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Abstract : In the current study, a new β-amino-α,β-unsaturated ketone-based himachalene ((1S,3R,8R)-

9-amino-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-en-11-one) (4) was synthesized 

from β-himachalene (1) extracted from essential oil of Atlas Cedar. The β-amino-α, β-unsaturated 

ketone product (4) was characterized by 1D NMR (1H, 13C) and 2D NMR (HSQC, COSY, NOESY), 

FTIR analysis, and single-crystal X-ray diffraction. The title compound, C16H23Cl2NO, crystallizes 

with two molecules in the asymmetric unit with similar conformations. One of the two molecules is 

characterized by chlorine and one-methyl position disorder. In the crystal, intermolecular N—H…O 

hydrogen bonds lead to forming a three-dimensional framework. In addition, the molecular structure of 

the title compound was examined by Hirshfeld topology analysis and Density Functional Theory (DFT) 

using B3LYP calculations at 6-311+G(d,p) level. The optimized structure parameters were compared 

with the experimental result, an excellent correlation between theoretical structures parameters and 

experimental values was found. The natural bond orbitals (NBO) analysis and the first-order 

hyperpolarizability were also performed. Moreover, two biological activities were examined for product 

4 against Acetylcholinesterase and Cytochrome P450 3A4, which bind to similar fragments with 

molecular docking. We find good scores and binding affinity of our molecule to link to these two 

proteins. 

https://biointerfaceresearch.com/
https://biointerfaceresearch.com/
https://doi.org/10.33263/BRIAC131.083
https://orcid.org/0000-0002-2619-8479
https://orcid.org/0000-0001-7692-5323
https://orcid.org/0000-0003-0913-2897
https://orcid.org/0000-0002-7252-6680
https://orcid.org/0000-0003-3254-6203
https://orcid.org/0000-0001-7980-974X
https://orcid.org/0000-0001-8951-3993


https://doi.org/10.33263/BRIAC131.083  

 https://biointerfaceresearch.com/ 2 of 25 

25 

 

Keywords: β-himachalene; β- amino ketone; NLO; DFT calculation; X-ray diffraction; molecular 

docking. 
© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

1. Introduction 

Himachalene compounds represent Atlas cedar's main component of essential oil [1–

4]. They are an excellent source of raw material for several industrial processes to synthesize 

new molecules with a broad spectrum of pharmacological properties [5,6]. Consequently, 

considerable efforts have been devoted to designing and synthesizing a wide range of 

himachalene derivatives [6–10]. The researchers have reported diverse pharmaceutical 

activities for himachalene derivative compounds such as anticancer, antifungal, antitumor, and 

anti-inflammatory [11–18]. The interest himachalene in biological applications has received 

significant attention in the last two decades [19–23]. Likewise, chlorinated products were 

reported in the literature for significant biological multi-activity, such as improving PET 

radiotracer in imaging P-gp function [24], mitochondrial-specific reporters [25], 

antiplasmodium agents [26], and drugs for the treatment of COVID-19 patients [27]. Moreover, 

the molecules based on 8,8-dichlorobicyclo[5.1.0]octane are very important as potential 

multidrug for resistance reversal agents [28] and inhibition of verapamil binding [29]. 

Similarly, the dechlorinated α, β-unsaturated ketone, has antimicrobial activity against the 

bacterium Staphylococcus aureus [30,32]. On the other hand, β-amino-α, β-unsaturated ketones 

analogs displayed potent anticonvulsant, neuronal and antibacterial activities [33,36].  

As part of our ongoing interest in himachalene valorization, we have reported the 

synthesis of new himachalene derivatives [37–41]. Taking into account all the above data, we 

present herein the synthesis of a new compound-based himachalene, namely (1S,3R,8R)-9-

amino-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-en-11-one (4). This 

compound can be obtained from β-himachalene (1) in three steps. Firstly, gem-

dihalogenocyclopropanation of β-himachalene, The study of this step theoretically in 

regioselectivity has been reported in the literature. [42] allylic oxidation gives α, β-unsaturated 

ketone intermediate (3) [43]. The latter was reacted with sodium azide at room temperature in 

dichloromethane to obtain β-amino-α,β-unsaturated ketone (4). The molecular structure was 

determined by 1H, 13C NMR, FT-IR spectra and was confirmed by X-ray crystallography 

analysis. NBO and NLO analysis were performed using DFT/B3LYP method at 6-311+G(d,p) 

level. Moreover, two biological activities were examined for compound 4, against 

Acetylcholinesterase and Cytochrome P450 3A4, which are known to bind to similar fragments 

with molecular docking.  

2. Materials and Methods  

All chemicals and solvents were purchased from Merck. Thin-layer chromatography 

(TLC) was performed using F254 percolated plates (0.25 mm) and visualized by UV 

fluorescence quenching and phosphomolybdic acid solution staining. The chromatography 

separations were carried out on silica gel 60 (230-400 Mesh) using a conventional column, 

using Hexane-AcOEt. 1H and 13C NMR spectra were recorded at 500 and 126 MHz, 

respectively, on Bruker (Avance Neo) with the program (TopSpin-4.07). Infrared spectra 

spectrums (IR) were recorded on an FTIR spectrophotometer (Nicolet spectrometer (Magna 
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550)) and are reported in the frequency of absorption (cm–1). ([α]D) measurements were carried 

out in a polarimeter, utilizing a 1 dm length cell and CHCl3 as a solvent. Concentration is 

expressed in mg/mL. 

The products, dichloro-cyclopropane (2) and enondichloro (3) were prepared according 

to the protocol described in the literature [42, 43]. 

