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Abstract: We provide a new sufficient condition for the existence of a periodic solution of the singular differential equation

u′′ + u =
h(t)
uρ

,

which is associated with the planar Lp-Minkowski problem. A similar result is valid for the conformal version of the problem.
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1. Introduction

The Lp-Minkowski problem, first introduced by Lutwak

in [1], asks about the existence of a closed convex

hypersurface with support function u whose reciprocal

Gauss curvature is h(x)up−1, where h is a prescribed

function. In the planar case, this problem is equivalent to

the existence of a periodic solution of the equation

u′′ + u =
h(t)
uρ

, (1.1)

where h ∈ L1(R/TZ) and ρ := 1 − p. By this reason,

many researchers have considered this problem and there

are a good number of papers providing sufficient conditions

for the existence of a T -periodic solution of Eq (1.1), see

for instance [2–9] and the references therein. However, in

spite of the interest generated, the problem is far from being

completely studied, specially in the case when h may change

its sign. A related equation is the planar conformal curvature

problem

− u′′ + u =
h(t)
uρ

, (1.2)

introduced by Loewner and Nirenberg [10]. The first result

was given in [5], later improved in [11]. They stated that

a valid sufficient condition for the existence of a T -periodic

solution of eq. (1.2) is that T ≤ 2π, h ∈ L1(R/TZ) is positive

a.e. and ρ > 1 (see [11, Theorem 1.3]). Up to the date, it

seems that there are no results for functions h(t) of indefinite

sign.

The objective of this paper is to consider Eqs (1.1) and

(1.2) in a unified way and then to derive a new sufficient

condition when h(t) is of indefinite sign. It is worth to

mention that related equations with a singular term appear

in many applications (see [12] and the list of references) and

consequently there are a variety of mathematical methods
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available, mainly of topological or variational nature. In

our case, the main tool is a well-known fixed point theorem

for Banach operators on conical shells due to Krasnoselskiĭ

and the positivity of the associated Green function. This

technique has been used before in related problems (see

[13]), but in this case the consideration of a weight h(t) of

indefinite sign supposes the main novelty and a considerable

technical difficulty as well.

2. Preliminaries and notations

Our proof is based on the following Krasnoselskiĭ-Guo

fixed point theorem.

Lemma 2.1. (Krasnoselskiĭ’s-Guo fixed point theorem [14])

Let X be a Banach space and K a cone in X. Assume that

Ω1 and Ω2 are open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2. Let

Φ : K ∩ (Ω2\Ω1)→ K

be a completely continuous operator such that one of the

following conditions holds:

(i) ‖Φu‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Φu‖ ≤ ‖u‖ for u ∈

K ∩ ∂Ω2;

(ii) ‖Φu‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1 and ‖Φu‖ ≥ ‖u‖ for u ∈

K ∩ ∂Ω2.

Then Φ has a fixed point in the set K ∩ (Ω2\Ω1).

To write the periodic problem as an equivalent fixed point

problem, we use the notion of Green function. The following

two lemmas are well known and can be found in many

related papers (see for instance [15, Lemmas 2.1-2.5]. In

this context, the general mechanism for the construction of

Green functions in this context is described in [16].

Lemma 2.2. If M > 0 is such that M , 2kπ
T for any natural

k, then for any f ∈ L1(R/TZ) the equation

u′′ + M2u = f (t)

has a unique T-periodic solution given by

u(t) =

∫ T

0
G1(t, s) f (s)ds,

where the Green’s function G1(t, s) has the following form

G1(t, s) =


cos M(t − s − T

2 )

2M sin MT
2

, 0 ≤ s ≤ t ≤ T,

cos M(t − s + T
2 )

2M sin MT
2

, 0 ≤ t < s ≤ T.

Moreover, if M < π
T , then G1(t, s) > 0 for all (t, s) ∈ [0,T ] ×

[0,T ] and
∫ T

0 G1(t, s)M2ds ≡ 1.

Lemma 2.3. If M > 0, then for any f ∈ L1(R/TZ) the

equation

−u′′ + M2u = f (t)

has a unique T-periodic solution given by

u(t) =

∫ T

0
G2(t, s) f (s)ds,

G2(t, s) =



exp(−M(s − t)) + exp(M(s − t − T ))
2M(1 − exp(−MT ))

,

0 ≤ s ≤ t ≤ T,

exp(−M(s − t + T )) + exp(M(s − t))
2M(1 − exp(−MT ))

,

0 ≤ t < s ≤ T.

Moreover, G2(t, s) > 0 for all (t, s) ∈ [0,T ] × [0,T ] and∫ T
0 G2(t, s)M2ds ≡ 1.

