 9,10.
Also, the changes between several granularities can
be seen as a source of imprecision 11.

In this paper we will consider two kinds of im-
perfection:

• Imperfection in the database; the knowledge
about the temporal data contains some imperfec-
tion. E.g., a database record shows that ‘The car
was in the garage around April.’

• Imprecision in the query specification; it de-
notes the imprecision in the specification of tem-
poral criteria by the user, when querying. E.g.,
‘The user wants a car which was in the garage
around April.’
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2.2.2. Representation

Several proposals for managing uncertain time in a
database exist. Some proposals work with rough
sets 41, and some others rely on possibility distribu-
tions for representing uncertainty in time 18,21,20. To
compare temporal possibility distributions, the ex-
tensions of the classical Allen’s operators 1 are de-
fined in 35,33,13,44.

In order to deal with uncertainty in time inter-
vals, several proposals have been made. Here, two
approaches are described: the first one, based on
Fuzzy Validity Periods 21 and the second one, based
on Possibilistic Valid-time Periods 38.

Definition 6. A Fuzzy Validity Period21 (FVP)
is defined as a fuzzy time interval specifying when
the data regarding an object are valid. A fuzzy time
interval is then the fuzzification of a crisp time in-
terval.

Several options to transform possibility distribu-
tions corresponding to the fuzzy starting point and
the fuzzy end point into a consistent FVP exist 21,
e.g (Fig. 3):

• The convex hull approach is the most intuitive ap-
proach. The resulting FVP is the convex hull of
the union of both possibility distributions.

• The uncertainty preserving approach. The
amount of uncertainty is maintained at the edges
of the possibility distribution representing the
FVP 21.

1

0
 

membership
degree

1

0

1

0

membership
degree

membership
degree

Time

Time

Time

Original start and end points

Convex hull

Uncertainty preserving approach

Fig. 3. Transformation to obtain the FVP. The top graph
shows the two triangular possibility distributions. The mid-
dle graph shows the convex hull validity period, the bottom
one shows the result of the second transformation, which
maintains the imprecision.

The main feature for the FVP is the optimization
for the storage. The compact representation is the
result of a conjunctive semantic. The object is valid
within all the time points inside the starting and end-
ing points.

Definition 7. A Possibilistic Valid-time Period
(PVP) is an ill-known interval of time specifying
when the data regarding an object are valid.

Note that the PVP represents only one crisp time
interval, but for some reason, it is (partially) un-
known.

The main advantage for the PVP is that it pre-
serves all the information for both starting and end-
ing points40,39. Table 1 is a comparative between
PVP and FVP. The following list defines the items
in the comparative:

1. Domain: The domain of the possibility distri-
bution modelled by the approach.

2. Implementation of relationships: How to im-
plement a relationship.

3. Allen’s relations: Are the Allen’s relations de-
fined?
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4. Storage: The way the data are stored in the
database.

5. Possibility measures: Does the framework
provide a possibility measure for any relation
between the temporal elements?

6. Necessity measures: Does the framework pro-
vide a necessity measure for any relation be-
tween the temporal elements?

Table 1. Comparative PVP vs FVP

Item PVP FVP
(1) P(R) R
(2) Ill-known

constraints.
Ad-hoc oper-
ators.

(3) X -
(4) Two dis-

tributions
one for each
endpoint.

Only one dis-
tribution.

(5) X X
(6) X -

In the rest of the paper we will work only with
PVP to represent valid-time intervals.

2.3. Understanding Valid-time Databases

This subsection is devoted to describe the behaviour
of a crisp valid-time database. For the sake of sim-
plicity, only the three main operations in the Data
Manipulation Language (CReate Update, Delete)
are shown. Usually the DML operations in a tem-
poral database are re-defined (a typical update sen-
tence in SQL could be expressed by means of a cou-
ple of insert and update sentences). Therefore, for
the sake of clarity, these high level primitives in the
DML for a valid-time database are usually noted as
Insert, Modify and Delete. In the following subsec-
tions each primitive is defined and explained. Fi-
nally, an illustrative example is given. For a more
complete information on the behaviour of a bitem-
poral database, please refer to 26.

Definition 8. Valid-time relation. Consider the fol-
lowing definitions and notations:

• A set of non-temporal attributes.

A = {A1,A2, . . . ,An} (28)

The domain for each attribute A1, . . . ,An is
D1, . . . ,Dn respectively.

• The original primary key AK is a subset of the at-
tributes in A.

AK ⊆ A (29)

• Two attributes, S and E for the starting and ending
points respectively. I defines the valid time inter-
val for the data.

