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Abstract
Lennard–Jones mixtures represent one of the popular systems for the study
of glass-forming liquids. Spatio/temporal heterogeneity and rare (activated)
events are at the heart of the slow dynamics typical of these systems. Such slow
dynamics is characterised by the development of a plateau in the mean-squared
displacement (MSD) at intermediate times, accompanied by a non-Gaussianity
in the displacement distribution identified by exponential tails. As pointed out
by some recent works, the non-Gaussianity persists at times beyond the MSD
plateau, leading to a Brownian yet non-Gaussian regime and thus highlighting
once again the relevance of rare events in such systems. Single-particle motion
of glass-forming liquids is usually interpreted as an alternation of rattling within
the local cage and cage-escape motion and therefore can be described as a
sequence of waiting times and jumps. In this work, by using a simple yet robust
algorithm, we extract jumps and waiting times from single-particle trajecto-
ries obtained via molecular dynamics simulations. We investigate the presence
of correlations between waiting times and find negative correlations, which
becomes more and more pronounced when lowering the temperature.
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1. Introduction

In the last decade a vivid interest has been paid on studying and understanding systems char-
acterised by exponentially-tailed displacement distributions and linear (Fickian) trend of the
mean-squared displacement (MSD). Indeed, a Fickian MSD would lead to the assumption
of standard Brownian motion with its characteristic Gaussian distribution. However this is
often not the case. Experimental systems displaying this Brownian (or Fickian) yet non-
Gaussian (BnG) diffusion include nanospheres in entangled actin hydrogels [1], colloidal beads
moving along lipid nanotubes [1, 2], binary mixtures of colloidal hard spheres [3], passive
tracers in suspensions of eukaryotic swimmers [4] and many more [5–12]. The observation
of exponential tails indicates the relevance of rare events in the system and has often been
associated to the presence of spatial and/or temporal heterogeneity. A common approach to
model BnG processes developed during the last years is based on the concept of stochastic
diffusivity. The latter can be thought of as a random variable [13], as a switching process
between two values [14] or as a stationary stochastic process fluctuating around an aver-
age value [15–20]. Apart from random diffusivity models—that are based on a Langevin
description—other models have also been explored within different frameworks [21–28]. A
different approach is discussed in [29–32] in which inhomogeneities in space are explicitly
considered.

Recent experiments and extensive numerical simulations have pointed out that a BnG
regime is clearly displayed by glass-forming systems [33–35], as well as by small tracers
diffusing in glassy colloidal matrices [3, 36]. Moreover, a similar behaviour has also been
observed in experimental studies of suspension of colloidal beads under the action of a static
and spatially random optical force [37, 38], a system that display a single-particle motion
qualitatively similar to the intermittent single-particle dynamics of glassy system.

The presence of exponential tails in the displacement distribution in glass-forming systems
systems has been known for long [39, 40], yet this was mainly associated with intermedi-
ate times at which the MSD develops a plateau. Instead, it has been shown how the non-
Gaussianity persists at times beyond the MSD plateau, clearly leading to a BnG regime and
thus highlighting once again the relevance of rare events in such systems.

Given that the emergence of dynamic heterogeneities in glass–forming liquids upon cooling
is a well established phenomenon [41, 42], the connection between BnG diffusion, exponential-
tailed distributions and glass-forming liquids helps in strengthening the standard interpretation
of BnG diffusion as due to heterogeneity in the system. In addition, such connection opens
new directions of study since the overall picture of this phenomenology is still far from being
completely understood.

The single-particle dynamics of glass-forming systems shows a motion that can be inter-
preted as consisting of two alternating phases: (i) confined motion within the cage defined by
the neighbouring particles; (ii) hopping from one cage to another. This motion can be modelled
as a continuous time random walk (CTRW) with waiting times, defined by the time each par-
ticle spends jiggling around within a cage, and jumps that are identified each time the particle
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escapes the local cage. Indeed, this model has been used over the years to analyse data from
glass-forming systems [40, 43–46].

