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Abstract: Financial distress prediction is crucial in the financial domain because of its implications
for banks, businesses, and corporations. Serious financial losses may occur because of poor financial
distress prediction. As a result, significant efforts have been made to develop prediction models
that can assist decision-makers to anticipate events before they occur and avoid bankruptcy, thereby
helping to improve the quality of such tasks. Because of the usual highly imbalanced distribution
of data, financial distress prediction is a challenging task. Hence, a wide range of methods and
algorithms have been developed over recent decades to address the classification of imbalanced
datasets. Metaheuristic optimization-based artificial neural networks have shown exciting results in a
variety of applications, as well as classification problems. However, less consideration has been paid to
using a cost sensitivity fitness function in metaheuristic optimization-based artificial neural networks
to solve the financial distress prediction problem. In this work, we propose ENS_PSONNcost and
ENS_CSONNcost: metaheuristic optimization-based artificial neural networks that utilize a particle
swarm optimizer and a competitive swarm optimizer and five cost sensitivity fitness functions as
the base learners in a majority voting ensemble learning paradigm. Three extremely imbalanced
datasets from Spanish, Taiwanese, and Polish companies were considered to avoid dataset bias.
The results showed significant improvements in the g-mean (the geometric mean of sensitivity and
specificity) metric and the F1 score (the harmonic mean of precision and sensitivity) while maintaining
adequately high accuracy.

Keywords: financial distress; cost-sensitive; ensemble learning; imbalanced classification; metaheuristic;
neural networks

1. Introduction

The phrases bankruptcy and insolvency are frequently used interchangeably in the
literature [1]. Bankruptcy is a legal financial procedure in which an individual or an
organization declares that they are unable to pay their obligations. As an outcome of this
legal position, the debtor’s assets are liquidated to repay some of their debts, while the
remainder of their debts are ignored [2]. Insolvency is defined as the failure to pay or the
scenario in which a corporation, another legal entity or an individual cannot meet their
financial commitments by the maturity date [1]. Hence, financial distress (i.e., bankruptcy
or insolvency) prediction is a critical tool within the financial industry that serves as an aid
for making appropriate business decisions [3]. The successful forecasting of this challenge
provides a broader view of the business’s health and assists decision-makers in anticipating
occurrences before they happen.

As a result, there has been a significant effort in the literature to construct statistics-
and artificial intelligence-based models that can accurately estimate a company’s financial
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state. In general, the previous evaluations of the company’s condition, whether it has had
financial distress or not, are examined as a binary classification problem from a machine
learning perspective.

The challenge in dealing with financial distress datasets is that they are highly imbal-
anced. When there are significantly more samples from one class than other classes, the
dataset is said to be imbalanced. Due to the effects of the majority class on the traditional
training criteria, classifiers may have a high accuracy for the majority class but an extremely
low accuracy for the minority class(es). The goal of most original classification algorithms
is to reduce the error rate or the percentage of erroneous class label predictions [4].

There are two primary techniques for dealing with imbalanced datasets: at the
data level, by resizing the training datasets (undersampling or oversampling), and at
the algorithmic level, by using cost-sensitive classifiers [4]. In this work, we evaluated
the algorithmic-level approach using a metaheuristic optimization-based artificial neural
network (MHOANN) as our classifier, which was based on a particle swarm optimizer
(PSO) [5] and a competitive swarm optimizer (CSO) [6] with a cost sensitivity fitness func-
tion. We then improved the capabilities of our model using homogeneous majority voting
ensemble learning.

Evolutionary neural networks (ENNs) [7–12] are a subset of neural networks (NNs) in
which evolution is a key type of adaptation, in addition to learning. Connection weight
training, architectural design, learning rule adaption, input feature selection, connection
weight initialization, rule extraction from NNs, and other activities are performed using
evolutionary algorithms (EAs) [13].

MHOANNs are a subset of artificial neural networks (ANNs) in which the selection of
weights and biases is performed using metaheuristic optimization algorithms [14]. Inspired
by the collective behavior of social animals, swarm-based algorithms have been developed
into a strong family of optimization approaches. The collection of potential solutions to the
optimization issue is characterized in a PSO as a swarm of particles that flow across the
parameter space, establishing trajectories that are driven by their own and their neighbors’
best performances [15]. On the other hand, a CSO is a recent variation of a PSO in which a
pairwise competition mechanism is implemented that causes the losing particle to learn
from the winner and update its location [6].

This paper proposes using a cost-sensitive MHOANN to improve the prediction of
minor classes in a financial distress dataset and then applying majority voting ensemble
learning to create a strong learner out of several weak learners. The cost-sensitive compo-
nent is used to improve the prediction of the minority classes, whereas the majority voting
attempts to mitigate the negative influences of cost on the prediction of the majority class.
Applying a cost sensitivity fitness function in an ensemble learning paradigm is different
from existing cost-sensitive methods because it reduces the effects of the bias toward the
minority classes, which is caused by the costs that are associated with the misclassification
of minor class instances in the classical cost-sensitive methods. Moreover, the evolutionary
nature of the utilized metaheuristic algorithms provides the accuracy and diversity that
are required by ensemble learning to achieve a high prediction capability that exceeds the
prediction capability of a single learner. The reason for selecting a PSO and a CSO as the
optimization techniques in this work was that, compared to other metaheuristic algorithms,
a PSO requires a small number of parameters and a correspondingly lower number of
iterations [16]. On the other hand, a CSO is a relatively recent variation of a PSO that was
designed to be used for large-scale optimization problems because half of the population is
updated during each iteration [17].

To validate this, we used three different datasets from Spanish, Taiwanese, and Pol-
ish companies to evaluate the proposed method. The dataset of Spanish companies was
considered very challenging, owing to its highly imbalanced distribution in which insol-
vency cases only formed 2% of the whole sample. In the datasets of Taiwanese compa-
nies and Polish companies, insolvency cases formed approximately 3% and 2% of the
samples, respectively.
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When applying the cost sensitivity fitness function, we noticed a significant improve-
ment in the number of true positive (TP) predictions but an increase in the number of false
positive (FP) predictions. To overcome this problem, we used majority voting ensemble
learning to maintain the high TP prediction rate and reduce the number of FP predictions.
This work proposes a framework for solving financial distress prediction problems for
extremely imbalanced datasets. The framework uses a cost sensitivity fitness function to
reduce the number of FN predictions. Moreover, it relies on ensemble learning to compen-
sate for the faults of individual learners and reduce the number of FP predictions. All of
the steps in the framework are internal and do not affect the data; hence, it can be a helpful
tool in financial distress prediction. To the best of our knowledge, our work is the first to
combine a cost-sensitive MHOANN with majority voting ensemble learning for financial
distress prediction. Another contribution of this work is the comparison of a PSO and CSO
as optimization techniques for the MHOANN.

The remainder of this paper is organized as follows. In the following section, we
review the related works. Then, in Section 3, we explain the optimization algorithms
that were used in our study. In Section 4, we describe the considered datasets. Section 5
describes the proposed method and in Section 6, we describe the evaluation metrics that
were used. The experiments that were conducted and the obtained results are explained in
Section 7. Finally, the conclusions and future work are discussed in Section 8.

2. Related Works

In the literature, much research has been conducted on examining the problem of
imbalanced datasets using a variety of methods and approaches in different combinations.
For example, a modified version of a support vector machine (SVM) that was based on
density weight was proposed in [18] to tackle the binary class imbalance classification
problem. Experimental analyses were performed on certain intriguing imbalanced artificial
and real-world datasets and their performances were measured using the metrics of the
area under the curve and the geometric mean. The results were compared to those from
an SVM, a least squares SVM, a fuzzy SVM, an improved fuzzy least squares SVM, a
fuzzy SVM that was based on affinity and class probability, and an entropy-based fuzzy
least squares SVM. The similar or better generalization results indicated the efficacy and
applicability of the proposed algorithms. Deep learning (DL) methods have also been
considered to overcome the class imbalance challenge. In [19], the authors presented a
novel comparison between three different DL methods: a deep belief network (DBN),
long-short term memory (LSTM), and a multilayer perceptron model (MLP). They also
compared five ensemble classifiers financial distress prediction: XGBoost, SVM, K-nearest
neighbor (KNN), and AdaBoost. A new selective oversampling approach (SOA) that uses
an outlier identification technique to separate the most representative samples from the
minority classes and then uses these samples for synthetic oversampling was proposed
in [20]. Their experiments demonstrated that the suggested method outperformed two
state-of-the-art oversampling strategies: synthetic minority oversampling and adaptive
synthetic sampling.

