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Simple Summary: Hanahan and Weinberg proposed to the scientific community a series of distinctive
characteristics that all malignant neoplastic cells should possess, which had an enormous impact on
the scientific community. One of the most relevant hallmarks of cancer involves the ability of tumor
cells to acquire replicative immortality, achieved essentially through the maintenance of telomere
length, dependent essentially on telomerase activity. Telomerase lengthens telomeres through the
reverse transcription of a 6-bp telomere repeat sequence at the 3′ end of the telomere, which requires
the enzymatic component of telomerase, i.e., the telomerase reverse transcriptase (TERT). This
mechanism is essential for tumor cells to survive for a long time, and, as has been pointed out, it is
frequently activated in malignant cells. This is the first systematic review and meta-analysis, based
on 21 studies and 1698 oral squamous cell carcinoma (OSCC) patients, demonstrating that TERT
protein overexpression behaves as a prognostic biomarker, significantly associated with poor survival
in oral cancer.

Abstract: The aim of this systematic review and meta-analysis was to evaluate the current evidence on
the prognostic and clinicopathological significance value of telomerase reverse transcriptase (TERT)
upregulation in patients with oral squamous cell carcinoma (OSCC). PubMed, Embase, Web of Science,
and Scopus were searched for studies published before April 2022, not restricted by date or publication
language. The methodological quality of primary-level studies was critically assessed using the
Quality in Prognosis Studies (QUIPS) tool. We carried out meta-analyses, explored heterogeneity
and its sources, and performed subgroup, meta-regression, sensitivity, and small-study effects
analyses. Twenty-one studies (1698 patients) met inclusion criteria. TERT protein overexpression was
significantly associated with worse overall survival (hazard ratio [HR] = 3.01, 95% CI = 1.70–5.35,
p < 0.001), disease-free survival (HR = 4.03, 95% CI = 1.80–9.05, p = 0.001), and higher histological
grade OSCC (odds ratio [OR] = 3.20, 95% CI = 1.83–5.62, p < 0.001). These large effect sizes were
consistently obtained by homogeneous subgroups (p > 0.10, I2 = 0.0, respectively), which reflects a
high quality of evidence. On the other hand, TERT gene mutations obtained constantly nonsignificant
null effect sizes for all outcomes investigated, evidencing no prognostic or clinicopathological value.
In conclusion, our findings indicate that TERT upregulation is a prognostic indicator of poor survival
in oral cancer. Our findings support the immunohistochemical assessment of TERT overexpression,
which could probably be incorporated into the prognostic evaluation of OSCC.

Keywords: telomerase reverse transcriptase (TERT); hTERT; hEST2; replicative immortality; oral
cancer; prognosis; biomarker; systematic review; meta-analysis
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1. Introduction

In 2000, Hanahan and Weinberg [1] proposed to the scientific community a series of
distinctive characteristics that all neoplastic cells should possess, regardless of the origin of
the tumor tissue. This proposal was complemented in 2011 [2] with new characteristics that
jointly have received the denomination of hallmarks of cancer. The final proposal of these
authors includes a series of hallmarks (sustaining proliferative signaling, resistance to cell
death, evading growth suppressors, angiogenesis, invasion and metastasis, deregulating
cellular energetics, destruction of immune evasion and replicative immortality, and avoid-
ing immune destruction), and two enabling features (genome instability and mutation,
and tumor-promoting inflammation). The papers of Hanahan and Weinberg have had an
enormous impact on the scientific community and indisputably marked lines of research in
different types of tumors that have sought to evaluate the extent to which each of these
hallmarks is of special value in terms of diagnosis, prognosis, or treatment. However,
it should be emphasized that to date there is very little evidence on the importance of
these hallmarks in oral cancer. One of the most relevant hallmarks of cancer involves the
ability of tumor cells to acquire replicative immortality, which they achieve essentially
through the maintenance of telomere length, dependent essentially on telomerase activity.
Telomerase is a ribonucleoprotein complex enzymatically active in 80–90% of all malignan-
cies [3–5]. In the absence of telomerase activity, telomeres are gradually shortened after
each cell-replication cycle [6], which results in the loss of protection that they exert over the
rest of the chromosome, generating alterations in chromosome morphology: disruptions,
aberrant fusions, chromosomes with more than one centromere, activation of oncogenes,
and alteration of tumor suppressor genes, with a subsequent increase in oncogenic signals
that in turn activate a DNA damage response, inducing senescence [7]. Telomerase activ-
ity during malignant transformation prevents telomere shortening and promotes cellular
immortality, as we have discussed, a hallmark of cancer [2,8,9]. Telomerase lengthens
telomeres through the reverse transcription of a 6-bp telomere repeat sequence at the 3′

end of the telomere, which requires the enzymatic component of telomerase, known as
telomerase reverse transcriptase (TERT) [10–13]. This mechanism is essential for tumor
cells to survive for a long time, and, as has been pointed out, it is frequently activated in
malignant cells. Although in recent years a considerable number of primary-level studies
have been published on the importance of the telomeric length preservation mechanism in
oral cancer and its relevance in the acquisition of replicative immortality, there is no study
with an evidence-based design (i.e., systematic review and meta-analysis) on the frequency
of this phenomenon and its prognostic implications in oral cancer. This knowledge would
be relevant, since in recent years telomerase is being considered as a potential therapeutic
target in cancer [3].

