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1. Introduction and preliminaries

The reference [59] is the founding work of the fruitful theory of Rickart and Baer C∗-
algebras. C. E. Rickart [59] stated that “Our general purpose is to study the structure of 
a B∗-algebra in terms of its projections. Such a study of course demands the existence 
of many projections .... a B∗-algebra is defined to be a B∗

p -algebra (now called a Rickart 
C∗-algebra) provided it contains, in a certain sense, “sufficiently many” projections.” The 
chosen notion was built around left and right annihilators. For each nonempty subset S
of an associative ring A, the right- and left-annihilator of S are defined by

R(S) = {x ∈ A : sx = 0 for all s ∈ S}

and

L(S) = {x ∈ A : xs = 0 for all s ∈ S},

respectively. If A is an associative ∗-ring, a projection p in A will be a self-adjoint (p∗ = p) 
idempotent (p2 = p). A Rickart ∗-ring is an associative ∗-ring A such that, for each a ∈ A, 
R({a}) = pA for a (unique) projection p (see [12, §3, Definition 2]). In such a case we have 
L({a}) = (R({a∗}))∗ = (qA)∗ = Aq for a suitable projection q. A Rickart C∗-algebra is a 
C∗-algebra which is also a Rickart ∗-ring (cf. [12, §3, Definition 3] and the original work 
by Rickart [59]). Each Rickart ∗-ring has a unity element and its involution is proper, i.e., 
xx∗ = 0 ⇒ x = 0 (see [12, §3, Proposition 2]). The projections of a Rickart C∗-algebra 
form a lattice which is not necessarily complete (cf. [12, §3, Proposition 7 and Example 
2]). A C∗-algebra A is called weakly Rickart if for each x ∈ A there exists an annihilating 
right projection (briefly, ARP) of x, that is, a projection p satisfying xp = x, and xy = 0
implies py = 0. Let us observe that annihilating left projections (ALP) are similarly 
defined. The ARP and ALP of each element x are uniquely determined by x, and we 
shall denote them by RP (x) and LP (x), respectively. Every unital weakly Rickart C∗-
algebra is a Rickart C∗-algebra, since for each x ∈ A we have R({x}) = (1 − RP (x))A. 
Rickart proved in [59, Theorem 2.10] that every Rickart C∗-algebra is generated by its 
projections.

As seen before, the definition of a Rickart ∗-ring is given in terms of the annihilators 
of singletons. When singletons are replaced by general subsets we find the notion of 
Baer ∗-ring. Concretely, a Baer ∗-ring is an associative ∗-ring A such that, for every 
nonempty subset S ⊂ A we have R(S) = pA for a suitable projection p in A (see [12, §4, 
Definition 1]). Baer ∗-rings are precisely those Rickart ∗-rings whose projections form 
a complete lattice, equivalently, every orthogonal family of projections has a supremum 
(cf. [12, §4, Proposition 1]). As introduced in the pioneering works of Kaplansky [46–48], 
an AW∗-algebra is a C∗-algebra that is a Baer ∗-ring (see [12, §4, Definition 2]).

Since for each element a in a C∗-algebra A we have R({a}) = R({a∗a}), in the 
definition of Rickart C∗-algebra we can restrict our attention to the right-annihilators 
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of positive elements. Similarly, in the definition of AW∗-algebras we can consider right-
annihilators of sets of the form {a∗a : a ∈ S}, where S is any subset of the C∗-algebra 
under study.

Each von Neumann algebra (i.e., a ∗-subalgebra of B(H) whose bicommutant coincides 
with itself, or equivalently, by Sakai’s theorem [64], a C∗-algebra which is also a dual 
Banach space) is an AW∗-algebra [12, §4, Proposition 9]. After Sakai’s theorem, von 
Neumann algebras are also known as W∗-algebras. Though AW∗-algebras were actually 
introduced with the aim of finding an algebraic characterization of von Neumann or 
W∗-algebras, it was soon shown by Dixmier that there exist commutative AW∗-algebras 
which cannot be represented as von Neumann algebras (see [25] or [12, §7, Exercises 2, 3]). 
Wright found in [68] examples of monotone complete factors which are not von Neumann 
algebras. The reader has probably realized that we take the references [59,46,12,62] as 
the basic bibliography on Rickart and AW∗-algebras.

In the list of problems and future directions in [61, page 144], A. Rodríguez-Palacios 
somehow anticipated and suggested the study of Rickart Jordan algebras as those Jordan 
algebras for which “the annihilator of every element in Zelmanov sense is generated by 
an idempotent” (see subsection 1.1 for the basic theory on Jordan algebras). However, 
we have to wait until 2016 to find the first study on Rickart and Baer Jordan algebras 
by Sh. A. Ayupov and F. N. Arzikulov (see [7]). The (outer) quadratic annihilator of a 
subset S in a Jordan algebra M –with product ◦– is defined as the set

Ann(S) = S⊥q := {a ∈ M : Ua(s) = 2(a ◦ s) ◦ a− (a ◦ a) ◦ s = 0, ∀s ∈ S}.

A Jordan algebra M is called a Rickart Jordan algebra if for each element a ∈ M2 there 
exists an idempotent e ∈ M such that {a}⊥q = Ue(M), where Ue(x) := 2(e ◦x) ◦e −e2◦x. 
If in the definition of Rickart Jordan algebra, the sets given by a single element a ∈ M2

are replaced by arbitrary subsets S ⊂ M2, we get the notion of Baer Jordan algebra (cf. 
[7]).

Rickart and Baer Jordan algebras are appropriate notions for JB-algebras, where we 
have projections and positive elements. It is shown by Ayupov and Arzikulov that for 
each C∗-algebra A, its self-adjoint part, Asa, is a Rickart (respectively, Baer) Jordan 
algebra if and only if A is a Rickart (respectively, Baer) C∗-algebra [7,8]. A Rickart 
(respectively, Baer) JB∗-algebra is a JB∗-algebra M whose self-adjoint part is a Rickart 
(respectively, Baer) JB-algebra.

The original aim in Rickart’s studies was completed in the case of JB-algebras by F. 
N. Arzikulov who proved that a JB-algebra N is a Baer Jordan algebra if and only if N
satisfies the following properties:

(1) Every subset of pairwise orthogonal projections in the partially ordered set of pro-
jections has a least upper bound in this set;

(2) Every maximal strongly associative subalgebra of N is generated by its projections 
(see [4, Theorem 2.1]).
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The available notions of Rickart and Baer Jordan algebras have a strong dependence 
on quadratic annihilators, projections and positive elements. However, if we are inter-
ested in developing these notions in more general Jordan structures, like JB∗-triples, 
where projections and positive elements do not make any sense, we need an alternative 
approach. This is the main goal of this paper.

Section 2 is devoted to revisit the main results on Rickart and weakly Rickart C∗-
algebras with the aim of finding a characterization which can be stated without appealing 
to projections and positive elements. We shall show (see Propositions 2.5 and 2.10) that 
by mixing and extending a characterization due to G. K. Pedersen in [56] with key 
contributions by P. Ara and D. Goldstein [2,3,35], the following characterizations hold 
for every C∗-algebra A:

(a) A is a weakly Rickart C∗-algebra if, and only if, any of the following statements 
holds:
(1) Given x ∈ A and an inner ideal J ⊆ A which is orthogonal to the inner ideal 

I = A(x) of A generated by x, there exists a partial isometry e in A such that 
I ⊆ A2(e) and J ⊆ A0(e).

(2) Given x ∈ A and an inner ideal J ⊆ A with I = A(x) ⊥ J , there exists a partial 
isometry e in A such that I ⊆ A2(e), e∗e = RP (x), ee∗ = LP (x), x is a positive 
element in the C∗-algebra (A2(e), •e, ∗e), A(x) is a C∗-subalgebra of the latter 
C∗-algebra and J ⊆ A0(e).

(b) A is a Rickart C∗-algebra if, and only if, A is unital and for each x ∈ A and each 
inner ideal J ⊆ A which is orthogonal to I = A(x), there exists a partial isometry e
in A such that I ⊆ A2(e) and J ⊆ A0(e).

The advantage of the previous characterizations (especially the one in (a)(1)) relies on 
their independence of projections and positive elements, and can be therefore extended 
to wider settings. Before further extensions, in section 3 we explore the notions of weakly 
Rickart and SAJBW-algebras, both in terms of projections and positive elements. For 
example, a JB-algebra N is called a weakly Rickart JB-algebra if for each element a ∈ N+

there exists a projection p ∈ N such that p ◦ a = a, and for each z ∈ N with Uz(a) = 0
we have p ◦ z = 0. In Proposition 3.14 we establish several characterizations of Baer 
or AJBW∗-algebras, (weakly) Rickart JB∗-algebras and SAJBW∗-algebras in terms of 
hereditary JB∗-subalgebras. After several technical conclusions in the line of classical 
results, we arrive to our main goal of section 3 in Theorem 3.16, where it is proved that 
every weakly Rickart JB∗-algebra is generated by its projections.

In section 4 we introduce several definitions of Rickart, weakly Rickart and weakly 
order Rickart JB∗-triples. We show that, thanks to the characterization of the corre-
sponding notions for C∗-algebras presented in section 2, the new definitions coincide 
with the classical notions in the setting of C∗-algebras. Special interest is received by 
weakly order Rickart JB∗-triples. This new notion agrees with the concept of Rickart 
C∗-algebra in the C∗- setting. A weakly order-Rickart JB∗-triple E is a JB∗-triple satis-
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fying that for each x ∈ E, if we write E(x) for the inner ideal of E generated by x, then 
for each inner ideal J ⊆ E with I = E(x) ⊥ J , there exists a tripotent e in E such that 
x is positive in E2(e), and J ⊆ E0(e).

We prove in Proposition 4.4 that if E is a weakly order Rickart JB∗-triple and e ∈ E

is a tripotent, then the Peirce-2 subspace E2(e) is a Rickart JB∗-algebra. This allows 
us to conclude that every weakly order Rickart JB∗-triple is generated by its tripotents 
(see Theorem 4.5).

Finally, in section 5 we explore the connections with von Neumann regularity, by 
showing that each inner ideal I of a weakly order Rickart JB∗-triple E contains a dense 
subset of von Neumann regular elements (cf. Theorem 5.4).

1.1. Background and basic definitions

This subsection is aimed to provide a basic compendium on the Jordan structures 
studied in this note. The reader will find some brief historical introduction, definitions, 
notions and basic references. These contents are not really required to follow section 2, 
which has been written to be accessible with tools of C∗-algebras.

The early contributions by Jordan, von Neumann and Wigner in the decade of 
1930s led to the idea of employing non-associative structures, specially Jordan alge-
bras, in quantum mechanics (see the interesting monograph [52] for a fantastic historical 
overview). A real or complex Jordan algebra is a non-necessarily associative algebra M
whose product (denoted by ◦) is commutative and satisfies the Jordan-identity:

(a ◦ b) ◦ a2 = a ◦ (b ◦ a2) (a, b ∈ M). (1)

The Jordan algebra M is called unital if there exists a unit element 1 in M such that 
1 ◦ a = a for all a ∈ M . Jordan algebras are power associative, that is, a subalgebra 
generated by a single element is associative. In other words, for each a ∈ M define 
a0 := 1 if M is unital, a1 = a and an+1 = a ◦ an (n � 1). Then an+m = an ◦ am for all 
natural numbers m and n [39, Lemma 2.4.5]. For each a ∈ M we shall denote by Ta the 
Jordan multiplication operator by the element a, that is, Ta(x) = a ◦ x (x ∈ M).

An element a in a unital Jordan Banach algebra M is called invertible whenever there 
exists b ∈ M satisfying a ◦ b = 1 and a2 ◦ b = a. The element b is unique and it will be 
denoted by a−1 (cf. [39, 3.2.9] and [22, Definition 4.1.2]). We know from [22, Theorem 
4.1.3] that an element a ∈ M is invertible if and only if Ua is a bijective mapping, and 
in such a case U−1

a = Ua−1 .
As in the associative case, an involution on a Jordan algebra M is a mapping a 
→ a∗

satisfying (a∗)∗ = a and (a ◦ b)∗ = a∗ ◦ b∗ for all a, b ∈ M . The involution ∗ is called 
proper if a ◦ a∗ = 0 implies a = 0.

A very special source of examples is provided by associative algebras. Namely, suppose 
A is a real or complex associative algebra with product denoted by juxtaposition. Then 
the natural Jordan product a ◦ b := 1 (ab + ba) defines a structure of Jordan algebra on 
2
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A; Jordan algebras of this type are called special, as they are isomorphic to subalgebras 
of associative algebras equipped with a new multiplication (a term coined by Jordan, 
von Neumann & Wigner [45]). There are Jordan algebras which are not special (cf. [39, 
Corollary 2.8.5]), these algebras are called exceptional.

Suppose that A is a C∗-algebra. The (associative) product of two self-adjoint elements 
in A need not be, in general, self-adjoint. Another good property of the natural Jordan 
product assures that the Jordan product of two self-adjoint elements in A also is in Asa. 
Therefore, Asa is a real Jordan subalgebra of A, but not an associative subalgebra.