2.1. Procedure for the synthesis of compound 4. 

Compound 4 (Scheme 1) was prepared according to our described protocol [44]. The 

compound ((1S,3R,8R)-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-en-11-

one) (3) (280 mg, 0.91 mmol) was dissolved in CH2Cl2 (5 mL) and trifluoroacetic acid 

CF3CO2H (4 mL) at 0 ° C. Then, the sodium azide (178 mg, 2.73 mmol) was added to the 

reaction mixture and stirred at room temperature for 18 hours. After completion, the reaction 

mixture was neutralized and washed with a saturated solution of Na2CO3 (3 x 15 mL) and then 

extracted with ethyl acetate (3 x 15 mL). The combined organic phases were dried on 

anhydrous sodium sulfate (Na2SO4). After removing the solvent, the product was purified by 

flash column chromatography on silica gel with eluent EtOAc/hexane (3/7). The product (4) 

was obtained with 58% (87 mg, 287 µmol) yield as white solid.  

[α]D25  = - 44.9   (c  4.8, CHCl3). 
1H NMR (500 MHz, Chloroform-d, δ = ppm): 0.87 

(s, 3H), 1.17 (s, 3H), 1.18 (s, 3H), 1.35 (ddd, J = 14.1, 4.9, 2.4 Hz, 1H), 1.62 (td, J = 13.7, 12.2, 

3.5 Hz, 1H), 1.68 – 1.81 (m, 2H), 1.75 (s, 3H), 1.71 – 1.91 (m, 2H), 2.48 (s, 1H), 2.50 (d, J = 

18.6 Hz, 1H), 2.63 (d, J = 18.6 Hz, 1H), 4.79 (br s, 2H). 13C NMR (126 MHz, Chloroform-d, 

δ = ppm): 7.79 (CH3), 15.29 (CH3), 20.79 (CH2), 27.68 (CH3), 28.93 (CH2), 29.80 (CH2), 30.76 

(CH3), 32.6 (C), 34.63 (C), 35.31 (CH2), 38.02 (C), 49.44 (CH), 76.79 (C), 106.84 (C), 160.71 

(C-NH2), 192.75 (C=O).  FT-IR (film, cm-1): 3336, 3209, 2930, 1648, 1542, 1455, 1408, 1390, 

1366, 1272, 1080, 755.  

2.2. X-ray structure determination for compound 4. 

The compound (4) was dissolved in a diethyl ether and hexane mixture. The resulting 

solution is maintained at room temperature; slow evaporation of the solvent affords colorless 

crystal. A suitable single crystal was selected under a microscope, and X-ray diffraction data 

were collected on a Bruker D8 VENTURE Super DUO diffractometer using copper radiation. 

SAINT+ 6.02 program was used for the extraction and integration of diffraction intensities 

[45], and the SADABS program was carried out to correct the absorption effect [46]. The 

structure was solved by direct methods, using the (SHELXT) program [47] included in the 

WINGX package [48], and refined by least-squares against F2 (SHELXL-2015) [49]. All non-

hydrogen atoms were anisotropically refined, whereas the hydrogen atoms were positioned 

geometrically and refined using a riding model. Crystal data, data collection, and structure 

refinement details are summarized in Table 1. The anisotropic displacement parameters and 

the observed and calculated structure factors (Supplementary materials) are deposed in CCDC 

1995106 Data Centre. These data can be obtained free of charge via the Cambridge 

Crystallographic Data Centre, https://www.ccdc.cam.ac.uk.  

Table 1. Crystal data, data collection, and structure refinement details for the title compound. 

Crystal data 

Chemical formula C16H23Cl2NO 

Mr 316.25 
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Crystal data 

Crystal system, space group Monoclinic, P21 

Temperature (K) 296 

a, b, c (Å) 7.120 (3), 15.094 (5), 15.407 (5) 

β (°) 94.07 (3) 

V (Å3) 1651.6 (10) 

Z 4 

Radiation type Cu Kα 

μ(mm-1) 3.49 

Crystal size (mm) 0.26 × 0.19 × 0.16 

Data collection 

Diffractometer Bruker D8 VENTURE Super DUO 

Absorption correction Multi-scan (SADABS; Krause et al., 2015) 

Tmin, Tmax 0.571, 0.753 

No. of measured, independent and 
 observed [I > 2σ(I)] reflections 

23354, 6026, 5610 

Rint 0.034 

(sin θ/λ)max (Å-1) 0.608 

Refinement 

R[F2 > 2σ(F2)], wR(F2), S 0.040,  0.112,  1.03 

No. of reflections 6026 

No. of parameters 399 

No. of restraints 1 

H-atom treatment H-atom parameters constrained 

Δ˃max, Δ˃min (e Å-3) 0.54, -0.25 

Absolute structure Flack x determined using 2388 quotients [(I+)-(I-

)]/[(I+)+(I-)]  (Parsons, Flack and Wagner, Acta 
Cryst. B69 (2013) 249-259). 

Absolute structure parameter 0.050 (5) 

2.3. Hirshfeld surface analysis. 

The visualization of intermolecular interactions in compound (4) was carried out by 

Hirshfeld surface analysis. The Hirshfeld surface [50] and 2D fingerprint [51] plots were 

explored using the CrystalExplorer17.5 program [52], and the CIF files were used as the input 

file. Hirshfeld surface was represented by de and di, which denote the distance from the nearest 

atom outside and inside of the surface. Both are used to define the normalized contact distance 

(dnorm). For the visualization of dnorm, a red-blue-white (RBW) color scale was selected. 