Consequently, and based on the previous comments, we carried out a systematic
review and meta-analysis on the clinical and prognostic significance of the replicative
immortality linked to telomerase activation, essentially by activation of one of its most
relevant components—TERT—in oral cancer.

2. Materials and Methods

This systematic review and meta-analysis closely complied with PRISMA and MOOSE
reporting guidelines, closely followed the criteria of the Cochrane Prognosis Methods
Group [14] and Cochrane Collaboration criteria [15], and was conducted and validated in
accordance with AMSTAR2 guidelines [16].

2.1. Protocol

A study protocol was first designed and registered in the PROSPERO International
Prospective Register of Systematic Reviews (www.crd.york.ac.uk/PROSPERO; ID338697;
CRD42022338697; accessed on 31 May 2022), in order to minimize the risk of bias and
reinforcing the transparency, precision, and integrity of our study. The protocol complied
with PRISMA-P reporting guidelines [17].

www.crd.york.ac.uk/PROSPERO
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2.2. Search Strategy

We searched Medline (through PubMed), Embase, Web of Science, and Scopus databases
for studies published before April 2022 (upper limit), with no earlier date limit. Searches
were conducted by combining the thesaurus terms used by the databases (i.e., MeSH
and Emtree) with free terms (Table S1, Supplementary Materials), designed and built to
maximize sensitivity. An additional screening was performed hand-searching the reference
lists of retrieved included studies. All references were managed using Mendeley v.1.19.8
(Elsevier, Amsterdam, The Netherlands). The duplicate-removal process was also driven
using this software.

2.3. Eligibility Criteria

Inclusion criteria were: original primary-level studies, without restrictions by lan-
guage, publication date, study design, follow-up periods, geographical area, age, or sex;
evaluation of TERT upregulation (through TERT gene mutations, mRNA or protein overex-
pression) in samples from OSCC; and analysis of the association with at least one of the
following prognostic and/or clinicopathological outcomes: overall survival (OS), disease-
free survival (DFS), tumor size, N status, clinical stage, or histological grade. OS was
defined as the time elapsed from date of diagnosis/surgery to date of death by any cause.
DFS was defined as the time elapsed from diagnosis/surgery to the detection of locore-
gional or distant recurrence or to death without recurrence. Given the lack of international
consensus standards to define survival end points in oncology research, any study using
the terms OS and DFS was included, or by using other terms in compliance with our
precedent definitions.

Exclusion criteria were: retracted articles, preclinical research (in vitro research or
in vivo animal experimentation), case reports, editorials, letters, meeting abstracts, personal
opinions, comments, or book chapters, or secondary/tertiary-evidence level studies (sys-
tematic reviews, meta-analyses, scoping reviews, umbrella or overviews of reviews, etc.);
squamous cell carcinomas from anatomic areas distinct to the oral cavity, and/or tumors of
different histopathological lineage; no analysis of the main prognostic or clinicopathological
outcomes of interest; lacking or insufficient data for the estimation of statistical effect-size
metrics with their corresponding confidence intervals; and overlapping interstudy popula-
tions, determined by verifying the authors’ names and affiliations, source of patients, and
recruitment periods. When potential overlapping populations were identified, the reports
providing more complete datasets were included.

2.4. Study-Selection Process

Eligibility criteria were independently applied by a team of three blinded authors
(EMG, AGF, and PNC). Any discrepancies were resolved by consensus with a fourth author
(PRG). The records were selected across two phases: phase I involved screening titles and
abstracts and phase II full-text reading of the selected articles, excluding those that did
not meet the eligibility criteria. Evaluators were first jointly trained and calibrated for the
process of identification and selection of studies, performing an initial screening round
(50 papers each). An optimal interagreement proportional score (relative frequency of
agreement = 99.91%) was finally obtained. Interrater reliability was also measured using
Cohen’s kappa statistic, obtaining almost perfect agreement (κ = 0.95).

2.5. Data Extraction

Authors independently extracted data from the selected articles, filling a data collec-
tion form in a standardized manner using Excel (v.16/2018, Microsoft, Redmond, WA, USA).
Datasets extracted were secondarily jointly cross-checked, solving discrepancies by consen-
sus. Data expressed as order statistics (i.e., median, interquartile range, and/or maximum
and minimum values) were computed and transformed, if possible, into means ± standard
deviation (SD) using the methods proposed by Luo et al. (2018) and Wan et al. (2014) [18,19].
If it were desirable to combine two or more different datasets expressed as means ± SD
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from subgroups into a single group, the Cochrane handbook formula was applied [15].
Data were gathered on the first author, language, publication date, country, sample size,
cancer subsite, sex and age of patients, tobacco, areca nut, and alcohol consumption, recruit-
ment and follow-up period, study design, experimental methods, and relative frequency of
TERT upregulation. Finally, the data required to analyze the outcomes were also recorded
for survival (OS and DFS) and clinicopathological variables (T status [T3/T4 vs. T1/T2],
N status [N+ vs. N−], clinical stage [III/IV vs. I/II], and histological grade [II/III vs. I]).
Furthermore, clinicopathological variables rarely reported in primary-level studies were
also ad hoc screened and categorized. We identified and extracted data on the relationships
between TERT upregulation and extracapsular spread (extracapsular vs. intracapsular),
tumor margins, and perineural and lymphatic invasion (positive vs. negative, respectively).

