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Abstract: In some scenarios, the log-logistic (LL) distribution is shown to provide the best fit to field
measurements in the context of wireless channel modeling. However, a fading channel model based
on the LL distribution has not been formulated yet. In this work, we introduce the L-distribution
as a reformulation of the LL distribution for channel modeling purposes. We provide closed-form
expressions for its PDF, CDF, and moments. Performance analysis of wireless communication systems
operating under L-fading channels is exemplified, providing exact and asymptotic expressions for
relevant metrics such as the outage probability and the average capacity. Finally, important practical
aspects related to the use of the L-distribution for channel fitting purposes are discussed in two
contexts: (i) millimeter-wave links with misaligned gain, and (ii) air–ground channels in unmanned
aerial vehicle communications.

Keywords: fading channels; log-logistic distribution; performance analysis; wireless communications

1. Introduction

The research in stochastic fading models has been intense since the prominent works
by Nakagami and Beckmann [1,2]. For decades, fading models arising from the central
limit theorem (CLT), such as Rayleigh and Rice ones, have been widely used to model
propagation conditions in multipath fading channels for non-line-of-sight (NLOS) and line-
of-sight (LOS) conditions, respectively. In those scenarios in which a more sophisticated
modeling was required, the Nakagami-m model is usually preferred because of its simple
mathematical tractability, compared to other alternatives such as Nakagami-q or Beckmann
fading models. With the new century, a number of relevant and more general fading
distributions have been proposed [3–6], which have proven useful to accommodate to a
wider set of propagation environments while being supported by empirical evidences.

Still, because of the complex nature of the propagation mechanisms that affect electro-
magnetic waves, the use of different distributions is required in some scenarios in order
to better respond to field measurements. In many cases, the choice of a certain target
distribution to model fading channels does not respond to a physically-justified choice
of distribution, but instead to convenience. For instance, this is the case of the Weibull
distribution, which was proposed in [7,8] as an alternative to model indoor propagation
channels because of a reasonable analytical simplicity and its improved fit compared to
other alternatives.

In some contexts, the use of the log-logistic (LL) distribution (also known as Fisk dis-
tribution) [9,10] has been proposed to model the amplitude or power fluctuations of the
signals affected by fading. Several examples include in-body to out-of-body channels [11,12],
millimeter-wave cellular networks with misaligned gain [13], scattering caused by foliage [14],
air–ground channels in the context of unmanned aerial vehicle (UAV) communications [15,16],
underwater optical wireless communications affected by turbulence [17], and others [18–21].
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However, a formal statistical characterization of the LL distribution in the context of wireless
channel modeling has not been carried out in the literature, to the best of our knowledge.

In order to fill this gap, and aiming to facilitate the use of the LL distribution for
performance analysis purposes, we propose a formulation for the use of the LL distribution
in the context of channel modeling, for which the nameL-distribution is coined. We provide
a clear definition of its chief statistics, highlighting its advantages and key differences over
other fading channel models. We illustrate that in some cases, the fit provided by the LL
distribution may not be associated with a physically plausible fading model, so that caution
must be exercised depending on the application. We also exemplify how performance
analysis of wireless communication systems operating over L-distributed fading channels
can be carried out, using standard metrics in communication theory such as the outage
probability (OP) and average capacity, and providing simple asymptotic results that shed
light on the role of the distribution parameters on system performance.

The remainder of this paper is structured as follows: Section 2 briefly introduces
the canonical system model of a wireless communication system. Then, in Section 3, the
statistical characterization of the L-distribution is described. Applications to performance
analysis are given in Section 4, considering the OP and average capacity as metrics of
interest, and numerical results are presented. In Section 5, potential inconsistencies when
using the L-distribution for channel fitting purposed are discussed, whereas the key
conclusions are outlined in Section 6.

Notation: Throughout this paper, f(·)(·) denotes a probability density function (PDF);
F(·)(·) is a cumulative distribution function (CDF); CN (µ, σ2) denotes the complex Gaus-
sian distribution with parameters µ (mean) and σ2 (variance); L(α, β) denotes the log-
logistic distribution with parameters α (scale) and β (shape); E{·} is the expectation op-
erator; the symbol ∼means statistically distributed as; the symbol , means defined as; and
sinc(w) = sin(πw)/(πw) is the sinc function.