I = {S,E} (30)

T is the time domain.
• Then R, the schema for the valid-time relation is:

R = A∪ I (31)

• The primary key for the valid-time relation R is:

PK = AK ∪ I (32)

• We will note by r any valid instance of R.

r ⊆ D1 x . . . x Dnx T x T (33)

• V (t) is the set of all the versions for a given tuple
t. Formally,

V (t) = {ti ∈ r, ti [AK ] = t [AK ]} (34)

Obviously, t itself is included in the set.

We will illustrate the definitions with an example.

Example 4. Consider the set of attributes A =
{A1,A2,A3}. The primary key for these attributes
is given by AK = {A1,A2}. Let I = {S,E} be the set
of temporal attributes that define the validity period
of the data. R is the valid-time relation and r is an
instance of the relation. The instance r is given by
the following elements. r = {(a11,a12,a13,s1,e1) ,
(a21,a22,a23,s2,e2) , (a11,a12,a31,s3,e3)}. The in-
stance r is illustrated in Table 2. Consider the tuple
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t1 = (a11,a12,a13,s1,e1). Then,

t1 [S] = s1

t1[E] = e1

t1[S,E] = (s1,e1)

t1 [AK ] = (a11,a12)

t1 [PK] = (a11,a12,s1,e1)

V (t1) = {t1, t3}

Table 2. Sample database containing the instance r of the valid-
time relation R.

A1 A2 A3 S E
t1 a11 a12 a13 s1 e1
t2 a21 a22 a23 s2 e2
t3 a11 a12 a31 s3 e3

In order to simplify the algorithms for the manip-
ulation of data, some auxiliary functions and con-
stants are defined:

Definition 9. From the beginning (FB). Consider
the elements in definition 8 and a tuple t. We will
say t[S] = FB when t[S] =−∞.

Definition 10. Until changed (UC). Consider the
elements in definition 8 and a tuple t. We will say
t[E] =UC when t[E] = +∞.

Definition 11. Current. Consider the elements in
definition 8. We will say that the tuple t is current in
the instance r of the relation R when t[E] =UC.

For example, let us consider the last row in
Table 3. The value for the time interval is I =
(4/4/2012,UC). The meaning is that the document
with ID = 3 was valid the 4/4/2012 and it is still
valid. The document with ID = 3 is current in the
relation.

Example 5. Consider a historical database con-
taining diplomatic documents. The starting and the
ending dates say when the diplomatic document is
valid. It is possible that a diplomatic document is
valid for a period of time and several years later it
becomes valid again. The following elements are
stored: an identifier of the document (ID), the entity

that issues the document and the dates when the doc-
ument is valid. Table 3 illustrates the first version of
the database, after three insertions. In this example,
A = ( ID, Entity ) and I = ( Start, End ).

Table 3. Sample historical database

ID Entity Start End
3 E.U. 15/3/2012 30/3/2012
4 N.A.T.O. 25/3/2012 4/4/2012
5 C.E.I. 18/3/2012 2/4/2012
3 E.U. 4/4/2012 UC

Definition 12. Current (r,ak). Consider the ele-
ments in definition 8. The function Current (r,ak)
returns the crisp time interval of a tuple t with pri-
mary key ak as follows:

Current(r,ak) = (35)
t[S,E] if ∃t ∈ r : t[E] =UC and

t[AK ] = ak

/0 otherwise

For example, the function Current(r, 3) returns
the time interval (4/4/2012,UC). Conversely, Cur-
rent(r, (4,‘N.A.T.O.’)) returns the empty set.

The Allen’s relations between two time intervals
are shown in Figure 4. The complete implementa-
tion of the relations using only the starting and the

Published by Atlantis Press 
      Copyright: the authors 
                  1076



J. Pons et al.

ending points is defined in 33.

Fig. 4. Allen’s relations for two crisp time intervals I and J.
Note that the crisp time interval I is fixed and the different
positions of the interval J illustrate the Allen’s relations.

We will use two of the Allen’s relations: Over-
laps and During which will be defined as follows.

Definition 13. Overlaps: Given two time intervals
defined by the couples of values i1 = (s1,e1) and
i2 = (s2,e2), it is said that i1 overlaps i2 if:

i1 overlaps i2 = (((s1 < s2)∧ (e1 < e2)) (36)

∨(((s1 > s2)∧ (e1 > e2))

Definition 14. During: Given two time intervals
defined by the couples of values i1 = (s1,e1) and
i2 = (s2,e2), it is said that i1 during i2 if:

i1 during i2 =(s1 > s2)∧ (e1 < e2) (37)

In the rest of the paper, and without losing gen-
erality, we will consider that the time granularity are
days. Also, the dates will be given in the format
dd/mm/yyyy.

