
Potential Analysis
https://doi.org/10.1007/s11118-022-10045-6

On Gegenbauer Point Processes on the Unit Interval

Carlos Beltrán1 ·Antonia Delgado2 · Lidia Fernández2 ·
Joaquı́n Sánchez-Lara2

Received: 10 June 2021 / Accepted: 14 September 2022
© The Author(s) 2022

Abstract
In this paper we compute the logarithmic energy of points in the unit interval [-1,1] chosen
from different Gegenbauer Determinantal Point Processes. We check that all the different
families of Gegenbauer polynomials yield the same asymptotic result to third order, we
compute exactly the value for Chebyshev polynomials and we give a closed expression for
the minimal possible logarithmic energy. The comparison suggests that DPPs cannot match
the value of the minimum beyond the third asymptotic term.
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1 Introduction

Let K ⊆ R
d be an infinite compact set. The logarithmic energy of n points x1, . . . , xn ∈

K, xi �= xj for i �= j is

Elog(x1, . . . , xn) = −
∑

i �=j

log ‖xi − xj‖. (1)

CB was partially supported by grants PID2020-113887GB-I00, MTM2017-83816-P and
MTM2017-90682-REDT funded by MCIN/ AEI /10.13039/501100011033, and by Banco de Santander
and Universidad de Cantabria grant 21.SI01.64658.

AD and LF were partially supported by FEDER/Junta de Andalucı́a A-FQM-246-UGR20; grant
PGC2018-094932-B-I00 and IMAG-Marı́a de Maeztu grant CEX2020-001105-M both funded by
MCIN/ AEI /10.13039/501100011033 and FEDER funds.

JSL was partially supported by FEDER/Junta de Andalucı́a A-FQM-246-UGR20; grant
MTM2015-71352-P funded by MINECO; and IMAG-Marı́a de Maeztu grant CEX2020-001105-M
funded by MCIN/ AEI /10.13039/501100011033 and FEDER funds.

� Carlos Beltrán
beltranc@unican.es

1 Universidad de Cantabria, Santander, Spain
2 Universidad de Granada, Granada, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11118-022-10045-6&domain=pdf
http://orcid.org/0000-0002-0689-8232
http://orcid.org/0000-0003-1547-6653
https://orcid.org/0000-0001-7418-3231
http://orcid.org/0000-0003-1969-9643
mailto: beltranc@unican.es


C. Beltrán et al.

The minimum value of this energy is then

Elog(K, n) = min
x1,...,xn∈K

Elog(x1, . . . , xn).

Points which minimize the logarithmic energy (i.e. points with energy equal to Elog(K, n))
are called Fekete points of K. Note that an alternative formulation is: a collection of n points
in K is a set of Fekete points if the product of their mutual distances is as large as it can be.

The study of Fekete points is an area of very active research, see the classical surveys
[19, 24] or the recent and very complete monography [9]. The case that K = S

2 ⊆ R
3 is the

unit sphere is the topic of problem number 7 in Smale’s list [21] (the problem was actually
posed by Shub and Smale in [20]). In particular, it is of greatest interest to describe the value
of Elog(K, n).

This problem of finding Fekete points is fully solved if K = [−1, 1] is the unit interval
since Fejer [12]: the unique minimizer of Eq. 1 is the set consisting on the 2 extremes of the
interval, plus the n−2 zeros of a Gegenbauer polynomial, namely C

3/2
n−2. Recall that for any

fixed λ > 0, the sequence of Gegenbauer polynomials Cλ
n is a sequence of polynomials of

degree n = 0, 1, 2, . . . such that

Cλ
n(1) =

(
2λ + n − 1

n

)
,

∫ 1

−1
Cλ

n(x)Cλ
m(x)wλ(x) dx = 0 for m �= n,

where

wλ(x) = �(λ + 1)√
π�(λ + 1/2)

(1 − x2)λ−1/2. (2)

That is to say, they are a sequence of orthogonal polynomials w.r.t. the weight wλ(x). We
have not found in the literature an explicit value of the minimal logarithmic energy in the
unit interval1 (which is a nontrivial calculation from the description of Fekete points). This
is our first main result:

Theorem 1 Let εn = Elog([−1, 1], n) be the energy of n Fekete points in the interval
[−1, 1]. Then,

εn = −n(n − 1) log(2) − 3(n − 1) log(n − 1) − n log(n) − 4
n−2∑

j=1

j log(j) +
2n−2∑

j=1

j log(j)

= log(2)n2 − n log(n) − 2 log(2)n − 1

4
log(n) + O(1).

Zeros of sequences of orthogonal polynomials are known to be well–distributed accord-
ing to different criteria, and more generally in other contexts zeros of functions of increasing
degree exhibit good separation properties and attain somehow low values of the logarithmic
energy. For example, the eigenvalues of n × n matrices of the form A−1B where A,B are
random with complex Gaussian entries (called the spherical ensemble [2, 17]) taken onto
the unit sphere S2 ⊆ R

3 through the inverse stereographic projection have, on the average, a
logarithmic energy that matches the minimum value Elog(S

2, n) up to second order asymp-
totics. The zeros of random polynomials whose coefficients are complex Gaussians with
some carefully chosen variances, sent again to the sphere with the same projection, have
even better properties regarding logarithmic energy, see [4].

1While this paper was being refereed, we learnt that J. S. Brauchart had came to an alternative expression for
the same quantity, see [10].
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However in general for other sets it is not possible to find families of functions whose
zeros have these good properties, and it is thus quite common to take alternative approaches.
A very popular method is that of Determinantal Point Processes (DPPs) that we briefly
describe now (see [16] for a detailed description of the theory).

Let n ≥ 1. We endow the infinite compact set K with some measure σ , and we let H ⊆
L2(K, σ ) be some (n + 1)–dimensional linear subspace of the space of squared integrable
functions defined on K. Following [16], the Macci-Soshnikov theorem implies that there
exists a random point process associated with H that has the following properties:

1. With probability 1, the random process outputs n + 1 different points in K.
2. For any given σ–integrable function f : K × K → R (possibly undefined in the

diagonal), the expected value of the sum
∑

i �=j f (xi, xj ) when x0, . . . , xn are the output
of the random process, is given by the formula

E

⎛

⎝
∑

i �=j

f (xi, xj )

⎞

⎠=
∫∫

x,y∈K
(KH(x, x)KH(y, y)−|KH(x, y)|2)f (x, y) dσ(x) dσ(y),

(3)
where KH : K × K → R is the projection kernel onto H. In other words, if f0, . . . , fn

is an orthogonal basis of H then

KH(x, y) =
n∑

j=0

fj (x)fj (y), x, y ∈ K.

The second property implies that the random points exhibit some repulsion, and has been
used to give upper bounds on the minimum value of the energy Elog(K, n) (and other ener-
gies) for different sets: in [2] for the 2–sphere S2, in [7] for the d–sphere Sd , in [5] (see also
[8]) for the complex projective space, in [3] for 2–point homogeneous spaces, in [18] for
the flat torus and in [6] for the rotation group SO(3).

Despite all this success, an important gap in the theory remains open: how do DPPs
compare to optimal point distribution in the case of the unit interval? Namely, although in
that case we know exactly the position of the Fekete points and the value of the minimal
energy (Theorem 1), it seems that no deep study has been made of the value of the energy
of points coming from the DPPs in that interval (see [15] for some computations that would
lead to first order asymptotics), and a comparison of the power of this technique with the
exact solution is in order.

In this paper we study the following questions:

I) Given a measure σ in [−1, 1], the most straightforward choice for the (n + 1)–
dimensional subspace H ⊆ L2([−1, 1], σ ) is the subspace generated by the first n+1
orthogonal polynomials associated to σ . Which is the optimal choice of σ? Namely,
which choice of σ gives the smallest value for Eq. 3 with f (xi, xj ) = − log ‖xi−xj‖?

II) Fekete points are actually the 2 extreme points, plus the zeros of a Gegenbauer poly-
nomial. Is it better also to take the extreme points and then the points coming from a
DPP, or is it better to just take the points coming from the DPP?

III) A collection of natural choices for σ is given by dσ = wλdx where λ ∈ (−1/2,∞),
wλ is given by Eq. 2, and dx is the Lebesgue measure in [−1, 1]. The associated
subspace for n+1 points is then generated by the first n+1 Gegenbauer polynomials
Cλ

k , 0 ≤ k ≤ n. How does the expected energy of points coming from these processes,
computed via Eq. 3, compare to the minimal energy εn+1 given in Theorem 1?
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We now state our second main result which solves item III) and its corollary that gives a
partial answer to item II).

Theorem 2 Let dσ = wλdx, λ ∈ (−1/2,∞) fixed, and let Hn+1 be the subspace
generated by the first n + 1 orthogonal polynomials associated to σ . In other words,

Hn+1 = Span(Cλ
0 , . . . , Cλ

n).

Then, the expected value of the logarithmic energy of the corresponding DPP is

E(λ, n + 1) = (n + 1)2 log 2 − (n + 1) log(n + 1) + (1 − γ − 2 log 2)n + o(n),

where γ is the Euler–Mascheroni constant. In particular, the dependence on λ falls into the
remainder o(n). Moreover, in the case λ = 0 (which corresponds to Chebyshev polynomials)
we get the exact expression

E(0, n + 1) = (n + 1)2 log 2 −
(

(n + 1) log 2 + 3

4
Hn + nH2n−1 + H2n

2
− n + 1

2

)

= (n + 1)2 log 2 − (n+1) log(n + 1) + (1−γ − 2 log 2)n − 1

4
log n + O(1),

where Hn = 1 + 1/2 + · · · + 1/n is the n–th harmonic number.

Comparing the asymptotics of Theorem 2 with εn+1 from Theorem 1 we conclude that
the points generated by the DPP have a greater constant in the O(n) term: 1 − γ − 2 log 2
versus −2 log 2. Thus, there is an excess of (1−γ )n ≈ 0.423n. It thus seems that the power
of the technique of DPPs is insufficient to fit the correct O(n) term in the minimal energy
expression.

Our partial answer to item II) above is:

Corollary 3 Let λ ∈ (−1/2,∞) and consider the two following point processes in the unit
interval:

1. Generate n + 3 points using the point process of Theorem 2.
2. Generate n + 1 points using the point process of Theorem 2, and add the two extremes

±1 of the unit interval.

Then, the expected energy of the two point processes is equal up to o(n). Moreover, if λ = 0
then the first process has smaller energy than the second one, the difference being in the
O(log n) term.

We finish the introduction suggesting a solution to the optimal measure problem:

Conjecture 4 The answer to Question I) above is: for any fixed n ≥ 1, the optimal measure
is dσ = wλdx for some λ ∈ (−1/2,∞). The value of λ may depend on n.