2.6. Evaluation of the Methodological Quality and Risk of Bias across Primary-Level Studies

The authors critically appraised the methodological quality and risk of bias across
primary-level studies using the Quality in Prognosis Studies (QUIPS) tool (developed by
members of the Cochrane Prognosis Methods Group [20]). The following six potential
bias domains were explored: (1) study participation; (2) study attrition; (3) prognostic
factor measurement; (4) outcome measurement; (5) study confounding; and (6) statistical
analysis/reporting. The risk of bias was considered low, moderate, or high for each domain.
Finally, an overall score was also estimated based on a method previously described by our
research group [21–23], in order to obtain an overall risk-of-bias score.

2.7. Statistical Analysis

TERT upregulation was analyzed as a dichotomous categorical variable according
to the scoring systems adopted by primary-level studies. Hazard ratios (HRs) and 95%
confidence intervals (CIs) were used for the meta-analysis of prognostic variables due
to their time-to-event nature [24]. When authors reported effect-size metrics in their
survival analyses, these were directly extracted from the primary-level studies. If HRs
and/or 95% CIs were not explicitly provided by the authors, we calculated them using the
methods described by Parmar et al. [25] and Tierney et al. [24] When a study gave only
survival curves, we extracted the data from Kaplan–Meier curves with Engauge Digitizer
4.1 software (open-source digitizing software developed by M. Mitchell). When HRs
were determined in both univariable and multivariable models, data were extracted from
the multivariable model, which reflects a greater adjustment for potentially confounding
factors. Odds ratios (OR) with their corresponding 95% CIs were estimated and used as an
effect-size measure for the meta-analyses of the clinicopathological variables. If authors
reported their results as continuous variables with means ± standard deviations, Cohen’s
d standardized mean differences/SMDs were first calculated and subsequently reexpressed
as odds ratios using pertinent conversion methods, i.e.,

Log(OR) = d
π√

3
(1)

(based on an assumption that the underlying continuous measurements followed a logistic
distribution) [15,26].

All meta-analyses were conducted using the inverse-variance method under a random-
effects model (based on the DerSimonian and Laird method). This approach was a priori
planned in our study protocol, in order to account for the possibility that there are different
underlying effects among study subpopulations (e.g., differences among experimental
methods, TERT alterations, or geographical areas). Forest plots were constructed in all
meta-analyses performed, in order to graphically represent the effect sizes and for subse-
quent visual inspection analysis. Heterogeneity between studies was assessed using the
χ2-based Cochran’s Q test. Given the low statistical power of the Q test, p < 0.10 was consid-
ered significant. We also applied the Higgins I2 statistic to estimate what proportion of the
variance in observed effects reflected variation in true effects, rather than sampling error.
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The percentage of interstudy heterogeneity was quantified, considering values of 50–75%
as a moderate-to-high degree of inconsistency [27,28]. Preplanned subgroup meta-analyses
by TERT upregulation alterations (i.e., at protein level, mRNA, or gene mutations) and geo-
graphical area were performed to identify potential sources of heterogeneity. Furthermore,
additional univariable random-effect meta-regression analyses were conducted using the
restricted maximum likelihood (REML) method to explore the potential effect of additional
study covariates (i.e., follow-up period, age, sex, and tobacco and alcohol use) [29]. Con-
sidering the low number of studies with data available for meta-regression analyses, the
p-values were recalculated using a permutation test based on Monte Carlo simulations [30].
To obtain sufficient precision, the number of permutations was 10,000 [31]. Weighted
bubble plots were also constructed to graphically represent the fitted meta-regression lines.
Furthermore, two additional statistical analyses were carried out to test the stability and re-
liability of our meta-analytical results: first, sensitivity analyses were carried out to explore
the influence of each primary-level study on the pooled overall estimates [32], repeating
sequentially the meta-analyses, omitting one study at a time (“leave-one-out” method);
second, small-study effect analyses were carried out to identify potential biases, such as
publication bias, constructing funnel plots and using the Egger regression test (performing
a linear regression of the effect estimates on their standard errors, weighting by 1/[variance
of the effect estimate], considering a pEgger-value < 0.10 as significant) [33].

Finally, the meta-analysis of secondary clinicopathological parameters (i.e., extracap-
sular spread, tumor margins, perineural and lymphatic invasion) could not be performed
due to the low number of observations extracted, jointly with a considerable degree of
clinical and methodological heterogeneity. However, due to their potential prognostic
implications, an albatross plot was constructed to graphically represent them [34], allowing
an approximate examination of their underlying magnitudes of effect. Stata software was
used for all statistical analyses (v.16.1, Stata Corp, College Station, TX, USA).

