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Effect of short- and long-range correlations on neutron
skins of various neutron-rich doubly magic nuclei
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We study the effects of correlations beyond the independent particle model in the evaluation of neutron skins of
various neutron-rich doubly magic nuclei. We consider short- and long-range correlations to take into account the
presence of the strongly repulsive core of the bare nucleon-nucleon interaction and collective nuclear phenomena,
respectively. Despite the strong sensitivity on the structure of the nucleus considered, our results indicate that, in
general, correlations increase the values of the neutron skins.
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I. INTRODUCTION

The amount of information about the neutron density dis-
tribution in atomic nuclei is very poor in comparison to that of
protons. Neutron densities have been investigated mainly with
hadronic probes, protons [1–3], neutrons [4,5], α particles
[6,7], and pions [8,9], and the interpretation of the observed
data is often affected by strong dependencies on the model
considered. In contrast, the interaction between electromag-
netic probes and the nucleus is much better controlled. This
fact triggered the idea of using polarized electron beams to
study neutron skins, i.e., the difference between the root mean
square (rms) radii of the neutron and proton density distribu-
tions [10].

The first experiment of this kind was performed in the
Hall A of the Thomas Jefferson National Accelerator Facil-
ity (JLab) and investigated the 208Pb nucleus [11]. The first
results of this experiment were published in 2012 [12] and
they are indicated as PREX-1. A second campaign of data
collection, called PREX-2, was carried out in 2021 [13]. The
combined analysis of the two PREX experiments provides a
value of the 208Pb neutron skin of

Rskin(208Pb) = Rν (208Pb) − Rπ (208Pb)

= (0.283 ± 0.071) fm, (1)

where Rν and Rπ indicate the neutron and proton rms radii,
respectively. This value is compatible with that of Ref. [6],
measured in α scattering. In contrast, it is remarkably larger
than those obtained from the scattering with other hadronic
probes [3,9,14–16], the study of the electric dipole polarizabil-
ity of neutron rich nuclei [17], the pigmy dipole resonances
[18,19], the exotic atoms spectroscopy [15,20–22], the astro-
physical constraints [23], and those found in the great majority
of the mean-field calculations [24–26].

II. THE MEAN-FIELD MODEL

In this work, we analyze the reliability of the theoreti-
cal predictions. As is clearly pointed out in Ref. [17], these
predictions have been done mainly in the framework of the
mean-field, or independent particle, model (IPM). This is
relevant because, within this model, the neutron skin has
been strongly correlated to an important quantity describing
the nuclear matter equation of state: the slope of the density
dependence of the symmetry energy at the saturation point,
usually called L [17,27–30]. The value of L has important
consequences on our understanding of the structure of neutron
stars [31].

In our study, we calculated the proton and neutron density
distributions, defined as

ρα (r) = A

〈�|�〉 〈�|
∑

j

′
δ(r − r j )|�〉, α ≡ π, ν, (2)

by considering different ansätze for |�〉, the wave function
describing the nuclear ground state. In Eq. (2), the prime
indicates that the sum is restricted to protons or neutrons only,
according to α. The rms radii Rν and Rπ and, consequently,
the neutron skins, were obtained by using ρν and ρπ as

Rα =
[∫ ∞

0 dr r4 ρα (r)∫ ∞
0 dr r2 ρα (r)

] 1
2

, α ≡ π, ν. (3)

We found that effects beyond the IPM, the correlations, affect
differently the neutron and proton density distributions and
therefore modify the IPM neutron skin values.

In the IPM, |�〉 is a Slater determinant of single-particle
(s.p.) wave functions. In this model, each nucleon moves
independently of the other ones, the only limitation being
that imposed by the Pauli exclusion principle. We constructed
this IPM collective state by solving a set of Hartree-Fock
(HF) equations with a density-dependent effective finite-range
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TABLE I. Binding energies per nucleon, B/A, and rms charge
radii, Rch, obtained in the IPM calculations with the D1S and D1M
interactions, compared to the experimental data taken from the com-
pilations of Refs. [35,36].

B/A (MeV) Rch (fm)
D1S D1M Exp. D1S D1M Exp.

48Ca 8.691 8.590 8.666 3.539 3.514 3.477
68Ni 8.648 8.584 8.682 3.923 3.894
90Zr 8.739 8.635 8.709 4.292 4.264 4.269
132Sn 8.513 8.308 8.354 4.672 4.700 4.709
208Pb 7.895 7.829 7.867 5.489 5.501 5.501

nucleon-nucleon interaction. Specifically, we considered two
parametrizations of the Gogny interaction, the so-called D1S
[32] and D1M [33] forces. We also carried out calculations
with an interaction containing tensor terms, the D1ST2a [34],
but, since the effects of these terms on the radii were within
the numerical accuracy of our calculations, we do not examine
here the results obtained with this force.