In particular, jumps are usually extracted from simulation data (and/or from experimen-
tal data in the case of colloidal suspensions), and a lot of attention is posed on the study of
the distribution of waiting times between subsequent jumps, its functional behaviour and its
dependence on the temperature of the system [44–50]. Note that the works by Pastore et al
[44–46] include results on the jump length distribution in addition to the ones on the waiting
time distribution. In the study reported in [48–50] the authors focused on the identification of
hopping events between local minima of the potential energy landscape. On the other hand,
other studies focus explicitly on the analysis of single-particle displacement to identify caging
events and jumps between them [44–47]. In this work we follow a similar approach and pro-
vide a prescription based on physical arguments on how to develop a jump detection algorithm
based on the study of single-particle displacements. Moreover, we aim at making a step for-
ward within this line of research by focusing on the study of temporal correlations. Indeed, to
the best of our knowledge, there are only few works discussing possible temporal correlations
in the single-particle dynamics of glass-forming systems [51–53]. On the one hand, Heuer
et al [51] and Helfferich et al [52] focus their discussions on the analysis of the back and forth
dynamics. On the other hand, Pastore et al [53] briefly address the issue of waiting time cor-
relations as part of a more general study on the many features of the intermittent dynamics in
colloidal and molecular glasses.

The jump detection algorithm described in this work provides a perfect framework for the
study of such correlations, focusing in particular on the temporal correlations among waiting
times (in a similar fashion to [53]). We study how such correlations depend on the parame-
ter of the jump detection procedure and on the temperature of the system. The study reported
here is based on results from Lennard–Jones (LJ) mixtures, as they represent one of the ref-
erence models for glass-forming systems. In particular, we focus on the 3D system as the
2D one is known to be more affected by finite size effects [54–56]. The paper is organ-
ised as follows. In section 2 we describe the simulations methods. In section 3 we present
the jump detection procedure while in section 4 we discuss the statistical properties of the
jump length and waiting time distributions. The main results of our analysis of the temporal
correlation of waiting times are reported in section 5 and finally, in section 6, we draw our
conclusions.

2. Methods

We perform molecular dynamics (MD) simulations of a three dimensional Kob–Andersen
binary mixture [39, 57, 58]. The isotropic interaction between a particle of species α and a
particle of species β is given by the LJ potential

Vαβ(r) = 4εαβ

[(σαβ

r

)12
−
(σαβ

r

)6
]

, α, β ∈ {A, B}, (1)

where A and B are the labels for the two species and r is the distance between the centers
of mass of the two particles. Both species have the same mass m which is set to unity. For
computational efficiency the potential is truncated at a distance of 2.5σαβ [39]. The radius
(σαβ) and strength (εαβ) of interaction between particles A–A, A–B and B–B are differ-
ent. σAA and εAA are set to 1 such that length is given in units of σAA, energy in units of
εAA and time in units of (mσAA/48εAA)1/2, where the

√
48 was originally added for conve-

nience to adapt the unit of time for this system to describe the dynamics of a particular real
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glassy alloy first investigated by Stillinger and Weber [39, 59]. Hereafter, all the values are
reported in these reduced units. The system is composed of NA = 6400 particles of type A
and NB = 1600 particles of type B distributed within a cube of edge length L = 18.80, such
that the total number density is given by ρ = (NA + NB)/L3 = 1.20. The chosen size of the
simulated 3D Kob–Andersen system is based on previous studies on the size dependence of
the time associated to the α—relaxation for this system [60]. For the density and the tem-
perature range investigated in our paper, this time reaches a constant value when the system
reaches a number of particles of the order of 2000 [60]. This composition avoids the emergence
of a crystal structure even at very low temperature. We first run simulations in the canoni-
cal ensemble to equilibrate the system at a fixed temperature, T, controlled by an Andersen
thermostat [61] with an effective mass of 48 reduced units with Boltzmann’s constant set
to 1. After the equilibration we run simulations in the microcanonical ensemble to evaluate
the dynamic observables of interest. The temperature range T ∈ [0.45, 0.7] corresponds to the
supercooled regime of the system. Indeed, the lowest temperature corresponds to 1.03 · Tc,
being Tc the mode coupling temperature of the glass transition [58] and the highest tempera-
ture is just below the onset temperature To [62]. We use a velocity Verlet algorithm [63] with
a time step Δt = 0.02 for a total number of steps N = 5 × 106. All the results reported here
correspond to particles of the species A and are obtained by averaging over ten independent
runs, such that the ensemble size of the analysed single-trajectories effectively increases from
NA to 10 · NA = 64 000.

3. Jump and waiting time detection

For our study it is essential to define what we mean by jump and waiting time. These definitions
should have a clear physical meaning and the defined quantities should be easily measurable.