2.8. Validation of Methodological Quality

The methodology followed in this systematic review and meta-analysis was designed,
critically appraised, and validated using the AMSTAR2 checklist [16], created as an instru-
ment to develop, evaluate, and validate high-quality systematic reviews and meta-analyses
through 16 items [16]. The overall confidence on the methodology of a systematic review is
rated as “high”, “moderate”, “low”, and “critically low”.

3. Results
3.1. Results of the Literature Search

The flow diagram in Figure 1 depicts the process of identification, screening, and
selection of primary-level studies. A total of 4732 records were retrieved: 2161 from
Embase, 1255 from Web of Science, 792 from Scopus, and 524 from PubMed. After removal
of duplicates, 2261 records were screened according to titles and abstracts, leaving a sample
of 41 papers for full-text evaluation (the studies excluded and their exclusion criteria are
listed in the Supplementary Materials). Finally, 21 studies meeting all eligibility criteria
were included for qualitative evaluation and meta-analysis [35–55].

3.2. Study Characteristics

Table 1 summarizes the main characteristics of our study sample, and Table S2 (in
Supplementary Materials) exhibits in detail the variables gathered from primary-level
studies. These 21 studies, recruiting a total of 1698 OSCC patients (range: 30–218 patients),
were published between 1999 and 2022 (11/21 [52.38%] published in the last 5 years,
i.e., 2017–2022). TERT upregulation was analyzed through gene mutations by 7 studies, at
mRNA level (n= 4), and at protein level (n = 10). All studies were observational retrospective
cohorts (n = 21) and well distributed across worldwide geographic regions (Asia [n = 8],
Europe [n = 8], North America [n = 3], and South America [n = 1]).
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Figure 1. Flow diagram showing the identification and selection process of the study sample,
analyzing primary-level studies researching the prognostic and clinicopathological significance TERT
upregulation in OSCC.

Table 1. Summary of the main characteristics of the study. Table S2 (Supplementary Materials)
exhibits in detail the characteristics of each primary-level study included in this systematic review
and meta-analysis.

Total Sample Size 21 Studies

Total patients (range) 1698 (30–218)
Year of publication 1999–2022

Study design
Retrospective cohort 21 studies

TERT upregulation analysis
Gene mutation 7 studies (959 patients)

mRNA expression 4 studies (174 patients)
protein overexpression 10 studies (565 patients)

Study continent
Asia 8 studies (523 patients)

Europe 8 studies (769 patients)
North America 3 studies (361 patients)
South America 1 study (30 patients)
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3.3. Qualitative Evaluation

The following results were derived from the evaluation of the methodological quality
and risk of bias across primary-level studies using the QUIPS tool (Figure 2), which
considers potential sources of bias in six domains:
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Figure 2. Quality plot depicting the risk of potential bias across primary-level studies, assessed using
the Quality in Prognosis Studies tool (QUIPS) developed by the Cochrane Prognosis Methods Group,
which considers the following domains: (D1) study participation, (d2) study attrition, (d3) prognostic
factor measurement, (d4) outcome measurement, (d5) study confounding, and (d6) statistical analysis
and reporting. Risk of bias was classified as low (green), moderate (yellow), or high (red) for
each domain.

Study participation. The risk of this bias was high in 61.90% of the reviewed studies and
moderate in 38.10%. Studies reporting an inadequate description of their samples (age/sex
distribution, oral cancer subsites, etc.) or clinical setting (place and period of recruitment)
were considered potentially biased.

Study attrition. The risk of this bias was high in 61.90% of the studies, moderate
in 19.05%, and low in 19.05%. Some studies did not report essential information on the
follow-up period (i.e., mean ± SD, median, IQR, and/or range) and none reported any
attempt to collect information and reasons for patients lost to follow-up, or the description
of their characteristics, necessary to rule out potential risk of bias in this domain.

Prognostic factor measurement. The risk of this bias was high in 28.57% of the studies,
moderate in 9.53%, and low in 61.90%. A high risk of potential bias was associated with in-
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sufficient information on scoring systems, cutoff points or missing data related to essential
aspects of the experimental methods (e.g., anti-TERT antibody). Some immunohistochemi-
cal studies reported a labeling index score, the product of an adjustment between intensity
and cell count. Although in our opinion this method lacks translational potential, these
studies were not critically downgraded.

Outcome measurement. The risk of this bias was high in 14.29% of the studies, moderate
in 28.57%, and low in 57.14%. The most frequent potential biases were the non-definition of
survival parameters in spite of the lack of international consensus on survival end points
in cancer research and insufficient reporting on the clinicopathological system adopted
(e.g., the edition of the AJCC/UICC TNM staging system, subject to periodic changes).

Study confounding. The risk of this bias was high in 85.71% of the studies, moderate in
4.76%, and low in 9.53%. The most frequent potential biases were the failure to consider
potential confounders factors in the study design, to measure all potential confounders
(e.g., tobacco or alcohol consumption), or to report adjusted data through multivariable
statistical regression analyses.

Statistical analysis and reporting. The risk of this bias was high in 80.95% of the studies,
moderate in 4.76%, and low in 14.29%. The most frequent biases were statistical models
not based on effect-size metrics (e.g., HR or OR) with 95% CIs. It should be remarked that
the simple reporting of p-values is much less informative on magnitude, precision, and
direction of an effect. The most serious potential biases detected were incorrect statistical
analyses and errors in the study reporting, offering misleading results and conclusions.