III. RESULTS

In addition to the 208Pb nucleus, which is the main subject
of our investigation, we considered other neutron-rich doubly
magic nuclei, 48Ca, 68Ni, 90Zr, and 132Sn, to verify that our
findings are not strictly related to some specific feature of
208Pb. We investigated the importance of pairing effects in
these nuclei by carrying out Bardeen-Cooper-Schrieffer cal-
culations with the same effective nucleon-nucleon interactions
used in HF, and we found them irrelevant.

The quality of our IPM in describing the ground state of
the nuclei considered is summarized in Table I, where the
values of binding energies and charge rms radii are compared
to the experimental values taken from the compilations of
Refs. [35,36]. The agreement with the experimental data is
not a surprise since the values of the parameters of the two
forces used in the HF calculations were selected by doing a
fit of about 2000 binding energies and 900 charge rms radii
[32,33,37], and the nuclei we considered are among those
chosen for the fit.

We show in Table II the neutron skins obtained in the
calculations carried out within our IPM. The values found
with the D1M interaction are smaller than those calculated
with the D1S force. The relative differences between these

two types of calculations are 24.4% for 208Pb, about 15% for
68Ni, 90Zr, and 132Sn, and 7% for 48Ca.

The almost free motion of the nucleons inside the nucleus
is modified by the presence of effects that may be classified as
of short and long range. The short-range correlations (SRC)
are due to the presence of the strongly repulsive core of the
bare nucleon-nucleon interaction and prohibit two nucleons
from getting too close to each other. The long-range corre-
lations (LRC) take into account the part of the interaction
neglected in the HF approach, which is usually called residual
interaction and couples collective vibrations to the s.p. wave
functions [38–40].

A. Long-range correlations

We treated LRC within the theoretical framework of the
random phase approximation (RPA) [38–40]. In this theory,
the nuclear ground state is no longer the IPM Slater de-
terminant but a more complicated state containing a set of
particle-hole excitations that are weighted by the so-called
backward amplitudes, Y , obtained by solving the RPA equa-
tions. In Refs. [41–43], this idea has been exploited to evaluate
nuclear ground-state properties. The correlated density distri-
butions can be expressed as

ρLRC
α (r) = ρIPM

α (r) −
∑
J�

2J + 1

8π

×
∑
Ek

∑
p,h

′ ∣∣Y J�

ph (Ek )
∣∣2{

[Rp(r)]2 − [Rh(r)]2
}
,

α ≡ π, ν,

where ρIPM
α indicates the IPM density distribution; R is the

radial part of the particle, p, or hole, h; s.p. is the wave
function; and J and � are the angular momentum and the
parity of a specific nuclear excitation with energy Ek .

Our RPA calculations were carried out by consistently
using the same interaction adopted in the HF calculations.
The numerical stability of the RPA results was ensured by
following the prescriptions described in Ref. [44]. For each
nucleus considered, we included all the multipolarities whose
experimental excitation energy is smaller than 5 MeV. We ver-
ified that the inclusion of other multipolarities did not modify
significantly the final result.

For the nucleus 208Pb we also performed calculations with
the phenomenological approach of Ref. [45], inspired to the

TABLE II. Neutron skins, in fm, obtained in IPM and by including correlations. The calculations were done by using the D1S and D1M
forces. The relative differences with respect to the IPM values are shown between parentheses.

D1S D1M

(N − Z )/A IPM LRC SRC Total IPM LRC SRC Total

48Ca 0.167 0.145 0.175 (20.2%) 0.157 (8.2%) 0.186 (28.3%) 0.134 0.162 (20.3%) 0.147 (9.2%) 0.174 (29.5%)
68Ni 0.176 0.157 0.224 (42.1%) 0.182 (16.0%) 0.248 (57.6%) 0.135 0.166 (23.0%) 0.145 (7.3%) 0.176 (30.2%)
90Zr 0.111 0.058 0.055 (−5.4%) 0.062 (7.8%) 0.059 (1.9%) 0.050 0.034 (−32.1%) 0.055 (9.8%) 0.039 (−23.1%)
132Sn 0.242 0.190 0.198 (4.3%) 0.202 (6.2%) 0.210 (10.5%) 0.163 0.166 (1.7%) 0.189 (15.9%) 0.192 (17.6%)
208Pb 0.212 0.122 0.142 (16.9%) 0.144 (18.4%) 0.165 (35.2%) 0.092 0.109 (18.8%) 0.115 (24.6%) 0.132 (43.2%)
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FIG. 1. Energies, in MeV, of the s.p. levels of 208Pb close to the Fermi surface.