2.4. Computational methods. 

The entire quantum chemical calculations were performed using the DFT/B3LYP 

method in coordination with 6-311G+(d, p) basis sets used GAUSSIAN 09 [53]. The 

optimization of geometries has been performed at the B3LYP/6-311G+(d,p) level of theory. 

All obtained frequencies are positive, proving that the structure corresponds to minimum 

energy. The non-linear optical (NLO) was investigated using the calculations of polarizability 

α and first-order hyperpolarizability β [54–58] on the optimized geometry of 4 compounds 

within DFT at the DFT B3LYP/6-311+G(d,p) level (see Electronic supplementary material for 

more details) [59, 60]. In addition, the polar properties of compound 4 and urea were computed. 

Urea is the prototypical molecule utilized in investigating the NLO properties of the compound. 

For this reason, urea was often used as a threshold value for comparative purposes.  

2.5. Molecular docking.  

Molecular docking study is a beneficial cheminformatics tool that gives us information 

about our compound's possible interactions with proteins related to specific biological activity. 

https://doi.org/10.33263/BRIAC131.083
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It provides how our molecule interacts with such protein and how a ligand and protein binding 

interactions with each other, representing a novel approach of drug conception [61, 62]. 

Biological activity of 4 has been evaluated using Maestro software (Schrödinger, LLC, 

New York, NY, 2018) [63]. In the first place, we used the PASSonline server to predict the 

biological activity of molecule 4 [64]. We found that the title molecule inhibits the CYP2J 

substrate, predominantly expressed in extrahepatic tissues, especially in the heart, skeletal 

muscle, kidney, lung, pancreas, bladder, and brain [65–67]. While a crystal structure has yet to 

be elucidated, molecular modeling recommends structural similarity between CYP2J2 and 

CYP3A4, explaining why the two enzymes share several substrates of various therapeutic 

areas, such as the antihistamine drugs terfenadine, astemizole, and ebastine [68–73] anticancer 

drug tamoxifen, and drugs such as thioridazine or cyclosporine [74-76]. That is why we choose 

the Crystal structure of human cytochrome P4503A4 bound to inhibitor ritonavir (PDB id 

3NXU) characterized by X-ray diffraction with a 2Å of resolution from protein data Bank in 

Europe (PDBe). We also evaluate the protein's biological activity called Acetylcholinesterase 

(AChE) as Arulraj Ramalingam et al. reported that this protein has been inhibited by 

compounds similar to our molecule AChE is a crucial enzyme enhancing the cognitive 

disorder, leading to Alzheimer's disease. Ache inhibition is an important therapeutic 

mechanism against it. Crystal structure of Recombinant Human Acetylcholinesterase in 

Complex with Donepezil (PDB id 4EY7) was characterized by X-ray diffraction with a 2.35 Å 

of resolution from protein data Bank (RCSB PDB). 

The compound was initially docked to the binding site CYP3A4 and AChE receptor 

using Glide XP (Schrödinger Suite 2018) with standard settings. The procedure was composed 

of preparing the ligand and receptor, grid generation, and docking. Besides, the MM-GBSA 

method was used to estimate ligand-binding affinities [77-78]. Both catalytic sites of two 

proteins are predicted to be the nearest space with a distance less than 3 from the ligand 

crystallized with the protein. 

3. Results and Discussion 

The β-himachalene (1) is a major constituent of the Atlas cedar's essential oil, 

representing 50% of the total composition [79-81], which was obtained from the hydrocarbon 

part after chromatography on silica gel column impregnated with silver nitrate (10%) with 

hexane as eluent. Their chemical structure is a bicyclic compound with two unsaturated 

endocyclic bonds. The action of a stoichiometric amount of dichlorocarbene, generated in situ 

from chloroform using NaOH and chloroform in the presence of tertiary butylammonium 

(TEBA-Cl) as a phase transfer catalyst in CH2Cl2, on himachalene (1),  at 0°C to room 

temperature,  leads regio- and stereospecifically, to a (1S,3R,8R)-2,2-Dichloro-3,7,7,10-

tetramethyltricyclo[6,4,0,01,3]dodec-9-ene(2) (Scheme 1) [82]. Allylic oxidation of latter (2) 

by  N-Bromosuccinimide (NBS) (2 equivalents), in a mixture of THF/H2O (60/40) at 0°C leads 

to the formation of compound (3), (1S,3R,8R)-2,2-Dichloro-3,7,7,10-tetramethyltricyclo 

[6.4.0.01,3]dodec-9-en-11-one, (60%) yield [83].  

The reaction between compound (3) and an excess of sodium azide with the presence 

of CF3CO2H in dichloromethane at 0°C give β-amino-α,β-unsaturated ketone (1S,3R,8R)-9-

amino-2,2-dichloro-3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-9-en-11-one (4) as a new 

himachalene derivative  (Scheme 1).  
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Scheme 1. Synthesis of compound (4) from β-himachalene (1). 

3.1. 1H, 13C NMR, HSQC, NOESY spectra, and FT-IR analysis of compound (4). 