Definition 15. CloseR(i1, i2): Consider two crisp
intervals defined by the couples of values i1 =
(s1,e1) and i2 = (s2,e2). The CloseR(i1, i2) func-
tion allows to close the right-open interval i1 with
respect to the first value s2 in i2:

CloseR(i1, i2) =

(38){
(s1,s2−1) if e1 =UC and i2 During i1
i1 otherwise

For example, consider two time intervals,
i1 = (4/4/2012,UC) and i2 = (24/4/2012,UC).
The result of applying the CloseR(i1, i2) is i1 =
(4/4/2012,23/4/2012).

Now it is possible to close the current version of
an entity by using (38) and (35). This functionality
is required to add or update new information about
an existing entity in the relation.

Definition 16. Close-current(r, t). Consider the
elements in definition 8. The function Close-
current(r, t) closes any current version tk of the en-
tity given by t and adds the new version t. For the
implementation tCUR and tUP variables are defined:

tCUR [Ak] = t[AK ] (39)

tCUR [S,E] = Current (r, t[AK ])

tUP[Ak] = t[Ak]

tUP [S,E] = CloseR (tCUR [S,E] , t[S,E])

Then, tCUR is the current version of the entity given
by the tuple t, and tUP is the updated version of the
tuple tCUR. In this updated version, the time interval
given by iUP is closed with respect to the tuple t.

Close-current(r, t) = (40){
r− tCUR∪{tUP}∪{t} if Current (r, t[AK ]) 6= /0
r, otherwise

For example, consider the document with ID
= 3 in Table 3. The current version of the doc-
ument started on 4/4/2012. The document was
not valid anymore but, for some reason, the date
was not registered. The document was valid again
on 24/4/2012. Then, the Close-current function
closes the current version of the document and
adds a new version. First, the function CloseR
is applied with i1 = (4/4/2012,UC) and i2 =
(24/4/2012,UC). Hence, the value for the time in-
terval i1 is (4/4/2012,23/4/2012). Then, the mod-
ifications on the value for the time interval i1 are
stored. Finally a new row with the current values
of the document and the time interval i2 is stored.
The result of this operation is illustrated on Table 4.
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2.3.1. Modify

This operation adds new information about an exist-
ing entity (given by the tuple t) in the instance r of
the relation R. The modify operation does not re-
move any previous value of the entity. It closes the
current version and adds a new version.

Definition 17. Modify(r, t). Consider the elements
in definition 8. The algorithm for the modify opera-
tion is defined as follows.

modify(r, t) = (41)

Close-current (r, t)

2.3.2. Insert

The user wants to store an entity (given by the tuple
t) which is valid in the instance r of the relation R
during the time interval specified by i = (s,e). There
are two main cases when performing a create opera-
tion:

1. The entity was never in the relation: The en-
tity is added with the valid-time indicated by
the crisp interval i.

2. The entity is in the relation. Depending on the
value of the time interval, there are three pos-
sibilities:

(a) Insert t in the instance r of the relation R.
If the time interval i does not overlap any
other valid-time interval in the instance
r relation R for the entity. For example,
consider that the document with ID = 3
began again to be valid on 4/4/2012 and
it is still currently valid. This is illus-
trated in Table 3.

(b) Modify and close the current version of t
and insert the new version. For example,
consider now that the document with ID
= 3 was valid on 24/4/2012. Here the
problem is that the document with ID =
3 was valid on 4/4/2012 but, for some
reason, the ending date was not stored.
If the document is again valid, then it is

necessary to set the ending date and add
a new row with the new starting date.
This is illustrated in Table 4.

(c) Reject the insertion, if the time interval i
does overlap any existing valid-time in-
terval for the entity t in the instance r
of the relation R. For example, consider
that the document manager wants to in-
troduce a past valid-time for the docu-
ment with ID = 3. The validity period for
the document is [6/4/2012, 25/4/2012].
As the dates do overlap, it is not possi-
ble that the document was valid at that
time interval. Therefore, the insertion is
rejected.

Table 4. Sample historical database

ID Entity Start End
3 E.U. 15/3/2012 30/3/2012
4 N.A.T.O. 25/3/2012 4/4/2012
5 C.E.I. 18/3/2012 2/4/2012
3 E.U. 4/4/2012 23/4/2012
3 E.U. 24/4/2012 UC

Definition 18. Insert(r, t). Consider the elements in
definition 8. Then, the algorithm for the implemen-
tation of the insert operation is defined as follows.

insert(r, t) =

(42)
r if ∃tk ∈V (t),(t[S,E] overlaps tk[S,E])
r∪{t} if V (t) = /0 or

∀tk ∈V (t),¬(t[S,E] overlaps tk[S,E])
modify(r, t) otherwise

2.3.3. Delete

The delete operation logically removes a current en-
tity t which is valid in the instance r of the relation
R.
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Definition 19. Delete(r, t). Consider the elements
in definition 8.The algorithm for the delete operation
is defined as follows.

delete(r, t) = r−V (t)

The set V (t) is computed as explained in definition
8 and contains all the versions for the tuple t.