Moreover, using cost-sensitive learning to solve the imbalanced classification problem
has also been very popular in the literature. Robust cost-sensitive classifiers have been con-
structed by changing the objective functions of well-known algorithms, including logistic
regression, decision trees, extreme gradient boosting, and random forests, which can then
be then utilized to predict medical diagnoses effectively, as proposed in [21]. Furthermore,
the cost-sensitive approaches outperformed the standard algorithms, according to the find-
ings of those experiments. In another study, the authors used decision trees as a boosting
method to improve business failure prediction performance. A weighted objective function,
weighted cross-entropy, was incorporated into the boosted tree architecture to overcome
the class imbalance issue in the business failure datasets, making the weighted XGBoost a
cost-sensitive business failure prediction model [22].

Furthermore, using evolutionary algorithms to train artificial neural networks (ANNs)
has been very popular since the 1980s. The use of the genetic algorithm (GA) to train an
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ANN for image classification was discussed in [23]. Additionally, using metaheuristic
algorithms to train ANNs to manage the disadvantages of gradient-based methods, partic-
ularly backpropagation techniques, has also been extensively researched. During the early
2000s, numerous studies focused on the use of metaheuristic algorithms in neural network
training for binary classification tasks, such as financial distress prediction. Metaheuristic
approaches were proven to perform better than gradient-based algorithms in [24]. The
effects of fitness functions on MHOANN learning when dealing with imbalanced datasets
was also discussed in [25]. A PSO algorithm was used to optimize the weights and biases
in a neural network architecture to predict bankruptcy among Indian firms in [26]. An
artificial neural network that was trained by a metaheuristic artificial bee colony (ABC)
algorithm was proposed in [27]. The model was used for corporate bankruptcy prediction
and then the proposed method was compared to the multiple discriminant analysis (MDA)
model and an ANN that was trained by the most common learning algorithm (backprop-
agation (BPNN)). Their experimental results showed that the ABC algorithm could be
used as an optimization algorithm for artificial neural networks to predict potential corpo-
rate bankruptcy. In another study, the authors conducted a comprehensive benchmark of
15 population-based optimization algorithms that were used to train ANNs. Their obtained
experimental results using a challenging set of eight classification problems showed that
the PSO yielded the best performance out of the other population-based metaheuristic
algorithms [28].

On the other hand, ensemble classifiers have been effectively employed in credit
scoring and the forecasting of company insolvency in recent years. For example, a cost-
sensitive neural network ensemble for credit scoring was proposed in [29]. The suggested
method outperformed the benchmark individual and ensemble methods, as evidenced
by the comparative results. In another study, an ensemble classifier-based scoring model
for the early prediction of the risk of bankruptcy among Polish businesses was proposed
in [30]. Their results proved that using ensemble classifiers could be very powerful for
foreseeing bankruptcy. Additionally, an ensemble classifier for classifying binary, non-
stationary, and imbalanced data streams in which the Hellinger distance was used to
prune the ensemble was implemented in [31]. The Hellinger distance weighted ensemble
approach was thoroughly tested using many imbalanced data streams and the results
proved the usefulness of the method.

MHOANN, cost-sensitive learning, and ensemble learning have shown promising
results for classification problems. However, little attention has been paid to the effects
of combining the cost sensitivity fitness function within an MHOANN with ensemble
learning for financial distress prediction.

3. Background

Optimization algorithms are methods that are used to update the weights and biases
in an ANN to overcome the disadvantages of conventional training algorithms. This work
utilized state-of-the-art PSO and CSO (a recent variant of a PSO) metaheuristic algorithms
as optimization techniques for our ANN.

3.1. Particle Swarm Optimization (PSO)

This population-based optimization technique was inspired by the movement of
flocks of birds and schools of fish. It uses social interactions to find the best solutions. The
swarm is randomly initialized with a population of solutions that are called particles (or
agents). The search for the optimal solution is repeated in iterations, during which these
particles move around the search space according to a mathematical formula that governs
the position and velocity of the particles. The motion of each particle is affected by the
best solution that has been achieved so far by that particular particle and is guided to the
known best positions within the search space, which are adjusted when better positions are
discovered by other particles in the swarm. Hence, the swarm moves toward the optimal
solution [15].
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In this study, the velocity was modeled mathematically, as stated in Equation (1),
where vid(t) is the velocity of the particle i in dimension d = 1, . . . , np at time step t, w
is the inertia weight, r1 and r2 are random values ∈ [0, 1] from a uniform distribution, c1
and c2 are positive acceleration constants, pid(t) is the best position that the particle i has
visited since the first time step with d dimensions at time t, and gd(t) is the best global
particle position. The position was also modeled mathematically, as stated in Equation (2),
where xid(t) is the position of the particle and vid(t + 1) is the velocity of the particle i in
dimension d at time step t + 1 [32].

vid(t + 1) = w . vid

+ r1c1 . [pid(t)− xid(t)]

+ r2c2 . [gd(t)− xid(t)]

(1)

xid(t + 1) = xid(t) + vid(t + 1) (2)

3.2. Competitive Swarm Optimizer (CSO)

This is a method that is based on a PSO but is significantly different. In a CSO, neither
the particle’s personal best position nor the global best position (or the neighborhood best
positions) is used to update the particles. Instead, a pairwise competition mechanism is
implemented in which the losing particle learns from the winner and updates its location.
Despite its algorithmic simplicity, CSOs outperform the latest metaheuristic algorithms in
terms of overall performance [6].

In our CSO, we had P(t), which comprised a swarm of m particles, where m is
the size of the swarm and t is the index of the generation. Each particle represented a
candidate solution for the optimization problem. The CSO compared two particles that
were randomly picked from P(t) in each generation until all particles had competed in at
least one competition, providing that the swarm size was an even number. The comparison
was made by calculating the fitness of each particle. The particle with the better fitness
was considered the winner and was passed directly to the next generation P(t + 1), while
the particle that lost the competition was passed to the next generation after learning from
the winner. The velocity of the losing particle was updated using Equation (3), where,
xw,i(t) is the position of the winning particle in the i-th round of competition in generation
t, xl,i(t) is the position of the losing particle in the i-th round of competition in generation t,
vw,i(t) is the velocity of the winning particle in the i-th round of competition in generation
t, vl,i(t) is the velocity of the losing particle in the i-th round of competition in generation
t, i = 1, 2, . . . , m/2, m is the population size, r1(i, t), r2(i, t) and r3(i, t) ∈ [0, 1] are three
vectors that were randomly generated after the i-th competition and learning process in
generation t, x̄(t) is the mean position value of all particles (which can be regarded as the
center of the swarm in generation t), and ϕ is the parameter that controlled the influences
or effects of x̄(t). Then, the position of the losing particle was updated using the newly
calculated velocity, according to Equation (4) [6].

vl,i(t + 1) = r1(i, t)vl,i(t)

+ r2(i, t)(xw,i(t)− xl,i(t))

+ ϕ r3(i, t)(x̄(t)− xl,i(t))

(3)

xl,i(t + 1) = xl,i(t) + vl,i(t + 1) (4)

4. The Considered Datasets

As previously indicated, three different datasets were selected to verify the effec-
tiveness of the proposed method. While the independent variables and the number of
independent variables varied per dataset, forecasting the financial distress of companies
was treated as a classification problem in this work and the effectiveness of the proposed
method was validated separately for each dataset. The following is a brief description of
each dataset.
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4.1. Dataset of Spanish Companies

This dataset was for Spanish companies, from which we considered several financial
and non-financial features. We considered the dependent variable of bankruptcy as the
class for each record or sample and we aimed to classify the instances according to class.
The dependent variable was insolvency, which corresponded to the existence of continued
losses over three years [33].

This dataset was extracted from the Infotel database (which was bought from http:
//infotel.es, accessed on 1 May 2017). As a result, we had data from 470 businesses that
were gathered over six years (from 1998 to 2003). There were 2860 samples in all, with
62 corresponding to insolvent companies, meaning that insolvency cases only formed 2%
of the whole sample.