By looking at the typical MSD behaviour depicted in figure 1 [see supplementary material
(https://stacks.iop.org/JPA/55/324003/mmedia) (SM) for MSD curves from simulation data]
one can see that starting from an initial time, the particles show at short times a ballistic motion
within a typical time tb and a typical displacement db. This motion usually corresponds to an
intra-cage vibrational motion within a short time regime where the MSD ∼ t2. Some parti-
cles, however, will find a way to escape from their respective local environments performing
displacements of the order of a particle diameter σ (see the particle displacement trajectory
in figure 1). The fastest way for a particle to perform this displacement is by keeping a bal-
listic motion beyond the typical length db defining the local cages. This is the time t∗ shown
in figure 1. Then, we will say that a particle has performed a jump when it displaces a length
d∗ of the order σ (at least σ/2, which is larger than db) within a time of the order of t∗. This
estimate of t∗ based on ballistic motion allows us to reduce as much as possible the number
of jumps missed by the algorithm. Indeed, if the jump is actually performed in a random-walk
fashion (as it most likely is), the time needed to cover the same distance would be longer than
the corresponding ballistic one and thus, the jump will not be missed within our analysis. Thus,
we use the assumption of ballistic motion to obtain the reference time- and length-scales for
the identification of a jump.

According to the previous idea, we will follow all the particles individually and track their
positions with a discretisation step Δt = t∗. In particular, we start by setting the reference
position as the initial one and we compare it with the position at every time step Δt. Each time
we detect a jump (i.e. a displacement larger than d∗) we (i) update the reference position (ii)
store the jump time identified by ti and (iii) store the jump length given by the displacement
δri performed. The index i counts the number of jumps along the trajectory. We will then call
waiting time ti

w the time difference between consecutive jumps, i.e. ti
w = ti+1 − ti (see figure 1).
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Figure 1. Schematic representation of the notions of jump and waiting time and
example of single-particle displacement trajectory from MD simulations, defined as
r =

√
(x − x0)2 + (y − y0)2 + (z − z0)2.

In this respect, we will have a timeline for each particle, as the one shown in figure 1, where the
jump times (denoted by dots) are scattered within the complete simulation time. To implement
this procedure we can make an educated guess for t∗ based on the equipartition of the kinetic
energy, which for a 3D system takes the form:

1
2

m〈v2〉 = 3
2

kBT ⇒ v =
√
〈v2〉 =

√
3
m

kBT ⇒ t∗ =
σ

v
= σ

√
m

3kBT
, (2)
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Figure 2. Comparison of (a) jump length and (b) waiting time distributions at fixed
d∗ = 0.7 and for different values of temperature.

where v is the average particle ballistic velocity, m the mass of the particles, kB Boltzmann
constant, and T the absolute temperature. In particular, for the Kob–Andersen system we
obtain t∗ =

√
48/3T since m = kB = σ = 1. For our simulations we set t∗ = 5 which is com-

parable with our educated guess for the temperature range of interest. Concerning the jump
length parameter d∗, following our argument above and recalling that dd

∼= σ = 1, we set 1/2
� d∗ < 1. In particular, we report results for three different values, i.e. d∗ = 0.5, 0.6, 0.7, that
are large enough to observe jumps and yet not too large that the statistics become too poor to
perform a robust analysis.

As mentioned already in section 1, a similar approach for the detection of jumps was used
in [44–47]. In particular, in [44–46] the authors analyse the fluctuations in time of the position
within an interval of the order of 20tb and compare it with the so-called Debye–Waller factor
(see [44] for details on their algorithm). The procedure described in [47] is based directly on
the study of the particle displacement, as the one we use in this work, however in their study the
values of the parameters that we defined as t∗ and d∗ are chosen based on empirical analysis of
simulation data. The description introduced in this work provides, by means of simple physical
arguments, an explanation on how to choose the values for t∗ and d∗.

4. Jump length and waiting time distribution

In figures 2–4 and table 1 we report results on the distributions of jump lengths and waiting
times extracted from MD simulations, as discussed in section 3. In a standard diffusive dynam-
ics we would expect the former to be well described by a Rayleigh distribution (characterised
by a Gaussian tail) and the latter by an exponential distribution. The results obtained from our
analysis of the Kob–Andersen mixture in the supercooled regime deviate from such trends, as
already observed in other works performing similar analysis [44–47].