For example, consider that the document man-
ager wants to delete the history for the document
with ID = 3. The result of this operation is shown
in Table 5.

Table 5. Sample historical database

ID Entity Start End
4 N.A.T.O. 25/3/2012 4/4/2012
5 C.E.I. 18/3/2012 2/4/2012

3. Time Representation

This section is devoted to specify the representation
of time within the framework of the possibility the-
ory.

First of all, the specification for a single ill-
known temporal point will be explained. Then, the
formal specification and the related constraints are
given for an ill-known valid-time interval.

3.1. Ill-known time point

An ill-known time point X is an atomic time point
that, for some reason, is not fully specified.

Note that X has only one possible value but that
value is unspecified.

Definition 20. Ill-known time point.
Consider a time domain T ; the uncertainty about
the values of the ill-known time point X is given by
the possibility distribution πX :

Π(X) = πX(t) ∈ [0,1] , t ∈T (43)

It is also possible to specify an ill-known time
point by a convex combination of ill-known con-
straints, as shown by equation (26).

Definition 21. Domain for an ill-known time
point.
Consider P̃(T ) the set of all the possibility distri-
butions over T , and the three fuzzy constants:

• UNKNOWN = {1/t,∀t ∈T },
• UNDEFINED = {0/t,∀t ∈T } and
• NULL = {1/ UNKNOWN, 1/ UNDEFINED }.

The domain for an ill-known time point X is
given by:

D(X) = {P̃(T )∪UNKNOWN (44)

∪UNDEFINED

∪NULL}

3.1.1. Datatypes

The data type for the representation of an ill-known
time point allows the representation of the values
shown in Table 6.

Table 6. Values for the time point data type.

DIFFERENT VALUES FOR A TIME POINT

Subtype Value Representation
1 A single time point 1/x,x ∈T
2 A possibility distribu-

tion in the numeric do-
main

A fuzzy number
or a fuzzy inter-
val.

3 An unknown value UNKNOWN=
{1/t,∀t ∈T }

4 An undefined value UNDEFINED=
{0/t,∀t ∈T }

5 A null value NULL
= {1/Unknown,
1/Undefined }

Example 6. Consider a historical database with
data from medieval diplomatic documents.

The following fields are stored: the digital iden-
tifier ID which is the primary key and the estimated
time when the document was sent (field Date).

Table 7 contains some example data from this
database.
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Table 7. Sample of the historical database

ID Date
23454 Unknown
34563 11/12/1204
12211 [7/2/1204,30,30]
23455 [10,10/6/1204,20/6/1204,15]

In that database, for the document with
ID=23454, all the dates in the domain are equally
possible. Nevertheless, the document 34563 was
sent in the crisp (exact) date 11/12/1204. The time
for documents 12211 and 23455 are specified with
several possibility distributions. The first one is also
known as a fuzzy number whereas the second one is
also known as a fuzzy interval, as explained in Sec-
tion 2.

3.2. Ill-known time interval

An ill-known time interval denoted by [X ,Y ] is a
time interval whose boundaries are not precisely
known.

Definition 22. Ill-known time interval Let T be the
time domain, and X , Y two ill-known values in the
time domain. An ill-known time interval is given by
[X ,Y ]. The evaluation of the ill-known time interval
is given by equations (3),(4). We will note IPV P the
set of all the ill-known time intervals.

3.2.1. Open ill-known time intervals

Quite often, the user may want to specify time inter-
vals with open boundaries in one or both endpoints.
Consider an ill-known time interval [X ,Y ]. Then it
is possible to distinguish between the following two
types of open intervals:

Definition 23. Completely unknown time inter-
val: Both starting and ending points are unknown,
therefore the whole interval is unknown.

Definition 24. Semi-open time interval: Only one
of the two ill-known boundaries for the time interval
[X ,Y ] is unknown. Example 7 and Figure 5 illus-
trates a left open time interval.

3.2.2. Representation of semi-open time intervals

As mentioned before, the problem resides in the rep-
resentation of this kind of interval.

Because of the ill-known constraints C1,C2, a
function called Open should be defined in order to
deal with a proper representation of these intervals.

Definition 25. Open(C)
Consider an ill-known value T , a binary relationship

Br ∈ {6,<,>,>} and the constraint C
4
= (Br,T ).

The function Open(C) = (Ip(C), In(C)) provides
both possibility and necessity measures for all the
points in the open part of a semi-open ill-known time
interval.