Initially, each row of the dataset had 37 independent variables and 1 dependent
variable (bankruptcy). A prior effort by the authors in [33] changed this list by removing
unnecessary variables (i.e., those without significance, for instance, internal database firm
codes), resulting in 33 independent variables. So, every record in the dataset that was
used in this work had 33 features, which comprised a mix of financial indicators and
non-financial indicators. Each feature had either a qualitative (categorical) or a quantitative
(numerical) value. Table 1 shows the independent variables after removing the unnecessary
variables, as well as their type and description. The size of the firm, the kind of company,
provincial code (i.e., where the company is situated), and the auditor’s judgments were
among the non-financial data that had categorical value. Usually, the size of the firm is
a number, but in this dataset, it was either small, medium or large, based on the size of
the company. Moreover, in this work, we used all 33 features without applying feature
selection because, as pointed out by [34], adding a feature selection step would not improve
the results.

Table 1. The independent variables of the dataset of Spanish companies (financial and non-financial).

Financial Variables Description Type

Debt Structure Long-term Liabilities/Current Liabilities Real
Debt Amount Interest Amount/Total Liabilities Real

Debt-Paying Ability Operating Cash Flow/Total Liabilities Real
Debt Ratio Total Assets/Total Liabilities Real

Working Capital Working Capital/Total Assets Real
Warranty Financial Warranties Real

Operating Income Margin Operating Income/Net Sales Real

Returns on Operating Assets Operating Income/Average Operating
Assets Real

Returns on Equity Net Income/Average Total Equity Real
Returns on Assets Net Income/Average Total Assets Real

Stock Turnover Cost of Sales/Average Inventory Real
Asset Turnover Net Sales/Average Total Assets Real

Receivables Turnover Net Sales/Average Receivables Real
Asset Rotation Asset Allocation Decisions Real

Financial Solvency Current Assets/Current Liabilities Real

Acid Test (Cash Equivalents + Marketable
Securities

+ Net Receivables)/Current Liabilities Real

Non-Financial Variables Description Type

Year Corresponding to the sample Integer
Size Small, medium or large Categorical

Number of Employees Integer
Age of Company Integer

Type of Company Public company, limited liability
company or other Categorical

http://infotel.es
http://infotel.es
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Table 1. Cont.

Non-Financial Variables Description Type

Linked to Group? Is the company part of a holding
company? Binary

Number of Partners Integer

Provincial Code Postal code for the location of the
company Categorical

Number of Changes of Location Integer

Delay Has the company submitted its annual
accounts on time? Binary

Historic Number of Number of judicial instances since the
company was created Integer

Judicial Incidences

Number of Judicial Incidences Last Year Number of judicial incidences in the last
year Integer

Historic Amount of Money
How much money has the company

spent on judicial incidences since it was
created?

Real

Spent on Judicial Incidences

Amount of Money Spent on
How much money has the company

spent on judicial incidences in the last
year?

Real

Judicial Incidences Last Year
Historic Number of Integer

Serious Incidences (e.g., strikes, accidents,
etc.)

Audited? Has the company been audited? Binary
Auditor’s Judgments Favorable, exceptional or unfavorable Categorical

4.2. Dataset of Taiwanese Companies

This dataset was compiled from 10 years (1999–2009) of records from the Taiwan
Economic Journal and comprised 6819 entries in total, with 6599 records relating to non-
bankrupt firms (97%) and the remainder representing bankrupt firms (220 records), mean-
ing that bankruptcy cases formed approximately 3% of the whole sample. The dataset had
95 financial characteristics. However, the firms in this dataset were chosen based on two
criteria: the company’s information had to be accessible for three years (so a decision on
its financial state could occur) and the size of the firm had to measure up to a sufficient
number of firms for comparison. The judgments concerning each firm’s financial standing
were mostly based on the trading regulations of the stock exchange in Taiwan. Additional
information can be found in [35].

4.3. Dataset of Polish Companies

This dataset contained information about the likelihood of a Polish company becoming
bankrupt. The information was gathered from the Developing Markets Information Service
(EMIS), which is a global collection of information on emerging markets. The insolvent
firms were studied from 2007 to 2012, while the enterprises that were still running were
assessed from 2007 to 2013. This dataset was also extremely imbalanced, with the number
of insolvent companies (203) forming around 2% of the whole sample, which contained
around 10,000 instances. The dataset had 64 numerical financial characteristics with no
category values. More information about this dataset can be found in [36] and the dataset
itself can be downloaded from the Kaggle ML community website (https://www.kaggle.
com/competitions/companies-bankruptcy-forecast/data, accessed on 28 June 2022).

5. The Proposed Method

This section presents the proposed method for classifying insolvent companies using
an MHOANN with a PSO and a CSO as the optimization algorithms and a cost sensitiv-

https://www.kaggle.com/competitions/companies-bankruptcy-forecast/data
https://www.kaggle.com/competitions/companies-bankruptcy-forecast/data
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ity fitness function within a homogeneous majority voting ensemble learning paradigm
(ENS_PSONNcost and ENS_CSONNcost). The system architecture of the MHOANN with
the embedded cost sensitivity fitness function is illustrated in Figure 1. Furthermore,
the proposed architecture for the MHOANN in the majority voting ensemble learning
paradigm is shown in Figure 2.

First, we discuss the ANN as a classifier and then we explain how the optimizers (PSO
and CSO) were used to set the weights and biases of the ANN, the use of fitness functions
to obtain the best solutions, and finally, how all of that fit within a majority voting ensemble
learning paradigm. An illustration of the proposed method is presented in Figure 3.

Set Network Weights and Biases

Cost Sensitive Calculation

Construct Neural Network ObjectInitialize Population

Update Particles velocity &
Position

Save Global Best Solution

Fitness Evaluation

Maximum
iterations
reached ?

Training  
Data

No
Obtain Best Solutions

Set Network Weights and Biases

Calculate Accuracy, F1-
Score, sensitivity,

specificity, G-mean, 
 

Testing  
Data

Yes

1

7

6
5

4

2

3

8
9

10

11

PSO and CSO Neural Network 

Figure 1. The cost sensitivity fitness function that was embedded in the metaheuristic optimization-
based neural network architecture. Here, the metaheuristic optimizer (PSO or CSO) generated the NN
weights and biases. After the optimizer found a solution, the solution was used to set the weights and
biases for the NN and then the constructed NN was used to generate the predictions. After that, the
costs were calculated by the cost sensitivity fitness function and the best solution was saved. These
steps were repeated up to the maximum number of iterations and then the saved best solution was
used to set up the NN weights and biases. Then, the trained NN was used to classify the instances in
the testing dataset and all of the evaluation metrics were calculated and reported.

Training  
Data

Sample with  
replacement

Train 
Dataset 1

Train 
Dataset 2

Train 
Dataset n

 
 
 

MHOANN

 
 
 

Trained MHOANN

 
 
 

Trained MHOANN

 
 
 

Trained MHOANN

Testing  
Data

Predictions 
0100101

Predictions 
0100001

Predictions 
0100001

Majority  
Voting

Predictions 
0100001

 
 
 

MHOANN

 
 
 

MHOANN

Figure 2. The MHOANN with a PSO or a CSO as the optimization technique and the cost sensitivity
fitness function in the homogeneous majority voting ensemble learning paradigm architecture. Here,
the training dataset was processed using sampling with replacements to generate n training datasets
and then each dataset was used to train the MHOANN. Each trained MHOANN was then used to
generate predictions using the same testing dataset and majority voting was used to generate the
final predictions.
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MHOANN 

PSO/CSO OptimizerTraining 
Dataset 1

Fitness Function

MHOANN 

PSO/CSO OptimizerTraining 
Dataset 2

Fitness Function

MHOANN 

PSO/CSO Optimizer

Fitness Function

Training  
Dataset n

Trained ANN1

Trained ANN2

Trained ANNn

Test Dataset

Majority Voting Ensemble Learning

Majority Voting

Predictions

Predictions

Predictions

Final
Prediction

Figure 3. A component diagram of ENS_PSONNcost and ENS_CSONNcost. Here, the main blocks of
our framework can be seen. Each inducer was an MHOANN with a PSO or a CSO as the optimizer
for the NN, with an embedded custom fitness function that was cost-sensitive. In the second block,
the output of each inducer was combined with the output of the other inducers to generate with the
final predictions, based on the majority voting method.