3.4. Quantitative Evaluation (Meta-Analysis)
3.4.1. Association between TERT Upregulation and Prognostic Variables

Overall survival (OS). Close to significant results were found between TERT upregula-
tion and poor OS (HR = 1.40, 95% CI = 0.95-2.07, p = 0.001), and moderate heterogeneity
was present (p = 0.02, I2 = 55.0%). After the stratified meta-analysis by type of alteration,
i.e., mutations vs. protein overexpression, the subgroups were notably homogeneous and
separately more comparable (p = 0.48/I2 = 0.0%, and p = 0.43/I2 = 0.0%, respectively).
Protein overexpression was significantly associated with poor mortality, showing a large
effect size (HR = 3.01, 95% CI = 1.70–5.35, p < 0.001), also significantly higher than gene
mutations (p = 0.001), which showed a null effect size (HR = 1.03, 95% CI = 0.80–1.31,
p = 0.83) (Table 2, Figure 3). Finally, the stratified meta-analysis by geographical area did
not find significant differences and showed considerable heterogeneity for the Asian sub-
group (p = 0.04/I2 = 69.4%) (Table 2, Figure S1, Supplementary Materials). These relevant
meta-analytical findings indicate that TERT alterations do not all have the same prognostic
value, protein overexpression showing the best prognostic performance, representing the
most relevant explanatory source of heterogeneity in this meta-analysis.

Table 2. Meta-analyses of prognostic and clinicopathological significance of TERT upregulation
in OSCC.

Pooled Data Heterogeneity

Meta-Analyses Studies,
n

Patients,
n

Stat.
Model Wt ES (95% CI) p-Value Phet I2 (%) Supplementary

Materials a

Overall Survival

TERT
upregulation

(all) b
9 1068 REM D-L HR = 1.40

(0.95–2.07) 0.09 0.02 55.0 Manuscript,
Figure 3

Subgroup analysis by alteration c 0.001 d

TERT
mutations 6 892 REM D-L HR = 1.03

(0.80–1.31) 0.83 0.43 0.0

TERT protein
overexpression 3 176 REM D-L HR = 3.01

(1.70–5.35) <0.001 0.48 0.0

Subgroup analysis by geographical area c 0.27 d Figure S1



Cancers 2022, 14, 3673 9 of 18

Table 2. Cont.

Pooled Data Heterogeneity

Meta-Analyses Studies,
n

Patients,
n

Stat.
Model Wt ES (95% CI) p-Value Phet I2 (%) Supplementary

Materials a

Asian 3 336 REM D-L HR = 2.09
(0.86–5.08) 0.11 0.04 68.4

Non-Asian 6 732 REM D-L HR = 1.19
(0.77–1.84) 0.43 0.11 45.0

Univariable meta-regressions by study design and patients characteristics e

Follow-up
(months) 9 1068 random-effects

meta-regression

Coef = −0.002
(−0.010 to

0.006)
0.58 ± 0.005 f hetexplained = −24.83%g Figure S2

Sex (proportion
of males, %) 8 1027 random-effects

meta-regression

Coef = −0.005
(−0.052 to

0.043)
0.13 ± 0.003 f hetexplained = −80.22% g Figure S3

Age (years,
mean) 8 911 random-effects

meta-regression

Coef = −0.003
(−0.122 to

0.115)
0.92 ± 0.003 f hetexplained = -−43.25%g Figure S4

Clinical stage
(proportion of

stage-III/IV
patients,%)

2 295 — — — — —

Tobacco
consumption
(proportion of
smokers, %)

7 974 random-effects
meta-regression

Coef = 0.005
(−0.030 to

0.040)
0.71 ± 0.005 f hetexplained = −74.01% g Figure S5

Areca
nut/betel quid
consumption
(proportion of
chewers, %)

2 283 — — — — —

Alcohol
consumption
(% of patients
with positive

habit)

6 817 random-effects
meta-regression

Coef = 0.008
(−0.019 to

0.035)
0.44 ± 0.005 f hetexplained = −41.06% g Figure S6

Disease-free survival

TERT
upregulation

(all) b
8 967 REM D-L HR = 1.64

(1.06–2.54) 0.03 0.07 46.4 Figure S7

Subgroup analysis by alteration c 0.006 d

TERT
mutations 5 790 REM D-L HR = 1.13

(0.81–1.59) 0.46 0.68 0.0

TERT mRNA
overexpression 1 42 — — HR = 3.79

(1.03–13.98) 0.05 — 0.0

TERT protein
overexpression 2 135 REM D-L HR = 4.03

(1.80–9.05) 0.001 0.49 0.0

T status

TERT
upregulation

(all) b
11 1055 REM D-L OR = 1.15

(0.66–2.03) 0.62 0.001 65.4 Figure S8

Subgroup analysis by alteration c 0.22 d

TERT
mutations 4 569 REM D-L OR = 0.89

(0.56–1.40) 0.61 0.41 0.0

TERT mRNA
overexpression 1 42 — — OR = 0.40

(0.09–1.84) 0.24 — 0.0

TERT protein
overexpression 6 444 REM D-L OR = 1.81

(0.69–4.73) 0.23 0.001 77.3

N status

TERT
upregulation

(all) b
10 1013 REM D-L OR = 1.25

(0.62–2.50) 0.54 <0.001 75.4 Figure S9
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Table 2. Cont.