The possibility and necessity measures are de-
fined by:

Ip (C) =
(

sup
r∈T ,r Rp w

πT (w)
)

(45)

In (C) =
(

inf
r∈T ,r Rn w

1−πT (w)
)

(46)

Where the values for the binary relations Rp and Rn
are shown in Table 8.

Table 8. Relations for the Open(C) function. Depending on the
relation Br ∈ {6,<,>,>} in the constraint C, the values for Rp
and Rn are shown.

Relations

Constraint Rp Rn

C
4
= (<,T ) > 6

C
4
= (6,T ) > <

C
4
= (>,T ) < >

C
4
= (>,T ) 6 >

As explained before, the constants FB and UC
are aliases for the function Open with the following
parameters:

FB = Open(C2) (47)
UC = Open(C1) (48)

Where the constraints C1 and C2 are given in
equations (15) and (16).

Example 7. Consider an ill-known time interval
given by [FB,Y ]. Consider also that, in this case,
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Y = [15/10/2012,3,4]. Figure 5 shows the repre-
sentation for Y . The user wants to obtain the possi-
bility and the necessity measures for the FB part of
the interval.

FB = Open(C2) with C2
4
= (6,Y )

Ip(C2) =
(

sup
r∈T > w

πY (w)
)

In(C2) =
(

inf
r∈T < w

1−πY (w)
)

10 11 12 13 14 15 16 17 18 19 20

time

1

0

possibility Y

possibility
Y

10 11 12 13 14 15 16 17 18 19 20

time

1

0

Ip(c2)

10 11 12 13 14 15 16 17 18 19 20

time

1

0

necessity Y

In(c2) 

Fig. 5. Possibility distribution for Y , and possibility and
necessity measures for the open ill-known point, X

3.2.3. Datatypes

In order to properly represent an ill-known time in-
terval in a database, some datatypes are needed. Be-
cause of the ill-known constraints, not all the com-
binations of datatypes for each ill-known time point
(see Table 6) are allowed. Table 9 shows all the
possible values that can be used to represent an ill-

known time interval denoted by [X ,Y ].

Table 9. All the possible combination of values for the time
interval [X ,Y ]. The subtypes refer to Table 6.

TIME INTERVAL DATA TYPE

Subtype
for X

Subtype
for Y

Description

1 or 2 1 or 2 An ill-known time interval.
3 3 An unknown time interval.
FB 1 or 2 A left-open time interval.
1 or 2 UC A right-open time interval.

4. Possibilistic Valid-Time Model for
Relational DBs

In this section we will formalize the model for possi-
bilistic valid-time relational databases. The first sub-
section is devoted to the formalization of the model.
Then, a data manipulation language is defined.

4.1. The generalized temporal model

The model is based on GEFRED 31 (Generalized
Model of Fuzzy Relational DB) model. This model
is extended by adding valid-time support which will
be illustrated through the following definitions and
examples. The information in the system is defined
by the following elements:

Definition 26. Generalized fuzzy domain. Let D be
the discourse domain, P̃ (D) is the set of all pos-
sibility distributions defined on D, plus the NULL
constant. The generalized fuzzy domain DG is de-
fined as:

DG ⊆ P̃ (D)∪NULL (49)

The datatypes that can be used to represent DG are
shown in table 10.

Definition 27. Typeof(a). Consider DG to be a gen-
eralized fuzzy domain and the elements in definition
8. Let a be the value for the attribute A. The func-
tion typeof(a) returns the datatype associated with
the value a and returns a number in [1,10] as shown
in Table 10.

Typeof(a) 7→ [1,10] (50)
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Table 10. Data types

No. Datatype
1 A single scalar.
2 A single number.
3 A set of mutually exclusive

possible scalar assignations.
4 A set of mutually exclu-

sive possible numeric assig-
nations.

5 A possibility distribution in
a scalar domain.

6 A possibility distribution in
a numeric domain.

7 A real number in [0,1] refer-
ring to degree of matching.

8 An UNKNOWN value.
9 An UNDEFINED value.

10 A NULL value.

It is possible to define a more specific general-
ized temporal domain, TG.

Definition 28. Generalized fuzzy temporal domain.
Consider T to be the temporal domain, and let
P̃ (T ) be the set of all normalized possibility distri-
butions defined on T . The Generalized Fuzzy Tem-
poral Domain, TG is

TG ⊆
{
P̃ (T )∪NULL

}
(51)

Note that TG ⊆ DG. The datatypes for this do-
main have been studied previously in section 3 and
are shown in tables 6 and 9.

A generalized fuzzy relation is defined in 31.
Here, we will extend the definition to a generalized
fuzzy temporal relation.

Definition 29. Generalized fuzzy temporal relation.
Consider the elements in definition 8. Some of them
will be extended for the fuzzy case.

• An attribute called version identifier, VID, will be
added to the schema. This attribute is a counter
for each different version of the entities.