5.1. ANN Classifier

Artificial neural networks (ANNs) [13,37–39] are one of the main tools that are used to
solve classification problems and are brain-inspired systems that are intended to simulate
the way that humans learn. The learning process of an ANN is very difficult, owing to its
nonlinear nature and the unknown optimal set weights and biases of the neural network.
The efficiency of an ANN is significantly affected by its learning process. An architectural
diagram of a standard ANN is shown in Figure 4.
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Figure 4. The standard artificial neural network architecture.
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5.2. The Optimizer

Optimization algorithms are methods that are used to update the weights and biases in
an ANN to overcome the disadvantages of conventional training algorithms. In this work,
we utilized state-of-the-art PSO and CSO metaheuristic algorithms as the optimization
techniques for our ANN.

In this work, we constructed a neural network model using two sets of weights,
(w11 − wnm) and (w11 − wmk), and two sets of biases, (β1 − βm) and (β1 − βk), where n is
the total number of input features, m represents the number of hidden neurons, k is the
number of output neurons, w represents the weights between the input and hidden layers
(and the weights between the hidden and output layers), and β represents the biases of the
hidden and output layers. Every particle in the swarm population corresponded to one
vector. The total length of the solution vector (ls) could be calculated using Equation (5). An
illustration of a solution vector (particle) is shown in Figure 5. In the binary classification,
as we had a single neuron in the output layer, k was equal to 1 and the total length of a
solution vector (ls_binary) could be simplified, as in Equation (6).

ls = (n ∗m) + (m ∗ k) + m + k (5)

ls_binary = (n ∗m) + (2 ∗m) + 1 (6)

w11 w1m wn1 wnm w11 w1k wm1 wmk b1 bm b1 bk

Weights between Input and
Hidden layer

Weights between Hidden and
Output layer

Biases of  
Hidden Layer

Biases of  
Output Layer

Figure 5. A representation of solution vectors (particles).

5.3. Fitness Functions

In evolutionary computing, the population evolves to increase its fitness, which is
the selected fitness function [40]. In this work, we used the mean squared error (MSE)
and accuracy as the benchmark fitness functions for the proposed cost sensitivity fitness
function. In these cases, the fitness was compared using the following functions.

5.3.1. Mean Squared Error (MSE)

MSE is considered to be one of the most common fitness functions that are used in
MHOANNs and ENNs [41,42]. The value is the mean of the summation of the differ-
ences between the predictions and the ground truths, as described in Equation (7), where
i = 1, 2, . . . , n, n is the number of samples, yi is the actual or ground truth value, and ŷi is
the prediction.

costMSE =
1
n

Σn
i=1(yi − ŷi)

2 (7)

5.3.2. Accuracy

Accuracy is the number of correctly predicted data points out of all the data points. In
this case, the value was simply the accuracy subtracted from 1 (see Equation (8), where TP
is the number of true positives, TN is the number of the true negatives, FP is the number of
false positives, and FN is the number of false negatives).

costaccuracy = 1− (
TP + TN

TP + TN + FP + FN
) (8)

5.3.3. Cost Sensitivity

We took misclassification costs into consideration using a cost matrix. Similar to a
confusion matrix, a cost matrix is an n× n matrix (where n is the number of classes) and
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each element within the cost matrix represents the weight of the misclassification costs of
the corresponding element in the confusion matrix.

We let A be the confusion matrix and C be the cost matrix. We multiplied each element
in the confusion matrix by its corresponding weight in the cost matrix to obtain matrix A′,
which was our newly updated confusion matrix. We then calculated the accuracy using
the updated confusion matrix. We subtracted the resulting values from 1 to obtain the
final costs. The steps that were followed to calculate the costs of the cost sensitivity fitness
function are illustrated in Equation (9).

A =

[
TP FP
FN TN

]
(9a)

C =

[
WTP WFP
WFN WTN

]
(9b)

A′ =
[

WTP × TP WFP × FP
WFN × FN WTN × TN

]
=

[
TP′ FP′

FN′ TN′

]
(9c)

CostSensitiveAccuracy =
TP′ + TN′

TP′ + TN′ + FP′ + FN′
(9d)

costcost_sensitive = 1− CostSensitiveAccuracy (9e)

5.4. Majority Voting Ensemble Learning

Ensemble learning refers to methods for making predictions that combine several
inducers. It is often used in supervised machine learning applications. An inducer, also
known as a basic learner or weak learner, is a machine learning algorithm that takes a set
of labeled examples as its input and produces a model. The model can then be used to
make predictions for new unlabeled samples. Any type of machine learning approach
can be employed as an ensemble inducer (e.g., decision trees, neural networks, linear
regression models, etc.). The predictions of these models are then integrated to generate
a final prediction. The core concept of ensemble learning is that by combining multiple
models, the faults of an individual inducers can be compensated by the other inducers,
which creates a strong learner out of several weak learners [43].

Ensemble members can be of the same or various types and they may or may not be
trained using the same training dataset [44]. When all individual learners in an ensemble
are of the same type, the ensemble is said to be homogeneous. For example, a “neural
network ensemble” contains only neural networks [45].

In the case of classification, the combination of the results from all of the base learners
can be accomplished using majority voting, which has three types: (1) unanimous voting, in
which all of the classifiers agree on the prediction; (2) simple majority, in which more than
half of the classifiers predict the same class; (3) plurality voting, in which the prediction
receives the most votes, regardless of whether the total number of votes exceeds 50% of the
classifiers [46].

In this work, we trained homogeneous ensemble learning using the MHOANN with
the cost sensitivity fitness function as the ensemble members and the training dataset
after applying sampling with replacements. Subsequently, majority (plurality) voting was
implemented to generate the final predictions using the testing dataset.

6. Evaluation Measurements

The obvious challenge when dealing with the binary classification of an imbalanced
dataset is that the training model is biased toward the majority class, resulting in a high
accuracy for the majority class but the model failing to predict instances from the minority
classes. In this work, we used the following metrics: accuracy, which was calculated using
the confusion matrix defined in Equation (10), where TP represents the number of true
positives, TN represents the number of true negatives, FP represents the number of false
positives, and FN represents the number of false negatives [47]; g-mean, which was the
geometric mean of the sensitivity and specificity, as defined in Equation (13); F1 score, which
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was the harmonic mean of the precision and sensitivity, as defined in Equation (14), where
β is the real positive factor, which was chosen such that the sensitivity was considered to
be β times more important than the precision. In this work, we used β = 1, which allocated
the same weighting to both the sensitivity and precision.

Accuracy =
TP + TN

TP + FP + FN + TN
(10)

Sensitivity =
TP

TP + FN
(11)

Specificity =
TN

FP + TN
(12)

g-mean =
√

Sensitivity× Specificity (13)

f 1-score =
(1 + β2).sensitivity.precision

sensitivity + β.precision
(14)

where
β ≥ 0

7. Experiments and Results

This section provides the experimental setups, benchmarks, and steps that were used
throughout the experiments, along with the results that were obtained and their analysis.

7.1. Environmental and Experimental Setups

The experiments were executed using a laptop with 16 GB of RAM and eight cores of
2.3-GHz CPUs. We used Evolopy-NN [48] to implement the ANN, which was powered
by a PSO or a CSO as the optimization technique with the cost sensitivity fitness function.
Evolopy-NN is an open-source nature-inspired optimization framework for training neural
networks using evolutionary and metaheuristic algorithms, which was built with Python
3.7. Both datasets were split into a training dataset (66%) and a testing dataset (34%) [49,50].
We used stratified sampling to maintain the ratio between the minor and major classes in
the resulting datasets. So, after the sampling, the minor classes formed 2% of the training
and testing datasets for the Spanish companies. Similarly, the minor classes formed 3%
and 2% of the training and testing datasets for the Taiwanese companies and the Polish
companies, respectively.

Each experiment was executed 10 different times for 100 iterations, in which the
population size was set to 50. During the ensemble learning, we used five weak learners
and majority voting to generate the final predictions.

As described in Section 5, we proposed the use of two optimization algorithms, a PSO
and CSO, and three fitness functions, MSE, accuracy, and cost sensitivity. In this experiment,
we constructed six variations of the MHOANN, as follows:

1. The ANN with a PSO and MSE as the fitness function;
2. The ANN with a PSO and accuracy as the fitness function;
3. The ANN with a PSO and cost sensitivity as the fitness function (ENS_PSONNcost);
4. The ANN with a CSO and MSE as the fitness function;
5. The ANN with a CSO and accuracy as the fitness function;
6. The ANN with a CSO and cost sensitivity as the fitness function (ENS_CSONNcost).