The target product was firstly analyzed by different spectroscopies techniques such as 

1D NMR (1H and 13C NMR), 2D NMR (HSQC, COSY, HMBC (See Figures S2 and S3 in 

Electronic supplementary material), and NOESY), and IR-FTIR. The analysis 1H, 13C NMR 

and HSQC spectra (Figure 1 and 2) of the product (4) showed the presence of 16 carbon signals 

(Scheme 2a), and the presence of four methyl groups represented by singlets (δH 0.87, δC 

27.68, C13; δH 1.16, ( 15.29 and 30.76), (C14 and C15) and δH 1.75, δC 7.79, C16), also four 

methylene (δH 1.72, δC 28.93, C-8; δH 1.84, δC 32.60, C9; δH 1.25, δC 29.80, C10), including 

methylene in α of the ketone (δH (2.50, d, J = 18.6 Hz) and (2.63, d, J = 18.6 Hz), δC 35.31, 

C1). One methine singlet (δH 2.48, δC 49.44, C3), and seven quaternary carbons (δC 32.60, 

C7; δC 38.02, C11; δC 76.79, C12), including two alkenes carbons (δC 160.71, C4; δC 106.84, 

C5) and one carbonyl carbon (δC 192.75, O=C6). 

 
Scheme 2. Assignment molecule of the product (4). 

The spectrum of homonuclear correlation spectroscopy COSY (1H–1H) showed two 

structural fragments: H1–C(1)-H1' (δH 2.50, d, J = 18.6 Hz and δH 2.63, d, J = 18.6 Hz), and 

-CH2–CH2–CH2- (C8, C9, and C10) as it appears in Scheme 2b.  

 
Scheme 3. Amin group Correlation (NOESY) with Methyl groups Me-14, Me-16, and Methine H-3. 

The NMR data information of Heteronuclear Single Quantum Correlation (2D-HSQC) 

indicates the appearance of a singular peak at δH 2.48 ppm (H3) corresponds to the carbon of 

δC 49.44 ppm (C3) (Figure 2). With the disappearance of signal the starting product (3), the 
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doublet quadruplet (dq), which appeared in 6.73 ppm corresponds to the proton of position 4 

(Scheme 1), and the transformation of a doublet into a singular (δH=2.75 ppm), corresponds to 

the proton of position 3 (H3) (Figure 2). The 13C-NMR analysis shows one carbon with halogen 

(C-Cl) at (δC=76.79 ppm).  

 
Figure 1. 1H and 13C NMR spectra of the product (4). 

 
Figure 2. HSQC analysis of compound (4) (correlation of proton the 2.48 ppm with carbon 49.44ppm). 
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In the 2D-NOESY experiment of compound (4) (Figure 3), H-(N17) (δH= 4.49 ppm) 

correlated with Me-14 (δH= 1.16, δC= 15.29 ppm), Me-16 (δH=1.75, δC=7.79 ppm) and 

Methine H-3 (δH=2.48, δC=49.44 ppm) but not with Me-13 (δH=0.87, δC=27.68 ppm) and 

Me-15, (δH=1.16, δC=30.76 ppm). These results indicate that amino group (NH2) is bound to 

quaternary carbon C4 (δC=160.71 ppm), and methyl group Me-14 with H-3 were on the same 

face of the cycloheptane ring (Scheme 3). 

 
Figure 3. NOESY (Nuclear Overhauser Effect Spectroscopy) analysis of compound (4). 

a)  

 
b) 

 
Figure 4. (a) Experimental and (b) theoretical FTIR spectrum of compound (4).  
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The FT-IR spectrum of compound (4) showed the appearance of the characteristic 

bands designating the presence of the specific bands of this molecule: The N-H stretching 

vibrations of sp3 type were observed at 3336 cm-1 (Figure 4), and also the appearance of a band 

at 1272    cm-1 corresponding to the C-N  band of a primary amine, which indicates the presence 

of the amine group NH2. The appearance of a strongly intense and fine band around 1542 cm-

1 due to the stretching vibrations of the non-aromatic C=C band, also the stretching vibrations 

of the double band C=O, α, β unsaturated has observed at 1648 cm-1. Then, two bands are 

located at (1366 and 1390 cm-1) and 755 cm-1, which are attributed to the C-C and C-H 

(methylene -(CH2)n-) bands, respectively. The stretching vibrations C-H (alkane) and C-H 

(methyl group) were observed at 2930 and 1455 cm-1, respectively. Thus, spectrum analysis 

has shown the stretching vibrations of the C-Cl band at 586.49 cm-1. Subsequently, the scaled 

harmonic vibrational frequencies of compound 4 were calculated from the optimized structure 

with DFT/B3LYP using a 6-311G+(d,p) basis. The experimental and theoretical spectrums are 

shown in Figure 4b. The analysis indicates the band's existence at 3592 cm-1 that corresponded 

to the amine function (NH), the carbonyl group (ketone) band at 1694 cm-1, and the strong band 

characteristic of the C=C band at 1633 cm-1. In addition, a stretching vibration of the C-Cl band 

was located at 556 cm-1, indicating a good correlation between computed values and 

experimental results. 

3.2. Single crystal X-ray structural analysis of compound (4). 

To confirm the proposed structure by NMR and FTIR analysis, we carried out an X-ray 

analysis for an appropriate single crystal of the title compound. The plot of the two molecules 

building the asymmetric unit of this compound is illustrated in Figure 5. The first molecule 

(O1N1Cl1Cl2 C1 to C16) and the second molecule (O2N2Cl3Cl4 C17 to C32) showed nearly 

the same configurations. In fact, the chlorine positions Cl3 and Cl4 are divided into Cl3A, 

Cl3B, Cl4A, Cl4B and the refinement of the occupancy rates of Cl3A = Cl4A / Cl3B = Cl4B 

leads to (0.631 / 0.369) at the atomic positions. Similarly, the methyl C30 is split into C30A 

and C30B, and the refinement of the occupancy rates of C30A / C30B led to (0.786 / 0.214) at 

the atomic positions.  