• Then RFT G, the schema for the fuzzy valid-time
relation is:

RFT G = A∪VID∪ I (52)

• The primary key for the fuzzy valid-time relation
RFT G is:

KGT = AK ∪VID (53)

A formal definition of the primary key for fuzzy
valid-time relations will be given later in Defini-
tion 34.

• We will note by r any valid instance of RFT G.

r ⊆ D1 x . . . x Dnx Nx TG x TG (54)

• Let KGT be the primary key for the valid-time re-
lation as given in equation (53). Then, k denotes
the values for the attributes in the primary key.

k = t [KGT ] (55)

Table 11 contains an example instance.

Table 11. Sample database containing the instance r of the
fuzzy valid-time relation RFT G.

A1 A2 A3 VID S E
t1 a11 a12 a13 001 s1 e1
t2 a21 a22 a23 001 s2 e2
t3 a11 a12 a31 002 s3 e3

A generalized fuzzy temporal relation RFT G can
be noted also by:

RFT G = (H ,B) (56)

Where H is the Head of the relation and consists on
a fixed set of triplets attribute- domain - compatibil-
ity with an optional the valid-time attribute:

H =
{
(AG1 : DG1 [,CAG1 ]) , (57)

. . . ,

(AGn : DGn [,CAGn ]) ,[
(PVP,DPVP [,CAPVP ])

]}
Note that DG j ( j = 1, . . . ,n) is the domain for the at-
tribute AG j. CAG j is the compatibility attribute in the
unit interval [0,1].

B is the body of the relation and it consists on a
set of tuples. Each tuple is a set of triplets attribute-
value- degree with an optional valid-time attribute:
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B =
{
. . .{

(
AG1 : d̃i1 [,ci1]

)
, (58)

. . . ,(
AGn : d̃in [,cin]

)
,[(

PVP, d̃PVP [,CAPVP ]
)]
} . . .

}
The definition in 31 for RFT G shows that classical

relations are a particular case of this model.

Example 8. Consider a historical database contain-
ing diplomatic documents as explained in example
5. But now, the documents are from the Medieval
Ages. Hence, the time is known with imprecision.
For simplicity, the ill-known time points are repre-
sented as triangular fuzzy numbers. An ill-known
time point is given by [dd/mm/yyyy,a,b]. The val-
ues for a and b are integers. Thus, the date given
by [15/3/1012,5,2] is a triangular fuzzy number
with the left bound the 10/3/1012, the core on the
15/3/1012 and the right bound on 17/3/1012. Table
12 shows the elements Head, H and Body, B.

H ={(ID : DID) , (59)(
Entity : DEntity

)
,

(PVP : DPVP)}

When the compatibility degree is 1, the compo-
nent is omitted. The body, B consists on all the tu-
ples shown in Table 12.

Table 12. Sample historical database

PVP

H ID Entity Start , End

B
3 E.U. [15/3/1012, 5, 2] ,

[30/3/1012, 1, 1]
4 N.A.T.O. [25/3/1012, 3, 2] ,

[4/4/1012, 1, 7]
5 C.E.I. [18/3/1012, 4, 1] ,

[2/4/1012, 2, 2]

Definition 30. Value component. The value com-
ponent Rv

FT G of a fuzzy temporal relation RFT G is a

set with the value components for both the head and
the body of the relation:

Rv
FT G = {H v,Bv} (60)

Where:

H v = {(AG1 : DG1), . . . ,(AGn : DGn)}

Bv =
{
(AG1 : d̃i1), . . . ,(AGn : d̃in)

}
For example, in the case of the document with ID

= 3:

H v = {(ID : DID) ,
(
Entity : Dentity

)
,

(PVP : DPVP)}
Bv = {. . .{(ID : 3),(Entity : “E.U.”),

t(PVP : [15/3/1012,5,2] , [30/3/1012,1,1])} . . .}

Definition 31. Compatibility component. The com-
patibility component Rc

FT G of a fuzzy temporal rela-
tion RFT G is a set with the compatibility components
for both the head and the body of the relation:

Rc
FT G = {H c,Bc} (61)

Where:

H c = {[CAG1 ] , . . . , [CAGn ]}
Bc = {[ci1] , . . . , [cin]}

For example, in the case of the document with ID
= 3:

H c ={(CID) ,
(
Centity

)
,(CPVP)}

Bc ={1,1,1,1}

Definition 32. Temporal component. The temporal
component Rt

FT G of a fuzzy temporal relation RFT G
is a set with the temporal components for both the
head and the body of the relation:

Rt
FT G =

{
H t ,Bt} (62)

Where:

H t = {(PVP,DPVP [,CAPVP ])}

Bt =
{[

PVP, d̃PVP [,CAPVP ]
]}
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For example, in the case of the document with ID
= 3:

H t ={(PVP,DPVP)}
Bt ={. . .(PVP : [[15/3/1012,5,2] ,

[30/3/1012,1,1]]) . . .}

Analogously, it is possible to define both the
name value component and the compatibility com-
ponent for the temporal part.