In figure 2 we display the temperature dependence of the jump length and waiting time dis-
tributions. Note that here we focus on d∗ = 0.7 but our results are verified for all the three
values of d∗—see SM. First of all we observe that the functional behaviour of the jump
length distribution can be well described by a compressed exponential (or stretched Gaus-
sian) p(δr) ∝ exp

(
−(δr/δr0)α

)
with α � 1, while the one of the waiting time distribution by

an exponentially truncated power law p(tw) ∝ t−β
w exp

(
−tw/t0

)
, with β � 0 and t0 > 0 (as an

alternative one could also use a stretched exponential function—see SM for more details). The
values of the coefficients α, β and t0 obtained from fitting our data are reported in table 1
together with the first moment of both distributions. For the jump length distribution the value
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Table 1. In the table we report the values of the coefficients α, β and t0 of the jump
length and waiting times distribution obtained from fits at different T and d∗ values and
corresponding average jump length and waiting time values. The error bars for α and β
are of the order of 10−2 or smaller while for t0 they are unity on the last digit.

T = 0.45 T = 0.475 T = 0.50 T = 0.54 T = 0.60 T = 0.70

d∗ = 0.5

α 1.0 1.0 1.0 1.1 1.1 1.2
〈δr〉 0.55 0.55 0.55 0.56 0.56 0.57
β 1.5 1.4 1.1 1.0 0.6 0.1
t0 2 × 104 7 × 103 3 × 103 6 × 102 2 × 102 6 × 101

〈tw〉 1 × 103 7 × 102 5 × 102 3 × 102 1 × 102 7 × 101

d∗ = 0.6

α 1.0 1.0 1.0 1.1 1.1 1.2
〈δr〉 0.65 0.65 0.65 0.66 0.66 0.67
β 1.1 1.0 0.8 0.8 0.1 0.2
t0 2 × 104 7 × 103 3 × 103 8 × 102 2 × 102 1 × 102

〈tw〉 3 × 103 2 × 103 1 × 103 5 × 102 2 × 102 1 × 102

d∗ = 0.7

α 1.0 1.0 1.0 1.1 1.2 1.2
〈δr〉 0.75 0.75 0.75 0.67 0.76 0.77
β 0.9 0.7 0.6 0.3 0.1 0.1
t0 2 × 104 8 × 103 3 × 103 1 × 103 3 × 102 1 × 102

〈tw〉 5 × 103 3 × 103 2 × 103 8 × 102 4 × 102 1 × 102

Figure 3. Comparison of jump length distributions for (a) T = 0.54 and (b) T = 0.45
and varying d∗. The dashed lines represent fits to a compressed exponential function.
The obtained values of the compressing exponent do not depend on d∗ and are α = 1.1
and α = 1.0 for panel (a) and (b), respectively.

of the compressing exponent α suggests that at low temperatures (up until T = 0.5) the distri-
bution is compatible with a pure exponential function. At higher temperatures (from T = 0.54
on) we start observing a deviation from the exponential behaviour indicating the presence of
a mixture of exponential and Gaussian behaviour. Indeed, it is expected that by increasing the
temperature the Gaussian contribution will become more and more relevant. Concerning the
waiting time distribution, the values obtained for β and t0 grow with lowering temperature,
i.e. the higher the temperature the smaller their values. This result suggests that at higher tem-
perature the exponential trend controls the tail of the distribution. On the other hand, at lower
temperatures the power law trend becomes more and more pronounced, while the exponential
cut off moves to larger and larger waiting times. This observation is in agreement with the fact
that at lower temperature the emergence of dynamic heterogeneities makes it more and more
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Figure 4. Comparison of waiting time distributions for (a) T = 0.54 and (b) T = 0.45
and varying d∗. In the insets we report the waiting time distribution properly rescaled
over its average value. The dashed lines represent fits to an exponentially truncated power
law. The obtained values of the coefficients decrease when increasing d∗. In particular
for panel (a) we have β ∈ [0.3, 1.0] and t0 ∈ [1 × 103, 2 × 103] while for panel (b) β ∈
[0.9, 1.5] and t0 ∈ [5 × 105, 6 × 105].

difficult to identify a single time scale, thus causing the distribution to change from a pure
exponential to a truncated power law, with a truncation that happens at a value t0. Interestingly,
if we compare the value of t0 with the diffusive time td discussed in figure 1 we observe that
t0 ≈ td (see SM). This observation suggests that by analysing the waiting time distribution we
can get an estimate of the diffusive time and thus obtain some insights on the onset of the BnG
regime.