 
Figure 5. Crystal structure of compound (4), with the atom-labeling scheme. Displacement ellipsoids are drawn 

at the 30% probability level. H atoms are represented as small circles. 
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Furthermore, the six-membered rings in the first and second molecules display 

envelope configurations, with C1 and C17 atoms as a flap, respectively. At the same time, the 

seven-membered ring adopts a boat configuration in both molecules. Moreover, the dihedral 

angles between the three-membered cycles and the mean planes through the six-membered 

rings are 88.1(2)° and 86.0(4)° in the first and second molecules. In the crystal, molecules are 

linked together via N--H…O hydrogen bonds to build chains running along the a-axis. 

Moreover, two intramolecular C--H...Cl hydrogen bonds are also observed in the second 

molecule. The three-dimensional network of the crystal structure is shown in Figure 6. Owing 

to the presence of Cl atoms, the absolute configuration of compound 4 (Scheme 1) was found 

to be C1(S), C3(R), and C8(R) (Figure 5). Indeed, the structure of product (4) was confirmed 

as (1S,3R,8R)-11-Amino-2,2-Dichloro-3,7,7,10-tetramethyltricyclo [6.4.0.01,3] dodec-10-en-

9-one. 

 
Figure 6. Three-dimensional view of the crystal structure showing the molecules linked through hydrogen 

bonds as dashed cyan lines. 

 
Figure 7. dnorm mapped on the Hirshfeld surfaces for visualizing the intermolecular contacts for the compound 

4. 
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3.3. Hirshfeld surface analysis for compounds 4.  

The Hirshfeld surface analysis provides 3D presentations of intermolecular interactions 

between different units in the crystal packing motifs. The Hirshfeld surface analysis was carried 

out for the title compound, and the results show the presence of two red regions indicating the 

interaction that involved hydrogen bonding (Figure 7). The red spot is apparent around the 

oxygen atom participating in the C-O···H contacts and around the hydrogen atom participating 

in the N-H···O contacts, with a distance equal 2.03 Å (Table 2). These results are comparable 

with our finding for the regioselective synthesis of (1S,3R,8R)-11-amino-2,2-dichloro-

3,7,7,10-tetramethyltricyclo[6.4.0.01,3]dodec-10-en-9-one in which hydrogen bonding N-

H···O is 2.00 Å and  D-H…A angle is 159° [83]. 

Table 2. Hydrogen-bond geometry (Å,°) for compound (4). 

D—H···A D—H H···A D···A D—H···A 

C24—H24···Cl3B 0.98 2.48 3.144 (11) 125 

C28—H28A···Cl4A 0.97 2.36 2.95 (2) 119 

N1—H1B···O1i 0.86 2.03 2.831 (4) 155 

N2—H2B···O2i 0.86 2.03 2.808 (5) 151 

Further, the 2D-fingerprint plots were investigated to determine the nature and the 

relative contribution interactions leading to the formation of crystal units (Figure 8). The results 

show that the significant intermolecular interactions in compound (4) are found for H-H 

contacts with contributions of 60.3%. The Cl-H/H-Cl contacts are the second-largest 

contribution to the Hirshfeld surface in both cases with 27.7%, and the O-H/H-O contacts 

contribute 9.1%. Besides, this analysis shows the presence of intermolecular C-H and N-H 

interactions, respectively. 

3.4. Optimized molecular structure of compound 4. 

The optimized geometry of compound 4 (Scheme 1) was performed using DFT at 

B3LYP/6-311G+(d,p) level, see Figure 9. Selected geometrical parameters were presented in 

Table 3 and (Table S1 in Electronic supplementary material). The obtained results in XRD and 

DFT geometry optimization are almost identical, with deviations between the crystalline and 

X-ray crystallography structures due to differences in the molecular environment [84]. In 

crystalline structure, the O3-C16, N4-C39, Cl1-C22, and Cl2-C22 bond lengths are 1.235, 

1.340, 1.762, and 1.762 Å, whereas, in DFT structure, the calculated values are 1.225, 1.375, 

1.800, and 1.789Å, respectively. Similarly, the angle values O3-C16-C17 (122.3/122.84), N4-

C39-C17 (121.1/120.99), and Cl2-C22-Cl1 (108.02/108.12) computed from the X-ray 

crystallography/DFT are in close agreement (See Figure S1 in Electronic supplementary 

material). 

3.6. NBO analysis.  

Natural bond orbital (NBO) analysis was performed to understand the origin of the 

intermolecular charge transfer process between electron-donors and electron-acceptors. The 

hyper conjugative interaction energies were deduced from the second-order perturbation theory 

analysis of the Fock matrix in the NBO method [85–87]. 
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Figure 8. Two-dimensional fingerprint plots for (4). 

 
Figure 9. Optimized geometry of product (4) at B3LYP/6-311+G(d,p) level. 

For each donor (i) and acceptor (j), the stabilization energy E(2) associated with 

delocalization i/j is calculated as: 
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𝐸(2) = 𝛥𝐸𝑖𝑗 = 𝑞𝑖
(𝐹𝑖𝑗)2

(𝐸𝑗 − 𝐸𝑖)
 

The NBO calculations were performed at the B3LYP/6-311+G(d,p) level, and Table 3 

shows the essential donor-acceptor interactions with the highest values of E(2).  