Definition 33. Generalized primary key. Con-
sider DG to be a fuzzy generalized domain, and let
AGs : DGs be the attributes and the domain of the at-
tribute for each s ∈ S ⊆ (1, . . . ,n). A generalized
primary key, KG is a subset of the head:

KG ⊆H ,KG = {(AGs : DGs)} (63)

s ∈ S⊆ (1, . . . ,n)

(64)

Subject to the following constraints:

∀s ∈ S,Typeof (DGs) ∈ {1,2} (65)

∀i, i′ ∈ {1, . . . ,m} ,∃s ∈ S :

(AGs : dis) 6= (AGs : di′s)

For example, consider the database in Table 12.
Without any temporal constraint, the primary key KG
is:

KG ⊆H ,KG = {(ID : DID)}

In this case, the function Typeof(ID) = 2 (see Def-
inition 27 and Table 10). The primary key for the
table is the attribute ID, a unique number. Two dif-
ferent documents have two different values for the
ID attribute.

In order to add valid-time support, the primary
key should be re-defined. E.g., consider the histori-
cal database. If the primary key is the ID attribute, a
document should be valid only during one period of
time. To resolve this problem, we extend the given
primary key with a version identifier.

Definition 34. Generalized fuzzy temporal key.
Consider DG to be a fuzzy generalized domain, and
let AGs : DGs be the attributes and the domain of the
attribute for each s ∈ S ⊆ (1, . . . ,n). Let V be a new
attribute called version. A generalized fuzzy tempo-
ral key, KGT is a subset of the head.

KGT ⊆H ,KGT = {(AGs : DGs)} (66)

∪{(VID : N)}
s ∈ S⊆ (1, . . . ,n)

Subject to the following constraints:

∀s ∈ S,Typeof (DGs) ∈ {1,2} (67)

∀i, i′ ∈ {1, . . . ,m} ,∃s ∈ S :

(AGs : dis) 6= (AGs : di′s)

Consider now the database in Table 13. The pri-
mary key is now:

KGT ⊆H ,KGT = {(ID : DID) ,(VID : DID)}

Table 13. Sample historical database

H (Start
ID V Entity ,End )

B

3 001 E.U. [15/3/1012, 5, 2],
[30/3/1012, 1, 1]

4 001 N.A.T.O. [25/3/1012, 3, 2] ,
[4/4/1012, 1, 7]

5 001 C.E.I. [18/3/1012, 4, 1] ,
[2/4/1012, 2, 2]

3 002 E.U. [4/4/1012, 3, 3] ,
UC

4.2. Data manipulation language

The Generalized Fuzzy Relational Algebra 31 ma-
nipulates relations like RFT G. The operations de-
fined are: Union, Intersection, Difference, Carte-
sian Product, Projection, Join and Selection. Thus,
in this section we will describe and implement the
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following operations for temporal databases, as de-
scribed in 2.3. The operations implemented are: In-
sert, Modify and Delete. The semantics of the oper-
ations will be the same that those defined for a crisp
temporal database, whereas the temporal represen-
tation is made by the possibilistic valid-time period
and the ill-known constraints (see sections 2 and 3).

It is important to notice that while the result of
the evaluation of any comparison between crisp time
intervals is boolean, the evaluation of any compari-
son between PVPs is a value in the unit interval.

Since the time intervals are now possibilistic
valid-time periods, PVPs, the auxiliary functions de-
fined in equations (38) to (40) are the basis for the
following auxiliary functions.

Definition 35. CloseR(i1, i2). Consider the ele-
ments in definition 29 and ill-known intervals given
by i1 = (s1,e1) and i2 = (s2,e2). The CloseR func-
tion closes the PVP given by i1 with a conjunctive
combination of ill-known constraints (see section
2.1):

CloseR(i1, i2) = (68)
(s1,ez) if i1 = (s1,UC),

ez , {C1 (>,s1) ,C2 (<,s2)}
i1 otherwise

For example, consider i1 = [[4/4/1012,3,3] ,UC]
and i2 = [[15/4/1012,2,1] ,UC]. The result for
CloseR(i1, i2) is i1 = [[4/4/1012,3,3] , [4,7,13,15]].
The value that closes i1 is a trapezoid in the form
[α,β ,γ,δ ].