The rest of the paper is structured as follows. In Section 2 we prove the first main result
(Theorem 1). Later, in Section 3 we present the integrals that will be involved in our sec-
ond main result (Theorem 2), which will be proved for λ = 0 and λ �= 0 in Sections 4
and 5, respectively. In Section 6 the proof of Corollary 3 is given. Finally, we collect in
Appendices A and B a number of auxiliary results which are used in the rest of the sections.
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2 Proof of Theorem 1

Recall Jacobi’s polynomials

P (α,β)
n (x) = 1

2n

(
2n + α + β

n

)
xn + O(xn−1)

that are a generalization of Gegenbauer’s polynomials, in particular satisfying C
3/2
n−2 =

n
2 P

(1,1)
n−2 , see for example [1] where we also find the following classical facts:

P (α,β)
n (1) =

(
n + α

n

)
= (α + 1)n

n! ⇒ P
(1,1)
n−2 (1) = (2)n−2

(n − 2)! = n − 1.

Let κ be the leading coefficient of P
(1,1)
n−2 ,

κ = 1

2n−2

(
2n − 2

n − 2

)
= 1

2n−2

(n + 1)n−2

(n − 2)! .

We need to analyze the energy of the n point set consisting of x1 = −1, xn = 1, and
x2, . . . , xn−1 the zeros of P

(1,1)
n−2 , that is

εn=
∑

i �=j

log
1

|xi − xj | =

= −2 log 2 − 2 log
n−1∏

i=2

(1 − xi) − 2 log
n−1∏

i=2

(1 + xi) − 2 log
∏

1<i<j<n

|xi − xj |

= −2 log 2−2 log(P
(1,1)
n−2 (1))−2 log((−1)n−2P

(1,1)
n−2 (−1))+4 log κ−2 log

∏

1<i<j<n

|xi −xj |

= −2 log 2 − 4 log(P
(1,1)
n−2 (1)) + 4 log κ − 2 log

∏

1<i<j<n

|xi − xj |

= −2 log 2 − 4 log(n − 1) + 4 log κ − 2 log
∏

1<i<j<n

|xi − xj |

= −2 log 2 − 4 log(n−1)+(4+2(n−2)−2) log κ − log
(
κ2(n−2)−2

∏

1<i<j<n

(xi −xj )
2
)

= −2 log 2 − 4 log(n − 1) + 2(n − 1) log κ − log D
(1,1)
n−2 ,

where

D
(1,1)
n−2 = 2−(n−2)(n−3)

n−2∏

j=1

jj−2n+6(j + 1)2j−2(n + j)n−2−j

is the discriminant of P
(1,1)
n−2 , whose value is known (see [22, Th. 6.71, p. 143]). Plugging

this and the value of κ in the formula for εn we thus conclude:

εn = −n(n − 1) log 2 − 4 log(n − 1) + 2(n − 1)

⎛

⎝
n−2∑

j=1

log(n + j) −
n−2∑

j=1

log(j)

⎞

⎠

−
n−2∑

j=1

(
(j − 2n + 6) log(j) + 2(j − 1) log(j + 1) + (n − 2 − j) log(n + j)

)
.
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Expanding and simplifying this expression we get the simpler formula claimed in the
theorem. Using

log(n − a) = log(n) + log

(
n − a

n

)
= log(n) + log

(
1 − a

n

)
= log(n) − a

n
+ O(n−2)

and Lemma 24 we also get the value for the asymptotic expansion of εn, finishing the proof
of the theorem.

3 First Integral Formulas

In order to compute the expected value of the logarithmic energy for points coming from
the DPPs, we need to write down the integral in Eq. 3 for our choice of σ . To do so, we first
need an orthonormal sequence of polynomials. Fix λ ∈ (−1/2,∞), λ �= 0, and consider
the normalized Gegenbauer polynomials

Ĉλ
n = γ λ

n Cλ
n , with γ λ

n =
√

n!(n + λ)

λ(2λ)n
,

which describe an orthonormal basis of the subspace they span.
Recall the following identities

d

dx
Cλ

n(x) = 2λCλ+1
n−1 (x),

d

dx

[
Cλ+1

n−1 (x)wλ+1(x)
]

= −n(n + 2λ)(λ + 1)

λ(2λ + 1)
Cλ

n(x)wλ(x).

We can now compute the kernel Kλ
n (for the point process of n + 1 points) using the

Christoffel–Darboux summation formula (see [22]):

Kλ
n (x, y) =

n∑

j=0

Ĉλ
j (x)Ĉλ

j (y) =
n∑

j=0

j !(j + λ)

λ(2λ)j
Cλ

j (x)Cλ
j (y)

= (n + 1)!
2λ(2λ)n

Cλ
n+1(x)Cλ

n(y) − Cλ
n(x)Cλ

n+1(y)

x − y
.

The formula above is valid for x �= y. The case x = y is obtained by taking limits:

Kλ
n (x, x) = (n + 1)!

2λ(2λ)n

(
Cλ

n(x)(Cλ
n+1)

′(x) − Cλ
n+1(x)(Cλ

n)′(x)
)

= (n + 1)!
(2λ)n

(
Cλ

n(x)Cλ+1
n (x) − Cλ

n+1(x)Cλ+1
n−1 (x)

)
.

The case λ = 0, corresponding to w(x) = w0(x) = π−1(1 − x2)−1/2, must be done
independently since some of the expressions above make no sense if λ = 0. The orthogonal
polynomials are just the classical Chebyshev polynomials after some normalization:

Ĉn(x) = Ĉ0
n(x) = Ĉλ

n(x)
∣∣
λ=0 =

{
1, if n = 0 ,√

2Tn(x) = √
2 cos(n arccos x) , if n ≥ 1 .



On Gegenbauer Point Processes on the Unit Interval

The kernel also admits a simpler expression

K0
n(cos θ, cos ϕ) =

n∑

j=0

Ĉ0
j (cos θ)Ĉ0

j (cos ϕ) = 1 + 2
n∑

j=1

cos(jθ) cos(jϕ),

K0
n(cos θ, cos θ) = 1 + 2

n∑

j=1

cos2(jθ) = 1 + n + cos((n + 1)θ) sin(nθ)

sin θ
,

where for the last sum we have used [14, Sec. 1.35]. According to Eq. 3 we aim to compute,
for any given n ≥ 2 and λ ∈ (−1/2, ∞), the integrals

L1 = L1(λ, n) =
∫∫

[−1,1]2
Kλ

n (x, x)Kλ
n (y, y)wλ(x)wλ(y) log

1

|x − y| d(x, y),

L2 = L2(λ, n) =
∫∫

[−1,1]2
Kλ

n (x, y)2wλ(x)wλ(y) log
1

|x − y| d(x, y).

The expected value computed in Theorem 2 is equal to L1 − L2. In the case λ = 0 we
succeed in computing these integrals exactly. In the rest of the cases, we get to an asymptotic
value up to o(n).

4 Proof of Theorem 2 for λ = 0

We first compute L1 and L2 for the case λ = 0. For simplicity, we omit in this section the
dependence on λ. Note that

L1 =
∫∫

[−1,1]2
Kn(x, x)Kn(y, y) log

1

|x − y|w(x)w(y) d(x, y)

= log 2
∫∫

[−1,1]2
Kn(x, x)Kn(y, y)w(x)w(y) d(x, y)

+
∫∫

[−1,1]2
Kn(x, x)Kn(y, y) log

1

2|x − y|w(x)w(y) d(x, y)

= (n + 1)2 log 2 +
n∑

k,=0

Jk,,

where

Jk, =
∫∫

[−1,1]2
Ĉk(x)2Ĉ(y)2w(x)w(y) log

1

2|x − y| d(x, y).

Proposition 5 Let k,  ≥ 0. Then.
{
Jk,k = 1

4k
, k ≥ 1,

Jk, = 0, for any other choice of k and .

Proof We first prove the case k �= , k,  ≥ 1. Note that

Jk, = 4
π2

∫∫
[−1,1]2

cos2(k arccos(x)) cos2( arccos(y))√
1−x2

√
1−y2

log 1
2|x−y| d(x, y).
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Applying Lemma 26 with f (x, y) = cos2(k arccos(x)) cos2( arccos(y)), the inner integral
in the right hand side of the claim in that lemma becomes

U =
∫ π

−π

cos2(kθ) cos2 (θ + α) dθ

=
∫ π

−π

cos2(kθ) (cos(θ) cos(α) − sin(θ) sin(α))2 dθ,

then, it suffices to check that U is a constant independent of α. Indeed, expanding the term
in the parenthesis we easily get

U = π cos2(α)

2
+ π sin2(α)

2
= π

2
.

The case k = 0,  ≥ 1 (equiv. k ≥ 1,  = 0) is very similar. The integral this time is

U =
∫ π

−π

cos (θ + α)2 dθ = π,

proving the proposition in that case. The case k,  = 0 is even easier since we are just
integrating a constant. The remaining case is k =  ≥ 1, for which we have

U =
∫ π

−π

cos2(kθ) cos2 (kθ + kα) dθ = π

2
+ π

4
cos(2kα).

From Lemma 26 we get to

Jk,k = 1
2π

∫ π

−π
cos(2kα) log 1√

2−2 cos α
dα

Lemma 27= 1
4k

.

As a direct consequence of the previous results we get

Corollary 6 If λ = 0, then

L1 = (n + 1)2 log 2 + Hn

4
.

Lemma 7

L2 = (n + 1) log 2 + Hn + nH2n−1 + H2n

2 − n + 1
2 .

Proof Note that

Kn(x, y)2 =
(

n∑

k=0

Ĉk(x)Ĉk(y)

)2

=
n∑

k,=0

Ĉk(x)Ĉk(y)Ĉ(x)Ĉ(y),

which leads us to L2 = P0 + P + 2Q + 2R + S where:

P0 = log 2
∫∫

[−1,1]2
Kn(x, y)2w(x)w(y) d(x, y) = (n + 1) log 2,

P =
∫∫

[−1,1]2
log

1

2|x − y|w(x)w(y) d(x, y) = J0,0 = 0,
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Q = 2

π2

n∑

k=1

∫∫

[−1,1]2

cos(k arccos(x)) cos(k arccos(y))√
1 − x2

√
1 − y2

log
1

2|x − y| d(x, y),

R = 4

π2

n∑

k=2

k−1∑

=1

∫∫

[−1,1]2

fk,(x, y)√
1 − x2

√
1 − y2

log
1

2|x − y| d(x, y),

S = 4

π2

n∑

k=1

∫∫

[−1,1]2

cos2(k arccos(x)) cos2(k arccos(y))√
1 − x2

√
1 − y2

log
1

2|x − y| d(x, y)

=
n∑

k=1

Jk,k
Prop. 5= Hn

4
,

and

fk,(x, y) = cos(k arccos(x)) cos(k arccos(y)) cos( arccos(x)) cos( arccos(y)).