A central notion in the study of Jordan algebras is the so-called U -mapping. Let a, b
be two elements in a Jordan algebra M . The Ua,b mapping is the linear map on M given 
by

Ua,b(x) = (a ◦ x) ◦ b + (b ◦ x) ◦ a− (a ◦ b) ◦ x,

for all x ∈ M . The mapping Ua,a is usually denoted by Ua. The U -maps satisfy the 
following fundamental identity:

UaUbUa = UUa(b), for all a, b in a Jordan algebra M, (2)

(see [39, 2.4.18]).
It is now the moment to introduce some analytic structures. A Jordan algebra M

endowed with a complete norm satisfying ‖a ◦ b‖ � ‖a‖‖b‖, a, b ∈ M is called a Jordan 
Banach algebra. A JB-algebra is a real Jordan Banach algebra N whose norm satisfies 
the following two geometric axioms:

(i) ‖a2‖ = ‖a‖2, for all a ∈ N ;
(ii) ‖a2‖ � ‖a2 + b2‖, for all a, b ∈ N,

(see [39, Definition 3.1.4]).
The Jordan mathematical model closest to C∗-algebras is given by the class of JB∗-

algebras. A JB∗-algebra is a complex Jordan Banach algebra M together with an algebra 
involution a 
→ a∗, whose norm satisfies the following generalization of the Gelfand-
Naimark axiom:

‖Ua(a∗)‖ = ‖a‖3, for every a ∈ M.

Both of the just introduced Jordan structures are intrinsically related thanks to a 
result due to J. D. M. Wright proving that every JB-algebra corresponds to the self-
adjoint part of a (unique) JB∗-algebra (see [69]).

If a C∗-algebra A is equipped with its original norm and involution and the Jordan 
product given by a ◦ b = 1

2 (ab + ba), then the resulting structure is a JB∗-algebra. 
Jordan ∗-subalgebras of C∗-algebras are called JC∗-algebras, and their symmetric parts 
are known as JC-algebras. The class of JB∗-algebras is strictly bigger than the collection 
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of all associative C∗-algebras since, for example, the exceptional Jordan algebra H3(O) is 
a purely exceptional JB-algebra, that is, there is no nonzero homomorphism from H3(O)
into a JC-algebra (cf. [39, §7.2]).

From a purely algebraic point of view, a complex Jordan triple system is a complex 
linear space E equipped with a triple product {x, y, z} which is bilinear and symmetric 
in x, z and conjugate linear in y and satisfies the following ternary Jordan identity:

L(x, y){a, b, c} = {L(x, y)a, b, c} − {a, L(y, x)b, c} + {a, b, L(x, y)c}, (3)

for all x, y, a, b, c ∈ E, where L(x, y) : E → E is the linear mapping given by L(x, y)z =
{x, y, z}.

The analytic structures known as JB∗-triples, whose origins go back to the theory of 
holomorphic functions on infinite dimensional complex Banach spaces [49], are defined 
as those complex Jordan triple systems E which are Banach spaces satisfying the next 
“geometric” axioms:

(a) For each x ∈ E, the operator L(x, x) is hermitian with non-negative spectrum;
(b) ‖{x, x, x}‖ = ‖x‖3 for all x ∈ E.

The triple product of each JB∗-triple E is a non-expansive mapping, that is,

‖{a, b, c}‖ � ‖a‖ ‖b‖ ‖c‖, (4)

for all a, b, c ∈ E (cf. [37, Corollary 3]).
JBW∗-triples (respectively, JBW∗-algebras) are defined as those JB∗-triples (respec-

tively, JB∗-algebras) which are also dual Banach spaces. The bidual of every JB∗-triple 
is a JBW∗-triple (see [24]). It is further known that each JBW∗-triple admits a unique 
(isometric) predual and its product is separately weak∗ continuous [11] (see also [23, 
Theorems 5.7.20 and 5.7.38]).

Each C∗-algebra A carries a natural structure of JB∗-triple with respect to the triple 
product given by

{a, b, c} = 1
2(ab∗c + cb∗a). (5)

The same triple product equips the space B(H, K), of all bounded linear operators 
between two complex Hilbert spaces, with structure of JB∗-triple. In particular, there 
exist infinite-dimensional complex Hilbert spaces which are JB∗-triples.

For each element a in a JB∗-triple E, the symbol Q(a) will denote the conjugate linear 
operator on E defined by Q(a)(x) = {a, x, a}. Every JB∗-algebra M is a JB∗-triple with 
triple product

{a, b, c} = (a ◦ b∗) ◦ c + (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗. (6)
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It follows that Q(a)(x) = Ua(x∗) for all a, x ∈ M .
We refer to [39,22] and [23] for the basic background on JB∗-triples and JB∗-algebras.
An element e ∈ E is called a tripotent if {e, e, e} = e. When a C∗-algebra A is regarded 

as a JB∗-triple with the triple product in (5), it is known that the tripotents in A are 
precisely the partial isometries in A. In the same way that each partial isometry in a 
C∗-algebra A induces a Peirce decomposition, each tripotent e in a JB∗-triple E produces 
a Peirce decomposition of E in the form E = E2(e) ⊕E1(e) ⊕E0(e), where Ei(e) is the i2
eigenspace of the operator L(e, e), i = 0, 1, 2. This decomposition satisfies the following 
Peirce rules:

{E2(e), E0(e), E} = {E0(e), E2(e), E} = 0

and

{Ei(e), Ej(e), Ek(e)} ⊆ Ei−j+k(e),

when i − j + k ∈ {0, 1, 2} and is zero otherwise. The Peirce k-projection, Pk(e), is 
the natural projection of E onto Ek(e). Peirce projections are non-expansive (cf. [33, 
Corollary 1.2]) and they can be expressed in the following terms:

P2(e) = Q(e)2, P1(e) = 2(L(e, e) −Q(e)2),

and

P0(e) = IdE − 2L(e, e) + Q(e)2.

It is known that the Peirce-2 subspace E2(e) is a JB∗-algebra with unit e, Jordan 
product x ◦e y := {x, e, y} and involution x∗e := {e, x, e}, respectively. It is worth to 
note that a linear bijection between JB∗-triples is an isometry if and only if it is a 
triple isomorphism (cf. [49, Proposition 5.5]). Consequently, the triple product in E2(e)
is uniquely given by

{x, y, z} = (x ◦e y∗e) ◦e z + (z ◦e y∗e) ◦e x− (x ◦e z) ◦e y∗e ,

for all x, y, z ∈ E2(e).
A subspace B of a JB∗-triple E is a JB∗-subtriple of E if {B, B, B} ⊆ B. A JB∗-

subtriple I of E is called an inner ideal of E if {I, E, I} ⊆ I. A subspace I of a C∗-algebra 
A is an inner ideal if IAI ⊆ I. Every hereditary σ-unital C∗-subalgebra of a C∗-algebra 
is an inner ideal. A complete study on inner ideals of JB∗-triples is available in [28,29]
and the references therein. It follows from Peirce rules that for each tripotent e in a 
JB∗-triple E, the Peirce-2 subspace E2(e) is an inner ideal.

Let E be a JB∗-triple. The JB∗-subtriple, Ea, of E generated by a single element a is 
identified, via the Gelfand theory, with the commutative C∗-algebra
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C0(Ωa) = {f : Ωa → C continuous with f(0) = 0 if 0 ∈ Ωa},

for a unique compact set Ωa contained in [0, ‖a‖], such that ‖a‖ ∈ Ωa and 0 cannot be 
isolated in Ωa; and under this identification a corresponds to the continuous function 
given by the embedding of Ωa into C (cf. [49, Corollary 1.15] and [50, Lemma 3.2]). A 
consequence of this representation affirms that every element in a JB∗-triple admits a 
cubic root and a (2n −1)th-root (n ∈ N) belonging to the JB∗-subtriple that it generates. 
The sequence (a[ 1

2n−1 ]) of all (2n − 1)th-roots of a converges in the weak∗ (and also in 
the strong∗) topology of E∗∗ to a tripotent in E∗∗, denoted by rE∗∗(a), and called the 
range tripotent of a. The tripotent rE∗∗(a) is the smallest tripotent e ∈ E∗∗ satisfying 
that a is positive in the JBW∗-algebra E∗∗

2 (e). It is also known that, if ‖a‖ = 1, the 
sequence (a[2n−1]), of all odd-powers of a, converges in the weak∗- and strong∗-topology 
of E∗∗ to a tripotent (called the support tripotent of a, u(a) in E∗∗, which satisfies 
u(a) � a � rE∗∗(a) in E∗∗

2 (rE∗∗(a)) (compare [27, Lemma 3.3]; beware that in [30], r(a)
is called the support tripotent of a). In case that a is a positive element in a JB∗-algebra 
M , the support and the range tripotents of a in M∗∗ are projections, called the support
and range projections of a in M∗∗.

For each element a in a JB∗-triple E (in which we generally do not have a cone 
of positive elements), the symbol E(a) will stand for the norm-closure of {a,E, a} =
Q(a)(E) in E. It was proved by L. J. Bunce, C.-H. Chu and B. Zalar that E(a) is 
precisely the norm-closed inner ideal of E generated by a. Clearly, Ea ⊂ E(a). It is 
further shown in the just quoted reference that E(a) is a JB∗-subalgebra of the JBW∗-
algebra E(a)∗∗ = E(a)

w∗

= E∗∗
2 (rE∗∗(a)) and contains a as a positive element, where 

rE∗∗(a) is the range tripotent of a in E∗∗ (cf. [16, Proposition 2.1]).
The reader will need some basic knowledge on the strong∗-topology of a JB∗-triple. 

If we are given a norm-one functional ϕ in the predual, W∗, of a JBW∗-triple W , and a 
norm-one element z in W with ϕ(z) = 1, the mapping

(x, y) 
→ ϕ {x, y, z}

defines a positive sesquilinear form on W . Moreover, the mapping does not depend on 
the chosen z, that is, if w ∈ W satisfies ϕ(w) = 1, we have ϕ {x, y, z} = ϕ {x, y, w}, for 
all x, y ∈ W (see [9, Proposition 1.2]). The mapping x 
→ ‖x‖ϕ := (ϕ {x, x, z})

1
2 , defines 

a prehilbertian seminorm on W . The strong∗-topology (denoted by S∗(W, W∗)) is the 
topology on W generated by the family of all semi-norms ‖ · ‖ϕ with ϕ running in the 
unit sphere of the predual of W (cf. [10]). For the purposes of this note we recall that 
the triple product of every JBW∗-triple W is jointly strong∗ continuous on bounded 
sets. The first proof of this result appeared in [60], however the difficulties affecting 
Grothendieck’s inequalities in [9] also impacted the original proof and an alternative 
argument can be found in [57, Theorem 9]. The recent proof of the Barton-Friedman 
conjecture on Grothendieck’s inequalities for JB∗-triples in [38] reinstates the validity of 
the original proof.
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The strong∗-topology of a JB∗-triple E is defined as the restriction to E of the strong∗-
topology of its bidual.

The notion of orthogonality for non-necessarily hermitian elements in a JB∗-algebra 
actually requires to identify JB∗-algebras inside the class of JB∗-triples. The general 
notion reads as follows: elements a, b in a JB∗-triple E are said to be orthogonal (written 
a ⊥ b) if L(a, b) = 0. It is known that a ⊥ b if and only if b ⊥ a if and only if E(a) ⊥ E(b)
(see [17, Lemma 1] for additional details).

2. An orderless approach to Rickart C∗-algebras

This section is devoted to explore some equivalent reformulations of the notions of 
(weakly) Rickart and Baer C∗-algebras in which we do not need the natural partial order 
nor the cone of positive elements. Our departure point is a result by G. K. Pedersen from 
[56], where a reformulation in terms of hereditary subalgebras is established.

We begin by recalling the definition of another class of C∗-algebras introduced by 
G. K. Pedersen in [56]. A SAW∗-algebra is a C∗-algebra A satisfying that for any two 
orthogonal positive elements x and y in A there is a positive element e in A (which is not 
assumed to be a projection) such that ex = x and ey = 0. In the commutative setting 
these SAW∗-algebras correspond to C∗-algebras of the form C0(L) for some sub-Stonean 
(locally compact Hausdorff) space L. It should be remarked that sub-Stonean spaces, 
studied by K. Grove and G. K. Pedersen in [36], are defined as those locally compact 
Hausdorff spaces in which disjoint σ-compact open subspaces have disjoint compact 
closures.

A C∗-subalgebra B of a C∗-algebra A is said to be a hereditary C∗-subalgebra of A if 
whenever 0 � a � b with a ∈ A and b ∈ B, then a ∈ B, equivalently, B+ is a face of A+. 
It is known that a hereditary C∗-subalgebra B of C∗-algebra A is σ-unital if and only if 
it has the form B = xAx for some positive x ∈ A.

Proposition 2.1 ([56, Proposition 1]). Let A be a C∗-algebra. Consider the following 
condition: Given two orthogonal hereditary C∗-subalgebras B and C of A, there is an 
element e in A+ which is a unit for B and annihilates C. Then the following statements 
hold:

(AW∗) If this condition holds for all pairs B, C, then A is an AW∗-algebra;
(WRC∗) If this condition holds when B is σ-unital and C is arbitrary, then A is a weakly 

Rickart C∗-algebra;
(SAW∗) If this condition is true when both B and C are σ-unital, then A is a SAW∗-

algebra.

Remark 2.2. It should be noted that the implications in (AW∗), (WRC∗) and (SAW∗) are 
actually equivalences and characterizations of AW∗-algebras, weakly Rickart C∗-algebra, 
and SAW∗-algebras. Namely, if A is an AW∗-algebra and B and C are two orthogonal, 
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hereditary C∗-subalgebras of A, by the hypothesis on A, there exists a projection p in A
such that R(C) = pA. Clearly, cp = 0 for all c ∈ C, and since B and C are orthogonal, 
B ⊂ R(C) = pA. Having in mind that B and C are self-adjoint, we deduce that p is a 
unit for B and annihilates C. If A is a weakly Rickart C∗-algebra, B is the closure of 
xAx for some positive x, and C is arbitrary, by the assumptions on A, there exists a 
projection p in A such that xp = x and xy = 0 implies py = 0. Therefore p is a unit for 
B and annihilates C. The remaining equivalence can be similarly obtained.