Definition 36. Close-current(r, t). Consider the
elements in definition 29. The function Close-
current(r, t) closes any current version tk of the entity
given by t if it exists and add the new version t. In
order to implement the functionality, the variables
in equation (39) are used and the function Current
as given by equation (35).

Close-current(r, t) = (69){
r− tCUR∪{tUP}∪{t} if Current (r, t[AK ]) 6= /0
r, otherwise

For example, consider the database in Table
13. The function Close-current1(RFT G,(ID = 3) ,
[[15/4/1012,2,1] ,UC]) closes the current version
of for the patient with ID=3 and creates a new ver-
sion with the specified time interval.

4.2.1. Modify

This operation adds new information about an exist-
ing entity (given by the tuple t) in the instance r of
the fuzzy temporal relation RFT G. The modify op-
eration does not remove any previous value of the
entity. Note that the modify operation is only ap-
plicable when the entity is current in the relation;
t ∈ r,= (s,UC).

Definition 37. modify(r, t). Consider the elements
in definition 29. The algorithm for the modify oper-
ation is defined as follows.

modify(r, t) = (70)

Close-current (r, t)

4.2.2. Insert

The user wants to store an entity (given by the tuple
t) which is valid in the instance r of the fuzzy tempo-
ral relation RFT G during the time interval specified
by the PVP, i = (s,e). There are the following cases
when performing an insert operation:

1. The entity was never in the relation: The en-
tity is added with the valid-time indicated by
the PVP, i. For example, consider the database
given by Table 13. The following sentences
correspond with the insertion of the first va-
lidity period for each document.

Insert(3,’E.U.’,

[[15/3/1012, 5, 2],

[30/3/1012, 1, 1]]);

Insert(4,’N.A.T.O.’,

[[25/3/1012, 3, 2],

[4/4/1012, 1, 7]]);

Insert(5,’C.E.I.’,

[[18/3/1012, 4, 1],

[2/4/1012, 2, 2]]);
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2. The entity is in the relation. Depending on
the value of the time interval i, there are three
possibilities:

(a) Insert t in the instance r of the relation
RFT G. If the time interval i does not
overlap any other valid-time interval in
the relation RFT G. Note that here, the
result of the overlaps operator is in the
unit interval. For example, the document
with ID=3 is still valid. The insert sen-
tence is the following.

Insert(3,’E.U.’,

[[4/4/1012, 3, 3], UC]);

(b) Modify and close the current version of
the entity and insert a new version. For
example, consider now that the docu-
ment with ID=3 was valid around the
24/4/1012 (this is model by a triangular
fuzzy number: [24/4/1012,1,1]). Here
the problem is that the document with
ID=3 was valid around 4/4/1012, but, for
some reason, the ending date was not
stored. If the document is again valid,
then it is necessary to set the ending date
and add a new row with the new starting
date.

Insert(3,’E.U.’,

[[24/4/1012, 1, 1], UC]]);

(c) Reject the insertion, if the time interval
i does overlap with a degree of 1 any
existing valid-time interval for the en-
tity in the relation. For example, con-
sider now that the document manager
wants to introduce a past validity period
for the document with ID=3. The va-
lidity starting date for the document was
around 6/4/12/1012 and the ending date
was around 25/4/1012. As this interval
does overlaps other time intervals with
a degree of 1, it is not possible that the
document was valid during two different

periods of time. Therefore, the insertion
is rejected. The insert sentence is:

Insert(3,’E.U.’,

[[6/4/12/1012, 1, 1],

[25/4/1012, 1, 1]]);

Definition 38. insert(r, t). Consider the elements in
definition 29. The algorithm for the implementation
of the insert operation is defined as follows.

insert(r, t) =

(71)

r if ∃tk ∈V (t),
(t[S,E] overlaps tk[S,E] = 1)

r∪{t} if V (t) = /0 or
∀tk ∈V (t),
(t[S,E] overlaps tk[S,E])< 1

modify(r, t) otherwise

4.2.3. Delete

The delete operation logically removes an entity
which is valid in the instance r of the relation RFT G.

Definition 39. delete(r, t). Consider the elements in
definition 29. The algorithm for the delete operation
is defined as follows.

delete(r, t) = r−V (t)

For example, consider that the document man-
ager wants to delete the history for the document
with ID = 3. The following sentence deletes all the
rows for the documents with ID = 3.

Delete(3,’E.U.’);
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5. Conclusions

In this work, we presented a complete valid-time
model to represent and handle ill-known temporal
intervals. The paper includes the formal definition
of possibilistic valid-time period in order to man-
age the time and the formal definition of ill-known
constraints to define operators and integrity. This is
the first formal model in the literature for possibilis-
tic valid-time in relational databases. The semantics
and the implementation of the DML operations are
described within this work. As future work , the def-
inition of the Data Definition Language as well as
the querying will be considered.
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