Based on the E(2)  values reported in Table 3, the electron transfers from one-center 

lone pair (LP) valance NBO orbitals interactions  as  LP N4 →*(C17-C39),  LP O3 → 

*(C13-C16), LP O3 → *(C16-C17), LP Cl2 → *(Cl1-C22) and  LP Cl1 → *(Cl2-C22), 

with stabilization energies 36.22, 19.83, 17.01, 8.22 and 7.64 kcal/mol, respectively. On the 

other hand, NBO analysis detected the most probable intermolecular interaction between the 

binding and anti-adhesion orbitals as π(C17-C39) → π*(O3-C16), (C11-C12) → *(Cl1-

C22), (C12-C22) → *(C11-C22), (C11-C22) → *(C12-C22), (C11-C12) → *(Cl2-

C22), (C13-H14) → π*(O3-C16), (C7-H10) → *(C11-C12), π(O3-C16) → π*(C17-C39) 

), with stabilization energies 26.29, 9.25, 7.01, 6.75, 6.56, 5.51, 5.29 and 5.21 kcal/mol, 

respectively. All these findings demonstrate that, NH2 participates an electron-donating group 

whereas the C=O as an accepting group.  

Table 3. Second-order perturbation theory analysis of Fock matrix in NBO basis for compounds (4) and 

numbering is according to Figure 9. 

Donor (i) Occupancy Acceptor (j) Occupancy E(2) (kcal/mol) E(j)-E(i) 

(a.u.) 

F(i.j) 

(a.u.) 

π(O3-C16) 1.974 π*(C17-C39) 0.24527 5.21 0.40 0.043 

s(N4-H5) 1.986 s*(C37-C39) 0.03025 4.48 1.07 0.062 

s(N4-H6) 1.986 s*(C17-C39) 0.02703 3.44 1.30 0.060 

s(C7-H8) 1.982 s*(C11-C22) 0.07911 4.77 0.82 0.057 

s(C7-H9) 1.988 s*(C11-C23) 0.03007 3.63 0.89 0.051 

s(C7-H10) 1.982 s*(C11-C12) 0.05592 5.29 0.82 0.059 

s(C11-C12) 1.912 s*(Cl1-C22) 0.08351 9.25 0.62 0.068   
s*(Cl2-C22) 0.07058 6.56 0.64 0.058   
s*(C11-C22) 0.07911 3.88 0.85 0.051   
s*(C12-C22) 0.08180 4.16 0.84 0.053 

s(C11-C22) 1.951 s*(C11-C12) 0.05592 3.81 0.91 0.053   
s*(C12-C13) 0.03100 4.82 0.99 0.062   
s*(C12-C22) 0.08180 6.75 0.89 0.070   
s*(C12-C37) 0.03426 4.14 0.97 0.057 

s(C12-C22) 1.948 s*(C7-C11) 0.02511 4.98 0.97 0.062   
s*(C11-C12) 0.05592 3.94 0.90 0.053   
s*(C11-C22) 0.07911 7.01 0.90 0.071   
s*(C11-C23) 0.03007 3.91 0.97 0.055 

s(C13-H14) 1.957 π*(O3-C16) 0.22223 5.51 0.53 0.051   
s*(C12-C22) 0.08180 4.74 0.79 0.055 

s(C13-H15) 1.971 s*(C12-C37) 0.03426 4.06 0.88 0.053 

s(C16-C17) 1.972 s*(N4-C39) 0.02135 4.93 1.10 0.066 

s(C17-C18) 1.977 s*(C37-C39) 0.03025 5.16 1.02 0.065 

π(C17-C39) 1.796 π*(O3-C16) 0.22223 26.29 0.30 0.080 

s(C18-H20) 1.986 s*(C17-C39) 0.02703 4.74 1.12 0.065 

s(C23-H24) 1.975 s*(C11-C12) 0.05592 4.49 0.81 0.054 

s(C23-H25) 1.977 s*(C7-C11) 0.02511 3.80 0.88 0.052 

s(C26-H28) 1.977 s*(C29-C32) 0.02894 3.92 0.86 0.052 

s(C29-H30) 1.976 s*(C32-C40) 0.02117 3.79 0.86 0.051 

s(C29-H31) 1.974 s*(C23-C26) 0.01599 3.61 0.86 0.050   
s*(C32-C37) 0.04840 4.45 0.82 0.054 

s(C33-H34) 1.986 s*(C32-C37) 0.04840 4.46 0.82 0.055 

s(C33-H35) 1.987 s*(C29-C32) 0.02894 3.19 0.86 0.047 

s(C33-H36) 1.987 s*(C32-C40) 0.02117 3.43 0.86 0.049 

s(C37-H38) 1.965 s*(C12-C13) 0.03100 4.01 0.90 0.054   
s*(C17-C39) 0.02703 3.07 1.14 0.053 

s(C37-C39) 1.963 s*(C11-C12) 0.05592 3.05 0.95 0.048   
s*(C17-C18) 0.01799 3.60 1.06 0.055 
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Donor (i) Occupancy Acceptor (j) Occupancy E(2) (kcal/mol) E(j)-E(i) 

(a.u.) 