2. System Model

Let us consider a canonical wireless communication system, on which a transmitter
wishes to communicate with a receiver over a wireless channel. The received signal can be
expressed as

y =
√

PT LTd−αhx + n, (1)

where PT is the available power budget at the transmitter side, LT encapsulates the gains
of the transmit and receive antennas and frequency-dependent propagation losses, d is
the distance between the transmitter and the receiver, α is the path loss exponent, x is the
normalized transmit symbol (i.e., E{|x|2} = 1), n ∼ CN (0, N0) represents the additive
white Gaussian noise (AWGN) term, and h is a random variable representing the fading
channel, which is assumed to be normalized for the sake of convenience, i.e., E{|h|2} = 1.

The instantaneous SNR at the receiver side can be represented as

γ =
PT LTd−α|x|2

N0
|h|2, (2)

and the average SNR is given by γ , E{γ} = PT LTd−α/N0.

3. Statistical Characterization

In this section, we introduce the L-distribution to characterize the instantaneous
signal-to-noise ratio (SNR) γ in a fading channel scenario. Specifically, the L-distribution
is a reformulation of the classical LL distribution, so that one of the parameters of the
distribution is explicitly its mean (i.e., its first-order moment). The purpose of this re-
parameterization is that the mean value of the physical magnitude that we want to measure,
i.e., the SNR in our case, is explicitly defined. We note that, similarly to the case of the
log-normal distribution, a power transformation over a L-distributed variable results in
another L-distributed random variable; i.e., if z ∼ L(α, β), then zn ∼ L(αn, β/n). Thus,
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the L-distribution can be used to characterize either the random fluctuations of the fading
amplitude |h|, power |h|2 or SNR. For an L-distributed random variable γ, the PDF is
expressed as

fγ(γ) =
β/α(γ/α)β−1(
1 + (γ/α)β

)2 , (3)

where α > 0 and β > 0 are the scale and shape parameters of theL-distribution, respectively.
However, in order to explicitly state the dependence of this distribution with the average
SNR , i.e., γ , E{γ} = απ/β

sin(π/β)
for the L-distribution, we set α = γ · sinc(1/β) using the

conventional definition of the sinc(·) function. It is worth highlighting that all subsequent
evaluations of the sinc(·) function always have an argument lower than unity; thus, such
evaluations always yield positive values. With these considerations, the PDF of the L-
distribution is formally defined as

fγ(γ) =
β · sinc(1/β)β

γ

(γ/γ)β−1(
sinc(1/β)β + (γ/γ)β

)2 , (4)

so that the L-distribution has one parameter (β) besides the average SNR. Hence, it can be
encompassed within the class of SNR fading distributions with one shape parameter, similar
to the squared versions of Rician, Nakagami-m, Nakagami-q, or Weibull distributions.
Similarly to the inverse gamma distribution [22], we note that the first moment of γ is only
defined for β > 1. Since the first moment γ corresponds to the average SNR, this imposes a
restriction over the valid range of values for β to yield a physically valid fading distribution.
Note that the LL distribution is often used for its ability to model a tail behavior heavier
than the exponential distribution, which happens only for β < 1 [10]. Thus, this does not
correspond to the range of β values for which the L-distribution is defined. With all these
considerations, the PDF in (4) for the L-distribution is defined for γ > 0 and β > 1. Hence,
the L-distribution can be seen as a subset of the classical LL distribution, with the only
restriction of β > 1 for physical reasons. The expression for the CDF of the L-distribution
is obtained by direct integration of (4), yielding

Fγ(γ) =
(γ/γ)β

sinc(1/β)β + (γ/γ)β
, (5)

and the moments are given, for k < β, by

E
{

γk
}
= γk sinc(1/β)k

sinc(k/β)
. (6)

From the expression of the moments, we can compute the amount of fading (AoF)
using (6) from its definition [23], as

AoF =
E[γ2]

γ2 − 1 =
sinc(1/β)2

sinc(2/β)
− 1, (7)

which is valid for β > 2.
Interestingly, the inverse CDF (also known as quantile function) of the L-distribution

can be expressed in closed-form, as

F−1
γ (p; γ, β) = γ sinc(1/β)

(
p

1− p

)1/β

, (8)

where 0 ≤ p ≤ 1 denotes probability. This is a key advantage of the L-distribution, which
facilitates the generation of white samples using the inverse CDF method.
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4. Performance Analysis

After characterizing the chief statistics of the L-distribution, we now exemplify how
these can be used for performance analysis purposes. Two relevant performance metrics in
communication theory, such as the outage probability and the average capacity, are derived
in the sequel.