7.2. Effects of Fitness Function

We extended the MHOANN to add in the costs of misclassified instances during
model training by implementing a cost sensitivity fitness function, which was based on the
confusion matrix that was described in Section 5. For the problem in question, we tried to
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avoid FN predictions, i.e., the model predicts that a company is financially stable while
it is actually in financial distress. Hence, we assigned a weighted cost to FN predictions.
Determining the proper weight for the FN predictions depended on the dataset and the
algorithm that were being used. We accomplished this by experimenting with different
weights while monitoring the metrics to determine the best weight to use. Since the
datasets in this work were relatively small in size, we were able to experiment using the
whole datasets; however, in real applications with large datasets, we recommend using a
sample of the dataset to find the best weight to use in order to reduce the computational
costs. We considered the weight that yielded the highest g-mean score for the subsequent
experiments. Table 2 shows the results for the dataset of Spanish companies with the PSO,
Table 3 shows the results for the dataset of Spanish companies with the CSO, Table 4 shows
the results for the dataset of Taiwanese companies with the PSO, Table 5 shows the results
for the dataset of Taiwanese companies with the CSO, Table 6 shows the results for the
dataset of Polish companies with the PSO, and Table 7 shows the results for the dataset of
Polish companies with the CSO.

Table 2. The effects of the weight of false negative predictions on all metrics using the PSO (for the
dataset of Spanish companies). The best result for each metric is marked in boldface.

FN Weight Accuracy Sensitivity Specificity F1 Score G-Mean

1 0.978 0.048 0.999 0.088 0.219
25 0.913 0.476 0.922 0.190 0.662
50 0.818 0.810 0.818 0.160 0.814
75 0.766 0.810 0.765 0.131 0.787

100 0.749 0.952 0.745 0.141 0.842
125 0.807 0.810 0.807 0.154 0.808
150 0.713 0.810 0.711 0.108 0.759
175 0.723 0.857 0.720 0.117 0.786
200 0.724 0.857 0.721 0.117 0.786

Table 3. The effects of the weight of false negative predictions on all metrics using the CSO (for the
dataset of Spanish companies). The best result for each metric is marked in boldface.

FN Weight Accuracy Sensitivity Specificity F1 Score G-Mean

1 0.048 0.987 0.057 0.237
25 0.909 0.610 0.916 0.225 0.748
50 0.856 0.724 0.859 0.180 0.789
75 0.768 0.819 0.767 0.134 0.793

100 0.731 0.781 0.729 0.115 0.755
125 0.687 0.857 0.683 0.106 0.765
150 0.725 0.800 0.724 0.114 0.761
175 0.684 0.848 0.680 0.104 0.759
200 0.667 0.857 0.663 0.101 0.754

Table 4. The effects of the weight of false negative predictions on all metrics using the PSO (for the
dataset of Taiwanese companies). The best result for each metric is marked in boldface.

FN Weight Accuracy Sensitivity Specificity F1 Score G-Mean

1 0.967 0.064 0.997 0.110 0.244
25 0.881 0.779 0.884 0.299 0.829
50 0.824 0.848 0.823 0.242 0.834
75 0.828 0.832 0.828 0.241 0.830

100 0.766 0.880 0.762 0.198 0.819
125 0.749 0.909 0.744 0.193 0.822
150 0.759 0.872 0.755 0.192 0.810
175 0.773 0.827 0.771 0.208 0.790
200 0.774 0.827 0.771 0.208 0.790
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Table 5. The effects of the weight of false negative predictions on all metrics using the CSO (for the
dataset of Taiwanese companies). The best result for each metric is marked in boldface.

FN Weight Accuracy Sensitivity Specificity F1 Score G-Mean

1 0.968 0.049 0.998 0.087 0.207
25 0.861 0.773 0.864 0.265 0.817
50 0.808 0.888 0.806 0.237 0.845
75 0.776 0.867 0.773 0.201 0.818

100 0.763 0.880 0.759 0.197 0.817
125 0.755 0.880 0.751 0.197 0.811
150 0.632 0.942 0.622 0.143 0.765
175 0.720 0.898 0.714 0.172 0.800
200 0.702 0.907 0.696 0.171 0.792

Table 6. The effects of the weight of false negative predictions on all metrics using the PSO (for the
dataset of Polish companies). The best result for each metric is marked in boldface.

FN Weight Accuracy Sensitivity Specificity F1 Score G-Mean

1 0.967 0.014 0.987 0.018 0.118
25 0.887 0.377 0.897 0.119 0.582
50 0.824 0.464 0.832 0.097 0.621
75 0.740 0.522 0.745 0.076 0.624

100 0.755 0.652 0.757 0.098 0.703
125 0.727 0.71 0.728 0.096 0.719
150 0.737 0.826 0.735 0.113 0.779
175 0.792 0.899 0.789 0.149 0.842
200 0.706 0.826 0.704 0.103 0.763
225 0.653 0.754 0.651 0.081 0.701

Table 7. The effects of the weight of false negative predictions on all metrics using the CSO (for the
dataset of Polish companies). The best result for each metric is marked in boldface.

FN Weight Accuracy Sensitivity Specificity F1 Score G-Mean

1 0.967 0.014 0.986 0.017 0.117
25 0.709 0.457 0.714 0.061 0.571
50 0.703 0.478 0.708 0.062 0.582
75 0.639 0.623 0.640 0.066 0.631

100 0.609 0.768 0.605 0.074 0.682
125 0.620 0.812 0.616 0.080 0.707
150 0.725 0.841 0.723 0.111 0.780
175 0.789 0.913 0.787 0.150 0.848
200 0.705 0.841 0.703 0.104 0.769
225 0.652 0.768 0.650 0.082 0.707

From these experiments, we observed that the best weight for FN predictions when
using the PSO for the dataset of Spanish companies was 100, as shown in Figure 6. The
corresponding result was 75 when using the CSO for the same dataset, as shown in Figure 7.
On the other hand, we noticed that the best weight for FN predictions when using the
PSO for the dataset of Taiwanese companies was 50, as shown in Figure 8. The result was
the same when the CSO was used for the same dataset, as shown in Figure 9. We also
noticed that the best weight for FN predictions when using the PSO for the dataset of
Polish companies was 175, as shown in Figure 10. The result was the same when using the
CSO for the same dataset, as shown in Figure 11. After determining the best FN weight
for each particular optimization algorithm and dataset, we trained the MHOANN using
the cost sensitivity fitness function, fed it with the corresponding FN weight, and then
used the trained model to classify the instances in the testing dataset. We observed that in
order to obtain reasonable g-mean scores, the weight of the FN predictions needed to be
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considerably high, from 50 to 175. This could be explained by the extreme imbalance of the
data in the considered datasets.

Figure 6. The effects of FN prediction weight on g-mean, specificity, and sensitivity when using the
cost-sensitive MHOANN with the PSO for the dataset of Spanish companies.

Figure 7. The effects of FN prediction weight on g-mean, specificity, and sensitivity when using the
cost-sensitive MHOANN with the CSO for the dataset of Spanish companies.

Figure 8. The effects of FN prediction weight on g-mean, specificity, and sensitivity when using the
cost-sensitive MHOANN with the PSO for the dataset of Taiwanese companies.
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Figure 9. The effects of FN prediction weight on g-mean, specificity, and sensitivity when using the
cost-sensitive MHOANN with the CSO for the dataset of Taiwanese companies.

Figure 10. The effects of FN prediction weight on g-mean, specificity, and sensitivity when using the
cost-sensitive MHOANN with the PSO for the dataset of Polish companies.

Figure 11. The effects of FN prediction weight on g-mean, specificity, and sensitivity when using the
cost-sensitive MHOANN with the CSO for the dataset of Polish companies.

To assess the effects of the cost sensitivity fitness function, we based our results
on a benchmark. In the benchmark, we used each optimizer (PSO and CSO) with two
different fitness functions, MSE and accuracy, and then trained the ANN using both datasets
to observe the evaluation metrics without cost-sensitive learning. For each dataset, we
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executed four experiments: the ANN with the PSO and MSE as the fitness function, the
ANN with the PSO and accuracy as the fitness function, the ANN with the CSO and MSE
as the fitness function, and the ANN with the CSO and accuracy as the fitness function.
The averages and standard deviations were calculated, along with the best scores for each
metric.