F(i.j) 

(a.u.)   
s*(C17-C39) 0.02703 3.31 1.26 0.058 

s(C40-H41) 1.986 s*(C32-C37) 0.04840 3.86 0.83 0.051 

s(C40-H42) 1.988 s*(C32-C33) 0.01976 3.33 0.88 0.048 

s(C40-H43) 1.988 s*(C29-C32) 0.02894 3.33 0.87 0.048 

LP Cl1 
 

s*(C11-C22) 0.07911 3.90 0.64 0.045 

 
 

s*(C12-C22) 0.08180 3.66 0.62 0.043 

 
 

s*(Cl2-C22) 0.07058 7.64 0.43 0.051 

LP Cl2 
 

s*(C11-C22) 0.07911 4.14 0.63 0.046 

 
 

s*(C12-C22) 0.08180 3.75 0.62 0.043 

 
 

s*(Cl1-C22) 0.08351 8.22 0.41 0.052 

LP O3 
 

s*(C13-C16) 0.06125 19.83 0.64 0.102   
s*(C16-C17) 0.06087 17.01 0.75 0.102 

LP N4 
 

s*(C17-C39) 0.02703 36.22 0.35 0.100 

3.7. Hyperpolarizability calculations.  

Synthetic or natural materials' non-linear optical (NLO) proprieties have got great 

attention due to their rapid response in electro-optic effect and their potentially high 

nonlinearities. NLO is a crucial function of optical logic, optical modulation, frequency 

shifting, optical switching, and optical memory for the emerging technologies, and the optical 

nonlinearity of materials can be amplified either by conjugated bonds or by binding of electron 

donor and acceptor groups presented in their structures [88–90]. Moreover, the DFT method 

has been widely used as an efficient method to investigate the NLO materials [60,61]. 

Hyperpolarizability is very sensitive to the basis sets and level of the theoretical approach 

employed [91, 92], so the electron correlation can change the value of hyperpolarizability.  

The computed hyperpolarizability and dipole moment values obtained from B3LYP/6-

311+G(d,p) methods are summarized in Table 4. The first order hyperpolarizability (β total) of 

4 with B3LYP/6-311+G(d,p) basis set is 1.906x10-30, three times greater than the value of urea 

(βtot= 0.620x10-30 esu).  

Table 4. The values of calculated dipole moment µ(D), polarizability (α0), first-order hyperpolarizability (βtot) 

components of 4 and urea. 

Parameters Compound 4 Urea Parameters Compound 4 Urea 

µx 0.188 -0.0004 βxxx 49.978 0.002 

µy 2.380 -1.529 βxxy 0.824 39.991 

µz 0.985 -0.002 βxyy 34.540 -0.008 

µ 6.564 3.885 βyyy 103.716 -79.123 

αxx 194.611 37.201 βzxx 26.922 -0.014 

αxy 5.280 0.001 βxyz 53.665 1.427 

αyy 203.170 39.680 βzyy 40.998 -0.008 

αxz -2.678 0.281 βxzz 128.987 -0.003 

αyz 14.517 0.0002 βyzz -52.943 -32.687 

αzz 185.741 24.527 βzzz -88.983 -0.016 

α0(e,s,u)10-23 0.277 0.209 βtot (e,s,u) 10-30 1.906 0.620 

α(e,s,u)10-23 2.883 0.501 

The results indicate the high values of the hyperpolarizabilities of the title molecule are 

probably attributed to the charge transfer existing amide the benzene rings within the molecular 

skeleton (Figure 9). This is evidence of the non-linear optical (NLO) property of the molecule. 

3.8. Molecular docking. 

The 3D interacting site of ligands within the binding site of both proteins is figured in 

Figure 10, and Hydrogen bond interactions for compound 4 with both proteins are shown in 

Figure 11. Cytochrome P450 3A4 has one hydrogen bond attractor formed between N and 
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TYR124 at a distance of 2.73 Å. The molecular docking Score of the title compounds is -6.64 

kcal/mol (Table 5). Acetylcholinesterase has one hydrogen bond donor formed between O and 

THR309 TYR124 at a distance of 1.90 Å. The molecular docking Score of the title compounds 

is -5.69 kcal/mol. It clearly shows that the synthesized compounds inhibit both of the two 

proteins. 

 
Figure 10. The compound 4 in the binding site of (A) Cytochrome P450 3A4 and (B) Acetylcholinesterase. 

Table 5. The binding affinity of compound 4 with the Acetylcholinesterase and Cytochrome P450 3A4. 

Protein  PDB CODE Docking Score MM/GBSA 

Acetylcholinesterase 4ey7 -6,64 -7,301 

Cytochrome P450 3A4 3nxu -5,69 -7.30 

 
Figure 11. 3D structure of molecule 4 interacting with (A) Cytochrome P450 3A4, (B) Acetylcholinesterase. 

4. Conclusions 

A new himachalene derivative (1S,3R,8R)-11-amino-2,2-dichloro-3,7,7,10-

tetramethyltricyclo[6.4.0.01,3]dodec-10-en-9-one (4) was synthesized and characterized by 

different techniques such as 1D NMR (1H, 13C NMR, and DEPT), 2D NMR (HSQC, COSY, 

HMBC, and NOESY), FTIR spectra and X-ray structure determination. The single-crystal 

analysis shows that the product crystallizes in the monoclinic system with the P2/c space group. 

The optimized geometrical parameters (bond lengths, bond angles) within the DFT method 

were compared with experimental values, and a good agreement was achieved. NBO analysis 
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confirms that NH2 participate as an electron-donating group, whereas C=O is an accepting 

group. The present study implies that the title compound can be used in the non-linear optical 

materials because βtot of the title compound is around the 3 times greater than the urea. The 

binding affinities of this molecule to bind with Acetylcholinesterase and Cytochrome P450 

3A4 were confirmed by Molecular docking, which showed the power linking of the molecule 

to these two proteins by scores calculation. These results are promising for studying a series of 

β-amino-α, β-unsaturated ketone (enantiomerically pure) syntheses from himachalenes. 
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Supplementary material 

1. Experimental and theoretical geometric parameters for compound 4 

Table S1. Some selected experimental and theoretical geometric parameters for compound 4 (Å, °). 