Pooled Data Heterogeneity

Meta-Analyses Studies,
n

Patients,
n

Stat.
Model Wt ES (95% CI) p-Value Phet I2 (%) Supplementary

Materials a

Subgroup analysis by alteration c 0.21 d

TERT
mutations 4 569 REM D-L OR = 0.80

(0.50–1.29) 0.36 0.78 0.0

TERT protein
overexpression 6 444 REM D-L OR = 1.82

(0.56–5.90) 0.32 <0.001 84.5

Clinical stage

TERT
upregulation

(all) b
7 526 REM D-L OR = 1.33

(0.41–4.34) 0.64 <0.001 86.4 Figure S10

Subgroup analysis by alteration c 0.24 d

TERT
mutations 2 295 REM D-L OR = 0.66

(0.38–1.17) 0.16 0.88 0.0

TERT mRNA
overexpression 1 42 — — OR = 0.14

(0.01–2.64) 0.19 — 0.0

TERT protein
overexpression 4 189 REM D-L OR = 2.75

(0.34–22.61) 0.64 <0.001 91.6

Histological grade

TERT
upregulation

(all) b
13 630 REM D-L OR = 1.94

(1.14–3.30) 0.01 0.21 23.0 Figure S11

Subgroup analysis by alteration c 0.02 d

TERT
mutations 1 144 — — OR = 0.42

(0.09–1.98) 0.28 — 0.0

TERT mRNA
overexpression 4 174 REM D-L OR = 1.16

(0.48–2.76) 0.74 0.44 0.0

TERT protein
overexpression 8 312 REM D-L OR = 3.20

(1.83–5.62) <0.001 0.69 0.0

Abbreviations: Stat., statistical; Wt, method of weighting; ES, effect-size estimation; HR, hazard ratio; OR, odds
ratio; CI, confidence interval; REM, random-effects model; D-L, DerSimonian and Laird method; OSCC, oral
squamous cell carcinoma. a—More information in the Supplementary Materials, b—Meta-analysis of aggregate
(summary) data. c—Subgroup meta-analyses, d—Test for between-subgroup differences, e—Meta-regression anal-
ysis of the potential effect of study covariates on the association between TERT upregulation and overall survival
in OSCC. A meta-regression coefficient >0 indicates a greater impact of covariates on poor prognosis. f—p-value
± standard error recalculated after 10,000 permutations based on Monte Carlo simulations. g—Proportion of
between-study variance explained (adjusted R2 statistic) using the residual maximum likelihood (REML) method.
A negative number for proportion of heterogeneity explained reflects no heterogeneity explained.

Disease-free survival (DFS). Similar results were found for this parameter, where TERT
overexpression was significantly associated with poor DFS (HR = 4.03, 95% CI = 1.80–9.05,
p = 0.001), while gene mutations showed a nonsignificant and reduced effect size (HR = 1.13,
95% CI = 0.81–1.59, p = 0.46). Differences in mRNA expression levels also showed a significant,
though imprecise, prognostic value, being assessed only by a single primary-level study
(HR = 3.79, 95% CI = 1.03–13.98, p = 0.05) (Table 2, Figure S7, Supplementary Materials).
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Figure 3. Forest plot graphically representing the meta-analysis on the association between TERT
upregulation (stratified by alterations, i.e., gene mutations vs. protein overexpression) and OS in
patients with OSCC. Random-effects model, inverse-variance weighting (based on the DerSimonian
and Laird method). An HR > 1 suggests that TERT upregulation is associated with poor prognosis.
Diamonds indicate pooled HRs with their corresponding 95% CIs. Abbreviations: TERT, telomerase
reverse transcriptase; OS, overall survival; OSCC, oral squamous cell carcinoma; HR, hazard ratio;
CI, confidence interval.

3.4.2. Association between TERT Upregulation and Clinicopathological Variables

TERT upregulation and/or stratified meta-analyses by alteration (gene mutation
vs. protein overexpression) were not significantly associated with T status (OR = 1.15,
95% CI = 0.66–2.03, p = 0.62), N status (OR = 1.25, 95% CI = 0.62–2.50, 0.54), or clinical
stage (OR = 1.33, 95% CI = 0.41–4.34, p = 0.64) (Table 2, Figures S8–S10, Supplementary
Materials). Finally, a significant association was found between TERT overexpression
and higher histological grade, showing a large effect size (OR = 3.20, 95% CI = 1.83–5.62,
p < 0.001) (Table 2, Figure S11, Supplementary Materials).

3.4.3. Association between TERT Upregulation and Clinicopathological Variables Not
Included in Meta-Analysis

Meta-analysis was not performed for the association between TERT upregulation and
secondary clinicopathological variables (extracapsular spread, tumor margins, perineural
and lymphatic invasion), where a very low number of primary-level studies reported
heterogeneous datasets. However, all were included in an albatross plot (Figure S30,
Supplementary Materials) and considered separately in the narrative synthesis. These
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variables were investigated only for TERT gene mutations, and all observations presented
nonsignificant results, which is consistent with our meta-analytical findings.