From Lemma 26 we have for n ≥ 1:

Q =
n∑

k=1

1

π2

∫ π

−π

dα log
1√

2 − 2 cos α

∫ π

−π

cos(kθ) cos(kθ + kα) dθ

=
n∑

k=1

1

π

∫ π

−π

cos(kα) log
1√

2 − 2 cos α
dα

Lemma 27=
n∑

k=1

1

k
= Hn.

On the other hand, also from Lemma 26,

R=
n∑

k=2

k−1∑

=1

2

π2

∫ π

−π

dα log
1√

2−2 cos α

∫ π

−π

cos(kθ) cos(kθ+kα) cos(θ) cos(θ+α) dθ

=
n∑

k=2

k−1∑

=1

1

π

∫ π

−π

cos(kα) cos(α) log
1√

2 − 2 cos α
dα.

We have computed these integrals in Lemma 27 getting:

2R =
n∑

k=2

k−1∑

l=1

(
1

k − 
+ 1

k + 

)

=
n∑

k=2

(
H2k−1 − 1

k

)
= 1 − Hn +

n∑

k=2

H2k−1

Lemma 28= nH2n−1 + H2n

2
− 5Hn

4
− n + 1

2
.

All in one, we have proved that

L2 = (n + 1) log 2 + Hn + nH2n−1 + H2n

2 − n + 1
2 ,

as wanted.

The proof of Theorem 2 is now complete for λ = 0 since we just need to write down
L1−L2. The asymptotic expression for E(0, n+1) is obtained from the one for the harmonic
number.
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5 Proof of Theorem 2 for General λ �= 0

We will compute L1(λ, n) and L2(λ, n) in two propositions:

Proposition 8 For any λ > −1/2 and n ≥ 2,

(n + 1)2 log 2 ≤ L1(λ, n) ≤ (n + 1)2 log 2 + o(n).

Proof See Section 5.1.

Proposition 9 For any λ > −1/2, and as n → ∞
L2(λ, n) = n log(n) + (γ + 2 log(2) − 1)n + o(n) .

Proof See Section 5.2.

In the rest of the paper, Q(λ) is some constant depending only on λ, its value may change
from one appearance to another and we do not care about it.

5.1 The Value of L1

The integral L1 is indeed the energy of a measure, so we can make use of the terminology
related with this topic. The mutual energy of a pair of (possibly signed) measures μ and ν

is given by

I (μ, ν) =
∫∫

log
1

|x − y|dμ(x)dν(y) ,

where the integral is assumed to exist, and the energy of a measure μ is I (μ, μ) which is
usually denoted simply by I (μ). The potential of a measure μ is defined by

V μ(x) =
∫

log
1

|x − y|dμ(y) .

Thus we have the following obvious relations

I (μ, ν) =
∫

V μ(x)dν(x) =
∫

V ν(x)dμ(x) , I (μ) =
∫

V μ(x)dμ(x) .

The following well known lemma gives a formula for the energy of a linear combination
of two (possibly signed) measures.

Lemma 10 The following identities hold

I (μ + ν) = I (μ) + 2I (μ, ν) + I (ν) , I (tμ) = t2I (μ) ,

where t ∈ R.

The equilibrium measure in [−1, 1], which from now on we denote by μ, is the unique
minimizer of the energy among all the measures of total mass 1 and also is the unique
(unitary) measure such that its potential is constant, V μ(x) = log(2) for x ∈ [−1, 1]. Its
density is

dμ(x)

dx
= 1

π
√

1 − x2
,
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and the fact that the potential is constant (the constant is called Robin’s constant) reads
∫ 1

−1

log |x − y|−1

π
√

1 − x2
dx = log 2,∀ y ∈ [−1, 1]. (4)

In other words, for any other probability measure dν, the logarithmic energy given by
∫∫

x,y∈[−1,1]
log

1

|x − y| dν(x) dν(y)

is greater than log 2. Now, since (n+1)−1Kλ
n (x, x)wλ(x) is the density of a probability measure,

the lower bound of Proposition 8 follows immediately since I ((n+1)μ) = (n+1)2 log(2).
For the upper bound we are going to consider the equilibrium measure μ, the measures νn

such that
dνn

dx
= Kλ

n (x)wλ(x) ,

and εn = νn − (n + 1)μ. Both νn and (n + 1)μ are positive measures of total mass (n + 1),
hence εn is a signed measure of total mass 0.

The first step is to use the decomposition νn = (n + 1)μ + εn. Thus

L1(n, λ) = I (νn) = I ((n + 1)μ + εn) = I ((n + 1)μ) + 2I ((n + 1)μ, εn) + I (εn) .

The mutual energy of (n + 1)μ and εn vanishes since

I ((n+1)μ, εn) = (n+1)I (μ, εn) = (n+1)
∫

V μ(x)dεn(x) = (n+1) log(2)
∫

dεn(x)=0.

The consequence is that we can write

L1(n, λ) = (n + 1)2 log(2) + I (εn) ,

and then we have to prove that I (εn) = o(n). Now, from lemmas 18 and 21 we have that

|dεn(x)| ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q(λ) log n

1−x2 , x ∈ [−1 + n−2, 1 − n−2],
Q(λ)n2λ+1(1−x2)λ√

1−x2
+ Q(λ)n√

1−x2
≤ Q(λ)n√

1−x2
, x ∈ [1 − n−2, 1], λ ≥ 0

Q(λ)n2λ+1(1−x2)λ√
1−x2

+ Q(λ)n√
1−x2

≤ Q(λ)n2λ+1√
1−x2

1−2λ , x ∈ [1 − n−2, 1], λ < 0

and using a simple symmetry argument we have

I (εn) ≤ 4An + 4Bn + Cn

where the definition of An,Bn depends on the cases λ ≥ 0 and λ < 0. For the first one:

An =
∫∫

x,y∈[1−n−2,1]

∣∣∣∣log
1

|x − y|
∣∣∣∣

Q(λ)n2

√
1 − x2

√
1 − y2

dx dy,

Bn =
∫∫

x∈[−1+n−2,1−n−2],y∈[1−n−2,1]

∣∣∣∣log
1

|x − y|
∣∣∣∣

Q(λ)n log n

(1 − x2)
√

1 − y2
dx dy,

Cn =
∫∫

x,y∈[−1+n−2,1−n−2]

∣∣∣∣log
1

|x − y|
∣∣∣∣

Q(λ)(log n)2

(1 − x2)(1 − y2)
dx dy

≤ O(
√

n log(n)3),

the last from Lemma 19 and some little arithmetic. Also from Lemma 19 we have

Bn ≤ Q(λ)n3/2 log n

∫ 1

1−n−2

1
√

1 − y2
dy

≤ Q(λ)n3/2 log n
√

1 − (1 − n−2)2 ≤ Q(λ)n1/2 log n.
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Finally, the change of variables x = 1 − t , y = 1 − s gives

An ≤ Q(λ)n2
∫ n−2

0
dt

∫ t

0

1√
2t − t2

√
2s − s2

log
1

t − s
ds

≤ Q(λ)n2
∫ n−2

0
dt

∫ t

0

1√
ts

log
1

t − s
ds

= −Q(λ)2n2
∫ n−2

0
2(log t + 2 log 2 − 2)dt = O(log n).

In the case λ ∈ (−1/2, 0) the definitions of An and Bn are slightly different but they satisfy
similar bounds: An equals
∫∫

x,y∈[1−n−2,1]

∣∣∣∣log
1

|x−y|
∣∣∣∣

Q(λ)n4λ+2

√
1−x21−2λ√

1−y21−2λ
dx dy ≤Q(λ)n(2+4λ)/(3−2λ) = o(n),

where we have used Lemma 19. Finally, the definition of Bn if λ ∈ (−1/2, 0) is
∫∫

x∈[−1+n−2,1−n−2],y∈[1−n−2,1]

∣∣∣∣log
1

|x − y|
∣∣∣∣

Q(λ)n2λ+1 log n

(1−x2)
√

1−y21−2λ
dx dy = O(

√
n log n),

again from Lemma 19. This finishes the proof of Proposition 8.

5.2 The Value of L2

We devote this section to the proof of Proposition 9. To this end, we consider the following
overlapping regions (see Fig. 1):

Dn,α =
{
(x, y) ∈ [−1, 1]2 : | arccos x − arccos y| ≤ 2n−α

4n−α ≤ arccos x + arccos y ≤ 2π − 4n−α

}
,

Tn,α = {(x, y) ∈ [−1, 1]2 : arccos y − arccos x ≥ 2n−α} .

The border line of Tn,α with the rest of [−1, 1]2 is an arc joining (x, y) = (−1+cnn
−2α, −1)

with (x, y) = (1, 1 − cnn
−2α) along the graphic of a convex increasing function, where

cn > 0 and cn → 2.
We show that the main term in the asymptotics comes from the region Dn,α .
Let us commence the proof with some auxiliary results about the kernel Kλ

n (x, y), some
of them interesting on their own. In these auxiliary results we consider a general parameter
α, which belongs to some interval that changes from a result to another, so it is sometimes
in [0, 1] or (1/2, 1/(1 − 2λ)) or (0, 3/4). In the proof of Proposition 9 we will choose
α = 1/2 + ε for some small ε depending on λ, so that all these auxiliary results will apply.

Proposition 11 Let us take x = cos θ and y = cos σ . For any λ > −1/2, α ∈ [0, 1] and
c > 0:

(i) For (x, y) ∈ [−1 + cn−2α, 1 − cn−2α],
∣∣∣∣K

λ
n (x, y)

√
wλ(x)

√
wλ(y) − 1

2π
√

sin θ
√

sin θ

sin((n + λ + 1/2)(θ − σ))

sin((θ − σ)/2)

∣∣∣∣

≤ Q(λ, c)nα log n√
sin θ

√
sin σ

.
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Fig. 1 Regions on the square [−1, 1]2

(ii) For λ ≥ 0 and x �= y both in [−1, 1]:
∣∣∣Kλ

n (x, y)
√

wλ(x)
√

wλ(y)

∣∣∣ ≤ Q(λ)

|x − y|√sin θ
√

sin σ
.

In the case λ ∈ (−1/2, 0) this last inequality is also valid but only for x �= y both in
[−1 + cn−2, 1 − cn−2] and additionally:

∣∣∣Kλ
n (x, y)

√
wλ(x)

√
wλ(y)

∣∣∣ ≤ Q(λ)(n sin θ)λ

|x − y|√sin θ
√

sin σ
,

for (x, y) ∈ [1 − cn−2, 1] × [−1 + cn−2, 1 − cn−2].
(iii) For (x, y) ∈ [−1, 1]2 and λ ≥ 0

∣∣∣Kλ
n (x, y)

√
wλ(x)

√
wλ(y)

∣∣∣ ≤ Q(λ)n√
sin θ

√
sin σ

.