We will use the notations

A1 := min
0≤s,t≤T

G1(t, s) =
1

2M
cot

MT
2
,

B1 := max
0≤s,t≤T

G1(t, s) =
1

2M sin MT
2

,

A2 := min
0≤s,t≤T

G2(t, s) =
exp(−MT

2 )
M(1 − exp(−MT ))

,

B2 := max
0≤s,t≤T

G2(t, s) =
1 + exp(−MT )

2M(1 − exp(−MT ))
,

σ1 :=
A1

B1
, σ2 :=

A2

B2
. (2.1)
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Define

Ki := {u ∈ CT : min
t∈R

u(t) ≥ σi‖u‖, for all t ∈ R}, i = 1, 2,

where CT := {u ∈ C(R,R), u(t + T ) ≡ u(t), for all t ∈ R}

with norm ‖u‖ := max
t∈R
|u(t)|. It is easy to verify that K1 and

K2 are cones in CT .

Finally, for a given T -periodic function h(t), we denote

h+(t) := max{h(t), 0}, h−(t) := −min{h(t), 0},

h :=
1
T

∫ T

0
h(t)dt.

3. Main results

The main result of the paper is the following one.

Theorem 3.1. Fix 0 < T < π and h ∈ L1(R/TZ). Assume

that there exists 1 < M < π
T such that

1

A1Tσ1+ρ
1

(
‖h−‖

M2 − 1

)
< h+. (3.1)

Then Eq (1.1) admits at least one T-periodic solution.

Proof. Writing eq. (1.1) as

u′′ + M2u =
h(t)
uρ

+ (M2 − 1)u, (3.2)

a T -periodic solution of eq. (3.2) is just a fixed point of the

map Φ defined by

(Φu)(t) :=
∫ T

0
G1(t, s)

(
h(s)
uρ(s)

+ (M2 − 1)u(s)
)

ds,

and we know that G1(t, s) > 0 for all (t, s) ∈ [0,T ] × [0,T ]

by Lemma 2.2.

Let us note that since M > 1, we have the inequality

A1Tσ2+ρ
1 < A1T ≤

∫ T

0
G1(t, s)ds ≡

1
M2 < 1. (3.3)

Now, we define two open sets

Ω1 := {u ∈ CT : ‖u‖ < r} and Ω2 := {u ∈ CT : ‖u‖ < R}.

Note that Φ is well-defined in the setK1 ∩ (Ω2\Ω1), and it is

a completely continuous operator by a standard application

of Ascoli-Arzela Theorem. Our intention is to apply Lemma

2.1.

By (3.1) and (3.3), the positive constants r and R can be

fixed such that

R >
1
σ1

 h+

σ1

 1
1+ρ

≥ r = (A1Th+)
1

1+ρ >
1
σ1

(
‖h−‖

M2 − 1

) 1
1+ρ

.

First, we claim that Φ(K1 ∩ (Ω2\Ω1)) ⊂ K1. In fact, for

any u ∈ K1 ∩ (Ω2\Ω1),

σ1r < u(t) ≤ R, for all t ∈ R.

From M > 1 and r > 1
σ1

(
‖h−‖

M2−1

) 1
1+ρ , we see that

h(t)
uρ(t)

+ (M2 − 1)u(t) =
h+(t)
uρ(t)

−
h−(t)
uρ(t)

+ (M2 − 1)u(t)

> −
h−(t)
uρ(t)

+ (M2 − 1)u(t)

> −
‖h−‖

(σ1r)ρ
+ (M2 − 1)σ1r

>0,

(3.4)

for all t ∈ R. It follows from (3.4) that

min
t∈R

(Φu)(t) = min
t∈R

∫ T

0
G1(t, s)

(
h(s)
uρ(s)

+ (M2 − 1)u(s)
)

ds

≥A1

∫ T

0

(
h(s)
uρ(s)

+ (M2 − 1)u(s)
)

ds

=σ1B1

∫ T

0

(
h(s)
uρ(s)

+ (M2 − 1)u(s)
)

ds

≥σ1 max
t∈R

∫ T

0
G1(t, s)

(
h(s)
uρ(s)

+ (M2 − 1)u(s)
)

ds

=σ1‖Φu‖,

which implies Φ(K1 ∩ (Ω2\Ω1)) ⊂ K1.

Next, we prove that

‖Φu‖ ≤ ‖u‖, for u ∈ K1 ∩ ∂Ω2. (3.5)

In fact, for any u ∈ K1 ∩ ∂Ω2, it is clear that ‖u‖ = R and

σ1R ≤ u(t) ≤ R, for all t ∈ R.
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Since R > r > 1
σ1

(
‖h−‖

M2−1

) 1
1+ρ , from (3.2), we get

h(t)
uρ(t)

+ (M2 − 1)u(t) > −
h−(t)
uρ(t)

+ (M2 − 1)u(t)

> −
‖h−‖

(σ1R)ρ
+ (M2 − 1)(σ1R)

>0,

for all t ∈ R. Then,

(Φu)(t) =

∫ T

0
G1(t, s)

(
h(s)
uρ(s)

+ (M2 − 1)u(s)
)

ds

=

∫ T

0
G1(t, s)

(
h+(s)
uρ(s)

−
h−(s)
uρ(s)

+ (M2 − 1)u(s)
)

ds

≤
B1Th+

(σ1R)ρ
+ R

∫ T

0
G1(t, s)M2ds −A1T (σ1R)

=
B1Th+

(σ1R)ρ
−A1T (σ1R) + R,

(3.6)

where we use the fact
∫ T

0 G1(t, s)M2ds ≡ 1. From R >

1
σ1

(
h+

σ1

) 1
1+ρ and σ1B1 = A1, we get

B1Th+

(σ1R)ρ
< A1T (σ1R). (3.7)

Applying (3.7) to (3.6),

(Φu)(t) ≤ R, for all t ∈ R,

and therefore (3.5) holds.