4.1. Outage Probability

By definition, the OP is the probability that the instantaneous SNR γ is below a certain
threshold γth. This performance metric can be directly computed from the CDF in (5), i.e.,

OP(γth; γ, β) = Fγ(γth). (9)

Now, in the high-SNR regime, it is possible to find an approximation of the OP in the
form OP ≈ Gc(γth/γ)Gd [24], where Gc is usually referred to as power offset or coding
gain, whereas Gd is referred to as diversity order. This latter parameter has a key relevance,
since it dictates the slope of the asymptotic decay of the OP for sufficiently large γ. Taking
a limit over the CDF expression in (5), we have

lim
γ→∞

OP(γth; γ, β) = OPasy(γth; γ, β)

=

(
γth

γ sinc(1/β)

)β

. (10)

From this expression, we see that the power offset is given by Gc = sinc(1/β)−β,
whereas the diversity order of the L-distribution is Gd = β > 1. Clearly, as β grows,
the decay of the OP is much faster, i.e., the OP is reduced. This implies that fading severity
under L-distributed fading channels is captured by the parameter β.

4.2. Average Capacity

The average channel capacity per bandwidth unit is defined as ([25], (8))

C[bps/Hz] =
∫ ∞

0
log2(1 + γ) fγ(γ)dγ, (11)

where γ denotes the instantaneous SNR at the receiver side and fγ(γ) is the PDF of γ.
To the best of our knowledge, the average capacity under L-distributed fading channels
has never been analyzed in the literature.

Plugging (4) in (11), the average capacity is directly obtained in integral form. Be-
cause of the simple form of the PDF in (4), the numerical evaluation of such integral can be
achieved efficiently using state-of-the-art numerical packages (e.g., the routine integral in
MATLAB).

Now, aiming to gain some intuition into the role of the parameter β on the aver-
age capacity, we resort to a high-SNR asymptotic analysis using the formulation in ([26],
Equations (8) and (9)), which gives a tight lower bound for the average capacity in the form:

C ≈ log2(γ)− t, (12)

where the parameter t can be seen as a capacity penalty with respect to the case of the
absence of fading. This parameter can be computed from the expression of the moments
in (6) after some algebra, as

t =− log2(e)
d

dn
E{γn}

γn

∣∣∣∣
n=0

(13)

=− log2(e) log(sinc(1/β)), (14)
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where log(·) denotes the natural logarithm. Hence, we see that the capacity loss t grows as
β is reduced. This is coherent with the conclusions obtained from the asymptotic analysis
of the OP, since a lower β implies a worse performance.

4.3. Numerical Results

In this subsection, we provide some graphical support to the theoretical expressions
previously derived. Where necessary, Monte Carlo (MC) simulations are included to
double-check the validity of the theoretical expressions.

First, in Figure 1, the PDF of the L-distribution is evaluated for different values of
β, with the average SNR being set to γ = 1. We see that lower values of β correspond to
having a PDF more concentrated near the origin. Hence, lower values of SNR become more
likely as β is reduced. Conversely, as β grows, we see how the SNR values tend to be more
concentrated around its mean value γ = 1.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

γ

f γ
(γ
)

β = 1.2

β = 2

β = 3

β = 5

β = 10

β = 20

Figure 1. Probability density function of the received SNR under L-distributed fading for different
values of β. Parameter γ = 1 and then α = sinc(1/β).

Figure 2 shows the AoF as a function of the parameter β. We recall that the k-th-order
moment of the L-distribution is only defined for k < β, so that the AoF is only defined for
β > 2. We see that low values of β correspond to high values of AoF, which implies a rather
large fading severity. We see that AoF = 1 for β ≈ 2.7, which is coincident with the AoF
under Rayleigh fading. Hence, fading severity under L-distributed fading can be tuned
with parameter β, and even exhibiting hyper-Rayleigh behavior [27] in the AoF sense.



Electronics 2022, 11, 2409 6 of 11

2 4 6 8 10
0

5

10

15

Rayleigh

β

A
o
F

Figure 2. Amount of fading under L-distributed fading for different values of β. The case of Rayleigh
fading is included as a reference. Solid lines correspond to the theoretical AoF expression in (7).
Markers denote MC simulations.