If −1/2 < λ < 0 and (x, y) ∈ [1 − cn−2α, 1] × [−1, −1 + cn−2α] or (x, y) ∈
[1 − cn−2α, 1]2, then

∣∣Kλ
n (x, y)

∣∣ ≤ Q(λ)n2αλ+1 ,

while if (x, y) ∈ [1 − cn−2, 1] × [−1 + cn−2, 1 − cn−2]:
∣∣∣Kλ

n (x, y)
√

wλ(x)
√

wλ(y)

∣∣∣ ≤ Q(λ)n√
sin θ

√
sin σ

(n sin θ)λ .
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Proof Here, we will use some auxiliary results which are collected in the appendices at the
end of the paper. Let us prove (i). Starting from Lemma 20, we sum from k = 0 to n

∣∣∣∣∣K
λ
n (x, y)

√
wλ(x)

√
wλ(y) −

n∑

k=0

2 cos ((k + λ)θ − λπ/2) cos ((k + λ)σ − λπ/2)

π
√

sin θ
√

sin σ

∣∣∣∣∣

≤
n∑

k=0

Q(λ)

k sin3/2 θ

T (k, θ)

1 + T (k, θ)

√
2√

π
√

sin σ
|cos((k + λ)σ − λπ/2)|

+
n∑

k=0

√
2√

π
√

sin θ
|cos((k + λ)θ − λπ/2)| Q(λ)

k sin3/2 σ

T (k, σ )

1 + T (k, σ )

+
n∑

k=0

Q(λ)

k sin3/2 θ

T (k, θ)

1 + T (k, θ)

Q(λ)

k sin3/2 σ

T (k, σ )

1 + T (k, σ )

≤ Q(λ)√
sin θ

√
sin σ

(
n∑

k=1

1

k sin θ
+

n∑

k=1

1

k sin σ
+

n∑

k=1

1

k sin θ

1

k sin σ

T (k, σ )

1 + T (k, σ )

)
.

For λ ≥ 0 we have T (k, σ ) = k sin σ and

1

k sin σ

T (k, σ )

1 + T (k, σ )
= 1

1 + k sin σ
< 1.

For λ ∈ (−1/2, 0) we have T (k, σ ) = (k sin σ)λ+1 and

1

k sin σ

T (k, σ )

1 + T (k, σ )
= (k sin σ)λ

1 + (k sin σ)λ+1
< (k sin σ)λ.

In both cases, when taking θ, σ ∈ [cn−α, π − cn−α], the term in the parenthesis is at most
like nα log n. Note that in the λ ∈ (−1/2, 0) case we use that α(1−λ)+λ≤ α. Finally, with
the help of Lemma 30,

∣∣∣∣K
λ
n (x, y)

√
wλ(x)

√
wλ(y) − 1

2π
√

sin θ
√

sin σ

sin((n + λ + 1/2)(θ − σ))

sin((θ − σ)/2)

∣∣∣∣

≤ 1

2π
√

sin θ
√

sin σ

(∣∣∣∣
sin((n+λ+1/2)(θ+σ) − λπ)

sin((θ + σ)/2)

∣∣∣∣ +
∣∣∣∣
sin((λ−1/2)(θ+σ)−λπ)

sin((θ + σ)/2)

∣∣∣∣

+
∣∣∣∣
sin((λ − 1/2)(θ − σ))

sin((θ − σ)/2)

∣∣∣∣ + Q(λ)nα log n

)

≤ 1

2π
√

sin θ
√

sin σ

(
Q(λ)nα + Q(λ)nα + Q(λ) + Q(λ)nα log n

) ≤ Q(λ)nα log n ,

and (i) is proved (the constant Q(λ) in the argument depends on c so we denote it by Q(λ, c)

in the proposition).
Inequalities in (ii) are consequence of the Christoffel-Darboux summation formula (see

[22]) and some bounds for the Gegenbauer polynomials. First inequality in Eq. 18 holds for
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all θ ∈ [0, π ] if λ ≥ 0 and also for θ ∈ [n−1, π − n−1] if −1/2 < λ < 0, so in these cases
∣∣∣Kλ

n (x, y)
√

wλ(x)
√

wλ(y)

∣∣∣

=
∣∣∣∣∣
(n + 1)!
2λ(2λ)n

Cλ
n+1(x)Cλ

n(y) − Cλ
n(x)Cλ

n+1(y)

x − y

√
wλ(x)

√
wλ(y)

∣∣∣∣∣

≤ Q(λ)n2−2λ n2λ−2 sin−λ θ sin−λ σ

|x − y| sinλ−1/2 θ sinλ−1/2 σ ≤ Q(λ)

|x − y|√sin θ
√

sin σ
.

If −1/2 < λ < 0 and (x, y) ∈ [1 − cn−2, 1] × [−1 + cn−2, 1 − cn−2], then by the second
inequality in Eq. 18

∣∣∣Kλ
n (x, y)

√
wλ(x)

√
wλ(y)

∣∣∣

=
∣∣∣∣∣
(n + 1)!
2λ(2λ)n

Cλ
n+1(x)Cλ

n(y) − Cλ
n(x)Cλ

n+1(y)

x − y

√
wλ(x)

√
wλ(y)

∣∣∣∣∣

≤ Q(λ)n2−2λ n2λ−1nλ−1 sin−λ σ

|x − y| sinλ−1/2 θ sinλ−1/2 σ ≤ Q(λ)(n sin θ)λ

|x − y|√sin θ
√

sin σ
.

Then (ii) is proved.
Finally (iii) is quite direct: if λ ≥ 0, from first inequality in Eq. 18 (which is also valid

for θ ∈ [0, π ])
∣∣∣Kλ

n (x, y)
√

wλ(x)
√

wλ(y)

∣∣∣

≤ Q(λ)

n∑

k=0

(
γ λ
k

)2 ∣∣Cλ
k (cos θ)Cλ

k (cos σ)
∣∣ sinλ−1/2 θ sinλ−1/2 σ

≤ Q(λ)

n∑

k=0

k2−2λ sin−λ θkλ−1 sin−λ σkλ−1 sinλ−1/2 θ sinλ−1/2 σ ≤ Q(λ)n√
sin θ

√
sin σ

.

If −1/2 < λ < 0, combining both inequalities in Eq. 18 one gets
∣∣Cλ

k (cos θ)
∣∣ ≤ Q(λ)n(α+1)λ−1 , θ ∈ [0, dn−α]

for some d . Hence if x ∈ [1 − cn−2α, 1] and y ∈ [1 − cn−2α, 1] or y ∈ [−1, −1 + cn−2α]:
∣∣Kλ

n (x, y)
∣∣≤

n∑

k=0

(
γ λ
k

)2 ∣∣Cλ
k (cos θ)Cλ

k (cos σ)
∣∣≤

n∑

k=0

Q(λ)k2−2λk2(α+1)λ−2 ≤Q(λ)n2αλ+1 ,

and if (x, y) ∈ [1 − cn−2, 1] × [−1+cn−2, 1 − cn−2], again from Eq. 18:

∣∣Kλ
n (x, y)

∣∣
√

wλ(x)
√

wλ(y)≤Q(λ)

n∑

k=0

(
γ λ
k

)2 ∣∣Cλ
k (cos θ)Cλ

k (cos σ)
∣∣ sinλ−1/2 θ sinλ−1/2 σ

≤
n∑

k=0

Q(λ)k2−2λk2λ−1 sin−λ σkλ−1 sinλ−1/2 θ sinλ−1/2 σ = Q(λ) sinλ θ√
sin θ

√
sin σ

n∑

k=0

kλ

≤ Q(λ)n(n sin θ)λ√
sin θ

√
sin σ

.
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We now can establish a series of lemmas which reduce the region from where the main
terms in the asymptotics of Proposition 9 come.

Lemma 12 For α ∈ (1/2, 1], α0 ∈ (0, 1/2) such that α + α0 > 1, c > 1 and d > 0
∫∫

[1−n−2α,1]×[1−dn−2α0 ,1−cn−2α]

∣∣∣∣log
1

|x − y|
∣∣∣∣K

λ
n (x, y)2wλ(x)wλ(y) d(x, y) = o(n).

Proof Let I be our integral. In this region it is clear that
∣∣∣log 1

|x−y|
∣∣∣ ≤ Q log(n) where

Q is a constant depending on α and α0. In the case λ ≥ 0, to estimate I , we use (iii) in
Proposition 11 and take into account that

∫ 1

1−n−2α

1√
1 − x2

dx ≤ Qn−α

∫ 1−cn−2α

1−dn−2α0

1
√

1 − y2
dy ≤ Qn−α0 ,

for some constant Q, in order to get

I ≤ Q(λ) log(n)n2
∫ 1

1−n−2α

1√
1 − x2

dx

∫ 1−cn−2α

1−dn−2α0

1
√

1 − y2
dy

≤ Q(λ) log(n)n2n−αn−α0 = o(n) .

In the case λ ∈ (−1/2, 0) we use the inequality
∫ 1

1−n−2α

(n
√

1 − x2)2λ

√
1 − x2

dx ≤ Q(λ)n2λ

∫ kn−α

0
θ2λ dθ ≤ Q(λ)n2λ(1−α)−α

and the last one in (iii) of Proposition 11 to obtain

I ≤ Q(λ) log(n)n2
∫ 1

1−n−2α

(n
√

1 − x2)2λ

√
1 − x2

dx

∫ 1−cn−2α

1−dn−2α0

1
√

1 − y2
dy

≤ Q(λ) log(n)n2+2λ(1−α)−α−α0 = o(n) .

Lemma 13 Let n > 1, λ ∈ (−1/2, 0), α ∈ (1/2, 1) and c > 0. For any y ∈ [−1, 1]:
∫ 1

1−cn−2α

∣∣log |x − y|wλ(x)
∣∣ dx ≤ Q(λ)nα(1−2λ−2/q), 1 < q <

2

1 − 2λ
,

and ∫ 1

1−cn−2α

wλ(x) dx ≤ Q(λ)nα(−1−2λ).

Proof Using Holder’s inequality the first integral is bounded by:

I ≤ Q(q, λ)

(∫ 1

1−cn−2α

1

(1 − x2)(1/2−λ)q
dx

)1/q

≤ Q(q, λ)

(∫ 1

1−cn−2α

1

(1 − x)(1/2−λ)q
dx

)1/q

= Q(q, λ)nα(1−2λ−2/q)
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where (1/2 − λ)q < 1. For the last integral:
∫ 1

1−cn−2α

(1 − x2)λ−1/2 dx ≤ Q(λ)

∫ 1

1−cn−2α

(1 − x)λ−1/2 dx ≤ Q(λ)nα(−1−2λ).

Lemma 14 For α ∈ (1/2, 1] and c > 0,
∫∫

[1−cn−2α,1]2

∣∣∣∣log
1

|x − y|
∣∣∣∣K

λ
n (x, y)2wλ(x)wλ(y) d(x, y) = o(n).

Proof For λ > 0, using Proposition 11 (iii) we get:

Kλ
n (x, y)2wλ(x)wλ(y) ≤ Q(λ)n2

(1 − x2)1/2(1 − y2)1/2
.