Although it is not explicit in [56, Proposition 1], the following equivalence also holds 
by the same arguments:

(RC∗) The condition in Proposition 2.1 holds when C is σ-unital and B is arbitrary if, 
and only if, A is a Rickart C∗-algebra.

Let us briefly recall some basic facts on range projections. Suppose a is a positive 
element in a von Neumann algebra W . The range projection of a in W (denoted by 
rp(a)) is the smallest projection p in W satisfying ap = a. It is known that the sequence (
( 1
n1 + a)−1a

)
n

is monotone increasing to rp(a), and hence it converges to rp(a) in the 

weak∗-topology of W . If a is in the closed unit ball of W , the sequence (a 1
n )n is monotone 

increasing and converges to rp(a) in the weak∗-topology of W . Actually, for any element 
x in W , the smallest projection l in W with lx = x is called the left range projection of x
and denoted by sl(x). The right range projection sr(x) is the smallest projection q in W
with xq = x (cf. [66, Definition 1.4] or [55, 2.2.7]). It is known that r(x∗x) = sr(x) and 
r(xx∗) = sl(x), while r(xx∗) = sl(x) = sr(x) for any self-adjoint x. If x is an element in 
a C∗-algebra A, we shall usually employ the left and right range projections of x in A∗∗. 
If A is a Rickart C∗-algebra, for each x ∈ A we have sr(x) � RP (x) and sl(x) � LP (x)
in A∗∗.

An element e in a C∗-algebra A is a partial isometry if ee∗ (equivalently, e∗e) is a 
projection in A. Each partial isometry e ∈ A induces a Peirce decomposition of A in 
the form A = A2(e) ⊕A1(e) ⊕A0(e), where A2(e) = ee∗Ae∗e, A1(e) = (1 − ee∗)Ae∗e ⊕
ee∗A(1 −e∗e), and A0(e) = (1 −ee∗)A(1 −e∗e). The subspace Aj(e) is called the Peirce-j
subspace. The Peirce-2 subspace A2(e) is a unital C∗-algebra, with unit e, when equipped 
with the original norm, product a •e b = ae∗b and involution a∗e = ea∗e (a, b ∈ A).

A couple of projections p, q in a C∗-algebra A are said to be (Murray-von Neumann) 
equivalent, p ∼ q, if p = ee∗ and q = e∗e for some partial isometry e ∈ A. A unital 
C∗-algebra A is finite if p ∼ 1 implies p = 1.

In our seeking of an order-free characterization of (weakly) Rickart C∗-algebras, which 
can be employed to define an appropriate notion in general JB∗-triples, we shall need 
the following milestone result due to P. Ara: “Left and right projections are (Murray-
von Neumann) equivalent in Rickart C∗-algebras” (see [2] where this famous conjecture 
by I. Kaplansky was proved). The same conclusion actually holds for weakly Rickart 
C∗-algebras. The result is included here for the lacking of an explicit reference.
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Lemma 2.3. Let A be a weakly Rickart C∗-algebra. Then the left and right projections of 
every element in A are Murray-von Neumann equivalent.

Proof. Let x be an element in a weakly Rickart C∗-algebra A. If A is unital, the con-
clusion follows from Ara’s theorem [2, Theorem 2.5]. So, we shall assume that A is 
non-unital.

By [12, Theorem 5.1] (see also [63, Lemma 3.6]) we can find a unitization A1 = A ⊕C1
of A which is a Rickart C∗-algebra. Fix x ∈ A. Let RP (x) and LP (x) denote the right and 
left projections of x (in A or in A1). Let us observe that these symbols offer no ambiguity. 
More concretely, if e = LPA(x) is the ALP of x in A, Lemma 5.3 in [12] assures that e is 
the ALP of x ∈ A in A1, that is, LPA(x) = LPA1

(x). Similarly, RPA(x) = RPA1
(x) ∈ A.

By applying [2, Theorem 2.5] we deduce that LP (x) and RP (x) are equivalent pro-
jections in A1, that is, there exists a partial isometry e ∈ A1 such that e∗e = RP (x) and 
ee∗ = LP (x).

We shall finally show that e ∈ A. Let us write e = e1 + λ1 with e1 in A and λ ∈ C. 
Since A � LP (x) = ee∗ = e1e

∗
1 + λe∗1 + λe1 + |λ|21, it follows that λ = 0, and thus 

e = e1 ∈ A. �
Remark 2.4. We have already commented that the idea behind Rickart’s original paper 
[59, Theorem 2.10] (see also [12, Proposition 8.1]) was to show that every Rickart C∗-
algebra is generated by its projections. Actually, the same occurs for weakly Rickart 
C∗-algebras. Namely, let a be a positive element in a weakly Rickart C∗-algebra A. Let 
p = RP (a) denote the ARP projection of a in A when the latter is regarded as a weakly 
Rickart C∗-algebra. It follows from [12, Proposition 5.6] that pAp is a Rickart C∗-algebra 
with unambiguous left and right projections for every element in pAp. It follows from the 
mentioned Theorem 2.10 in [59] that pAp is generated by its projections. In particular 
a ∈ pAp can be approximated in norm by finite linear combinations of projections.

Given a positive element a in a C∗-algebra A, the hereditary C∗-subalgebra of A
generated by a coincides with the norm closure, aAa, of aAa and contains the C∗-
subalgebra generated by a (see [54, Corollary 3.2.4]). This hereditary C∗-subalgebra is 
precisely the inner ideal of A generated by a, when A is regarded as a JB∗-triple (cf. [16, 
pages 19-20]). Therefore the symbol A(a) will denote the hereditary C∗-subalgebra of A
generated by a. It is further known, even in a more general setting, that A(a)∗∗ identifies 
with (A∗∗)2(rp(a)) = rp(a)A∗∗rp(a) (because rp(a) is a projection), and A(a) is actually 
a C∗-subalgebra of this latter hereditary C∗-subalgebra of A∗∗ (cf. [16, Proposition 2.1]
whose proof is valid here too). It is worth mentioning that

A(a) = (A∗∗)2(rp(a)) ∩A. (7)

Namely, the inclusion ⊆ is clear. We may clearly assume that ‖a‖ � 1. On the other 
hand, it is not hard to see that a is a strictly positive element in the hereditary C∗-
subalgebra I = (A∗∗)2(rp(a)) ∩ A, and hence (a 1

n )n is an approximate identity in I (cf. 
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[66, Exercise 3 in page 31]). Given x ∈ I, the sequence (a 1
nxa

1
n )n converges in norm to 

x and is contained in A(a), therefore x ∈ A(a).
It is well known that every σ-unital hereditary C∗-subalgebra of A is of the form 

A(x), with x positive in A (cf. [54, Theorem 3.2.5], see also [55, §1.5] and [54, §3.2] for a 
detailed discussion on hereditary C∗-subalgebras and ideals). Moreover, as commented 
by G. K. Pedersen in [56, page 16], σ-unital hereditary C∗-subalgebras of A can be 
also represented in the form (Ay) ∩ (y∗A) with y ∈ A. Clearly, each hereditary C∗-
subalgebra of the form A(a) with a � 0 writes in the form (Aa) ∩ (a∗A) (just apply (7)
in the non-trivial inclusion). On the other direction, for each y ∈ A, we shall show that 
(Ay) ∩ (y∗A) = A(y∗y). Indeed, since (Ay) ∩ (y∗A) is an inner ideal and contains y∗y, 
we deduce that (Ay) ∩ (y∗A) ⊇ A(y∗y). If we take z ∈ (Ay) ∩ (y∗A), we clearly have 
r(y∗y)z = zr(y∗y) = z, and thus (Ay) ∩ (y∗A) ⊆ A(y∗y) (cf. (7)).

For a general element x in a C∗-algebra A, the inner ideal of A generated by x can 
be described as the norm closure of xAx (cf. [16, pages 19-20]).

Let us recall that elements a, b in a C∗-algebra A are called orthogonal (a ⊥ b in 
short) if ab∗ = b∗a = 0. The orthogonal complement of a subset S ⊂ A is defined as 
S⊥ := {a ∈ A : a ⊥ x for all x ∈ S}.

Proposition 2.5. Let A be a C∗-algebra. Then the following statements hold:

(a) A is a weakly Rickart C∗-algebra if, and only if, given x ∈ A and an inner ideal 
J ⊆ A with I = A(x) ⊥ J , there exists a partial isometry e in A such that I ⊆ A2(e)
and J ⊆ A0(e);

(b) A is a Rickart C∗-algebra if, and only if, A is unital and given x ∈ A and an inner 
ideal J ⊆ A with I = A(x) ⊥ J , there exists a partial isometry e in A such that 
I ⊆ A2(e) and J ⊆ A0(e).

Proof. (a) (⇒) By Lemma 2.3 LP (x) and RP (x) are equivalent projections in A, that is, 
there exists a partial isometry e ∈ A such that e∗e = RP (x) and ee∗ = LP (x). Clearly, 
x ∈ A2(e), and hence {x, A, x} ⊆ A2(e). It follows that A(x) ⊆ A2(e).

On the other hand, for each y ∈ J ⊥ A(x) we have x∗y = 0 = yx∗, and since 
e∗e = RP (x) = LP (x∗) and ee∗ = LP (x) = RP (x∗) we deduce that ee∗y = 0 = ye∗e, 
witnessing that y ∈ A0(e).

(⇐) This implication follows from Proposition 2.1 and its proof in [56, Proposition 1], 
we shall revisit the argument for completeness. Fix y ∈ A and consider the inner ideal 
I = (Ay)∩ (y∗A) = A(y∗y). Let R = R(y) denote the right annihilator of y in A. In this 
case R ∩ R∗ = {y∗y}⊥ := J . By the assumptions, there exists a partial isometry e ∈ A

such that

I ⊆ A2(e) = ee∗Ae∗e and J ⊆ A0(e) = (1 − ee∗)A(1− e∗e).
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Therefore, y∗y = ee∗y∗ye∗e, and thus sr(y)e∗e = r
A∗∗ (y∗y)e∗e = r

A∗∗ (y∗y) = sr(y) in 
A∗∗ and ye∗e = yr

A∗∗ (y∗y)e∗e = yr
A∗∗ (y∗y) = y.

If z ∈ R, we have zz∗ ∈ R ∩ R∗ ⊆ A0(e) = (1 − ee∗)A(1 − e∗e), which proves 
that zz∗ = (1 − ee∗)zz∗(1 − e∗e), and zz∗ = (1 − e∗e)zz∗(1 − ee∗). By repeating the 
arguments above we get (1 − e∗e)r

A∗∗ (zz∗) = r
A∗∗ (zz∗) leading to e∗esl(z) = 0 in A∗∗, 

and to e∗ez = e∗esl(z)z = 0.
(b) This is clear from (a) and the fact that a C∗-algebra is a Rickart C∗-algebra if and 

only if it is weakly Rickart and unital (cf. [12, Proposition 5.2]). �
The advantage of the previous proposition is that the equivalent reformulations do 

not depend on the natural partial order given by the cone of positive elements in a 
C∗-algebra.

Remark 2.6. Let A be a C∗-algebra. Clearly A is a SAW∗-algebra if given x, y ∈ A

with x ⊥ y, there exists a partial isometry e in A such that I = A(x) ⊆ A2(e) and 
J = A(y) ⊆ A0(e) (cf. [56, Proposition 1]). We do not know if the reciprocal implication 
holds. The lacking of an analogue of Ara’s theorem in [2, Theorem 2.5] proving the 
equivalence of left and right projections in the setting of SAW∗-algebras seems to be a 
major obstacle.

In the light of Pedersen’s result in Proposition 2.1 and the characterization in terms 
of inner ideals given in Proposition 2.5, it seems natural to ask if a characterization of 
Baer or AW∗-algebras can be obtained in terms of inner ideals. If we assume some extra 
hypothesis the answer is yes.

Proposition 2.7. Let A be a finite unital C∗-algebra. Then the following statements hold:

(a) A is a Rickart C∗-algebra if, and only if, given x ∈ A and an inner ideal J ⊆ A

with I = A(x) ⊥ J , there exists a partial isometry e in A such that J ⊆ A2(e) and 
I ⊆ A0(e);

(b) A is an AW∗-algebra if, and only if, for any family {xi}i of mutually orthogonal 
elements in A and each inner ideal J ⊆ A with A(xi) ⊥ J for all i, there exists a 
partial isometry e ∈ A satisfying J ⊆ A2(e) and A(xi) ⊆ A0(e) for all i.

Proof. (a) (⇒) Let us fix x ∈ A. Since A is a finite Rickart C∗-algebra, LP (x) and RP (x)
are unitarily equivalent [40, Theorem 4.1(c)], that is, there exists a unitary u ∈ A such 
that RP (x) = uLP (x)u∗, and hence 1 −RP (x) = u(1 −LP (x))u∗. Set e = (1 −LP (x))u∗. 
Clearly, e is a partial isometry with ee∗ = 1 − LP (x) and e∗e = 1 − RP (x), and 
x ∈ LP (x) A RP (x) = (1 − ee∗)A(1 − e∗e) = A0(e). This proves that A(x) ⊆ A0(e).

If we take y ∈ J ⊥ I, it follows that yx∗ = x∗y = 0, which implies that yRP (x) =
LP (x)y = 0, and thus y ∈ (1 − LP (x))A(1 −RP (x)) = A2(e).