Table 8 shows the results for all of the fitness functions that were applied to the dataset
of Spanish companies. In Table 9, the results from all of the fitness functions that were
applied to the dataset of Taiwanese companies are illustrated. In Table 10, the results from
all of the fitness functions that were applied to the dataset of Polish companies are shown.
The cost-sensitive MHOANN showed major improvements when predicting the minority
classes, which had a major positive impact on the g-mean and F1 score metrics and a
negative impact on the accuracy.

Table 8. The results of the evaluation metrics for all of the fitness functions that were applied to the
dataset of Spanish companies per optimization algorithm. The best average result for each metric is
marked in boldface.

Fitness Function Optimizer Accuracy G-Mean F1 Score

Avg. Best Std. Avg. Best Std. Avg. Best Std.

MSE PSO 0.978 0.980 0.002 0.211 0.309 0.126 0.104 0.174 0.071
Accuracy PSO 0.979 0.979 0.001 0.131 0.218 0.120 0.054 0.091 0.049
Cost Sensitivity PSO 0.749 0.750 0.001 0.842 0.843 0.001 0.141 0.142 0.001

MSE CSO 0.980 0.981 0.001 0.211 0.309 0.126 0.104 0.174 0.071
Accuracy CSO 0.980 0.981 0.000 0.062 0.308 0.138 0.032 0.160 0.072
Cost Sensitivity CSO 0.768 0.771 0.001 0.793 0.801 0.001 0.134 0.150 0.001

Table 9. The results of the evaluation metrics for all of the fitness functions that were applied to the
dataset of Taiwanese companies per optimization algorithm. The best average result for each metric
is marked in boldface.

Fitness Function Optimizer Accuracy G-Mean F1 Score

Avg. Best Std. Avg. Best Std. Avg. Best Std.

MSE PSO 0.968 0.970 0.001 0.332 0.415 0.069 0.186 0.257 0.061
Accuracy PSO 0.967 0.969 0.001 0.244 0.365 0.074 0.110 0.220 0.049
Cost Sensitivity PSO 0.824 0.830 0.001 0.834 0.835 0.001 0.242 0.243 0.001

MSE CSO 0.967 0.969 0.001 0.290 0.346 0.079 0.147 0.198 0.065
Accuracy CSO 0.968 0.969 0.001 0.207 0.305 0.095 0.087 0.163 0.070
Cost Sensitivity CSO 0.808 0.810 0.002 0.845 0.846 0.001 0.237 0.239 0.002

Table 10. The results of the evaluation metrics for all of the fitness functions that were applied to the
dataset of Polish companies per optimization algorithm. The best average result for each metric is
marked in boldface.

Fitness Function Optimizer Accuracy G-Mean F1 Score

Avg. Best Std. Avg. Best Std. Avg. Best Std.

MSE PSO 0.970 0.971 0.001 0.118 0.118 0.000 0.019 0.020 0.001
Accuracy PSO 0.967 0.969 0.001 0.118 0.118 0.000 0.018 0.019 0.001
Cost Sensitivity PSO 0.792 0.792 0.001 0.842 0.849 0.007 0.149 0.151 0.002

MSE CSO 0.970 0.971 0.001 0.118 0.118 0.000 0.020 0.020 0.000
Accuracy CSO 0.967 0.969 0.001 0.117 0.118 0.001 0.017 0.019 0.001
Cost Sensitivity CSO 0.790 0.794 0.003 0.848 0.850 0.001 0.150 0.152 0.002
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Using the dataset of Spanish companies, when comparing the ANN with the PSO and
the cost sensitivity fitness function to the same classifier with MSE as the fitness function,
we noticed a major improvement in the g-mean from 0.211 to 0.842, an improvement in
the F1 score from 0.104 to 0.141, and a drop in the accuracy from 0.978 to 0.749. When
comparing the ANN with the PSO and the cost sensitivity fitness function to the same
classifier with accuracy as the fitness function, we observed similar results: a major increase
in the g-mean from 0.131 to 0.842, an improvement in the F1 score from 0.054 to 0.141, and
a drop in the accuracy from 0.979 to 0.749. Similarly, when comparing the ANN with the
CSO and the cost sensitivity fitness function to the same classifier with MSE as the fitness
function, we noticed a major increase in the g-mean from 0.211 to 0.793, an improvement
in the F1 score from 0.104 to 0.134, and a drop in the accuracy from 0.980 to 0.768. When
comparing the ANN with the CSO and the cost sensitivity fitness function to the same
classifier with accuracy as the fitness function, we also observed a major increase in the
g-mean from 0.062 to 0.793, an improvement in the F1 score from 0.032 to 0.134, and a drop
in the accuracy from 0.980 to 0.768.

We also observed similar results while using the dataset of Taiwanese companies.
When comparing the ANN with the PSO and the cost sensitivity fitness function to the
same classifier with MSE as the fitness function, we noticed a major increase in the g-mean
from 0.332 to 0.834, an improvement in the F1 score from 0.186 to 0.242, and a drop in
the accuracy from 0.968 to 0.824. When comparing the ANN with the PSO and the cost
sensitivity fitness function to the same classifier with accuracy as the fitness function, we
also noticed a major increase in the g-mean from 0.244 to 0.834, an increase in the F1 score
from 0.110 to 0.242, and a drop in the accuracy from 0.967 to 0.824. When comparing the
ANN with the CSO and the cost sensitivity fitness function to the same classifier with MSE
as the fitness function, the increase in the g-mean was from 0.290 to 0.845, the increase in
the F1 score was from 0.147 to 0.237, and the drop in the accuracy was from 0.967 to 0.808.
Likewise, when comparing the ANN with the CSO and the cost sensitivity fitness function
to the same classifier with accuracy as the fitness function, the increase in g-mean was from
0.207 to 0.845, the increase in the F1 score was from 0.087 to 0.237, and the drop in the
accuracy was from 0.968 to 0.808.

Moreover, we observed similar results while using the dataset of Polish companies.
When comparing the ANN with the PSO and the cost sensitivity fitness function to the
same classifier with MSE as the fitness function, we noticed a major increase in the g-mean
from 0.118 to 0.842, an improvement in the F1 score from 0.019 to 0.149, and a drop in
the accuracy from 0.970 to 0.790. When comparing the ANN with the PSO and the cost
sensitivity fitness function to the same classifier with accuracy as the fitness function, we
also noticed a similar increase in the g-mean from 0.118 to 0.842, an increase in the F1 score
from 0.018 to 0.149, and a drop in the accuracy from 0.967 to 0.790. When comparing the
ANN with the CSO and the cost sensitivity fitness function to the same classifier with MSE
as the fitness function, the increase in the g-mean was from 0.118 to 0.848, the increase in
the F1 score was from 0.020 to 0.150, and the drop in the accuracy was from 0.970 to 0.790.
Likewise, when comparing the ANN with the CSO and the cost sensitivity fitness function
to the same classifier with accuracy as the fitness function, the increase in the g-mean was
from 0.117 to 0.848, the increase in the F1 score was from 0.017 to 0.150, and the drop in the
accuracy was from 0.967 to 0.790.

We could see that by applying the weight of the FN predictions, the number of TP
instances increased, which explained the improvements in the g-mean and F1 score values.
However, it also caused an increase in the number of FP instances, which explained the
decrease in the accuracy score. Next, we used majority voting ensemble learning to decrease
the number of FP instances while maintaining the number of TP instances.

Additionally, since the PSO and CSO produced similar results, an interesting observa-
tion was that a light optimizer with a simple mechanism to update the particles within the
search space, such as the CSO, could achieve similar results when used as an optimizer for
an MHOANN.
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Another observation was that, whereas the PSO and CSO produced similar results
when using similar fitness functions, the CSO was better in terms of execution time. Using
the same population size of (50) and the same number of iterations (100), CSO was 22.4%
faster for the dataset of Spanish companies, 34.4% faster for the dataset of Taiwanese
companies, and 48.3% faster for the dataset of Polish companies. Table 11 lists the actual
execution times in seconds.