Therefore,
∫∫

[1−cn−2α,1]2

∣∣∣∣log
1

|x − y|
∣∣∣∣K

λ
n (x, y)2wλ(x)wλ(y) d(x, y)

≤ Q(λ)n2
∫∫

[1−cn−2α,1]2

∣∣∣∣log
1

|x − y|
∣∣∣∣

1√
1 − x2

√
1 − y2

d(x, y) ≤ Q(λ)n2(1−α) log(n) .

The last inequality holds in the same logic that the one used to bound An in the proof of
Proposition 8.

For λ < 0, using again (iii) of Proposition 11, Kλ
n (x, y)2 ≤ Q(λ)n4αλ+2, then from

Lemma 13:
∫∫

[1−cn−2α,1]2

∣∣∣∣log
1

|x − y|
∣∣∣∣K

λ
n (x, y)2wλ(x)wλ(y) d(x, y)

≤ Q(λ)n4αλ+2
∫∫

[1−cn−2α,1]2

∣∣∣∣log
1

|x − y|
∣∣∣∣

1
√

1 − x21−2λ√
1 − y21−2λ

d(x, y)

≤ Q(λ)n4αλ+2nα(1−2λ−2/q)

∫

[1−cn−2α,1]
1

√
1 − y21−2λ

dy

≤ Q(λ)n2αλ+2+α−2α/q

∫

[1−cn−2α,1]
1

√
1 − y

1−2λ
dy

≤ Q(λ)n2αλ+2+α−2α/qnα(−1−2λ) = Q(λ)n2(1−α/q).

Choosing small enough 1 < q < 2α, we have 2(1 − α/q) < 1 and the result follows.

The last regions whose integrals are o(n) at most are going to be of the type Tn,α (see
Fig. 1 in page 14).

Lemma 15 Let λ > −1/2 and α ∈ (0, 3/4), then as n → ∞
∣∣∣∣∣

∫∫

Tn,α

log
1

|x − y|K
λ
n (x, y)2wλ(x)wλ(y)dxdy

∣∣∣∣∣ = o(n) .
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Proof We prove it first for α < 1/2 and λ ≥ 0. The change of variables

(u, v) =
(

θ − σ

2
,
θ + σ

2

)
=
(

arccos(x) − arccos(y)

2
,

arccos(x) + arccos(y)

2

)
, (5)

transforms Tn,α into a triangle T ∗
n,α = {(u, v) : u ≤ −n−α, u+ v ≥ 0,−u+ v ≤ π}, whose

vertices are (−π/2, π/2), (−n−α, n−α) and (−n−α, π − n−α). Also

|x − y| = |2 sin((θ + σ)/2) sin((θ − σ)/2)| = |2 sin(v) sin(u)| .

Then, first inequality in (ii) of Proposition 11 implies that the absolute value of our integral
is less than

Q(λ)

∫∫

T ∗
n,α

log(n)
1

sin2(v) sin2(u)
d(u, v) ≤ Q(λ) log(n)

∫∫

T ∗
n,α

1

v2(π − v)2u2
d(u, v)

≤ Q(λ) log(n)n2α ≤ o(n) ,

so we have proved the lemma in this case. If λ ∈ (−1/2, 0) and still α < 1/2, we consider
the subsets of Tn,α

A = {(x, y) ∈ Tn,α : |x| ≤ 1 − n−2, |y| ≤ 1 − n−2} ,

B = {(x, y) ∈ Tn,α : x ≥ 1 − n−2, |y| ≤ 1 − n−2} ,

B̄ = {(x, y) ∈ Tn,α : |x| ≤ 1 − n−2, y < −1 + n−2} ,

C = {(x, y) ∈ Tn,α : x ≥ 1 − n−2, y < −1 + n−2} ,

so that by symmetry between B and B̄,
∣∣∣∣∣

∫∫

Tn,α

log
1

|x − y|K
λ
n (x, y)2wλ(x)wλ(y)dxdy

∣∣∣∣∣

≤
∣∣∣∣
∫∫

A

log
1

|x − y|K
λ
n (x, y)2wλ(x)wλ(y)dxdy

∣∣∣∣

+2

∣∣∣∣
∫∫

B

log
1

|x − y|K
λ
n (x, y)2wλ(x)wλ(y)dxdy

∣∣∣∣

+
∣∣∣∣
∫∫

C

log
1

|x − y|K
λ
n (x, y)2wλ(x)wλ(y)dxdy

∣∣∣∣ ,

and we have to prove that these three integrals are o(n). The integral in A can be bounded as
in the case λ ≥ 0. The integral in C can be proved to be also o(n) at most by using the same
arguments than in Lemma 14 (it is even easier since the logarithmic term does not appear).
By (ii) of Proposition 11, the absolute value of our integral in B is less than

Q(λ) log(n)

∫∫

B

(n sin θ)2λ

|x − y|2√1 − x2
√

1 − y2
dxdy

≤ Q(λ) log(n)n2λn4α

∫∫

B

wλ(x)
√

1 − y2
dxdy

≤ Q(λ) log(n)n2λ+4αn−2λ−1 = Q(λ) log(n)n4α−1 = o(n),

since α < 1/2. Hence we have proved the lemma for α ∈ (0, 1/2) and any λ > −1/2.
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Suppose now α ∈ (1/2, 3/4) (the case α = 1/2 can be deduced from this case) and take
α0 ∈ (0, 1/2) such that α +α0 > 1, 2α −α0 < 1 (observe that these conditions are not void
since α < 3/4). Consider the following subsets of Tn,α: Tn,α0 and

E = {(x, y) ∈ Tn,α : 2n−α0 ≥ arccos y − arccos x, x ≥ 1 − n−2α} ,

F = {(x, y) ∈ Tn,α : 2n−α0 ≥ arccos y − arccos x, x ≤ 1 − n−2α, y > −1 + n−2α} .

We have already proved that the integral in Tn,α0 is at most o(n) and Lemma 12 shows that
the integral in E is also o(n) at most (because α +α0 > 1 and E is included in the rectangle
[1 − n−2α, 1] × [1 − 3n−2α0 , 1 − n−2α]). The integral in F can be bounded using (i) of
Proposition 11:

∣∣∣∣
∫∫

F

log

(
1

|x − y|
)

Kλ
n (x, y)2wλ(x)wλ(y)dxdy

∣∣∣∣

≤ Q(λ) log(n)

∫∫

F

(∣∣∣∣
1

sin((θ − σ)/2)

∣∣∣∣ + nα log(n)

)2 1√
1 − x2

√
1 − y2

dxdy

≤ Q(λ)n2α log3(n)

∫∫

F

1√
1 − x2

√
1 − y2

dxdy ≤ Q(λ)n2α log3(n)n−α0 = o(n) ,

because we have chosen α0 > 2α − 1. Now the lemma follows by gathering these
inequalities and taking into account the symmetry.

To finish with the estimation of L2, we need to study this integral over the last remaining
region, the diagonal Dn,α (see Fig. 1) which is where the dominant terms will lie. We will
devote the rest of this section to prove the following

Proposition 16 For α ∈ (1/2, 1) it holds

IDn,α =
∫∫

Dn,α

log
1

|x−y|K
λ
n (x, y)2ωλ(x)ωλ(y)dxdy =n log n+(−1+γ+2 log 2)n+o(n).

Proof Using Proposition 11 (i) together with the change of variables Eq. 5 performed in the
proof of Lemma 15, the integral in the proposition can be written as

IDn,α = 1

π2

∫∫

R

log
1

2 sin v sin u

[
sin

(
(2n + 2λ + 1)u

)

sin u
+ O

(
nα log n

)
]2

dudv,

where the integration region is the rectangle R = [0, n−α] × [2n−α, π − 2n−α]. Expanding
the squared term, this integral splits into three terms involving three integrals, namely

IDn,α = I1O(n2α log2 n) + I2O(nα log n) + I3. (6)

We are going to treat each one of these integrals separately. We shall see that the first two
terms are o(n) and also that I3 contains all the highest order terms. Throughout the proof,
we will use a constant Q which is independent on n and might not be the same from one
appearing to another. We start with the first integral

I1 =
∫∫

R

log
1

2 sin v sin u
dudv,
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which can be bounded as

|I1| ≤
∫∫

R

log 2 dudv +
∫∫

R

log
1

sin v
dudv +

∫∫

R

log
1

sin u
dudv

≤ Q(n−α + n−α + n−α log n) ≤ Q(n−α log n),

where we have used that log(sin v) is an integrable function on [0, π ] and also that
log(1/ sin u) ≤ Q log(1/u) for u ∈ [0, n−α]. Then, we directly have that the first term in
Eq. 6 is o(n) since α < 1.

Now we deal with the second integral

I2 =
∫∫

R

log
1

2 sin v sin u

sin((2n + 2λ + 1)u)

sin u
dudv.

Observe that the logarithmic term is always positive since 2 sin(v) sin(u) < 1 on R for n

sufficiently large. Then, we can bound

|I2|≤
∫∫

R

log
1

2 sin v

| sin((2n + 2λ + 1)u)|
sin u

dudv+
∫∫

R

log
1

sin u

| sin((2n + 2λ + 1)u)|
sin u

dudv

≤o(1)

∫ n−α

0

| sin((2n + 2λ + 1)u)|
sin u

du + Q

∫ n−α

0
log

1

sin u

| sin((2n + 2λ + 1)u)|
sin u

du,

where, we have used Lemma 31 for the estimation of the first term. Taking into account that
we can bound

| sin((2n + 2λ + 1)u)|
sin u

≤ Qn, log
1

sin u
≤ Q log

1

u
, u ∈ [0, n−1], (7)

and also

| sin((2n + 2λ + 1)u)|
sin u

≤ Q
1

u
, log

1

sin u
≤ Q log

1

u
, u ∈ [n−1, n−α], (8)

we split each of the above integrals into these two intervals obtaining

|I2| ≤ Q

(
n

∫ n−1

0
du +

∫ n−α

n−1

1

u
du + n

∫ n−1

0
log

1

u
du +

∫ n−α

n−1
log

1

u

1

u
du

)

≤ Q
(
1 + log n + log n + log2 n

) ≤ Q log2 n.

Thus, the second term in Eq. 6 is o(n) since α < 1.
For the third integral, we split the logarithm factor into two terms and so we can write

I3 = 1
π2

∫∫

R

log
1

2 sin v sin u

sin2((2n + 2λ + 1)u)

sin2 u
dudv = I4 + I5.