3.5. Quantitative Evaluation (Secondary Analyses)
3.5.1. Meta-Regression Analysis

The potential impact of additional study covariates—follow-up period, sex, age, to-
bacco and alcohol consumption—on the association between TERT upregulation and OS
was analyzed, and no significant differences were found (p > 0.05, respectively) (Table 2,
Figures S2–S6, Supplementary Materials).

3.5.2. Sensitivity Analysis

The results were stable for prognostic variables and for histological grade parameter,
where no substantial changes were observed after the sequential repetition of meta-analyses,
omitting one study in turn. The remaining clinicopathological variables (T status, N status,
and clinical stage) were more sensitive, suffering further variations in their effect sizes, but
under no circumstance shifted toward statistical significance.

3.5.3. Analysis of Small-Study Effects

Visual inspection analysis of the asymmetry of the funnel plots constructed and the
statistical tests conducted for the same purpose potentially indicated the absence of small-
study effects (OS: pEgger-TERT mutation = 0.376, pEgger-TERT protein overexpression = 0.071; DFS:
pEgger-TERT mutation = 0.517; T status: pEgger-TERT mutation = 0.493, pEgger-TERT protein overexpression
= 0.403; N status: pEgger-TERT mutation = 0.338, pEgger-TERT protein overexpression = 0.526; clinical
stage: pEgger-TERT protein overexpression = 0.546; histological grade: pEgger-TERT mutation = 0.307,
pEgger-TERT protein overexpression = 0.349), although some analyses were performed under sub-
optimally underpowered conditions (n < 10 studies), where publication bias could not be
strongly ruled out (Figures S12–S17, Supplementary Materials).

3.6. Validation of Methodological Quality

The methods applied in this systematic review and meta-analysis were implemented,
critically appraised, and validated using AMSTAR2 [16], obtaining an overall rating of
“high” (16 points) (the scoring table is included in the Supplementary Materials).

4. Discussion

The results of our systematic review and meta-analysis on 21 studies and 1698 patients
with oral cancer demonstrate for the first time and based on evidence that TERT upregu-
lation is predictive of the risk of death in patients with oral cancer, i.e., overall survival.
This predictive capacity linked to TERT activity was statistically different depending on the
type of analysis performed to detect its upregulation (p = 0.001), the immunohistochemical
determination of TERT protein overexpression being the only efficient way to predict the
risk of death from oral cancer (p < 0.001). Immunohistochemistry results showed an oral
cancer mortality rate 3.01 times higher in patients who overexpressed TERT vs. those
who did not. Regarding the influence of cancer hallmarks on the survival of oral cancer
patients, the effect size related to the predictive value of overall survival derived from
TERT immunohistochemical overexpression is one of the largest documented in evidence-
based studies (systematic reviews and meta-analyses), together with metalloproteinase-2
overexpression [56]. It should be emphasized that TERT gene mutations did not predict
the risk of death linked to TERT upregulation at all (p = 0.83, HR = 1.03), indicating that
prognostic assessment of patients with oral cancer linked to TERT upregulation should be
performed by immunohistochemistry of the protein in tumor tissue. TERT promoter-region
mutations have been reported to confer different effects and are currently not fully under-
stood. It has been hypothesized that increased TERT gene transcriptional activity creates
binding motifs for E-twenty-six (ETS)/ternary complex factor (TCF) transcription factors,
thereby allowing the synthesis of the catalytic subunit of telomerase TERT, determinant
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for telomerase activity and for cancer cell immortality [49]. On the other hand, alternative
mechanisms have been published, such as the polymorphism rs2853669 T > C, which
could disrupt a preexisting ETS binding site within the TERT core promoter, which on
the contrary could result in decreased TERT protein expression [50]. Similar results to
those discussed above were obtained for the disease-free survival parameter; that is, TERT
upregulation was significantly associated with shorter disease-free survival (p = 0.006), and
in the subgroup analysis, the highest predictive value was also achieved with the analysis
of immunohistochemical overexpression of TERT in tumor tissue (p = 0.001, HR = 4.03).
On the contrary, TERT gene mutations had no predictive effect on disease-free survival
(p = 0.46, HR = 1.13). Moreover, although the analysis of TERT mRNA overexpression also
predicted shorter disease-free survival (p = 0.05; HR = 3.79), the effect size was smaller
than that obtained with immunohistochemistry and the results were also less robust, so as
the available evidence indicates, it is more advisable to perform immunohistochemistry, a
simple and automated technique.