In figures 3 and 4 we study the dependence of our results on d∗. Note that we report here
plots for two temperature values only, however our results are verified for all the temperature
values listed in table 1 (see SM). On the one hand we observe that the jump length distri-
bution remains unchanged when varying d∗ (figure 3). On the other hand the waiting time
distribution, even if maintaining the same functional behaviour, shows a dependence on d∗

which is reflected on the dependence on the coefficients β and t0 on d∗ (see table 1). Note
that mostly it is the value of β that is affected while t0 remains quite stable when changing
d∗, ensuring that the analysis discussed above on the BnG regime is not dependent on the
value of d∗ that we select. The dependence on d∗ of the waiting time distribution can be eas-
ily understood by focusing on the detection algorithm. For small values of d∗ the algorithm
is likely to include in the statistics those contributions that actually do not correspond to real
jumps but are rather coming from the vibrational motion within the cage. This leads to a slight
underestimation of the average waiting time (see table 1) and to two different effects on the
distribution: (i) a more prominent peak arises at short waiting times and (ii) the very long
waiting times are not detected, and thus the distribution will show a smaller domain of tw.
This is indeed what we observe in figure 4. Moreover, in the insets of figure 4 we report the
waiting time distributions normalised over their average values. Regardless of the tempera-
ture we observe that the curves for the three values of d∗, when renormalised, collapse into a
single one up until at least 5 · 〈tw〉, which represents an agreement for a quite large temporal
domain.

5. Correlation between waiting times

Figure 5 shows the jumps timeline of particle trajectories in which we display the series
of jumps detected along the same trajectory analysed with all the three values of d∗. Once
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Figure 5. Timelines of ten trajectories analysed with different values of d∗ for T = 0.54
(panel (a)) and T = 0.45 (panel (b)). Each group of three lines represent the same tra-
jectory analysed with the three different value of d∗—as suggested by the legend—and
each marker represents a detected jump.

again our discussion here is mostly focused on two temperature values but our results are
verified for all the temperature values listed in table 1 (see SM). For the higher tempera-
ture (T = 0.54) reported in figure 5(a) the jumps seem to be distributed quite equally along
the trajectory, regardless of the value of d∗. For the lower temperature (T = 0.45) reported
in figure 5(b) the picture is quite different. The jumps do not seem to be distributed evenly
but they are concentrated within the same time intervals, no matter the value of d∗, show-
ing the fitness of our algorithm to detect jumps. Moreover one can immediately observe that
the hopping events group together. For smaller values of d∗ this is in part due to the con-
tributions coming from the vibrational motion within the local cage, as described above for
the waiting time distribution. However this effect seems to persist also for the biggest value
of d∗, suggesting the presence of correlations between waiting times. In particular, we can
confirm this observation by selecting a waiting time and study the distribution of its sub-
sequent waiting times. We report this analysis in figure 6. For T = 0.54, figure 6(a), all the
distributions of subsequent waiting times p(tn+1

w ) collapse together regardless of the selected
waiting time tn

w, indicating that there is no correlation between waiting times. On the other
hand, the plot for T = 0.45 reported in figure 6(b) shows that: (i) the smaller the selected

9
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Figure 6. Distributions of subsequent waiting times of selected waiting times
tn
w = 5, 50, 500 for d∗ = 0.5 and (a) T = 0.54 and (b) T = 0.54. In the inset we show

the corresponding cumulative distribution function.

Figure 7. Autocorrelation function of waiting times obtained as defined in (3) for (a)
d∗ = 0.7 and different values of temperature. In panel (b) we report the autocorrelation
function for the three lower values of temperature with the x–axis rescaled by the corre-
sponding average waiting time. Panels (c) and (d) show the autocorrelation function for
different values of d∗ and T = 0.54 and T = 0.45, respectively.

waiting time tn
w the fatter the tails of the subsequent waiting times distribution p(tn+1

w ) and
(ii) the larger the selected waiting time tn

w the more p(tn+1
w ) is peaked around short waiting

times (see figure 6(b)—inset). We confirmed these observations by performing the 2-sample
Kolmogorov–Smirnov test, a nonparametric test that checks whether the two samples have
identical distribution [65]. With a level of significance of 1% we observe that for T = 0.54 we
cannot reject the null hypothesis, that is all datasets share the same distribution. Conversely,
for T = 0.45, the null hypothesis is rejected and thus the datasets result to come from differ-
ent distributions (see SM for more details). This analysis confirms the presence of negative
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correlations among waiting times at low temperatures. We thus proceed in studying such cor-
relations. Following a standard definition, the autocorrelation function of waiting times can be
estimated as [64]