Let us continue with

I4 = 1
π2

∫∫

R

log
1

2 sin v

sin2((2n + 2λ + 1)u)

sin2 u
dudv ≤ o(1)

∫ n−α

0

sin2((2n + 2λ + 1)u)

sin2 u
du,

where we have used again Lemma 31. Using the same ideas as in I2, we can split the
integration interval, and using the bounds Eqs. 7 and 8 we get

I4 ≤ o(1)

(∫ n−1

0
n2du +

∫ n−α

n−1

1

u2
du

)
≤ o(1)n = o(n).
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Finally, we will deal with the remaining integral,

I5 = 1

π2

∫∫

R

log
1

sin u

sin2 ((2n + 2λ + 1)u
)

sin2 u
dudv

= π − 4n−α

π2

∫ n−α

0
log

1

sin u

sin2 ((2n + 2λ + 1)u
)

sin2 u
du. (9)

We are not going to find a bound, since in this case we are interested in getting exactly
the highest order term. First, using Taylor expansion of u/ sin u around 0, we have

1

sin u
= 1

u

(
1 + O(n−2α)

)
, u ∈ [0, n−α],

from where

1

sin2 u
= 1

u2

(
1 + O(n−2α)

)
, log

1

sin u
= log

1

u
+ O(n−2α), u ∈ [0, n−α].

We plug these last two identities in Eq. 9, getting

I5 = 1
π

(
1 + O(n−α)

) ∫ n−α

0
log

1

u

sin2((2n + 2λ + 1)u)

u2
du

+O(n−2α)

∫ n−α

0

sin2 ((2n + 2λ + 1)u
)

u2
du.

(10)

These two integrals can be easily computed using the Sine Integral function, defined as

Si(z) =
∫ z

0

sin(t)

t
dt,

which has the property

d

du

(
t Si(2tu) − sin2(tu)

u

)
= sin2(tu)

u2
(11)

and it satisfies the asymptotics (see [1, (5.2.8), (5.2.34), (5.2.35)])

Si(x) = π

2
+ O

(
1

x

)
as x → +∞.

With these two properties, the integral on the second term of Eq. 10 becomes,
∫ n−α

0

sin2 ((2n + 2λ + 1)u
)

u2
du

= (2n + 2λ + 1) Si
(
2(2n + 2λ + 1)n−α

) − sin2 ((2n + 2λ + 1)n−α
)

n−α

= (2n + 2λ + 1)
(
π/2 + O(nα−1)

) + O(nα) = nπ + O(nα). (12)

Now, for the integral on the first term of Eq. 10, we perform integration by parts using
Eq. 11, followed by simplification with Eq. 12 and the asymptotic of the Sine Function,
obtaining

∫ n−α

0
log

1

u

sin2
(
(2n+2λ+1)u

)

u2 du = απn log n − πn

+(2n + 2λ + 1)

∫ n−α

0

Si
(
2(2n + 2λ + 1)u

)

u
du + O(nα log n).

(13)
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This integral above can be computed using Lemma 32, which gives
∫ n−α

0

Si
(
2(2n + 2λ + 1)u

)

u
du = π

2
log

(
2(2n + 2λ + 1)n−α

) + γπ

2
+ O(nα−1). (14)

Then, with Eqs. 12, 13 and 14 plugged into Eq. 10, and after some straightforward
computations we get

I5 = n log n + (−1 + γ + 2 log 2)n + O(nmax(α,1−α) log n).

Now Proposition 16 is proved since α ∈ (1/2, 1). This finishes the proof of Proposition 9.

6 Proof of Corollary 3

Let us consider the process described in the second point of Corollary 3. The value of the
expected energy for this case is clearly −2 log 2 + E(λ, n + 1) + 2L3 where L3 accounts
for the energy corresponding to the crossed terms of the DPP with n + 1 points and the
extremes. In other words, L3 is as given in the following result.

Theorem 17 Let L3 = L3(λ, n) be defined by

L3 =
∫ 1

−1
Kλ

n (x, x) log

(
1

1 + x

)
wλ(x)dx +

∫ 1

−1
Kλ

n (x, x) log

(
1

1 − x

)
wλ(x)dx

=
∫ 1

−1
Kλ

n (x, x) log

(
1

1 − x2

)
wλ(x)dx.

Then,

L3 = (n + 1) (ψ(n + λ + 1) − ψ(λ + 1/2))

−(n + 2λ)
(
ψ(n + λ + 1/2) − ψ(λ + 1/2) − 2ψ(2n + 2λ + 1) + 2ψ(n + 2λ + 1)

)
,

where ψ(x) = �′(x)/�(x) is the digamma function. In particular, for any fixed λ ∈
(−1/2,∞), we have

L3 = 2n log(2) − (2λ − 1) log n + O(1).

We prove this theorem later. First, let us finish the proof of Corollary 3. From Theorem 2,
the energy of the first process in the corollary (generate n + 3 points with the DPP) is

E(λ, n + 3) = (n + 3)2 log 2 − (n + 3) log(n + 3) + (1 − γ − 2 log 2)n + o(n). (15)

From the same theorem and from Theorem 17, the energy of the second process described
in Corollary 3 is

− 2 log 2 + E(λ, n + 1) + 2L3(λ, n) =
(n + 1)2 log 2 − (n + 1) log(n + 1) + (1 − γ − 2 log 2)n + 4n log(2) + o(n). (16)

It is an easy exercise to check that Eqs. 15 and 16 describe the same asymptotics up to o(n),
as claimed by the corollary. In the case λ = 0 we have exact values for L1, L2 and L3 so we
can compare directly the expressions E(0, n + 3) and −2 log 2 + E(0, n + 1) + 2L3(0, n).
It is straightforward to see that the first process has smaller energy than the second one, and
that the difference is in the O(log n) term. This finishes the proof of Corollary 3 and it only
remains to prove Theorem 17.
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6.1 Proof of Theorem 17

Note that

L3 = −2
n∑

k=0

∫ 1

−1
Ĉλ

k (x)2wλ(x) log(1 − x) dx. (17)

The case λ = 0 can be done directly. In that case, we use

−2 log(1 − x) = 2 log 2 + 4 log
1√

2 − 2x
,

and combine Eq. 17 with Lemma 22 to get

L3 = 2(n + 1) log 2 + Hn.

It is easy to check that this equals the expression in Theorem 17 (use [1, 6.3.8]).
We now center in the case that λ �= 0. From Eq. 17 and Lemma 23 we have

L3(λ, n) = −2
n∑

k=0

(
−2ψ(2λ + 2k)+ψ(2λ + k) + log 2 + ψ(λ + k + 1/2) − 1

2k + 2λ

)
.

We have to see that this is equal to the expression in Theorem 17, which we do by induction
on n. The case n = 0 reduces to [1, 6.3.8]. Moreover, by induction hypotheses we need to
check that

4ψ(2λ + 2n) − 2ψ(2λ + n) − 2 log 2 − 2ψ(λ + n + 1/2) + 1

n + λ
= A + B,

where

A = (n + 1) (ψ(n + λ + 1) − ψ(λ + 1/2)) − n (ψ(n + λ) − ψ(λ + 1/2)) ,

B = (n + 2λ − 1)
(
ψ(n + λ − 1/2) − ψ(λ + 1/2) − 2ψ(2n + 2λ − 1) + 2ψ(n + 2λ)

)

−(n + 2λ)
(
ψ(n + λ + 1/2) − ψ(λ + 1/2) − 2ψ(2n + 2λ + 1) + 2ψ(n + 2λ + 1)

)
.

This is a simple yet tedious exercise using that ψ(z + 1) = ψ(z) + 1/z and [1, 6.3.8].

Appendix A: Bounds and Integrals Involving Gegenabuer Polynomials

In this appendix we state some technical lemmas that have been used in the proof of the
main results. Recall from [22, Eq. (7.33.6)] the following: for n ≥ 1 and λ ∈ (−1/2,∞),

∣∣Cλ
n(cos θ)

∣∣ ≤
{

Q(λ) sin−λ θnλ−1, cn−1 ≤ θ ≤ π − cn−1

Q(λ)n2λ−1, 0 ≤ θ ≤ cn−1 , (18)

for c > 0 fixed and some constant Q(λ). Observe that when λ ≥ 0, both inequalities, though
less sharp, hold in [0, π ]. The following lemma follows easily:

Lemma 18 Let λ > −1/2 and n ≥ 1. Then, for x ∈ [−1, 1] such that 0 ≤ arccos x ≤ 2 n−1

(this holds in particular if 1 − n−2 ≤ x ≤ 1), we have

Kλ
n (x, x)wλ(x) ≤ Q(λ)n2λ+1(1 − x2)λ−1/2.
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Proof Recall that in the range of x = cos θ , for k ≥ 1 we have

Ĉλ
k (cos θ)2 = k!(k + λ)�(2λ)

λ�(2λ + k)
Cλ

k (cos θ)2 ≤ Q(λ)

k2λ−2
Cλ

k (cos θ)2 (18)≤ Q(λ)k2λ,

where we have used some standard estimates on the Gamma function. Then,

Kλ
n (x, x) =

n∑

k=0

Ĉλ
k (cos θ)2 ≤ Q(λ)

n∑

k=1

k2λ.

For all λ ∈ (−1/2,∞), the sum is bounded above by Q(λ)n2λ+1, and we are done.

The following is almost immediate:

Lemma 19 Let n > 1. There exists a constant c > 0 such that for any y ∈ [−1, 1]:
∫ 1

−1

∣∣∣∣
log |x − y|√

1 − x2

∣∣∣∣ dx ≤ 3π log 2,

∫ 1−n−2

−1+n−2

∣∣∣∣
log |x − y|

1 − x2

∣∣∣∣ dx ≤ c
√

n.

If additionally we have λ ∈ (−1/2, 0), then
∫ 1

1−n−2

∣∣∣∣∣
log |x − y|

√
1 − x21−2λ

∣∣∣∣∣ dx ≤ Q(λ)n−1−2λ+(2+4λ)/(3−2λ),

and ∫ 1

1−n−2

1
√

1 − x21−2λ
dx ≤ Q(λ)n−1−2λ.

Proof Recall that
∫ 1

−1

1

π
√

1 − x2
dx = 1,

∫ 1

−1

log |x − y|
π

√
1 − x2

dx = − log 2, ∀y ∈ [−1, 1],

the last from Eq. 4. Since for any x, y ∈ [−1, 1] we have log |x−y|
2 ≤ 0, we conclude

∫ 1

−1

∣∣∣∣
log |x − y|
π

√
1 − x2

∣∣∣∣ dx =
∫ 1

−1

∣∣∣∣∣
log 2 + log |x−y|

2

π
√

1 − x2

∣∣∣∣∣ dx

≤
∫ 1

−1

log 2

π
√

1 − x2
dx −

∫ 1

−1

log |x−y|
2

π
√

1 − x2
dx

= 2
∫ 1

−1

log 2

π
√

1 − x2
dx −

∫ 1

−1

log |x − y|
π

√
1 − x2

dx = 3 log 2.

The first claim of the lemma follows. For the second one, let J be the integral we want to
estimate. From Holder’s inequality,

J ≤
(∫ 1−n−2

−1+n−2
|log |x − y||4 dx

)1/4 (∫ 1−n−2

−1+n−2

1

(1 − x2)4/3
dx

)3/4

.