(⇐) is a consequence of the equivalence in (RC∗) in page 577.
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(b) (⇒) Suppose A is an AW∗-algebra (the projections in A form a complete lattice 
[12, Proposition 4.1]). Let us take a family {xi}i of mutually orthogonal elements in 
A and an inner ideal J ⊆ A with A(xi) ⊥ J for all i. It follows from the hypothesis 
that RP (xi) ⊥ RP (xj) and LP (xi) ⊥ LP (xj), for all i �= j. By [40, Theorem 4.1(c)]
LP (xi) and RP (xi) are unitarily equivalent, and hence equivalent via a partial isometry 
wi for all i. Theorem 20.1(iii) in [12] proves the existence of a partial isometry w such 
that ww∗ =

∨
i LP (xi), w∗w =

∨
i RP (xi) and wRP (xi) = wi = LP (xi)w for all i (i.e. 

orthogonal partial isometries in an AW∗-algebra are addable). Applying once again that 
A is a finite Rickart C∗-algebra we deduce that ww∗ and w∗w are unitarily equivalent 
[40, Theorem 4.1(c)], and thus 1 −ww∗ and 1 −w∗w are equivalent. Let us take a partial 
isometry e in A with ee∗ = 1 − ww∗ and e∗e = 1 − w∗w. It is easy to check that, by 
construction,

A0(e) = (1 − ee∗)A(1− e∗e) = ww∗Aw∗w

=
(∨

i

LP (xi)
)
A

(∨
i

RP (xi)
)

⊃ LP (xi0)ARP (xi0) = A(xi0),

for all i0. Given y ∈ J and an index i0, it follows from the properties of the left and right 
projections of xi0 and the fact that J ⊥ xi0 , that

J ⊆ (1 − LP (xi0))A(1 −RP (xi0)), for all i0,

and thus

J ⊆
(∧

i

(1 − LP (xi0))
)
A

(∧
i

(1 −RP (xi0))
)

=
(

1 −
∨
i

LP (xi0)
)
A

(
1−

∨
i

RP (xi0)
)

= ee∗Ae∗e = A2(e).

(⇐) It follows from (a) that A is a Rickart C∗-algebra, and thus A is unital. Let 
{pi}i∈Γ be a family of mutually orthogonal projections in A. By applying the hypothesis 
to the inner ideal J := {x ∈ A : x ⊥ pi for all i ∈ Γ}, we deduce the existence of a 
partial isometry e ∈ A such that J ⊆ A2(e) and A(pi) = A2(pi) ⊆ A0(e) for all i ∈ Γ. 
The element q = 1 − ee∗ is a projection in A satisfying qpi = pi (equivalently, q � pi) 
for all i ∈ Γ. Let r be any other projection in A with r � pi for all i ∈ Γ. The property 
(1 − r)pi = 0 for all i, implies that 1 − r ∈ J ⊆ A2(e), and thus ee∗(1 − r) = 1 − r

and (1 − ee∗)(1 − r) = 0, witnessing that q = 1 − ee∗ � r, and therefore q =
∨

i pi in 
A. We have shown that every orthogonal family of projections in A has a supremum. 
Proposition 4.1(a) ⇔ (c) in [12] proves that A is an AW∗-algebra. Actually, by applying 
the same argument with 1 − e∗e instead 1 − ee∗ we get 1 − e∗e =

∨
i pi = 1 − ee∗. �
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Remark 2.8. The characterization provided in Proposition 2.7 is not valid without the 
hypothesis of finiteness. Consider, for example, the Hilbert space H = �2 with or-
thonormal basis {ξn : n ∈ N} and A = B(H). Take a partial isometry v such 
that 1 − vv∗ = ξ1 ⊗ ξ1 is a rank-one projection and 1 − v∗v = ξ1 ⊗ ξ1 + ξ2 ⊗ ξ2
has rank 2. If for J = {v}⊥ = A0(v) ⊥ A(v) = A2(v) there were a partial isom-
etry e satisfying that (ξ1 ⊗ ξ1)A(ξ1 ⊗ ξ1 + ξ2 ⊗ ξ2) = A0(v) = J ⊆ A2(e) and 
(1 − ξ1 ⊗ ξ1)A(1 − ξ1 ⊗ ξ1 − ξ2 ⊗ ξ2) = A2(v) ⊆ A0(e) we would have ξ1 ⊗ ξ1 ≤ ee∗, 
ξ1 ⊗ ξ1 + ξ2 ⊗ ξ2 ≤ e∗e, 1 − ξ1 ⊗ ξ1 ≤ 1 − ee∗ and (1 − ξ1 ⊗ ξ1 − ξ2 ⊗ ξ2) ≤ 1 − e∗e.

Therefore ξ1 ⊗ ξ1 = ee∗ and ξ1 ⊗ ξ1 + ξ2 ⊗ ξ2 ≤ e∗e, which is impossible.

Remark 2.9. The partial isometry e appearing in the statements of Proposition 2.5 need 
not be unique. Actually if e is a partial isometry satisfying the desired conclusion, then 
the partial isometry λe satisfies the same property for all λ in the unit sphere of C.

The partial isometry e appearing in Proposition 2.5(a) induces a local order in the 
C∗-algebra (A2(e), •e, ∗e) and we actually obtain a strengthened version of the statement.

Proposition 2.10. Let A be a C∗-algebra. Then A is a weakly Rickart C∗-algebra if, and 
only if, given x ∈ A and an inner ideal J ⊆ A with I = A(x) ⊥ J , there exists a partial 
isometry e in A such that I ⊆ A2(e), e∗e = RP (x), ee∗ = LP (x), x is a positive element 
in the C∗-algebra (A2(e), •e, ∗e), A(x) is a C∗-subalgebra of the latter C∗-algebra and 
J ⊆ A0(e).

Proof. It suffices to prove the extra properties in the “only if” implication. Suppose A is 
a weakly Rickart C∗-algebra. We shall assume that A is non-unital, and its unitization 
A1 = A ⊕C1 is a Rickart C∗-algebra [12, Theorem 5.1] (see also [63, Lemma 3.6]).

Fix x ∈ A. Another essential contribution by P. Ara and D. Goldstein (see [3, Corollary 
3.5], [35, Corollary 7.4]) assures the existence of a polar decomposition for x, that is, 
there exists a partial isometry e ∈ A1 such that x = e|x|, ee∗ = LP (x) and e∗e = RP (x)
(cf. also [12, Proposition 21.3]). If we write e in the form e = e1 +λ1 with λ ∈ C, e1 ∈ A, 
we infer from the fact e1e

∗
1 +λe∗1 +λe1 + |λ|21 = ee∗ = LP (x) ∈ A that e = e1 ∈ A, that 

is, weakly Rickart C∗-algebras satisfy the existence of polar decompositions.
Let I = A(x) and let J be an inner ideal orthogonal to I. By considering the partial 

isometry e in the polar decomposition of x, we can easily check that x is a positive 
element in the C∗-algebra (A2(e), •e, ∗e), namely, ee∗(e|x| 12 )e∗e = e|x| 12 = (e|x| 12 )∗e , 
(e|x| 12 ) •e (e|x| 12 ) = e|x| = x, and hence x is positive in (A2(e), •e, ∗e). Finally, given 
y ∈ J the conditions x ⊥ y, ee∗ = LP (x) and e∗e = RP (x) imply that y ⊥ e, and 
therefore J ⊆ A0(e). �
Corollary 2.11. Let A be a C∗-algebra. Then A is a weakly Rickart C∗-algebra if, and 
only if, given x ∈ A there exists a partial isometry e in A such that A(x) ⊆ A2(e), x is 
a positive element in the C∗-algebra (A2(e), •e, ∗e), and A0(e) = {x}⊥.
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Proof. (⇒) By applying Proposition 2.10 to I = A(x) and J = {x}⊥ we find a partial 
isometry e ∈ A satisfying that I ⊆ A2(e), e∗e = RP (x), ee∗ = LP (x), x is a positive 
element in the C∗-algebra (A2(e), •e, ∗e), A(x) is a C∗-subalgebra of (A2(e), •e, ∗e), and 
{x}⊥ = J ⊆ A0(e).

We shall show that {x}⊥ = A0(e). To this end take a ∈ A0(e). The identities xa∗ =
xRP (x)(1 − e∗e)a∗ = x(e∗e)(1 − e∗e)a∗ = 0, and a∗x = a∗(1 − ee∗)LP (x)x = a∗(1 −
ee∗)(ee∗)x = 0, show that a ∈ {x}⊥.

(⇐) This is a clear consequence of Proposition 2.10, since for each x ∈ A and each 
inner ideal J ⊆ A with I = A(x) ⊥ J , by taking the partial isometry e given by the 
hypothesis we have J ⊂ {x}⊥ = A0(e) and A(x) ⊆ A2(e). �

We have seen in the proof of Proposition 2.10 that, as a consequence of the result by P. 
Ara and D. Goldstein [3,35], weakly Rickart C∗-algebras satisfy polar decomposition. It is 
well known that the partial isometry appearing in the polar decomposition of an element 
a is uniquely determined by |a| (cf. [12, Propositions 21.1 and 21.3]). We shall conclude 
this section by showing that the properties of the partial isometry e in Corollary 2.11
provide a characterization of the partial isometry in the polar decomposition.

Corollary 2.12. Let x be an element in a weakly Rickart C∗-algebra A. Suppose e is a 
partial isometry in A. Then the following are equivalent:

(a) e is the partial isometry in the polar decomposition of x;
(b) x is a positive element in the C∗-algebra (A2(e), •e, ∗e), and A0(e) = {x}⊥.

Proof. The implication (a) ⇒ (b) has been proved in the proof of Corollary 2.11.
(b) ⇒ (a) Since e is a partial isometry, the elements ee∗ and e∗e are projections in 

A. It is known that ee∗Aee∗ and e∗eAe∗e are Rickart C∗-algebras (cf. [12, Proposition 
5.6]). Since the mapping z 
→ ze∗ (respectively, z 
→ e∗z) is a C∗-isomorphism from 
(A2(e), •e, ∗e) onto ee∗Aee∗ (respectively, e∗eAe∗e), we derive that (A2(e), •e, ∗e) is a 
Rickart C∗-algebra.

We shall next show that the left and right projections of x in A2(e) both coincide with 
e. Since x is positive in A2(e), we have RPA2(e)(x) = LPA2(e)(x) = q. Clearly q � e in 
A2(e). If q < e, the partial isometry (projection in A2(e)) e −q is orthogonal to q in A2(e)
and also in A, because orthogonality in A can be given in terms of the triple product 
{a, b, c} = 1

2 (ab∗c + cb∗a) and A2(e) is closed for this triple product (see section 4 for 
additional details). When the triple product is computed with respect to the C∗-product 
of A2(e) and with respect to the one in A we have

x = {q, x, q}A2(e) = q •e x∗e •e q = qe∗ex∗ee∗q = qx∗q = {q, x, q}.

It follows that x belongs to A2(q), which combined with the fact e − q ⊥ q, implies 
that x ⊥ e − q. It follows from the hypotheses that e − q ∈ A0(e). Therefore e − q =
e •e (e − q) = ee∗(e − q) = 0, leading to a contradiction.
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Since x is positive in A2(e), RPA2(e)(x) = LPA2(e)(x) = e in this C∗-algebra, and 
the mapping z 
→ e∗z is a C∗-isomorphism from (A2(e), •e, ∗e) onto e∗eAe∗e, we deduce 
that e∗x is a positive element in A with ee∗ = LPA2(e)(x)e∗ = LP (e∗x). Similarly, 
e∗e = e∗RPA2(e)(x) = RP (e∗x) (have in mind that the left and right projections of xe∗
and e∗x do not change when computed in A or in ee∗Aee∗ or e∗eAe∗e, respectively [12, 
Proposition 5.6]). Furthermore, since

((e∗x)∗(e∗x))n = (x∗ee∗x)n = (x∗x)n, for all natural n,

it can be deduced, via functional calculus, that |x| = e∗x.
It clearly follows from the hypotheses that x = ee∗x = e|x|. We have seen above that 

RP (e∗x) = e∗e and ee∗ = LP (e∗x). Therefore e is the partial isometry in the polar 
decomposition of x by uniqueness. �
3. Jordan counterparts of Rickart and Baer ∗-algebras in terms of projections

Sh. A. Ayupov and F. N. Arzikulov developed a deep study on the notions of Rickart 
and Baer ∗-rings in the setting of real Jordan algebras in the papers [7,8,4,5]. Before 
entering into details, we introduce the required nomenclature.

Let M be a Jordan algebra. According to the standard notation (see [7,58]), the 
(outer) quadratic annihilator of a subset S ⊂ M is the set

Ann(S) = S⊥q := {a ∈ M : Ua(S) = {0}}. (8)

The inner quadratic annihilator of S is formed by the elements in the intersection of 
all kernels of all U -maps associated with elements in S defined by

⊥qS := {a ∈ M : Us(a) = 0 for all s ∈ S}. (9)

Let us denote M2 := {a2 : a ∈ M} for the set of all elements in M which are the square 
of another element (do not confuse with the set of all elements of the form a ◦ b with 
a, b ∈ M). Clearly, each idempotent in M is inside M2. We consider the following two 
statements:

(R1) For each element a ∈ M2 there exists an idempotent e ∈ M (i.e. e2 = e) such that 
{a}⊥q = Ue(M);

(R2) For each element x ∈ M there exists an idempotent e ∈ M such that ⊥q{x} ∩M2 =
Ue(M) ∩M2.