An interesting result of our meta-analysis is that the negative prognostic value of TERT
upregulation in oral cancer showed no geographical differences (p = 0.27), which indicates
in our view that the upregulation of this protein does not depend on etiological factors of
oral cancer that act differently in different areas of the world, but probably represents a
condition inherent to the biopathology of oral cancer. Furthermore, our results also indicate
that the negative influence of TERT on survival is not affected by confounding factors
that influence prognosis: follow-up period, sex, age, or alcohol/tobacco consumption.
An additional planned subgroup meta-analysis stratified by anti-TERT antibody could
not be performed, due to the heterogeneous and small amount of data reported by the
primary-level studies. This is an important topic due to the possible aspecific reactivity of
TERT antibodies that were used in immunohistochemical staining [40]. Therefore, the use
of low-quality TERT antibodies may have contributed confusions in the conflicting reports
of data on TERT protein, and undoubtedly impact on the conclusions of this manuscript.
Likewise, a subgroup meta-analysis stratified by anatomical location could not be carried
out, due to this information being reported by few of the studies included in our systematic
review. This analysis would also have harbored important scientific value, because TERT
promoter mutations have been found in higher relative frequencies in the mobile tongue
than other oral subsites [49]. Future studies should further elucidate the potential influence
of these parameters on our study conclusions.

The reasons that TERT upregulation negatively affects patient survival are linked
to its canonical function, i.e., maintenance of telomere length with increased tumor cell
survival [3]. However, in recent years, noncanonical functions of TERT performed outside
the context of its telomeric actions [3] have also been reported. Animal experimentation
has shown that ectopic expression of TERT promotes tumor formation and growth [57–60],
and its constitutive overexpression increases the survival and replicative activity of tumor
cells, even in the absence of growth factors, oxygen, or glucose [57,61,62], while conversely
a lack of TERT activity promotes apoptosis [63–68]. Some of these noncanonical functions
seem to be achieved by the ability of TERT to act as a transcriptional cofactor in the
WNT/β-catenin pathway [22,69,70] and as a cofactor of NF-kβ, thus contributing to the
regulation of the target genes of this transcription factor and as a modulator of MYC-
dependent transcriptional programs involved in tumorigenesis [71]. TERT also possesses
non-telomeric DNA repair activity [72], showing accelerated repair of nucleotide excision
and double-strand DNA breaks [59,73,74]. In this regard, we also interestingly found
that TERT upregulation was significantly associated with the development of poorly
differentiated tumors (p < 0.001, OR = 3.20), and not with other parameters such as T,
N, or clinical stage. In our view, this result indicates that the prosurvival function of
TERT secondary to its telomere length-maintenance activity is probably predominant;
thus, it is plausible to hypothesize that long-surviving malignant cells could, through a
clonal mechanism, acquire summative advantages that would make them progressively
more undifferentiated.
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According to our qualitative evaluation, carried out using the QUIPS tool (developed
by members of the Cochrane Prognosis Methods Group [75]), although the studies in our
meta-analysis had similar experimental designs, not all were conducted with the same
methodological rigor. Most potential biases were caused by the failure to consider potential
confounding factors (i.e., domain 5: study-confounding domain) and by the application
of incomplete or inappropriate statistical analyses (i.e., domain 6: statistical analysis and
reporting). A comprehensive analysis of domain 5 helps to analyze if another factor may
explain the study’s reported associations, a potential weakness often found in designs
of an observational nature. In order to overcome this problem, we performed several
meta-regression analyses. We could confirm that the main covariates (i.e., sex, age, follow-
up period, tobacco and alcohol consumption) did not have an impact on the reported
association, and none of them behaved as a confounding factor. Domain 6 addresses
the appropriateness of the study’s statistical analysis and completeness of reporting. No
primary-level studies directly reported effect-size metrics for survival analyses (i.e., hazard
ratios with their corresponding 95% confidence intervals), which is unfortunately a common
practice in studies of prognostic factors in cancer science. We overcome this potential
weakness, we estimated hazard ratios from the data provided by these studies, following
Parmar et al. [25] and Tierney et al. [24] adjustment methods. Future studies on the
prognostic value of TERT upregulation in OSCC should consider the potential biases
reported in this systematic review and meta-analysis, in order to improve and standardize
future research.

Some potential limitations of our meta-analysis should be discussed. First, moderate
heterogeneity was found between TERT upregulation and overall survival. Fortunately, the
subgroup meta-analysis by alteration analyzed (i.e., gene mutation vs. protein overexpres-
sion) strongly demonstrated that heterogeneity was not significant after this stratification,
showing homogeneous and well-balanced subgroups in terms of consistency (I2 = 0.0%,
respectively). In summary, after an extensive exploratory analysis of sources of heterogene-
ity, we are seriously convinced that heterogeneity does not really constitute a concerning
limitation of the present work. Second, publication bias could not be fully discarded, due
to some variables showing fewer than 10 observations, making it impossible to differentiate
between significant funnel-plot asymmetry from a chance-associated distribution. There-
fore, although our analyses potentially ruled out small-study effects, publication bias is
a real challenge currently omnipresent in biomedical science research [76]. Despite the
above limitations, our study is robust, (i.e., reliable and stable, as confirmed by our meta-
analytical primary results, stratifications, meta-regressions, sensitivity, and small-study
effect analyses), presenting the first meta-analysis on this topic and reporting relevant and
large effect size for TERT overexpression’s prognostic value in OSCC.

5. Conclusions

In conclusion, the immunohistochemical determination of TERT overexpression is
an indicator of poor survival in oral cancer and probably should be incorporated in the
prognostic evaluation of these patients. This meta-analysis also reinforces the need for
further research on the potential applications of TERT as a therapeutic target in oral cancer.
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