The OP under L-distributed fading is evaluated in Figure 3, again when consid-
ering different values of the parameter β. The SNR threshold value is set to γth = 1
(i.e., γth = 0 dB). We see that the OP dramatically improves for larger values of β, which is
coherent with the insights obtained by the asymptotic analysis. Specifically, we see that the
high-SNR approximation for the OP becomes very tight, and the OP curves have different
slope, which only depends on β. Interestingly, since the parameter β that controls the
decay of the OP is enforced to be strictly larger than one due to physical reasons, it is not
possible for the L-distribution to model an OP decay faster than the Rayleigh case (which
always decays with unitary slope). Hence, according to the definition introduced in [27],
the L-distribution does not exhibit hyper-Rayleigh behavior in the OP sense.

0 10 20 30 40
10−4

10−3

10−2

10−1

100

γ (dB)

O
P

β = 1.2

β = 1.5

β = 2

β = 3

β = 5

Rayleigh

Figure 3. Outage probability vs. γ under L-distributed fading for different values of β. Solid lines cor-
respond to the theoretical expressions in (9). Dashed lines correspond to the asymptotic expressions
in (10). The case of Rayleigh fading is included as a reference. Markers denote MC simulations.
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Finally, the average capacity is evaluated in Figure 4, for different values of β and
including the case of no fading (i.e., AWGN channel) and Rayleigh fading for reference
purposes. We see how capacity is decreased when β is reduced, which confirms the intuition
provided by the asymptotic capacity analysis. We see that low values of β can even yield a
lower capacity than in the case of Rayleigh fading. Hence, the L-distribution is also capable
of showing a hyper-Rayleigh behavior in the capacity sense [27]. Conversely, as β grows,
the capacity gap with respect to the AWGN case (which sets an upper bound because of
Jensen’s inequality) is notably reduced.

0 10 20 30 40
0

2

4

6

8

10

12

γ (dB)

C
(b
p
s/
H
z)

AWGN

β = 1.2

β = 1.5

β = 2

β = 3

β = 5

Rayleigh

Figure 4. Average capacity vs. γ under L-distributed fading for different values of β. Solid lines cor-
respond to the theoretical expressions in (11). Dashed lines correspond to the asymptotic expressions
in (12). The case of Rayleigh fading is included as a reference. Markers denote MC simulations.

5. Channel Fitting

In this section, we discuss the implications of the re-parameterization of the LL distri-
bution here proposed when used for channel fitting purposes, identifying some possible
issues related to the physical underpinnings of a wireless channel. With all the previous
considerations, the L-distribution can be formally used for channel fitting purposes in a
physically meaningful way, since establishing a finite value for its parameters γ and β is
linked to considering a finite value for the received signal power. Now, this detail has not
always been considered in the literature when using the conventional LL distribution for
fitting purposes through the parameters α and β.

For instance, let us first consider the case in [13], on which the use of the LL distribution
was proposed to model the misaligned gain in mm-wave systems using an isotropic element
pattern. The key motivation for using this distribution lies in its ability to model a heavy-
tailed behavior that cannot be reproduced when using the exponential distribution. Now,
taking a deep look into the fitting results in [13] (Table III), we see that for all possible
combinations of numbers of transmit and receive antennas (i.e., 4, 16, 64, and 256), the best
fit was obtained for values of β < 1 (specifically, β ∈ [0.547, 0.877]). While this is precisely
the case in which the LL distribution has a heavier tail, it also implies that its first-order
moment (i.e., the average misaligned gain) is not defined. It is indeed possible to obtain a
fitting to empirical data that yields a value of β < 1 as in [13], e.g., by using some fitting
criterion that minimizes some error measure with respect to the empirical distribution.
However, it would lack physical meaning when it corresponds to a magnitude for which
its statistical average exists (in this case, the average mismatched gain). Thus, caution must
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be exercised when using these parameter values for performance analysis purposes, since
this can affect the definition of the average SNR.