In any Jordan algebra M , (R1) implies (R2) and both properties are equivalent when 
M is unital and lacks of nilpotent elements (cf. [7, Theorems 1.6 and 1.7]). According 
to [7,8], a Jordan algebra M satisfying condition (R1) (respectively, (R2)) is called a 
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Rickart Jordan algebra (respectively, an inner Rickart Jordan algebra). That is, each 
Rickart Jordan algebra is an inner Rickart Jordan algebra. It should be noted here that 
in [8] inner Rickart Jordan algebras are called weak Rickart Jordan algebras, however 
since the term weak Rickart algebra is employed in the associative setting with another 
meaning (for example, for an uncountable set Γ the commutative C∗-algebra �∞,c(Γ) of 
all countably supported elements of the commutative von Neumann algebra �∞,c(Γ) is 
weak Rickart but not an inner Jordan Rickart algebra see, for example, [12]), here we 
shall employ the term mentioned above.

The notion of (inner) Rickart is essentially addressed to real JB-algebras. For exam-
ple, the exceptional JB-algebra H3(O) is a Rickart Jordan algebra (cf. [7, Proposition 
3.4]). Moreover, for each associative Rickart ∗-algebra A, its self-adjoint part Asa is a 
Jordan algebra satisfying (R1) and (R2) (cf. [7, Proposition 1.1]). Reciprocally, if A is an 
associative ∗-algebra with proper involution and Asa is a Rickart Jordan algebra, then 
A is a Rickart ∗-algebra in the usual sense ([7, Proposition 1.3]).

Every Rickart Jordan algebra possesses a unit element and lacks of nilpotent elements, 
it is further known that the set of idempotents of a Rickart Jordan algebra is a lattice, 
which is not, in general, complete (see [7, Lemma 1.4, Proposition 1.10]).

There exist examples of inner Rickart Jordan algebras without unit element (cf. [8, 
Remark 1 in page 32]). However the properties gathered in the next lemma hold:

Lemma 3.1 ([8, Lemma 2.3]). Let M be an inner Rickart Jordan algebra. Then the 
following statements hold:

(a) There exists an element 12 in M satisfying a ◦ 12 = a for every a ∈ M2;
(b) M2 contains no non-trivial nilpotent elements.

The element 12 given in the above statement (a) is a unit for those elements in M2. 
If M is generated by square elements (i.e., every element is a finite linear combination 
of elements in M2), then the element 12 actually is a unit in M .

Corollary 3.2 ([7, Theorems 1.6 and 1.7]). Suppose M is a Jordan algebra linearly gen-
erated by M2 and containing no non-trivial nilpotent elements. Then M is a Rickart 
Jordan algebra if and only if it is an inner Rickart Jordan algebra.

The lacking of associativity in Jordan algebras is somehow compensated with the 
celebrated Macdonald’s theorem asserting that if G is a multiplication operator in two 
variables x, y with G(a, b) = 0 for all a, b in all special Jordan algebras, then G = 0 in 
all Jordan algebras, equivalently, any polynomial identity in three variables, with degree 
at most 1 in the third variable, and which holds in all special Jordan algebras, holds in 
all Jordan algebras (cf. [39, Theorem 2.4.13]). The following identities, which hold true 
for any Jordan algebra M , can be directly deduced from Macdonald’s theorem:

2TalUam,an = 2Uam,anTal = Uam+l,an + Uam,an+l , (10)
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Un
a = Uan , (11)

for every natural numbers l, m, n (see [39, Lemma 2.4.21]).
In the set of all idempotents in a Jordan algebra M we can consider a partial order 

defined by e � f if e ◦f = e. The following equivalences can be easily checked by applying 
(10) and (11):

e � f ⇔ e ∈ Uf (M) ⇔ Ue(M) ⊆ Uf (M). (12)

A Jordan algebra M is called a Baer Jordan algebra if it satisfies the following prop-
erty: For each subset S ⊂ M2 there exists an idempotent e ∈ M such that S⊥q = Ue(M). 
We say that M is an inner Baer Jordan algebra if for each subset S ⊂ M there exists 
an idempotent e ∈ M such that ⊥qS ∩M2 = Ue(M) ∩M2.

Let us observe that in [7,8,4–6] inner Baer Jordan algebras are called weak Baer Jordan 
algebras, which is a term not completely compatible with the notation in the associative 
setting.

Each Baer Jordan algebra is an inner Baer Jordan algebra [7, Theorem 2.6] or [8, 
Proposition 3.1]. If M is a Jordan algebra containing no nilpotent elements, then M is 
an inner Baer Jordan algebra if and only if it is a Baer Jordan algebra [7, Theorem 2.6]. 
As we have seen in the comments after Lemma 3.1, if a Jordan algebra M is linearly 
generated by elements in M2 and M is an inner Baer Jordan algebra, then M is unital. 
A C∗-algebra is a Baer C∗-algebra if and only if Asa is a Baer Jordan algebra (cf. [7, 
Propositions 2.1 and 2.3] or [8]).

To conclude our tour through the algebraic Jordan alter-egos of Rickart and Baer 
algebras, we appeal to a couple of results also proved by Sh. A. Ayupov and F. N. 
Arzikulov, where they establish that a Jordan algebra M is a Baer Jordan algebra if, 
and only if, it is a Rickart Jordan algebra and the set of all idempotents in M is a 
complete lattice (see [7, Theorem 2.7]); moreover, M is an inner Baer Jordan algebra if, 
and only if, it is an inner Rickart Jordan algebra and the set of all idempotents of M is 
a complete lattice (cf. [8, Theorem 3.5]).

Following [7,8,4,5], and in coherence with the terminology of C∗-algebras, (inner) 
Rickart JB-algebras and (inner) Baer JB-algebras or AJBW-algebras are defined as those 
JB-algebras which are (inner) Rickart and (inner) Baer Jordan algebras, respectively. 
We shall also deal with the complex structures. A JB∗-algebra M will be called a Rickart 
JB∗-algebra (respectively, a Baer JB∗-algebra or an AJBW∗-algebra) if its self-adjoint 
part, Msa, is a Rickart JB-algebra (respectively, a Baer JB-algebra or an AJBW-algebra). 
That is, M is a Rickart JB∗-algebra if and only if for each a ∈ M+ there exists a 
projection p ∈ M such that

{a}⊥q ∩Msa = Up(M) ∩Msa = Qp(M) ∩Msa;

which by Corollary 3.2 is equivalent to prove that for each x ∈ Msa there exists a 
projection p ∈ M such that
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⊥q{x} ∩M+ = Up(M) ∩M+ = Q(p)(M) ∩M+.

A similar restatement can be applied to the definition of Baer JB∗-algebras. A JBW∗-
algebra (respectively, a JBW-algebra) is a JB∗-algebra (respectively, a JB-algebra) which 
is a dual Banach space. It is known that a JB∗-algebra M is a JBW∗-algebra if, and only 
if, Msa is a JBW-algebra (cf., for example, [53, Corollary 2.12]).

Two elements a, b in a Jordan algebra A are said to operator commute if

a ◦ (b ◦ x) = (a ◦ x) ◦ b

for every x ∈ A. By the mentioned Macdonald’s theorem or by the Shirshov-Cohn theorem
[39, Theorem 2.4.14], it can be easily checked that operator commutativity of a couple 
of elements in a Jordan algebra of self-adjoint operators can be equivalently verified in 
any Jordan subalgebra containing these elements (cf. [67, Proposition 1]).

A real Jordan algebra N is called formally real if for every a1, . . . , an ∈ N the condition ∑n
i=1 a

2
i = 0 implies a1 = . . . = an = 0 (see [39, §2.9]). Every JB-algebra is a formally 

real Jordan algebra. A Jordan subalgebra B of N is called strongly associative if the 
identity (x ◦ y) ◦ a = x ◦ (y ◦ a) holds for all x, a ∈ B and y ∈ N , equivalently, any pair 
of elements in B operator commute as elements in N . A family F of elements of N is 
called compatible if the Jordan subalgebra J(F) generated by F is strongly associative.

The idea behind (weakly) Rickart and Baer C∗-algebras is to find a subclass of C∗-
algebras, between general C∗-algebras and von Neumann algebras, in which every element 
can be approximated in norm by finite linear combinations of projections. In the setting 
of AJBW∗-algebras (i.e. Baer JB∗-algebras) this goal is achieved by the following the-
orem, in which Arzikulov established a Jordan version of the original result proved by 
Kaplansky for AW∗-algebras.

Theorem 3.3 ([4, Theorem 2.1]). The following statements are equivalent for each JB-
algebra N :

(a) N satisfies the following properties:
(1) Every subset of pairwise orthogonal projections in the partially ordered set of 

projections has a least upper bound in this set;
(2) Every maximal strongly associative subalgebra of N is generated by its projections 

(i.e., it coincides with the least closed subalgebra containing its projections);
(b) N is an AJBW-algebra;
(c) N is an inner AJBW-algebra.

Let M be a JB∗-algebra. It is worth to notice that the JB∗-subalgebra generated 
by a single self-adjoint element in M is strongly associative (cf. [22, Proposition 2.4.13 
and Fact 3.3.34]). The set of all strongly associative subalgebras of M can be regarded 
as an inductive set when equipped with the order defined by inclusion. Therefore each 
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strongly associative JB∗-subalgebra of M is contained in a maximal strongly associa-
tive JB∗-subalgebra. It follows from Theorem 3.3 that every self-adjoint element in a 
AJBW∗-algebra M can be approximated by finite linear combinations of projections in 
M –actually the same conclusion holds for any element in M . We shall see later that our 
notion of weakly Rickart JB∗-algebra also enjoys this property.

As in the case of C∗-algebras, a couple of projections p, q in a JB∗-algebra are called 
orthogonal if p ◦ q = 0. Both notions are perfectly compatible in the case of a C∗-algebra 
regarded with its associative structure or as a JB∗-algebra.

One of the new contributions in this note is to explore the notions of weakly Rickart 
and SAW∗-algebras in the setting of JB∗-algebras. In order to develop our study, we shall 
follow a similar method to that introduced by Ayupov and Arzikulov focused on the self-
adjoint part and the lattice of projections. In the setting of JB∗-algebras we cannot define 
properties in terms of the left or right multiplication operator by an element. We gather 
next some reinterpretations for latter purposes.

Lemma 3.4. Let a and x be non-zero positive elements in a C∗-algebra. Then the following 
statements are equivalent:

(a) ax = x;
(b) a ◦ x = x;
(c) Ua(x) = x.

Clearly, the elements a and x commute in case that any of the previous statements holds.

Proof. (a) ⇒ (b) and (c). This is clear because xa = (ax)∗ = x∗ = x, and thus a ◦ x =
1
2 (ax + xa) = x.

Similarly, Ua(x) = axa = xa = x.
(b) ⇒ (a) We can clearly embed A inside its unitization, and thus assume that A is 

unital. Since (1 − a) ◦ x = 0 with 1 − a ∈ Asa and x � 0, [18, Lemma 4.1] implies that 
x ⊥ (1 −a) in A (as JB∗- and as C∗-algebra), then (1 −a)x = 0 = x(1 −a), which proves 
(a).

(c) ⇒ (a) If ‖a‖ � 1 the proof is much easier. First, the inequality ‖x‖ = ‖Ua(x)‖ �
‖a‖2 ‖x‖ assures that ‖a‖ = 1. We can deduce from a simple induction argument that 
Uan(x) = anxan = x for all natural n. Now, by applying that the sequence (an)n
converges in the strong∗ topology of A∗∗ to the support projection, s(a), of a, together 
with the join strong∗ continuity of the product of A∗∗ [65, Proposition 1.8.12], we obtain 
s(a)xs(a) = x. Finally, since a = s(a) +(1 − s(a))a = s(a) +a(1 − s(a)) in A∗∗, it follows 
that ax = s(a)x + a(1 − s(a))x = x.

For the general case we assume that axa = x. Since the same identity holds in A∗∗, 
it is easy to check that aza = z for every z in the C∗-subalgebra of A generated by x
(and also in the von Neumann subalgebra of A∗∗ generated by x). Therefore, the identity 
a r(x) a = r(x) holds in A∗∗. It is easy to deduce from the above that
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(r(x) a r(x)) (r(x) a r(x)) = r(x).

Having in mind that r(x) a r(x) is a positive element with r(x) a r(x) � ‖a‖ r(x) whose 
square is r(x), a simple application of the local Gelfand theory proves that r(x) a r(x) =
r(x).

Now by mixing the identities a r(x) a = r(x) and r(x) a r(x) = r(x) we get

a r(x) = (a r(x) a) r(x) = r(x), and r(x) a = r(x) (a r(x) a) = r(x).

Finally, it is easy to see that ax = ar(x)x = r(x)x = x = xr(x) = xr(x)a = xa. �
As in the associative setting of C∗-algebras, a JB∗-subalgebra B of a JB∗-algebra M

is said to be a hereditary JB∗-subalgebra of M if whenever 0 � a � b with a ∈ M and 
b ∈ B, then a ∈ B, equivalently, B+ is a face of M+ (cf. [26,15,1]).

It is known that a hereditary C∗-subalgebra B of a C∗-algebra A is σ-unital if and 
only if it has the form B = xAx for some positive x ∈ A. The same statement remains 
valid in the case of a JB∗-algebra M , where each σ-unital, hereditary JB∗-subalgebra is 
of the form Ux(M), for some positive x ∈ M .

Corollary 3.5. Let a and x be positive elements in a JB∗-algebra M . Then the following 
statements are equivalent:

(a) a ◦ x = x;
(b) Ua(x) = x;
(c) a ◦ z = z for all z in the inner ideal of M generated by x.

Furthermore, if any of the previous statements holds the elements a and x operator 
commute as elements of M , and a ◦ r(x) = r(x), where r(x) denotes the range projection 
of x in M∗∗.