In this work, as discussed in Section 7.2, we noticed a direct relationship between the
weight of the FN predictions and the set of metrics that were monitored. While we chose the
weight that produced the best g-mean score, which meant a weight that produced a balance
between sensitivity and specificity, a lower weight could produce a better specificity score
and a higher weight could produce a better sensitivity score, depending on which metric
the user focused on.

Table 11. A comparison of the PSO and CSO execution times.

Optimizer Dataset
Execution Time (s)

Avg. Best Std.

PSO Spanish 196.8 188.8 5.7
CSO Spanish 152.8 151.0 2.3

PSO Taiwanese 1260.0 1212.9 58.7
CSO Taiwanese 826.6 798.3 19.7

PSO Polish 1778.1 1732.1 50.3
CSO Polish 918.7 820.0 59.4

7.3. Effects of the Ensemble Learning Framework

Whereas the cost-sensitive MHOANN performed better when predicting the minority
classes and significantly reduced the number of FN instances, there was an increase in
FP predictions as well. However, for these particular datasets, the minority classes were
far more valuable and essential than the majority class. In other words, predicting that
a company is solvent when it is actually in financial distress has considerably higher
costs than predicting that a company is in financial distress when it is actually stable [51];
therefore, maintaining a high accuracy score in the classification model was crucial.

As described in Section 5, the key premise of ensemble learning is that by mixing
many models, the flaws of one model can most likely be cancelled out by the other models.
Hence, we used sampling with replacements to create five training sets per dataset and
then trained the cost-sensitive MHOANN using each new training set. We then generated
predictions using the existing testing dataset and used majority voting to obtain the final
predictions.

Table 12 shows a comparison of the results from the cost-sensitive MHOANN using
the dataset of Spanish companies and those from the cost-sensitive MHOANN within
the majority voting ensemble learning system using the same dataset. In Table 13, a
comparison of the results from the cost-sensitive MHOANN and those from the cost-
sensitive MHOANN within the majority voting ensemble learning system using the dataset
of Taiwanese companies is illustrated. Table 14 shows the same comparison for the dataset
of Polish companies. By reviewing the results, we observed improvements in most of the
evaluation metrics; specifically, we noticed an improvement in the accuracy of between
8.4% and 15.0%, an improvement in the g-mean score of between 4.2% and 12.6%, and a
significant improvement in the F1 score of between 36.7% and 87.3%.
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Table 12. A comparison between the results of the evaluation metrics from the cost-sensitive
MHOANN and those from the cost-sensitive MHOANN within the majority voting ensemble learning
system using the dataset of Spanish companies.

Algorithm Optimizer Accuracy Sensitivity Specificity F1 Score G-Mean

Cost-Sensitive PSO 0.749 0.952 0.745 0.141 0.842
Ensemble Learning PSO 0.851 0.905 0.850 0.207 0.877

Percentage Change 13.6% −5.0% 14.1% 46.8% 4.2%

Cost-Sensitive CSO 0.768 0.819 0.767 0.134 0.793
Ensemble Learning CSO 0.883 0.905 0.882 0.251 0.893

Percentage Change 15.0% 10.5% 15.0% 87.3% 12.6%

Table 13. A comparison between the results of the evaluation metrics from the cost-sensitive
MHOANN and those from the cost-sensitive MHOANN within the majority voting ensemble learning
system using the dataset of Taiwanese companies.

Algorithm Optimizer Accuracy Sensitivity Specificity F1 Score G-Mean

Cost-Sensitive PSO 0.824 0.848 0.823 0.242 0.834
Ensemble Learning PSO 0.910 0.840 0.912 0.376 0.875

Percentage Change 10.4% −1.0% 10.8% 55.4% 4.9%

Cost-Sensitive CSO 0.808 0.888 0.806 0.237 0.845
Ensemble Learning CSO 0.876 0.920 0.874 0.324 0.897

Percentage Change 8.4% 3.6% 8.4% 36.7% 6.2%

Table 14. A comparison between the results of the evaluation metrics from the cost-sensitive
MHOANN and those from the cost-sensitive MHOANN within the majority voting ensemble learning
system using the dataset of Polish companies.

Algorithm Optimizer Accuracy Sensitivity Specificity F1 Score G-Mean

Cost-Sensitive PSO 0.792 0.899 0.789 0.149 0.842
Ensemble Learning PSO 0.898 0.913 0.898 0.261 0.905

Percentage Change 13.4% 1.6% 13.8% 75.2% 7.5%

Cost-Sensitive CSO 0.789 0.913 0.787 0.150 0.848
Ensemble Learning CSO 0.888 0.928 0.887 0.269 0.907

Percentage Change 12.5% 1.6% 12.7% 79.3% 7.0%

The main idea of ensemble learning is to achieve a high prediction capability that
at least exceeds the individual prediction capabilities of the techniques that make up the
ensemble. To achieve this, the weak learners within the ensemble should be both accurate
and diverse [52]. The improvements that were achieved for all metrics confirmed that the
PSO and CSO were sufficient to optimize the ANN, which was both accurate and diverse
and could be utilized within a homogeneous ensemble learning system.

7.4. Comparison to Other Approaches

In [34], the authors proposed a hybrid method that combined the synthetic minority
oversampling technique with other ensemble methods. Additionally, the authors applied
five different feature selection methods to determine the most dominant attributes of
insolvency prediction using the same dataset of Spanish companies. First, the authors
compared four oversampling methods and then applied the C4.5 decision tree classifier
to determine the best method. SMOTE was subsequently selected since it produced the
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best results, as suggested by the authors. Second, the authors compared several standard
basic and ensemble classification algorithms as the baseline for the study. Table 15 shows
the g-mean scores when using the standard classifiers in [34] compared to those when
using the two methods that are proposed in this work. It can be seen that the proposed
methods produced higher g-mean scores than all of the other classifiers in the related study.
Third, the authors compared several basic and ensemble classification algorithms after
applying oversampling using SMOTE to compare their performances and select the best
performing classifier. The AB-Rep tree was subsequently selected as the best classifier.
Finally, the authors applied different attribute selectors for feature selection and then
applied oversampling using SMOTE and classification using the AB-Rep tree algorithm
before comparing the results. Table 16 shows the best results, based on the g-mean scores
in [34] and those of the two methods that are proposed in this work. It is clear that the
proposed methods significantly improved the g-mean scores. According to these results,
we noticed the benefits of applying cost-sensitive learning to our MHOANN, as well as
the advantages that could be gained by using ensemble learning to improve financial
distress prediction. Although the same dataset was used in this work and in [34], it is worth
mentioning that there were some differences between the experiment setups: (1) in this
work, we used a 66% to 34% split for the training and testing datasets, while the authors
of [34] used a 10-fold cross-validation technique that meant that 90% of their data were used
to train the model, but the approach that is proposed in this work still showed better results;
(2) ten separate runs were performed in [34] for each combination, while we performed
five separate runs per combination in this work.

Table 15. The results for the g-mean scores of the standard classifiers that were used in the related
work compared to those of the two methods that are proposed in this work using the dataset of
Spanish companies. The best g-mean result per classification approach is marked in boldface.

Classifier G-Mean

Basic Classifiers k-NN [34] 0.367
MLP [34] 0.427
Naive Bayes [34] 0.402
Random Tree [34] 0.602
J48 [34] 0.583
Rep tree [34] 0.336

Ensembles Bag-J48/(10) [34] 0.488
AB-J48(20) [34] 0.609
Dec-J48/(10) [34] 0.549
RF-J48(80) [34] 0.509
Bag-Rep Tree/(80) [34] 0.315
AB-Rep Tree (90) [34] 0.602
Dec-Rep Tree/(10) [34] 0.414
RF-Rep Tree (10) [34] 0.094
Bag-Random Tree/(100) [34] 0.491
AB-Random Tree/(10) [34] 0.574
Dec-Random Tree/(20) [34] 0.532
RtF-Random Tree/(30) [34] 0.518
RF/(50) [34] 0.464

Proposed Methods ENS_PSONNcost 0.877
ENS_CSONNcost 0.893
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Table 16. The best results for the g-mean scores of the hybrid methods that were used in the related
work compared to those of the two methods that are proposed in this work using the dataset of
Spanish companies. The best g-mean result per classification approach is marked in boldface

Classifier Oversampling Feature Selection G-Mean

Random Tree [34] No No 0.602
AB-J48(20) [34] No No 0.609
Random Tree [34] Yes No 0.696
AB-Rep Tree/(90) [34] Yes No 0.730
AB-Rep Tree/(90) [34] Yes Yes 0.720

ENS_PSONNcost No No 0.877
ENS_CSONNcost No No 0.893

In another study that used the dataset of Taiwanese companies [35], the authors
established that the integration of financial ratios (FRs) and corporate governance indicators
(CGIs) could enhance the performance of the classifiers when forecasting the financial health
of Taiwanese firms. Following this combination, five feature selection methodologies were
evaluated to see whether they could lower data dimensionality. Consequently, the best
results were achieved using an SVM with the stepwise discriminant analysis (SDA) feature
selection method, along with the combination of FRs and CGIs (FC). The g-mean was not
used as an evaluation metric in that study. Instead, type I and type II errors were used.