Geometric Parameters 
Experimental  

values 

DFT  

values 

Bond (Å)   

Cl1—C22 1.762 (3) 1.800 

Cl2—C22 1.762 (3) 1.789 

O3—C16 1.235 (4) 1.225 

N4—C39 1.340 (4) 1.375 

C11—C23 1.512 (5) 1.527 

C11—C7 1.515 (5) 1.521 

C11—C22 1.513 (4) 1.512 

C11—C12 1.531 (5) 1.546 

C12—C22 1.505 (5) 1.521 

C12—C13 1.513 (4) 1.518 

C12—C37 1.525 (4) 1.534 

C37—C39 1.512 (4) 1.518 

C37—C32 1.587 (4) 1.598 

C32—C33 1.530 (5) 1.542 

C32—C40 1.526 (5) 1.543 

C32—C29 1.553 (5) 1.552 

C17—C18 1.509 (5) 1.507 

C17—C39 1.375 (4) 1.365 

C16—C17 1.424 (5) 1.456 

C29—C26 1.517 (6) 1.539 

C26—C23 1.543 (6) 1.544 

C13—C16 1.503 (5) 1.529 

Bond angles (º)   

C23—C11—C7 113.2 (3) 112.44 

C23—C11—C22 119.2 (3) 119.26 

C23—C11—C12 116.1 (3) 116.46 

C22—C12—C13 118.6 (3) 118.93 

C22—C12—C37 117.5 (2) 117.80 

C13—C12—C37 112.2 (3) 112.49 

C22—C12—C11 59.8 (2) 59.07 

C39—C37—C12 108.5 (2) 108.96 

C29—C32—C37 110.9 (3) 111.29 

C11—C22—Cl1 121.1 (2) 120.88 

Cl2—C22—Cl1 108.02 (17) 108.12 

C16—C13—C12 114.0 (3) 114.06 

O3—C16—C17 122.3 (4) 122.84 

O3—C16—C13 117.5 (3) 118.55 

C17—C16—C13 120.1 (3) 118.60 

N4—C39—C17 121.1 (3) 120.99 

N4—C39—C37 115.4 (2) 114.88 

C17—C39—C37 123.5 (3) 124.04 

C39—C17—C16 119.7 (3) 120.34 

C39—C17—C18 121.2 (3) 121.53 

C16—C17—C18 119.1 (3) 118.12 

Torsion (°)   

C23—C11—C12—C22 -109.9 (3) -109.95 

C22—C12—C37—C39 -90.6 (3) -92.41 

C11—C12—C37—C32 72.5 (3) 70.35 

C12—C37—C39—N4 150.0 (3) 153.46 

C32—C37—C39—N4 -82.0 (3) -76.49 

N4—C39—C17—C16 -179.7 (3) -177.14 

N4—C39—C17—C18 0.5 (5) 1.48 

C37—C39—C17—C18 -177.4 (3) -178.06 
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Geometric Parameters 
Experimental  

values 

DFT  

values 

C29—C26—C23—C11 36.1 (5) 36.66 

C13—C12—C22—Cl2 2.4 (4) 1.58 

C13—C12—C22—Cl1 -137.0 (3) -138.34 

C23—C11—C22—Cl2 -145.7 (3) -144.71 

C23—C11—C22—Cl1 6.0 (5) -5.76 

C39—C17—C16—O3 -174.6 (3) -173.49 

 

Figure S1. Correlation between experimental and theoretical geometric parameters for compound 4 (Å, °). 

2. NLO calculations 

Their electronic energy sensitivity to an external electric field Fi is expressed as 

follows: 

𝐸 = 𝐸° − µ
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where Eo is the electronic energy of the unperturbed molecule, Fi is the external field 

at the origin, µi, αij and βijk are the components of dipole moment, polarizability and first order 

hyperpolarizability respectively. The total static dipole moment µ, the mean polarizability α0, 

the anisotropy of the polarizability α and the mean first order hyperpolarizability βtot, using the 

x, y and z components are defined as: 

Dipole moment                                         µ=( µ𝒙
𝟐 + µ𝒚

𝟐  +  µ𝒛
𝟐)𝟏/𝟐                                                        

Static Polarizability                                      𝛼0 = (𝛼𝑥𝑥 + 𝛼𝑦𝑦 + 𝛼𝑧𝑧)/3                                                  

Total Polarizability  

                            𝛼 = 2−1/2[(𝛼𝑥𝑥 − 𝛼𝑦𝑦)2 + (𝛼𝑦𝑦 − 𝛼𝑧𝑧)2 + (𝛼𝑧𝑧 − 𝛼𝑥𝑥)2 + 6𝛼𝑋𝑦
2 + 6𝛼𝑋𝑍

2 + 6𝛼𝑦𝑍
2 ]

1/2
   

First order Polarizability 

βtot=[(β𝑥𝑥𝑥 +  β𝑥𝑦𝑦 +  β𝑥𝑧𝑧)
2

+ ( β𝑦𝑦𝑦 +  β𝑦𝑧𝑧 +  β𝑦𝑥𝑥)
2

+ ( β𝑧𝑧𝑧 +  β𝑧𝑥𝑥 +  β𝑧𝑦𝑦)2]
1/2

 

The calculations of the total molecular dipole moment (µ), linear polarizability (α) and first-

order hyperpolarizability (β) from the Gaussian output have been explained in detail 

previously.  

 

Figure S2. HMBC Spectrum of product 4. 
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Figure S3. COSY Spectrum of product 4. 
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