Proof. By Macdonald’s theorem (see also the Shirshov-Cohn theorem in [39] or [69, 
Corollary 2.2]), there exists a C∗-algebra A containing the JB∗-subalgebra of M gener-
ated by a and x as JB∗-subalgebra. Lemma 3.4 proves that (a) is equivalent to (b) in 
A, and hence in M . Since ax = xa = x in A, [67, Proposition 1] assures that a and x
operator commute in M .

The implication (c) ⇒ (a) is clear because x ∈ M(x). To see the implication (a) ⇒ (c), 
we recall that (a) implies that a and x operator commute in M and ax = xa = x in A
(cf. Lemma 3.4). Then

{a, x, z} = (a ◦ x) ◦ z + (z ◦ x) ◦ a− (a ◦ z) ◦ x = x ◦ z (x ∈ M),

and thus, by the Jordan identity, we get
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UaUx(y) = {a, {x, y∗, x}, a} = −{y∗, x, {a, x, a}} + 2{{y∗, x, a}, x, a}
= −{y∗, x, x} + 2(x ◦ y∗) ◦ x
= −(x ◦ y∗) ◦ x− x2 ◦ y∗ + (x ◦ y∗) ◦ x + 2(x ◦ y∗) ◦ x
= {x, y∗, x} = Ux(y),

for all y ∈ M . This shows that Ua(z) = z for every z ∈ M(x). Now take z ∈ M(x)
positive, then, by the equivalence (a) ⇔ (b), Ua(z) = z gives a ◦ z = z. Since, each 
z ∈ M(x) writes as a linear combination of four positive elements in M(x), we have 
a ◦ z = z. �

The weak versions of Rickart and Baer Jordan algebras in the classical sense considered 
in Berberian’s book [12] have not been considered yet. The reader should be warned that, 
in order to work in the Jordan setting, the left and right multiplication operations do 
not make too much sense in a Jordan algebra.

Definition 3.6. Let N be a JB-algebra.

� We shall say that N is a weakly Rickart JB-algebra if for each element a ∈ N+ there 
exists a projection p ∈ N such that p ◦ a = a, and for each z ∈ N with Uz(a) = 0 we 
have p ◦ z = 0.

� N is called a weakly inner Rickart JB-algebra if for each element x ∈ N there exists 
a projection p ∈ N such that p ◦x = x, and for each z ∈ N+ with Ux(z) = 0 we have 
p ◦ z = 0.

A JB∗-algebra M will be called weakly Rickart or weakly inner Rickart if its self-
adjoint part satisfies the same property.

Remark 3.7. Let N be a weakly Rickart JB-algebra. Then, for each a ∈ N+, the projec-
tion p in Definition 3.6 is unique. This projection will be called the range projection of 
a in N (RPN (a) =RP(a) in short). Indeed, suppose that there exist projections p, p′ in 
N such that

p ◦ a = p′ ◦ a = a,

and for any z ∈ N with Uz(a) = 0 we have p ◦ z = p′ ◦ z = 0. It follows from the original 
assumptions that (p − p′) ◦ a = 0, and since a � 0, we deduce from (13) that p − p′ ⊥ a. 
It then follows that U(p−p′)(a) = {p − p′, a, p − p′} = 0. By applying the assumptions we 
get p ◦ (p − p′) = 0 = p′ ◦ (p′ − p), which implies that p = p ◦ p′ = p′.

It can be seen that RPN (a) is the smallest projection in N such that a = p ◦a(= Up(a)). 
Namely, if q is any projection in N such that q ◦ a = a, then (RPN (a) − q) ◦ a = 0, and 
thus RPN (a) ◦ (RPN (a) − q) = 0, therefore RPN (a) ◦ q = RPN (a), which is equivalent 
to say that RPN (a) � q.
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Lemma 3.8. Let N be a JB-algebra. Then N is weakly Rickart and unital if, and only if, 
it is a Rickart JB-algebra if, and only if, it is weakly inner Rickart and unital.

Proof. Suppose N is a unital weakly Rickart JB-algebra with unit 1. Let us fix a ∈ N+. 
By assumptions there exists a projection p in N such that a ◦ p = a and for each z ∈ N

with Uz(a) = 0 we have p ◦z = 0. Given x ∈ {a}⊥q we have Ux(a) = 0, and thus p ◦x = 0, 
in particular (1−p) ◦x = x. We have shown that {a}⊥q ⊆ U1−p(N) = N2(1−p) = N0(p). 
Conversely, if x ∈ U1−p(N) = N2(1 − p) = N0(p), since p ◦ a = a, we deduce that 
a ∈ N2(p), and consequently, Ux(a) = 0, by Peirce arithmetic.

Suppose now that N is a unital weakly inner Rickart JB-algebra with unit 1. So, 
given x ∈ M there exists a projection p ∈ N such that p ◦ x = x and for each z ∈ N+

with Ux(z) = 0 we have p ◦ z = 0. For each z ∈⊥q {x} ∩ N2 we have Ux(z) = 0, 
and hence p ◦ z = 0. It follows that ⊥q{x} ∩ N2 ⊆ U1−p(N) ∩ N2. Reciprocally, each 
z ∈ U1−p(N) ∩ N2 is positive and must be orthogonal to N2(p) by Peirce arithmetic, 
then z ∈ ⊥q{x} ∩N2, because x ∈ N2(p).

To conclude the proof we observe that every Rickart JB-algebra is unital and weakly 
(inner) Rickart. �
Proposition 3.9. Let p be a projection in a weakly Rickart JB∗-algebra M . Then the 
Peirce-2 subspace M2(p) is a Rickart JB∗-algebra with unambiguous range projections of 
positive elements in M2(p).

Proof. Let us fix a positive element a ∈ M2(p). Clearly, a is positive in M . Let q = RP(a)
denote the range projection of a in M . Since (p − q) ◦ a = 0, it follows from (13) that 
(p −q) ⊥ a, and thus U(p−q)(a) = 0. Applying now that q = RP(a) we get q ◦ (p −q) = 0. 
Therefore, p ◦ q = q and thus Up(q) = q, witnessing that q ∈ M2(p) and satisfies the 
properties of a range projection for a in M2(p). We have proved that M2(p) is a unital 
weakly Rickart JB∗-algebra, Lemma 3.8 gives the rest. �

Let h and x be two elements in a JB∗-algebra M with h positive. We know from [18, 
Lemma 4.1] that

x ⊥ h if, and only if, h ◦ x = 0. (13)

The orthogonal annihilator of a subset S in a JB∗-triple E is defined as

S⊥
E

= S⊥ := {y ∈ E : y ⊥ x,∀x ∈ S}.

The next result with the basic properties of the orthogonal annihilator has been 
borrowed from [19, Lemma 3.1] and [30, Lemma 3.2].

Lemma 3.10 ([30, Lemma 3.2], [19, Lemma 3.1]). Let S be a nonempty subset of a 
JB∗-triple E. Then the following statements hold:
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(a) S⊥ is a norm closed inner ideal of E;
(b) S ∩ S⊥ = {0};
(c) S ⊆ S⊥⊥;
(d) If S1 ⊆ S2 then S⊥

2 ⊆ S⊥
1 ;

(e) S⊥ is weak∗ closed whenever E is a JBW∗-triple.

We should note that the orthogonal annihilator of a subset S in a JB∗-algebra M
need not coincide with the quadratic annihilators defined in (8) and (9). In general we 
have

(S⊥)∗ ⊆ ⊥qS, and (S∗)⊥ ⊆ S⊥q , for all S ⊂ M, (14)

where S∗ = {x∗ : x ∈ S}. The equalities do not necessarily hold. For example, let 
e be a complete tripotent in M = B(H) which is not unitary (for example a partial 
isometry satisfying ee∗ = 1 and p = e∗e �= 1). Clearly, {e}⊥ = M0(e) = {0} and 
{e∗}⊥ = M0(e∗) = {0}. It is easy to check that ⊥q{e} = M1(e) = M(1 − p) and 
(1 − p)M ⊆ {e}⊥q .

Lemma 3.11. Let S be a set of positive elements in a JB∗-algebra M . Then

S⊥q ∩Msa = S⊥ ∩Msa, and ⊥qS ∩M+ = S⊥ ∩M+.

Proof. The inclusion ⊇ is clear from (14). Fix s ∈ S and h ∈ S⊥q ∩Msa. We can find, via 
Macdonald’s or Shirshov-Cohn theorem, a C∗-algebra B containing s and h as positive 
and hermitian elements, respectively. Since s = b2 for some b ∈ M and also in B, and 
0 = Uh(s) = Uh(b2) = (hb)(bh)∗, we deduce that hb = bh = 0, and hence hs = hb2 = 0
and h ◦ s = 0 in B and in M . This is enough to guarantee that h ⊥ s (cf. [18, Lemma 
4.1]). The other equality can be proved similarly. �

The following lemma is probably known, but it is included here for the lacking of an 
explicit source.

Lemma 3.12. Let S be a subset of positive elements in a JB∗-algebra M . Then the or-
thogonal annihilator of S, S⊥, is a triple inner ideal and a hereditary JB∗-subalgebra of 
M .

Proof. Clearly S⊥ is a closed subspace and an inner ideal (see Lemma 3.10). Let us 
take x ∈ S⊥ and s ∈ S. Since s ⊥ x with s � 0, we deduce from [18, Lemma 4.1]
that x ◦ s = 0, and hence x∗ ◦ s = 0, which is equivalent to s ⊥ x∗, and consequently 
x∗ ∈ S⊥.

The elements h = x+x∗

2 and k = x−x∗

2i lie in Msa ∩ S⊥. Since h2 ◦ s =
{h, h, s} = 0, a new application of [18, Lemma 4.1] proves that h2 ∈ S⊥. Similarly, 
k2 ∈ S⊥. Actually, since h + k ∈ S⊥, we can similarly deduce that (h + k)2 ∈
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S⊥. It follows from this that h ◦ k ∈ S⊥, and x2 = h2 − k2 + 2ih ◦ k ∈ S⊥

too.
Finally, let us take 0 � a � b with b ∈ S⊥ and any s ∈ S⊥ then 0 � Us(a) � Us(b) = 0. 

It follows from Lemma 3.11 that a ∈ S⊥. �
Our next definition is now fully justified by the previous results.

Definition 3.13. Let N be a JB-algebra. We shall say that N is a SAJBW-algebra if for 
any x, y ∈ N+ with x ◦ y = 0 there exists e ∈ N+ (not necessarily a projection) such 
that e ◦ x = x and e ◦ y = 0. A JB∗-algebra M will be called a SAJBW∗-algebra if its 
self-adjoint part is a SAJBW-algebra.

The next proposition is a generalization of Pedersen’s result in Proposition 2.1 to the 
setting of JB∗-algebras. Our new notions of weakly Rickart and SAJBW∗-algebras are 
the missing ingredients to complete the whole picture.

Proposition 3.14. Let M be a JB∗-algebra. Consider the following property: Given two 
orthogonal, hereditary JB∗-subalgebras B and C of M , there is a positive e in M which 
is a unit for B and annihilates C.

(a) The previous property holds for all pairs of hereditary JB∗-subalgebras B, C if, and 
only if, M is an AJBW∗-algebra;

(b) The property holds when B is the inner ideal generated by a positive element and C
is arbitrary if, and only if, M is a weakly Rickart JB∗-algebra;

(c) The property holds when C is the inner ideal generated by a positive element and B
is arbitrary if, and only if, M is a Rickart JB∗-algebra;

(d) The property holds when both B and C are inner ideals generated, each one of them 
by a single positive element if, and only if, M is a SAJBW∗-algebra.

Proof. (d) (⇒) By considering two positive elements x, y in M with x ◦ y = 0, the inner 
ideals M(x) and M(y) are orthogonal, and hence by hypothesis, there exists a positive 
e ∈ M which is a unit for M(x) and annihilates M(y). Clearly, e ◦ x = x and e ◦ y = 0.

(⇐) If M is a SAJBW∗-algebra, given positive elements x, y in M with x ◦y = 0, there 
exists a positive e in M such that e ◦ x = x and e ◦ y = 0 –the latter being equivalent 
to y ⊥ e by (13). Corollary 3.5 implies that e is a unit for B = Ux(M). Furthermore, 
for each a in M the elements e and Uy(a) are orthogonal since y ⊥ e and {e}⊥ is an 
inner ideal of M and hence contains all elements in Uy(M) = Q(y)(M). It follows that 
e annihilates C = Uy(M).

(b) (⇒) Fix a positive a ∈ M , by applying the hypothesis to B = M(a) and C = {a}⊥
we find a positive e ∈ M which is a unit for M(a) and annihilates {a}⊥. We know from 
Corollary 3.5 that e and a operator commute, and thus (en − e) ◦ a = 0 for all natural 
n. Having in mind (13), the properties of e assure that 0 = e ◦ (en − e) = en+1 − e2 for 
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all natural n. A simple application of the local Gelfand theory on the commutative and 
associative JB∗-algebra generated by e proves that e is a projection.

Now we take any z ∈ {a}⊥q ∩Msa. By Lemma 3.11, {a}⊥q ∩Msa = {a}⊥ ∩Msa, and 
thus the properties of e imply that e ◦z = 0. Therefore, M is a weak Rickart JB∗-algebra.

(⇐) Suppose now that M is a weak Rickart JB∗-algebra. Take B = Ux(M) and C as 
in the statement, with x positive in M . It follows from the hypothesis that there exists 
a projection p ∈ M satisfying p ◦ x = x and p ◦ z = 0 for all z ∈ Msa with Uz(x) = 0. 
Clearly, each c ∈ Csa satisfies Uc(x) = 0, and thus p ◦ c = 0 for all c ∈ C.