Let us now move to the scenario analyzed in [15], where the LL distribution was
used to model fast fading in UAV air-to-ground channels at 1 and 4 GHz, providing better
fit results than Rayleigh and Rician distributions. The classical parameterization of the
LL distribution through α and β was used in the fitting. In all instances, values of α
close to unity were obtained; this is in coherence with the fact that the sample envelopes
show a median value close to one, and the parameter α is precisely the median of the LL
distribution [10]. Now, the fitting results for the amplitude envelope yielded the following
values of β: βLOS ={1.41/1.12} and βNLOS ={1.74/1.38} at 1/4 GHz, respectively. However,
these values do not seem consistent with the conditions previously defined for the validity
of the LL distribution:

• First, for values of β ∈ (1, 2), the second-order moment of the LL distribution does
not exist. Hence, we have that E{|r|2} → ∞ for the considered set of β used in the
fitting. This inconsistency can also be seen as follows: if the amplitude envelope r ∼
L(αenv, βenv), then the power envelope γ ∝ r2 ∼ L

(
αpow, βpow

)
, with αpow = α2

env
and βpow = βenv/2 [10]. Hence, we need the condition βpow = βenv/2 > 1 to be
enforced, so that βenv > 2 is required when fitting amplitude envelopes.

• Second, in the scenario under consideration, one would anticipate that LOS scenarios
exhibit a lower fading severity than the NLOS ones, and that higher frequencies also
experience milder fading because of the reduced relative importance of the diffuse
components compared to the LOS ones. This is in coherence with the values shown
in Figures 5 and 6, on which the fitting (the channel fitting was performed using the
cftool included in Matlab, with the criterion of finding the set of parameters (α, β)
that minimize the root mean square error (RMSE) with respect to the empirical CDF.
The empirical CDFs in [15] were obtained by using the tool WebPlotDigitizer, which
allows to reverse engineer images of data visualizations to extract the underlying
numerical data) over the empirical CDFs given in [16] is carried out using the α− β
parameterized version of the LL distribution. We see that the actual values for the β
parameters should be βLOS ={6.677/19.9} and βNLOS ={4.244/9.311} for the 1/4 GHz
scenarios, respectively. Hence, we confirm that a larger β is associated with a milder
fading scenario. As stated in [15], the estimated values for the parameter α are close to
unity in all instances.

0 0.5 1 1.5 2 2.5 3 3.5
0
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0.8

1

αLOS = 0.997, βLOS = 19.9
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LOS 4GHz data

LOS 1GHz LL fit

LOS 4GHz LL fit

Figure 5. Statistical distributions of fast fading in UAV air-to-ground channels at 1 and 4 GHz,
LOS scenario. Empirical CDF values were obtained from [15], whereas corrected fitting values for
the LL distribution are provided here. Goodness-of-fit values are RMSE1GHz = 3.92× 10−3 and
RMSE4GHz = 1.1× 10−2.
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Figure 6. Statistical distributions of fast fading in UAV air-to-ground channels at 1 and 4 GHz,
NLOS scenario. Empirical CDF values were obtained from [15], whereas corrected fitting values
for the LL distribution are provided here. Goodness-of-fit values are RMSE1GHz = 4.61× 10−3 and
RMSE4GHz = 3.71× 10−2.

Our guess is that at some point in the fitting process conducted in [15], there was a
mismatch between the parameter of the LL distribution used by the fitting tool, and that corre-
sponded to the LL pdf in ([15], Equation (5)), e.g., maybe using a different parameterization.

6. Conclusions

We introduced the L-distribution, a reformulation of the LL distribution that is suited
for fading channel modeling purposes. The simple form of its chief statistics facilitates
subsequent performance analyses over L-distributed fading channels, an aspect which was
not previously addressed in the literature so far. Relevant practical issues associated with
the use of the LL distribution for channel fitting purposes were discussed. The key role
of the shape parameter β in capturing fading severity was highlighted, showing that the
L-distribution can recreate propagation conditions less/more severe than Rayleigh fading,
being categorized into the strong hyper-Rayleigh behavior [27].
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Abbreviations
The following abbreviations are used in this manuscript:

AoF Amount of Fading
AWGN Additive White Gaussian Noise
CDF Cumulative Distribution Function
CLT Central Limit Theorem
LL Log-Logistic
LOS Line-of-Sight
MC Monte Carlo
NLOS Non Line-of-Sight
OP Outage Probability
PDF Probability Density Function
RMSE Root Mean Square Error
SNR Signal to Noise Ratio
UAV Unmanned Aerial Vehicle
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