Rtw(n) =
1

NA

NA∑
i=0

⎛
⎝ 1

(Ni
J − n)σ2

w

Ni
J−n∑

k=1

(
tk
w − μw

)(
tk+n
w − μw

)⎞⎠, (3)

for any positive integer n < Ni
J, where Ni

J is the total number of jumps detected for each particle
i and μw and σ2

w represent the mean and variance of the waiting times, respectively. The sum
over i accounts for the average over the ensemble of waiting time series obtained from the NA

particles of species A. The curves obtained from our data by implementing equation (3) are
reported in figure 7. As expected, our results show negative correlations which appear more
pronounced when T decreases. In particular in 7(a) we clearly see that there is no correlation at
high temperatures down until T = 0.54. At T = 0.5 we start to observe a slight negative corre-
lation which gets more and more pronounced when further lowering T. Moreover, we observe
in figure 7(a) that upon lowering the temperature the minimum of the autocorrelation not only
gets deeper but also moves to the left and is accompanied by a faster relaxation. This effect is
due to the fact that the correlation is reported in number of waiting times, and not in real time
units. Thus, considering that the average waiting time grows when lowering T, the relaxation
appears faster in number of waiting times but it is not if considered in real time units, as can
be seen in figure 7(b). It is also interesting to understand the dependence on d∗ of our results.
At lower values of d∗ we observe oscillations in the correlation function. This effect seems to
be present at all temperatures—see for instance the result for d∗ = 0.5 and T = 0.54 reported
in figure 7(c)—but becomes more and more visible at lower temperatures. Figure 7(d) shows
the results for T = 0.45 where we observe that at small values of d∗ the negative correlations
are completely obscured by the oscillations. This effect is reduced for larger value of d∗ and,
in particular, at d∗ = 0.7 the negative correlations appear very clean (this is the case also when
considering even larger values of d∗—see SM). These oscillations are most likely due to those
detected jumps which still correspond to the vibrational motion within a cage and that are
present for small values of d∗ but disappear when d∗ is larger. Thus, performing an analysis on
the autocorrelation function of waiting times can also provide good insights on the best value
to select for the parameter d∗ in order to completely exclude contributions from the vibrational
motion within a cage.

6. Conclusions

In this work we made use of a simple yet robust algorithm to detect jumps and waiting times
to study the temporal correlation of waiting times in the 3D Kob–Andersen system. Before
focusing on the study of the correlations we provided an in-depth statistical characterisation
of the jump length and waiting time distributions. As far as the jump length distribution is
concerned, we showed that at low temperatures it is well described by an exponential function.
When increasing the temperature, its behaviour deviates from a pure exponential, indicating
a mixture of exponential and Gaussian regimes. Concerning the waiting time distribution, we
observed that it can be well described by an exponentially truncated power law, as mentioned
already in other works [44–47]. Moreover, we discussed how the properties of the waiting
time distribution can provide insightful information on the onset of the BnG regime in glassy
systems.
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By studying the jump timelines we observed that the waiting times are correlated. Indeed,
by evaluating the autocorrelation of waiting times we showed that, when lowering the temper-
ature of the system, negative correlations emerge. The temporal correlations detected in this
work at low temperatures, so as the changes in the statistical properties of the jump length
and waiting time distributions, can all be linked to the emergence of dynamic heterogeneities
in the system. According to this concept each particle will undergo phases of small and large
mobility. The introduction of waiting times and jumps simplifies this picture and classifies the
motion into mobile and immobile phases. In this way, each particle along its trajectory will
experience alternatively mobile and immobile phases. The emergence of negative correlations
among waiting times shows that the hopping between the two phases happens through some
rearranging jumps, associated to the short waiting times detected right after a long one. In
relation to this, a study appeared very recently [67] in which an analysis of the same system
reported in this work is performed, highlighting deviations from CTRW and other theoretical
macroscopic predictions at low temperatures. Interestingly, the presence of temporal correla-
tions are listed as a possible reason behind such deviations, thus emphasising the relevance of
the results reported here.

From a modelling point of view one could use the mathematical framework defined within
the CTRW approach to study how these negative correlations can affect other statistical
properties such as the MSD and the displacement distribution. The concept of correlated
waiting times was studied in [66] but only for positive correlations. The situation with anti-
correlated waiting times, to the best of the authors’ knowledge, has never been addressed
from a mathematical point of view within the CTRW framework. Thus, this work sug-
gests a clear direction for future analytical studies of CTRW with anti-correlated waiting
times.

Finally, we emphasise that the analysis reported in this work can be performed and tested
on experimental data obtained from single-particle tracking usually by means of fluorescence
microscopy techniques (see for instance [10]).
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