(c) (⇒) For C = M(0) = {0} and B = M , the hypothesis implies the existence of a 
unit element 1 ∈ M . Pick a ∈ M+. Since B = {a}⊥ and C = M(a) are two orthogonal 
hereditary JB∗-subalgebras, by hypothesis, there exists a positive e ∈ M which is a unit 
for B and annihilates C. That is e ∈ {a}⊥, and hence e ◦ e = e, witnessing that e is a 
projection in M .

As before, Lemma 3.11 proves that {a}⊥q ∩Msa = {a}⊥ ∩Msa. It follows from the 
properties of e that {a}⊥q ∩Msa ⊆ {1 −e}⊥ = Ue(M). Reciprocally, if z ∈ Ue(M) ∩Msa, 
since e ◦ a = 0, and hence a ∈ U1−e(M), it follows that z ∈ {a}⊥ ∩Msa = {a}⊥q ∩Msa.

(⇐) We assume now that M is a Rickart JB∗-algebra. Take C = Ux(M) and B as in 
the statement, with x positive in M . Under these circumstances there exists a projection 
p ∈ M satisfying {x}⊥q ∩Msa = Up(M) ∩Msa. Clearly, each b ∈ B lies in {x}⊥q , and 
thus p ◦ b = b for all b ∈ B. Since p ∈ Up(M), we have Up(x) = 0. Having in mind 
that x is positive, we deduce, via Shirshov-Cohn theorem, that p and x are orthogonal. 
Consequently, by Peirce arithmetic, p annihilates C = Ux(M).

(a) (⇒) Taking B = {0} and C = A, we find a unit 1 ∈ M . Fix a subset S ⊆ M+. 
The inner ideal C = S⊥ is a hereditary JB∗-subalgebra of M , and the same happens to 
B = (C ∩M+)⊥. Clearly, B ⊥ C. By assumptions, there exists a positive e in M which 
is a unit for B and annihilates C. In particular 1 − e lies in C and hence e ◦ (1 − e) = 0. 
Thus, e is a projection.

Lemma 3.11 implies that S⊥q ∩Msa = S⊥ ∩Msa = U1−e(M) ∩Msa, where the last 
equality follows from the same arguments given in the proof of (c).

(⇐) We assume finally that M is an AJBW∗-algebra (it is, in particular, unital). 
Taking B and C as in the statement, for C+, there exists a projection p in M such that 
(C+)⊥q = Up(Msa). Since B+ ⊆ (C+)⊥q , p is the unit element in Up(Msa), and every 
element in B is a linear combination of four positive elements in B, p must be a unit 
for B. On the other hand, each positive c ∈ C satisfies that Up(c) = 0, and thus p is 
orthogonal to each positive element in C. Therefore, p is orthogonal to C, as desired. �

Let A be a C∗-algebra. It follows from the previous proposition and from Proposi-
tion 2.1 that A is an AJBW∗-algebra (respectively, a Rickart, a weakly Rickart or a 
SAJBW∗-algebra) if and only if it is an AW∗-algebra (respectively, a Rickart, a weakly 
Rickart or a SAW∗-algebra). The statement concerning AJBW∗-algebras and AW∗-
algebras (respectively, Rickart JB∗-algebras and Rickart C∗-algebras) can be derived 
from the results by Ayupov and Arzikulov in [7, Propositions 1.1, 1.3, 2.1 and 2.3].
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The next technical lemma will be required in the main result of this section. Before 
presenting the result, we recall some facts on operator commutativity. By the Shirshov–
Cohn theorem [39, Theorem 2.4.14] any two self-adjoint elements a and b in a JB∗-algebra 
M generate a JB∗-subalgebra that can be realized as a JC∗-subalgebra of some B(H)
(see also [69, Corollary 2.2]). Furthermore, under this identification, a and b commute in 
the usual sense whenever they operator commute in M (compare Proposition 1 in [67]). 
By the same arguments, for any pair of self-adjoint elements a and b in M we have

a and b operator commute if and only if a2 ◦ b = 2(a ◦ b) ◦ a− a2 ◦ b (15)

Lemma 3.15. Let M be a weakly Rickart JB∗-algebra. Let a, b be two elements in M
with a positive. Suppose that a and b operator commute. Then RP (a) and b operator 
commute.

Proof. Let p = RP (a) ∈ M . Let us write, b = b1 + ib2, where each bj is self-adjoint for 
every j = 1, 2 and a operator commutes with b1 and b2. Let us consider the element 
cj = p ◦ bj − bj . Having in mind that a and bj operator commute and p = RP (a) we 
obtain

cj ◦ a = (p ◦ bj − bj) ◦ a = (p ◦ a) ◦ bj − bj ◦ a = a ◦ bj − bj ◦ a = 0.

Since a is positive, the above identity proves that a ⊥ cj (cf. (13)). It follows from 
the properties of the range projection that p ◦ cj = 0, that is, p ◦ (p ◦ bj − bj) = 0, or 
equivalently, p ◦(p ◦bj) = p ◦bj = p2◦bj , which is equivalent to say that p and bj operator 
commute (cf. (15)). It follows that p and b = b1 + ib2 operator commute too. �

We can now establish a generalization of the result proved by Arzikulov in Theorem 3.3
in the line of Rickart’s original result.

Theorem 3.16. Every weakly Rickart JB∗-algebra is generated by its projections.

Proof. We can clearly reduce our argument to positive elements. Let a be a positive 
element in a weakly Rickart JB∗-algebra M . Let p = RP (a) denote the range projection 
of a in M (cf. Remark 3.7). It follows from Proposition 3.9 that M2(p) is a Rickart 
JB∗-algebra with unambiguous range projections of positive elements.

Let B be a maximal strongly associative JB∗-subalgebra of M containing the element 
a. It follows from Lemma 3.15 that B contains the range projection of every positive 
element c ∈ B. Therefore B is a weakly Rickart associative JB∗-algebra, or equivalently, 
a commutative weakly Rickart C∗-algebra (cf. Propositions 3.14 and 2.1). Finally, it 
follows from Remark 2.4 that B (and hence M) is generated by its projections. We can 
also consider a maximal strongly associative JB∗-subalgebra C of M2(p) containing a
and p. In this case C is a Rickart associative JB∗-algebra, or equivalently, a commutative 
Rickart C∗-algebra (cf. Lemma 3.15, Propositions 3.14 and 2.1). �
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4. Rickart JB∗-triples

The definitions of Baer and Rickart JB∗-algebras introduced by Ayupov and Arzikulov 
and the notions of weakly Rickart and SAJBW∗-algebras developed in the previous 
section depend extremely on the existence of a cone of positive elements. This is a 
handicap if we want to work on the wider setting of JB∗-triples, where the existence of 
a cone of positive elements is, in general, impossible.

Furthermore, projections make no sense in the wider setting of JB∗-triples; and the role 
of projections is in general played by tripotents. As in the original study by Rickart, our 
aim is to find an appropriate notion, in terms of orthogonal annihilators, local order and 
range tripotents, to assure that a JB∗-triple satisfying this property contains sufficiently 
many tripotents.

The characterizations of (weakly) Rickart C∗-algebras established in section 2 (see 
Propositions 2.5 and 2.10) offer a perspective which allows us to consider these notions 
in the wider setting of JB∗-triples.

Definition 4.1. Let E be a JB∗-triple.

� E is called a SAJBW∗-triple if for any x, y ∈ E with x ⊥ y, there exists a tripotent 
e ∈ E satisfying x ∈ E2(e) and y ∈ E0(e).

� E is a weakly Rickart (wR) JB∗-triple if given x ∈ E and an inner ideal J ⊆ E with 
I = E(x) ⊥ J , there exists a tripotent e in E such that I ⊆ E2(e) and J ⊆ E0(e).

� E is a weakly order-Rickart (woR) JB∗-triple if given x ∈ E and an inner ideal 
J ⊆ E with I = E(x) ⊥ J , there exists a tripotent e in E such that x is positive in 
E2(e), and J ⊆ E0(e).

� E is called a Rickart JB∗-triple if it is weakly Rickart and admits a unitary element.

For a JB∗-triple E, the following implications hold: E is a Rickart JB∗-triple ⇒ E is 
a wR JB∗-triple, and E is a woR JB∗-triples ⇒ E is a wR JB∗-triple.

Let A be a C∗-algebra. It follows from Proposition 2.5 that A is a Rickart or a 
weakly Rickart C∗-algebra if and only if it is a Rickart or a weakly Rickart JB∗-triple, 
respectively. Furthermore, Propositions 2.10 and 2.5 prove that a C∗-algebra is a wR 
JB∗-triple if and only if it is a woR JB∗-triple. So, our definition is consistent with 
the previous notions. We do not know if A being a SAW∗-algebra implies that A is a 
SAJBW∗-triple. For the reciprocal, suppose that A is a SAJBW∗-triple. Fix two positive 
elements x, y ∈ A with xy = 0. By hypothesis there exists a partial isometry e with 
x ∈ A2(e) and y ∈ A0(e). Since x = ee∗xe∗e and x � 0, it can be shown that x =
ee∗x = xee∗ = e∗ex = xe∗e. Similarly, ee∗y = yee∗ = ye∗e = ee∗y = 0. Therefore A is a 
SAW∗-algebra.

The examples provided in [59,12,56] show that, even in the category of abelian C∗-
algebras, the classes of SAJBW∗-triples, weakly Rickart JB∗-triples and Rickart JB∗-
triples are mutually different.
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In the setting of JB∗-algebras we do not know if there is a relation between being a 
Rickart or a weakly Rickart JB∗-algebra as seen in section 3 and the corresponding notion 
as JB∗-triple. The lacking of polar decompositions makes invalid the natural arguments. 
What we can prove is the following connection between JB∗-algebras which are woR 
JB∗-triples and weakly Rickart JB∗-algebras.

Proposition 4.2. Let M be a JB∗-algebra which is a woR JB∗-triple, then M is a weakly 
Rickart JB∗-algebra. Actually, it suffices to assume that every positive element a in M
admits a range tripotent R(a) in M , and in such a case the range tripotent of a in M is 
precisely the range projection of a in M as weakly Rickart JB∗-algebra.

Before presenting the proof, we establish a result proving the existence of range tripo-
tents for elements in woR JB∗-triples.

Lemma 4.3. Let E be a JB∗-triple. Then the following statements hold:

(a) If a is an element in E and e, v are two tripotents in E such that a is positive in 
E2(e) and in E2(v) with {a}⊥ = E0(e), then e � v;

(b) Let us assume that E is a woR JB∗-triple. Then for each element a in E there exists 
a unique tripotent e ∈ E satisfying that a is positive in E2(e) and {a}⊥ = E0(e).

Proof. (a) Let e and v be tripotents in E satisfying the properties in the statement. Let 
rE∗∗(a) denote the range tripotent of a in E∗∗. Since a is positive in E2(e) ⊆ E∗∗

2 (e), 
it follows that a is positive in the JBW∗-algebra E∗∗

2 (e), and hence rE∗∗(a) � e as 
tripotents in E∗∗. Therefore e = rE∗∗(a) + (e − rE∗∗(a)) with rE∗∗(a) ⊥ (e − rE∗∗(a)), 
and hence {a, a, e} = {a, a, rE∗∗(a)}. Similarly, {a, a, v} = {a, a, rE∗∗(a)}. It then follows 
that the triple product {a, a, e − v} = 0 in E, or equivalently, a ⊥ (e − v), that is, 
e − v ∈ {a}⊥. The assumptions on e imply that e − {e, e, v} = {e, e, e − v} = 0, or 
equivalently, {e, e, v} = e. Lemma 1.6 or Corollary 1.7 in [33] implies that v � e.

(b) Let e and v satisfying the hypotheses in (b) (both exist by the assumptions on E). 
It follows from (a) that e � v and v � e. Therefore e = v as claimed. �

Let a be an element in a woR JB∗-triple E. The unique tripotent e given by Lemma 4.3
is called the range tripotent of a in E, and will be denoted by R

E
(a). It follows from 

Lemma 4.3(a) that R
E
(a) is the smallest tripotent e in E satisfying that a is positive in 

the unital JB∗-algebra E2(e).
Let us briefly recall that for each self-adjoint element h in a JB∗-algebra M , the 

mapping Uh is positive on M , that is, it maps positive elements to positive elements [39, 
Proposition 3.3.6].

Proof of Proposition 4.2. Let us fix a positive element a in M . Let e = R
E
(a) denote 

the range tripotent of a in E. Since the involution on M is a conjugate linear triple 
automorphism on M we have 0 � a = a∗ in M2(e∗) and
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{a}⊥ = {a∗}⊥ =
(
{a}⊥

)∗ = (M0(e))∗ = M0(e∗),

witnessing that e∗ satisfies the properties of the range tripotent of a in M , and by the 
uniqueness of this element e = e∗. That is, e is a self-adjoint tripotent in M , and thus, 
by the local Gelfand theory, e = p − q, where p and q are two orthogonal projections in 
M .

It follows from the properties of the range tripotent e = p − q that 0 � a in M2(e). 
Since 0 � −q � e in M2(e), the element −q is a projection in M2(e). Therefore, having 
in mind that, by Kaup’s theorem, the triple product on M2(e) is uniquely given by the 
restriction of the triple product of M and by the JB∗-structure of M2(e), the element

U
M2(e)
−q (a) = {−q, a∗e ,−q} = {−q, a,−q} = {q, a, q} = Uq(a)

is positive in M2(e) (cf. [39, Proposition 3.3.6]), and in M2(−q). Since, M2(−q) = M2(q)
with (M2(−q))sa = (M2(q))sa we deduce the existence of y ∈ (M2(−q))sa = (M2(q))sa ⊆
Msa such that

Uq(a) = y ◦−q y = {y,−q, y} = −{y, q, y} = −Uy(q),

which implies that Uq(a) is a negative element in M .
On the other hand, since a is positive in M and q is a projection, the element Uq(a)

must be positive in M [39, Proposition 3.3.6], which combined with the previous con-
clusion leads to Uq(a) = 0. It follows from the first statement in Lemma 3.11 that 
q ∈ {a}⊥q ∩ Msa = {a}⊥ ∩ Msa, that is, q ⊥ a. The properties of the range tripotent 
imply that q ∈ M0(e) = M0(p − q), and thus q ⊥ (p − q), and so q = 0.