The first of these two integrals is bounded above by some universal constant. The second
one is at most (

2
∫ 0

−1+n−2

1

(1 + x)4/3
dx

)3/4

≤ c
√

n.
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For the third integral in the lemma (that we denote I (λ, n)), again Holder’s inequality
yields the upper bound (independent of y):

I (λ, n) ≤ Q(q, λ)

(∫ 1

1−n−2

1
√

1 − x2(1−2λ)q
dx

)1/q

≤ Q(q, λ)

(∫ 1

1−n−2

1

(1 − x)(1/2−λ)q
dx

)1/q

≤ Q(q, λ)n1−2λ−2/q ,

where q > 1 is any positive number such that (1 − 2λ)q < 2 and Q(q, λ) plays the same
role as Q(λ) but in this case it may depend on q. We choose q = (3 − 2λ)/(2 − 4λ) and the
third inequality follows. The last one is even more elementary:

∫ 1

1−n−2

1
√

1 − x21−2λ
dx ≤ Q(λ)

∫ 1

1−n−2

1

(1 − x)1/2−λ
dx ≤ Q(λ)n−1−2λ.

Lemma 20 For λ > −1/2, n ≥ 1 and θ ∈ [0, π ]
∣∣∣∣∣Ĉ

λ
n(cos θ)

√
wλ(cos θ) −

√
2√

π
√

sin θ
cos ((n + λ)θ − λπ/2)

∣∣∣∣∣ ≤ Q(λ)

n sin3/2 θ
min(1, T ) ,

(19)
where Q(λ) is some constant depending only on λ and

T = T (n, θ) =
{

n sin θ, if λ ≥ 0

(n sin θ)λ+1, otherwise.

One can change min(1, T ) to T/(T + 1) if desired.

Proof The classical asymptotic results for Gegenbauer polynomials [22, Eq. (8.21.18)]
yield:

∣∣∣∣C
λ
n(cos θ) − 2λSλ

n√
πn sinλ θ

cos ((n + λ)θ − λπ/2)

∣∣∣∣ ≤ |Sλ
n |Q(λ)

n3/2 sinλ+1 θ
≤ Q(λ)nλ−2

sinλ+1 θ
,

valid for θ ∈ [n−1, π − n−1], where Sλ
n = �(n+2λ)�(λ+1/2)

�(2λ)�(λ+n+1/2)
satisfies |Sλ

n | ≤ Q(λ)nλ−1/2.
Then, for the orthonormal polynomials we have

∣∣∣∣Ĉ
λ
n(cos θ) − γ λ

n 2λSλ
n√

πn sinλ θ
cos ((n + λ)θ − λπ/2)

∣∣∣∣ ≤ γ λ
n Q(λ)nλ−2

sinλ+1 θ
≤ Q(λ)

n sinλ+1 θ
.

Using ∣∣∣∣∣
γ λ
n 2λSλ

n√
πn

−
√

2�(λ + 1/2)√
π�(λ + 1)

∣∣∣∣∣ ≤ Q(λ)

n
,

and multiplying by
√

wλ we get
∣∣∣∣∣Ĉ

λ
n(cos θ)

√
wλ(cos θ) −

√
2√

π
√

sin θ
cos ((n + λ)θ − λπ/2)

∣∣∣∣∣ ≤ Q(λ)

n sin3/2 θ
+ Q(λ)

n
√

sin θ
,

so Eq. 19 is proved for θ ∈ [n−1, π − n−1].
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Now if θ ∈ [0, n−1] ∪ [π − n−1, π ], using Eq. 18 we obtain

n sin3/2 θ

∣∣∣∣∣Ĉ
λ
n(cos θ)

√
wλ(cos θ) −

√
2√

π
√

sin θ
cos ((n + λ)θ − λπ/2)

∣∣∣∣∣

≤ n sin3/2 θQ(λ)

(
γ λ
n n2λ−1 sinλ−1/2 θ + 1√

sin θ

)

≤ n sin3/2 θQ(λ)

(
nλ sinλ−1/2 θ + 1√

sin θ

)

≤ Q(λ)
(
(n sin θ)λ+1 + n sin θ

)
,

which is bounded above by n sin θ if λ ≥ 0 and by (n sin θ)λ+1 otherwise, so Eq. 19 is valid
for θ ∈ [0, π ].

Lemma 21 Let λ > −1/2 and let n ≥ 2, then

∣∣∣∣K
λ
n (x, x)wλ(x) − n + 1

π
√

1 − x2

∣∣∣∣ ≤ Q(λ) log n

1 − x2
, x ∈ [−1, 1]

where Q(λ) is some constant depending only on λ.

Proof For θ = arccos(x) ∈ [0, π ] and k ≥ 1, by Lemma 20

∣∣∣∣Ĉ
λ
k (cos θ)2wλ(cos θ) − 2

π sin θ
cos2((k + λ)θ − λπ/2)

∣∣∣∣

≤ Q(λ)

k sin3/2 θ

T (k, θ)

T (k, θ) + 1

(
∣∣Ĉλ

k (cos θ)
∣∣
√

wλ(cos θ) +
√

2√
π

√
sin θ

)

≤ Q(λ)

k sin3/2 θ

T (k, θ)

T (k, θ) + 1

(
Q(λ)

k sin3/2 θ

T (k, θ)

T (k, θ) + 1
+ 1√

sin θ

)

≤ Q(λ)

(k + 1)2 sin3 θ

(
T (k, θ)

T (k, θ) + 1

)2

+ Q(λ)

(k + 1) sin2 θ

(
T (k, θ)

T (k, θ) + 1

)
,

where we have used Lemma 20 and that the normalization coefficient γ λ
k behaves like k1−λ.

Observe that this inequality is also valid for k = 0. Then, from Lemma 29 we conclude

Kλ
n (x, x)wλ(x) =

n∑

k=0

Ĉλ
k (x)2wλ(x)

≤ n + 1

π sin θ
+

n∑

k=0

Q(λ)

(k + 1)2 sin3 θ

(
T (k, θ)

T (k, θ) + 1

)2

+
n∑

k=0

Q(λ)

(k + 1) sin2 θ

(
T (k, θ)

T (k, θ) + 1

)
.
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If λ ≥ 0 we can bound the last sums by

Q(λ)

sin θ

n∑

k=0

1

(1 + k sin θ)2
≤ Q(λ)

sin θ

∫ n

0

1

(1 + x sin θ)2
dx ≤ Q(λ)

sin θ

∫ n

0

1

1 + x sin θ
dx,

Q(λ)

sin θ

n∑

k=0

1

1 + k sin θ
≤ Q(λ)

sin θ

∫ n

0

1

1 + x sin θ
dx ≤ Q(λ) log(1 + n sin θ)

sin2 θ

≤ Q(λ) log n

sin2 θ
.

If λ < 0 the corresponding bounds are

Q(λ)

sin1−2λ θ

n∑

k=0

k2λ+2

(k + 1)2(1 + kλ+1 sinλ+1 θ)2
≤ Q(λ)

sin1−2λ θ

∫ n

0

x2λ

(1 + xλ+1 sinλ+1 θ)2
dx

≤ Q(λ)

sin2 θ
,

(the last by dividing the integration interval with midpoint 1/ sin θ if n is greater than this
quantity), and

Q(λ)

sin1−λ θ

n∑

k=0

kλ+1

(k + 1)(1 + kλ+1 sinλ+1 θ)
≤ Q(λ)

sin1−λ θ

∫ n

0

xλ

(1 + xλ+1 sinλ+1 θ)
dx

= Q(λ) log(1 + (n sin θ)λ+1)

sin2 θ

≤ Q(λ) log n

sin2 θ
,

as we wanted. The reciprocal inequality

Kλ
n (x, x)wλ(x) ≥ n + 1

π sin θ
− Q(λ) log n

sin2 θ

is proved the same way (now, the error bounds have a minus sign).

Lemma 22 Let λ = 0. Then,

n∑

k=0

∫ 1

−1
Ĉ0

k (x)2w0(x) log
1√

2 − 2x
dx = Hn

4
.

Proof With the change of variables x = cos θ , the integral of the lemma becomes

1

2π

n∑

k=0

∫ π

−π

Ĉ0
k (cos θ)2 log

1√
2 − 2 cos θ

dθ

= 1

2π

∫ π

−π

log
1√

2 − 2 cos θ
dθ +

n∑

k=1

1

π

∫ π

−π

cos2(kθ) log
1√

2 − 2 cos θ
dθ = Hn

4
,

the last from lemmas 25 and 27.
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Lemma 23 The following equality holds for all λ ∈ (−1/2, 0)∪ (0,∞) and integer k ≥ 0:
∫ 1

−1
Cλ

k (x)2(1 − x2)λ−1/2 log(1 − x) dx = π21−2λ�(2λ + k)

k!(k + λ)�(λ)2

×
(

−2ψ(2λ + 2k) + ψ(2λ + k) + log 2 + ψ(λ + k + 1/2) − 1

2k + 2λ

)
.

In other words (from the definition of Ĉλ
k and wλ),

∫ 1

−1
Ĉλ

k (x)2wλ(x) log(1 − x) dx

=
(

−2ψ(2λ + 2k) + ψ(2λ + k) + log 2 + ψ(λ + k + 1/2) − 1

2k + 2λ

)
.

Proof A change of variables x → 1 − x shows that the integral in the lemma equals

1

2

∫ 1

−1
Cλ

k (x)2(1 − x2)λ−1/2 log(1 − x2) dx,

that has been computed in [23, Theorem 3]. The expression in [23, Theorem 3] and ours are
equivalent (use [1, 6.3.8]).

Appendix B: Some Integrals and Sums

We have used some technical results that we include here for the reader’s convenience.

Lemma 24
n∑

j=1

j log(j) = 1

2
n2 log n − 1

4
n2 + 1

2
n log n + 1

12
log n + O(1) .

Proof Let

Sn :=
n∑

j=1

j log(j) = log

⎛

⎝
n∏

j=1

jj

⎞

⎠ = log

⎛

⎝
n∏

j=1

j∏

k=1

j

⎞

⎠

= log

⎛

⎝
n∏

k=1

n∏

j=k

j

⎞

⎠ = log

(
n∏

k=1

n!
(k − 1)!

)

= n log(n!) − log

(
n∏

k=1

(k − 1)!
)

= n log �(n + 1) − log G(n + 1) ,

where G(n) = (n − 2)!(n − 3)! . . . 1! is Barnes G-function, also called the double gamma
function. The asymptotics of G(z) for z → +∞ is known (see [13, Theorem 1] or [11,
5.17.5]):

log(G(z + 1)) = 1

4
z2 + z log �(z + 1) − 1

2
z2 log z − 1

2
z log z − 1

12
log z + O(1).
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We thus have proved that

Sn = n log �(n+1)−
(

1

4
n2 + n log �(n+1) − 1

2
n2 log n − 1

2
n log n − 1

12
log n + O(1)

)

= 1

2
n2 log(n) − 1

4
n2 + 1

2
n log(n) + 1

12
log(n) + O(1).