Finally, let us prove that

‖Φu‖ ≥ ‖u‖, for u ∈ K1 ∩ ∂Ω1. (3.8)

In fact, any u ∈ K1 ∩ ∂Ω1 verifies ‖u‖ = r and

σ1r ≤ u(t) ≤ r, for all t ∈ R.

From r > 1
σ1

(
‖h−‖

M2−1

) 1
1+ρ and M > 1, we get

h(t)
uρ(t)

+ (M2 − 1)u(t) > −
h−(t)
uρ(t)

+ (M2 − 1)u(t)

> −
‖h−‖

(σ1r)ρ
+ (M2 − 1)(σ1r)

>0,

for all t ∈ R. Then,

(Φu)(t) =

∫ T

0
G1(t, s)

(
h(s)
uρ(s)

+ (M2 − 1)u(s)
)

ds

=

∫ T

0
G1(t, s)

(
h+(s)
uρ(s)

−
h−(s)
uρ(s)

+ (M2 − 1)u(s)
)

ds

≥

∫ T

0
G1(t, s)

h+(s)
uρ(s)

ds

≥
A1Th+

rρ
= r,

since r = (A1Th+)
1

1+ρ from definition of r. Hence, (3.8)

holds. The proof is completed. �

Remark 3.2. In view of (2.1), it is important to note that

A1 and σ1 are functions of M and T . In fact, the sufficient

condition (3.1) has an explicit expression as

M
M2 − 1

sin1+ρ
( MT

2

)
‖h−‖ < Th+ cos2+ρ

( MT
2

)
. (3.9)

From here it is easy to construct explicit examples. For

instance, taking T = π
4 , M = 2, ρ = 1 and the function

h(t) =


5π sin 8t, t ∈ [0, π8 ],

sin 8t, t ∈ [ π8 ,
π
4 ],

some straightforward computations show that (3.9) holds

and then Eq (1.1) admits at least one π
4 -periodic solution.

Up to our knowledge, this example is not covered by any of

the results available in the literature.

Remark 3.3. In the recent reference [17], it is proved

that all the solutions of (1.1) are unbounded if ρ = 3

and h(t) is a piece-wise constant π-periodic function. This

suggests that the period value T = π is critical, although

in this example it is crucial the role of the cubic singularity,

which is associated to the isochronicity of the center of the

autonomous equation.

Concerning the conformal Eq (1.2), we have a similar

result to Theorem 3.1, in this case without any restriction

on the period T > 0.
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Theorem 3.4. For a given h ∈ L1(R/TZ), assume that there

exists M > 1 such that

1

A2Tσ1+ρ
2

(
‖h−‖

M2 − 1

)
< h+. (3.10)

Then Eq (1.2) admits at least one T-periodic solution.

Proof. If we write Eq (1.2) as

− u′′ + M2u =
h(t)
uρ

+ (M2 − 1)u(t), (3.11)

then a T -periodic solution of Eq (3.11) is equivalent to a

fixed point of the map

(Ψu)(t) :=
∫ T

0
G2(t, s)

(
h(s)
uρ(s)

+ (M2 − 1)u(s)
)

ds.

From this point, the proof follows the same steps as Theorem

3.1. �

Remark 3.5. As in Theorem 3.1, the sufficient condition

(3.10) can be written explicitly as

M(1 − exp(−MT ))(1 + exp(−MT ))2+ρ

22+ρT
(
exp

(
−MT

2

))3+ρ

(
‖h−‖

M2 − 1

)
< h+.

Again, we can use this condition to construct easily explicit

examples.

Remark 3.6. It is interesting to note that the condition h > 0

is necessary for the existence of a T-periodic solution of Eq

(1.2). In fact, if v(t) is a T-periodic solution, multiplying Eq

(1.2) by vρ(t) and integrating from 0 to T , we obtain∫ T

0
h(s)ds

= −

∫ T

0
v′′(s)vρ(s)ds +

∫ T

0
v1+ρ(s)ds

= ρ

∫ T

0
vρ−1(s)(v′(s))2ds +

∫ T

0
v1+ρ(s)ds

> 0.

Of course, this argument is not valid for Eq (1.1). Our

conjecture is that h > 0 is a necessary and sufficient

condition, it remains as an open problem.
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