We have therefore shown that the range tripotent e = R
M

(a) of a in M is a projection 
in this JB∗-algebra. It can be easily checked that e ◦ a = {e, e, a} = a and for each 
z ∈ Msa with Uz(a) = 0 we have p ◦ z = 0 (cf. Lemma 3.11), that is M is a weakly 
Rickart JB∗-algebra. �

An element u in a unital JB∗-algebra M is called unitary if it is invertible with inverse 
u∗. In the setting of JB∗-triples, the word unitary is applied to those elements u such that 
L(u, u) is the identity mapping. Clearly, every unitary u in a JB∗-triple E is a tripotent 
with E2(u) = E –this is actually a characterization. There is no ambiguity in case that 
a unital JB∗-algebra M is regarded as a JB∗-triple because both notions are equivalent 
[13, Proposition 4.3].

Our next result is a strengthened version of Proposition 4.3. We recall first that for 
each tripotent e in a JB∗-triple E and each unitary complex number λ, the mapping

Sλ(e) = λ2P2(e) + λP1(e) + P0(e) (16)

is a triple automorphism on E [33, Lemma 1.1]. It can be easily deduced from this fact 
that the mapping
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Rλ(e) = P2(e) + λP1(e) + λ2P0(e) (17)

also is a triple automorphism on E.

Proposition 4.4. Let E be a woR JB∗-triple. Then for each tripotent e ∈ E, the Peirce-2 
subspace E2(e) is a Rickart JB∗-algebra.

Proof. Having in mind Proposition 4.2 and Lemma 3.8(a), it suffices to show that each 
positive element a in E2(e) admits a range tripotent in E2(e). Let v = R

E
(a) be the 

range tripotent of a in E. Let S−1 = S−1(e) = P2(e) − P1(e) + P0(e) denote the triple 
automorphism on E given in (16). Let us observe that S−1(a) = a because a ∈ E2(e).

Since a is positive in E2(v) with {a}⊥E = E0(v), we deduce that a = S−1(a) is positive 
in E2(S−1(v)) with

{a}⊥E = {S−1(a)}⊥E = S−1
(
{a}⊥E

)
= S−1 (E0(v)) = E0(S−1(v)).

That is, S−1(v) satisfies the properties of the range tripotent for a, and hence it follows 
from its uniqueness that v = S−1(v) = P2(e)(v) − P1(e)(v) + P0(e)(v). This equality 
proves that v = P2(e)(v) + P0(e)(v), where P2(e)(v) and P0(e)(v) are two orthogonal 
tripotents in E.

If in the previous argument we replace S−1(e) with Ri(e), and we apply it to v =
P2(e)(v) + P0(e)(v), we derive that v = Ri(e)(v) = P2(e)(v) − P0(e)(v), witnessing that 
v = P2(e)(v). Now, it can be easily seen that v = P2(e)(v) ∈ E2(e) satisfies the properties 
of the range tripotent for a in E2(e) (and in E). This concludes the proof. �

We can now establish the result which has motivated our study. We shall see that 
every woR JB∗-triple contains an abundant collection of tripotents.

Theorem 4.5. Every weakly order Rickart JB∗-triple is generated by its tripotents.

Proof. Let a be an element in a woR JB∗-triple E. Let e = R
E
(a) be the range tripotent 

of a in E. Proposition 3.9 assures that E2(e) is a Rickart JB∗-algebra. By construction, 
a is a positive element in E2(e), and hence Theorem 3.16 implies that a can be approxi-
mated in norm by finite linear combinations of projections in E2(e). The proof concludes 
by just observing that, since E2(e) is a JB∗-subtriple of E, every projection in E2(e) is 
a tripotent in E. �
5. Von Neumann regularity

Regular elements in the sense of von Neumann have been intensively studied in the 
associative setting of C∗-algebras (cf. [41,42,14] and [59, §3]) as well as in the wider 
setting of JB∗-triples (see [31,32,50,20,21] and [44]).
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Motivated by the study conducted by Rickart on von Neumann regular elements in 
B∗

p-algebras (now called Rickart C∗-algebras) in [59, §3], we devote this section to explore 
von Neumann regular elements in woR JB∗-triples.

An element a in a JB∗-triple E is called von Neumann regular if and only if there exists 
b ∈ E such that Q(a)b = a, Q(b)a = b and [Q(a), Q(b)] := Q(a) Q(b) − Q(b) Q(a) = 0
(cf. [50, Lemma 4.1] or [31,32,20]). The element b ∈ E satisfying the previous properties 
is unique and is called the generalized inverse of a in E (denoted by a†). However, there 
exist von Neumann regular elements a ∈ E, for which we can find many elements c in E
such that Q(a)c = a.

Several useful characterizations of von Neumann regular elements in JB∗-triples can 
be found in [31,32,50,20]. For our purposes here, we recall that an element a in a JB∗-
triple E, whose range tripotent in E∗∗ is denoted by rE∗∗(a) = r(a), is von Neumann 
regular if, and only if, r(a) ∈ E and a is positive and invertible in the unital JB∗-algebra 
E2(r(a)), and in such a case a† is precisely the inverse of a in E2(r(a)) (cf. [20, §2, pages 
191 and 192]). It is further known that in this case L(a, a†) = L(a†, a) = L(r(a), r(a))
(see [20, §2, page 192] and [51, Lemma 3.2]).

The next lemma goes in the line of [43, Lemma 2.2] and [59, Theorem 3.2].

Lemma 5.1. Let e be a tripotent in a JB∗-triple E. The following statements hold:

(a) Every invertible element a in the unital JB∗-algebra E2(e) is von Neumann regular 
in E with rE∗∗(a) being a unitary element in E2(e).

(b) Suppose that x is an element in E with ‖e − x‖ < 1. Then Q(e)(x) and P2(e)(x)
are von Neumann regular elements whose range tripotents (i.e. r(Q(e)(x)) and 
r(P2(e)(x)), respectively) in E∗∗ belong to E2(e) and are unitaries in the latter JB∗-
algebra. Moreover, r(Q(e)(x)) and r(P2(e)(x)) satisfy the properties of the range 
tripotent in a woR JB∗-triple for the elements Q(e)(x) and P2(e)(x), respectively. 
The latter conclusion holds for the range tripotent in E∗∗ of any invertible element 
a ∈ E2(e).

Proof. (a) The statement is essentially proved in [43, Remark 2.3]. Namely, if a is invert-
ible in E2(e), the just quoted remark assures that the range tripotent r = r

E∗∗
2 (e)(a) of a

in the bidual of E2(e) is a unitary element in E2(e). It is clear that r must be also the 
range tripotent of a in E∗∗ and belongs to E. It follows from the characterization of von 
Neumann regular elements from [20], seen before this lemma, that a is von Neumann 
regular in E.

(b) Since ‖e − x‖ < 1 and Q(e) and P2(e) are non-expansive mappings fixing the 
element e, we get ‖e − Q(e)(x)‖, ‖e − P2(e)(x)‖ < 1. Having in mind that E2(e) is a 
unital JB∗-algebra with unit e and Q(e)(x), P2(e)(x) ∈ E2(e), we deduce that these two 
elements are invertible in E2(e). The first part of the statement now follows from (a).

We shall only prove the last statement for P2(e)(x). To simplify the notation, let 
r = r(P2(e)(x)) ∈ E2(e) denote the range tripotent of P2(e)(x). Clearly, P2(e)(x) is 
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positive in E2(r) (let us note that E2(r) = E2(e) as sets because r is a unitary in E2(e)). 
Finally, it follows from Lemma 3.2 in [19] that {P2(e)(x)}⊥ = E0(r), which concludes 
the argument. �

The next result is a triple version of [59, Theorem 3.3].

Proposition 5.2. Let E be a woR JB∗-triple. Suppose that a is a von Neumann regular 
element in E. Then the range tripotent of a in E as woR JB∗-triple coincides with 
the range tripotent of a in E∗∗ (and in E), that is R(a) = rE∗∗(a). Furthermore a† ∈
E2(R(a)) is the inverse of a in E2(R(a)) and R(a†) = R(a).

Proof. We know from Lemma 5.1(b) that the range tripotent r(a) satisfies the properties 
of the range tripotent of a in the definition of woR JB∗-triple. Then the uniqueness of 
R(a) (see Lemma 4.3(b)) implies that R(a) = r(a).

It is known that r = r(a) = R(a) and a† both belong to the JB∗-subtriple of E
generated by a (cf. [51, Lemma 3.2]), and hence a† ∈ E2(R(a)). Finally, we know from 
the properties of the generalized inverse that a† is the inverse of a in E2(r). �

As we have seen in subsection 1.1, for each element a in a JB∗-triple E, its triple spec-
trum Ωa ⊆ [0, ‖a‖] can be employed to identify the JB∗-subtriple, Ea, of E generated by 
a with the commutative C∗-algebra C0(Ωa), and under this identification a corresponds 
to the continuous function given by the embedding of Ωa into C (cf. [49, Corollary 1.15]
and [50, Lemma 3.2]). The triple spectrum Ωa does not change when computed with 
respect to any JB∗-subtriple F of E containing the element a [50, Proposition 3.5(vi)]. 
It is further known that a is von Neumann regular if and only if 0 /∈ Ωa (cf. [50, Lemma 
4.1]). In particular if F is a JB∗-subtriple of a JB∗-triple E, then an element a ∈ F is 
von Neumann regular in F if and only if it is von Neumann regular in E. Furthermore, 
if a ∈ E is von Neumann regular, then a† and r(a) both belong to the JB∗-subtriple of 
E generated by a.

Our next goal is a triple version of [59, Theorem 3.13] and a refinement of Theorem 4.5.

Proposition 5.3. Let E be a woR JB∗-triple. Suppose a is an element in E whose range 
tripotent is R(a). Then for each ε > 0 there exists a tripotent eε ∈ E and an element b
in the JB∗-subtriple of E generated by a satisfying eε � R(a), {b, R(a), b} = a, {b, eε, b}
is von Neumann regular and ‖a − {b, eε, b}‖ < ε.

Proof. Proposition 4.4 assures that E2(R(a)) is a Rickart JB∗-algebra. By definition, 
a is positive in E2(R(a)). Let C be a maximal strongly associative JB∗-subalgebra of 
E2(R(a)) containing a. Lemma 3.15 implies that C is a Rickart JB∗-algebra. Therefore 
C is a commutative Rickart C∗-algebra whose product and involution will be denoted 
by · and ∗, respectively –observe that ∗ coincides with ∗R(a).
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Given ε > 0, having in mind that C is a commutative C∗-algebra, Theorem 3.13 in 
[59] proves the existence of a projection eε ∈ C satisfying eε � R(a), eε ·a = {eε, a, eε} =
P2(eε)(a) is von Neumann regular in C and ‖a − P2(eε)(a)‖ < ε.

As observed in [34, comments after Theorem 2.1], since a is a positive in E2(R(a))
(and in C), the JB∗-subtriple Ea of E2(R(a)) (and of C) generated by a coincides with 
the JB∗-subalgebra that a generates. Therefore the square root of a in C lies in Ea. 
Let b ∈ Ea denote the square root of a in C. By applying that C is a commutative 
C∗-algebra, it can be deduced that {b, eε, b} = (b · b) · eε = a · eε is von Neumann regular 
in C. Clearly, {b, R(a), b} = a.

Finally, since C is a JB∗-subtriple of E, the element eε is a tripotent in E with 
eε � R(a), {b, eε, b} is von Neumann regular in E and ‖a − {b, eε, b}‖ < ε. �

We can now prove that every inner ideal in a woR JB∗-triple E contains an abundant 
collection of von Neumann regular elements.

Theorem 5.4. Let I be an inner ideal of a woR JB∗-triple E. Then the von Neumann 
regular elements of I are dense in I. Each von Neumann regular element x in I is 
contained in E2(R(x)) = I2(R(x)), where R(x) ∈ I and E2(R(x)) is a Rickart JB∗-
algebra. Furthermore, if I �= {0}, then I contains a non-zero tripotent, actually I contains 
the generalized inverse and the range tripotent of each non-zero element in I.

Proof. Let us fix a ∈ I. Proposition 5.3 proves that we can approximate a in norm by 
von Neumann regular elements of the form {b, e, b}, where e ∈ E is a tripotent satisfying 
e � R(a) and b ∈ Ea. Having in mind that I is an inner ideal we deduce that Ea ⊆ I, 
and {b, e, b} ∈ I, which concludes the proof of the first statement. The second statement 
is a consequence of Propositions 5.2 and 4.4.

Take now a ∈ I\{0}. In this case Ea ⊆ E(a). By the conclusion in the first paragraph, 
we can approximate a in norm by a sequence (an)n of non-zero von Neumann regular 
elements in I. It follows from Proposition 5.2 that the range tripotent of each an in 
E, R(an), coincides with its range tripotent in E∗∗ and by the theory on von Neuman 
regular elements a†n, R(an) ∈ Ean

⊆ E(an) ⊆ I, which concludes the proof. �
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