Lemma 25 We have ∫ π

−π

log
1√

2 − 2 cos α
dα = 0.

Proof First, translate the integration interval to [0, 2π ] and after that combine the change
of variables α = 2πx with [14, 4.384 (3)].

Lemma 26 Let f : [−1, 1]2 → R be a continuous function. Then,
∫

[−1,1]2

f (x, y)√
1 − x2

√
1 − y2

log
1

2|x − y| d(x, y)

= 1

2

∫ π

−π

dα log
1√

2 − 2 cos α

∫ π

−π

f (cos θ, cos(θ + α)) dθ .

In particular, from Lemma 25, if
∫ π

−π
f (cos θ, cos(θ + α)) dθ is constant (i.e. if its value

does not depend on α) then the integral of the lemma is 0.

Proof Denote by I the integral in the lemma. The change of variables x = cos θ , y = cos φ

yields

4I = 4
∫
[0,π]2 f (cos θ, cos φ) log 1

2| cos θ−cos φ| d(θ, φ)

= ∫
[−π,π]2 f (cos θ, cos φ) log 1

2| cos θ−cos φ| d(θ, φ)

= ∫
[−π,π]2 f (cos θ, cos φ) log 1|eiθ−eiφ| d(θ, φ)

+ ∫
[−π,π]2 f (cos θ, cos φ) log 1|eiθ−e−iφ| d(θ, φ),

where we have used the following classical fact:

2| cos θ − cos φ| =
∣∣∣eiθ − eiφ

∣∣∣
∣∣∣eiθ − e−iφ

∣∣∣ .

The change of variables φ → −φ shows that the last two integrals above are equal and
hence we have

2I =
∫

[−π,π]2
f (cos θ, cos φ) log

1∣∣eiθ − eiφ
∣∣ d(θ, φ).

We write this last expression as an integral in the product [−π, π ]×S1, where S1 is the unit
circle, getting

2I =
∫ π

−π

dθ

∫

z∈S1
f (cos θ, Re(z)) log

1∣∣eiθ − z
∣∣

dz

iz

=
∫ π

−π

dθ

∫

w∈S1
f
(

cos θ, Re(eiθw)
)

log
1∣∣eiθ − eiθw

∣∣
dw

iw

=
∫

w∈S1

dw

iw
log

1

|1 − w|
∫ π

−π

f
(

cos θ, Re(eiθw)
)

dθ .
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We have applied the isometry S1 → S1 given by z → w = e−iθ z. Parametrizing again the
unit circle by w = eiα we get to

2I = ∫
α∈[−π,π] dα log 1√

2−2 cos α

∫ π

−π
f (cos θ, cos(θ + α)) dθ,

proving the lemma.

Lemma 27 For any integer k ≥ 1 we have

1

π

∫ π

−π

cos(kα) log
1√

2 − 2 cos α
dα = 1

k
,

1

π

∫ π

−π

cos2(kα) log
1√

2 − 2 cos α
dα = 1

4k
.

Moreover, for integers k >  ≥ 1 we have

1

π

∫ π

−π

cos(kα) cos(α) log
1√

2 − 2 cos α
dα = 1

2

(
1

k − 
+ 1

k + 

)
.

Proof For the first integral, we proceed as in Lemma 25

2
∫ 1

0
cos(2kπx) log

1

2 sin(πx)

[14, 4.384 (3)]= 1

k
.

For the second integral we consider

x = 1
π

∫ π

−π
cos2(kα) log 1√

2−2 cos α
dα,

y = 1
π

∫ π

−π
sin2(kα) log 1√

2−2 cos α
dα,

and we note that

x + y = 1
π

∫ π

−π
log 1√

2−2 cos α
dα

Lemma 25= 0,

x − y = 1
π

∫ π

−π
cos(2kα) log 1√

2−2 cos α
dα = 1

2k
,

and adding these two equalities gives the desired result. For the last claim we similarly
consider

x = 1
π

∫ π

−π
cos(kα) cos(α) log 1√

2−2 cos α
dα,

y = 1
π

∫ π

−π
sin(kα) sin(α) log 1√

2−2 cos α
dα,

which readily gives

x + y = 1
π

∫ π

−π
cos((k − )α) log 1√

2−2 cos α
dα = 1

k−
,

x − y = 1
π

∫ π

−π
cos((k + )α) log 1√

2−2 cos α
dα = 1

k+
,

and again adding these equalities gives the last integral of the lemma.

Lemma 28 For n ≥ 2,
n∑

k=2

H2k−1 = nH2n−1 + H2n

2
− Hn

4
− n − 1

2
.

Proof This is an easy exercise of induction.
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Lemma 29 The following equality holds:
n∑

k=0

cos2 (kθ + α) = n

2
+ O(1)

sin θ
= n + 1

2
+ O(1)

sin θ
.

Proof From the double angle formulas, the sum in the lemma is equal to A − B + C where

A = cos2(α)

n∑

k=0

cos2(kθ),

B = 2 cos(α) sin(α)

n∑

k=0

cos(kθ) sin(kθ) = sin(2α)

2

n∑

k=0

sin(2kθ),

C = sin2(α)

n∑

k=0

sin2(kθ).

These three sums are known, see [14, Sec. 1.34, 1.35], yielding the following value for the
sum in the lemma:

cos2(α) + n

2
+ cos(2α)

cos((n + 1)θ) sin(nθ)

2 sin θ
− sin(2α)

2

sin ((n + 1)θ) sin (nθ)

sin θ
.

We are done.

Lemma 30 The following identities hold:

n∑

k=0

cos(ak+b) = 1

2 sin(a/2)

(
sin

(
an+ a

2
+b

)
−sin

(
b− a

2

))
,

n∑

k=0

cos(ak+b) cos(ck+d)= 1

4 sin
(

a+c
2

)
(

sin

(
(a+c)n+ a+c

2
+b + d

)
+sin

(
a + c

2
− b − d

))

+ 1

4 sin
(

a−c
2

)
(

sin

(
(a−c)n+ a−c

2
+b−d

)
+sin

(
a − c

2
− b+d

))
.

Proof First identity is direct consequence of [14, 1.341.3] and the identities for the product
of a pair of trigonometric functions. Second identity is consequence of the identities for the
product of two trigonometric functions, and first identity.

Lemma 31 The following identity holds:
∫ π

0
log

1

2 sin v
dv = 0.

Proof Using the change of variable x = cos(v) and taking into account that we can write√
1 − x2 = |x − 1|1/2 · |x + 1|1/2 we get

1

π

∫ π

0
log

1

2 sin v
dv = − log 2 +

∫ 1

−1
log

1√
1−x2

dx

π
√

1−x2
= − log 2 + V (1)+V (−1)

2
,

where V (x) is the equilibrium measure potential, which constantly equals log 2. So the
integral vanishes.
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Lemma 32 Let Si(t) the Integral Sine function. The following asymptotic expansion holds:
∫ x

0

Si(t)

t
dt = π

2
log x + γπ

2
+ O(x−1), as x → ∞,

being γ the Euler constant.

Proof We will obtain this identity by means of the imaginary part of a complex line inte-
gral. Let us take x > 0 and consider Cx = {z ∈ C : |z| = x; Im z > 0} parametrized
counterclockwise. Then,

∫ x

−x

1

t

∫ t

0

eiz − 1

z
dz dt +

∫

Cx

1

t

∫ t

0

eiz − 1

z
dz dt = 0 (20)

since we are integrating an entire function along a closed curve. We now split the integral
over the semicircle within three other ones,
∫

Cx

1

t

∫ t

0

eiz − 1

z
dz dt =

∫

Cx

1

t

∫ x

0

eiz − 1

z
dz dt +

∫

Cx

1

t

∫ t

x

eiz

z
dz dt −

∫

Cx

1

t

∫ t

x

1

z
dz dt

= I1 + I2 − I3.

Let us work with each one of these integrals.

I1 = (log(−x) − log(x))

∫ x

0

eiz − 1

z
dz = iπ

∫ x

0

eiz − 1

z
dz.

For the second integral, we parametrize Cx as t = xeiθ and after the change of variable
z = xeiσ , standard computations lead to

I2 = −
∫ π

0

∫ θ

0
exp(ixeiσ )dσ dθ,

which can be bounded as

|I2| ≤
∫ π

0

∫ θ

0
e−x sin σ dσ dθ =

∫ π

0

∫ π

σ

e−x sin σ dθ dσ ≤ 2π

∫ π/2

0
e−x sin σ dσ .

Now we use the Jordan’s inequality: sin σ ≥ 2σ/π for σ ∈ (0, π/2), getting

|I2| ≤ 2π

∫ π/2

0
e−2xσ/πdσ = π2

x
(1 − e−x) = O(x−1) as x → +∞.

The last integral can be computed directly using the parametrization t = xeiθ ,

I3 =
∫

Cx

1

t
(log t − log x)dt = −π2

2
.

Then, Eq. 20 reads as
∫ x

−x

1

t

∫ t

0

eiz − 1

z
dz dt + iπ

∫ x

0

eiz − 1

z
dz + O(x−1) + π2

2
= 0,

from where, taking imaginary part we get

2
∫ x

0

Si(t)

t
dt + π

∫ x

0

cos(z) − 1

z
dz + O(x−1) = 0.
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Finally, in the second term we use the asymptotics of the integral cosine function ([1, 5.2.2,
5.2.9, 5.2.34 and 5.2.35]),

Ci(x) = γ + log x +
∫ x

0

cos(z) − 1

z
dz = O(x−1) as x → +∞,

and then the announced result is proved.
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7. Beltrán, C., Marzo, J., Ortega-Cerdà, J.: Energy and discrepancy of rotationally invariant determinantal
point processes in high dimensional spheres. J. Complex. 37, 76–109 (2016)

8. Berman, RJ.: Determinantal point processes and fermions on complex manifolds: Large deviations and
bosonization. Comm. Math. Phys. 327(1), 1–47 (2014)

9. Borodachov, SV., Douglas Hardin, P., Saff, E.B.: Springer Monographs in Mathematics. Springer, New
York (2019)

10. Brauchart, J.S.: Complete minimal logarithmic energy asymptotics for points in a compact interval: A
consequence of the discriminant of jacobi polynomials. arXiv:2109.04935 (2022)

11. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller,
B.R., Saunders, B.V., Cohl, H.S., McClain, M.A.: (eds.) NIST Digital Library of Mathematical
Functions, http://dlmf.nist.gov/, Release 1.0.25 of 2019-12-15

12. Fejér, L.: Bestimmung derjenigen Abszissen eines Intervalles, für welche die Quadratsumme der Grund-
funktionen der Lagrangeschen Interpolation im Intervalle ein Möglichst kleines M. B. Ann. Scuola
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