A type I error [53] is also known as the False Positive Rate (FPR). In binary classification
tasks, the FPR quantifies the proportion of false positives among all of the positive samples.
It is defined in Equation (15):

Type I error =
FP

TN + FP
= 1− Specificity (15)

A type II error [53] is also known as the False Negative Rate (FNR). In binary classifi-
cation tasks, the FNR quantifies the proportion of false negatives among all of the negative
samples. It is defined in Equation (16):

Type II error =
FN

TP + FN
= 1− Sensitivity (16)

Hence, the g-mean score could be extracted using Equation (17):

g-mean =
√
(1− Type II error)× (1− Type I error) (17)

Table 17 shows the best results for the calculated g-mean scores using the type I and
type II errors in [35] and the two methods that are proposed in this work. It can be seen
that both of the proposed methods produced higher g-mean scores.

Table 17. The best results for the g-mean scores that were obtained in the related work compared to
those of the two methods that are proposed in this work using the dataset of Taiwanese companies.
The best g-mean result is marked in boldface.

Classifier G-Mean

SVM+SDA+FC [35] 0.814

ENS_PSONNcost 0.875
ENS_CSONNcost 0.897

7.5. Analysis and Discussion

The results from our experiments indicated that for highly imbalanced datasets, the
proposed method had a significant positive impact on the g-mean score (which measures
the balance between the classification performances for both the majority and minority
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classes) while maintaining an acceptable accuracy score. We found that the cost sensitivity
fitness function helped to shift the bias away from the majority class and toward the
minority classes and that ensemble learning could help to decrease the side effects of that
bias shift.

In line with our hypothesis, applying a weight to the misclassified positive instances
increased the number of TP predictions and decreased the number of FN predictions.
However, as a side effect, the number of FP predictions increased and the number of TN
predictions decreased. Since we were dealing with highly imbalanced datasets, the number
of instances that belonged to the minor class (TP+ FN) was much lower than the number of
instances that belonged to the major class (FP+ TN); so, the improvement in the sensitivity
score was significant and the drop in the specificity score was not as drastic, which led to
an overall improved g-mean score, as observed in the results from all experiments.

Moreover, when applying ensemble learning, we observed an overall improvement in
all of the evaluation measurements that were used. This proved that the MHOANN was
diverse and could be used in a homogeneous ensemble learning system. The ensemble
learning created a stronger learner that approximately maintained the number FN predic-
tions but decreased the number of FP predictions, resulting in a slightly better g-mean score
and a significant improvement in the accuracy score.

In terms of performance, as previously mentioned, the CSO outperformed the PSO
regarding execution time. In contrast to the PSO, only half of the population was updated
in the CSO, which explained the faster execution times.

In Appendix A, we show the convergence (learning) curve graphs for sample runs
using both optimizers (the PSO and CSO) for each fitness function and each dataset. We
noticed that the fitness values were minimal in the cases of the MSE and accuracy fitness
functions, which indicated that the model had a high accuracy (as confirmed by the previous
results) but was biased toward the majority class and failed to predict the minority classes
(as previously discussed). On the other hand, the fitness value was higher when using the
cost sensitivity fitness function, which was expected because the number of FN predictions
was multiplied by the allocated weight. Additionally, in all of our experiments, the fitness
scores stabilized when approaching 100 iterations, which indicated that additional training
would not significantly improve the model.

8. Conclusions and Future Work

This paper proposed the use of an MHOANN with a PSO or CSO as the optimization
technique and a cost sensitivity fitness function within a majority voting ensemble learning
system to handle the imbalanced distribution of financial distress datasets and maximize
the prediction of positive instances. Experiments were conducted using datasets of Spanish
companies, Taiwanese companies, and Polish companies. Then, we compared the results
from the proposed approach to those that were obtained by applying the same MHOANN
with a PSO or CSO but using MSE or accuracy as the fitness function.

The proposed method was able to provide better estimations for the financial distress
prediction by avoiding biased results. The results showed that the cost sensitivity fitness
function had an extremely positive overall effect on the accurate prediction of the minor
classes in imbalanced datasets, with a significant improvement in the g-mean score and
a moderately positive impact on the F1 score. Moreover, adapting the majority voting
ensemble learning system improved the accuracy and the g-mean scores, along with a
significant increase in the F1 scores. One primary limitation of this work was not having
access to a domain expert to define the weights for the FN predictions, which is common in
cost-sensitive learning [54]. It would be beneficial to obtain domain expert opinions and
compared them to the proposed method to find the best weight for the FN instances.

In the future, we aim to investigate the application of the proposed method to other
bankruptcy datasets. Additionally, we aim to use the same proposed approach for other im-
balanced classification problems. Moreover, we aim to explore other methods for hyperpa-
rameter tuning, including finding the costs of misclassified instances, such as AutoML [55].
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Appendix A

Here, we present the figures that show the convergence (learning) curves for the
sample runs using both optimizers (the PSO and CSO) for each fitness function and
each dataset.

Figure A1. The training convergence curve when using the ANN with the PSO and the MSE fitness
function for the dataset of Spanish companies.

Figure A2. The training convergence curve when using the ANN with the PSO and the accuracy
fitness function for the dataset of Spanish companies.

http://infotel.es
https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-prediction
https://www.kaggle.com/datasets/fedesoriano/company-bankruptcy-prediction
https://www.kaggle.com/competitions/companies-bankruptcy-forecast/data
https://www.kaggle.com/competitions/companies-bankruptcy-forecast/data
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Figure A3. The training convergence curve when using the ANN with the PSO and the cost sensitivity
fitness function for the dataset of Spanish companies.

Figure A4. The training convergence curve when using the ANN with the CSO and the MSE fitness
function for the dataset of Spanish companies.

Figure A5. The training convergence curve when using the ANN with the CSO and the accuracy
fitness function for the dataset of Spanish companies.
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Figure A6. The training convergence curve when using the ANN with the CSO and the coast
sensitivity fitness function for the dataset of Spanish companies.

Figure A7. The training convergence curve when using the ANN with the PSO and the MSE fitness
function for the dataset of Taiwanese companies.

Figure A8. The training convergence curve when using the ANN with the PSO and the accuracy
fitness function for the dataset of Taiwanese companies.
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Figure A9. The training convergence curve when using the ANN with the PSO and the cost sensitivity
fitness function for the dataset of Taiwanese companies.

Figure A10. The training convergence curve when using the ANN with the CSO and the MSE fitness
function for the dataset of Taiwanese companies.

Figure A11. The training convergence curve when using the ANN with the CSO and the accuracy
fitness function for the dataset of Taiwanese companies.
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Figure A12. The training convergence curve when using the ANN with the CSO and the cost
sensitivity fitness function for the dataset of Taiwanese companies.

Figure A13. The training convergence curve when using the ANN with the PSO and the MSE fitness
function for the dataset of Polish companies.

Figure A14. The training convergence curve when using the ANN with the PSO and the accuracy
fitness function for the dataset of Polish companies.



Appl. Sci. 2022, 12, 6918 29 of 32

Figure A15. The training convergence curve when using the ANN with the PSO and the cost
sensitivity fitness function for the dataset of Polish companies.

Figure A16. The training convergence curve when using the ANN with the CSO and the MSE fitness
function for the dataset of Polish companies.

Figure A17. The training convergence curve when using the ANN with the CSO and the accuracy
fitness function for the dataset of Polish companies.
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Figure A18. The training convergence curve when using the ANN with the CSO and the cost
sensitivity fitness function for the dataset of Polish companies.
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