Landau-Migdal (LM) theory of the finite Fermi systems. In
this case, the s.p. wave functions were generated by two
Woods-Saxon potentials, one for the protons and the other one
for the neutrons, whose parameters, given in Ref. [46], were
selected to reproduce at best the empirical values of the s.p.
energies. The phenomenological RPA calculations were car-
ried out by considering these experimental values, which are
compared in Fig. 1 to the HF s.p. energies. The figure clearly
shows the well-known fact that the empirical s.p. spectrum
is more compressed than that predicted by HF calculations
[39]. In this phenomenological RPA calculation, the residual
interaction is a zero-range density-dependent LM force whose
parameters values were selected to reproduce the excitation
energy of the low-lying 3− excitation and the position of the
centroid energy of the electric monopole excitation. In Fig. 2,
we compare the excitation spectrum of the 208Pb obtained for
the three different approaches with the experimental one. As
expected, the results obtained with the phenomenological LM
interaction reproduce better the experimental data than those
found with the self-consistent HF plus RPA calculations.

The effects of the LRC on the proton and neutron rms
radii are shown in Fig. 3, where we present the results ob-
tained with the D1S interaction. We found similar results
by using the D1M force. In this figure, the red circles show
the differences RLRC

α − RIPM
α for both protons [Fig. 3(a)] and

neutrons [Fig. 3(b)]. In all the nuclei analyzed, these dif-
ferences are positive, indicating that the global effect of
the LRC is a broadening of the IPM density distributions
with the subsequent increase of the proton and neutron rms
radii.

The size of this effect is not the same on proton and neutron
densities. This difference is large enough to change the value
of the neutron skin. The IPM and LRC columns of Table II
show that the LRC skin values are larger than the IPM ones
in all the cases, except for 90Zr nucleus. In this latter case,
the LRC reduce the neutron skin of 5.4%, in the calculation

with the D1S force, and of 32.1%, in those with the D1M. In
the other nuclei, the relative difference ranges from 4.3% for
132Sn to about 20% for 48Ca and 208Pb.

In the phenomenological LM calculation for 208Pb, the
LRC produce an increase of proton and neutron rms radii of
about 0.02 fm, and a relative increase of the skin of about 3%.

The relevance of the various excitation multipoles included
in the sum of Eq. (4) was also evaluated. As expected, we
found that the most important ones are those with the lowest
excitation energy, showing a rather collective behavior. This
is the case of the 3− excitation in 208Pb. The inclusion of this
multipole in the sum of Eq. (4) modifies the proton rms radii
by 0.3% in the calculation with the D1S force, by 0.8% with
the D1M, and by 1.2% with the LM interaction. By looking
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FIG. 2. Excitation spectrum of 208Pb obtained by self-consistent
RPA calculations carried out with D1S and D1M interactions and by
the phenomenological LM approach.
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at the excitation spectrum of Fig. 2, it becomes clear that
the effect is larger as the excitation energy of the multipole
decreases.

B. Short-range correlations

We conducted the study of the LRC in a consistent picture
where the only physics input is the effective nucleon-nucleon
interaction. Our treatment of the SRC, based on the approach
proposed in Ref. [47] and used in Refs. [42,43,48] to study
charge density distributions, required a new physics input,
the two-body correlation function. We described the nuclear
ground state as

|�〉 ≡ �SRC(1, 2, . . . , A) = F (1, 2, . . . , A) 	(1, 2, . . . , A),
(4)

where we indicate with 	 the HF Slater determinant, and with
F a many-body correlation function is defined as [49,50]

F (1, 2, . . . , A) = S
∏
i< j

6∑
p=1

f (p)(ri j ) O(p)
i, j . (5)

In the above expression, S is a symmetrization operator,
f (p)(ri j ) is a scalar two-body correlation function acting on
the (i, j) nucleon pair, and {O(p), p = 1, . . . , 6} indicate two-
body operators classified as in the usual Urbana-Argonne
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FIG. 4. Differences between the correlated rms radii and those
obtained in the IPM results. All the calculations were done with the
D1S interaction. The green squares indicate the results obtained by
considering all the six operator-dependent terms of the correlation
function (5); these are the same as in Fig. 3. The red triangles indicate
the values found by considering only the first four terms of the
correlation function, the so-called central terms. The black circles
correspond to the results obtained when only the scalar term of the
correlation function is included in the calculation.

sequence [49]:

O(1)
i j = 1, O(2)

i j = τ(i) · τ( j),

O(3)
i j = σ(i) · σ( j), O(4)

i j = σ(i) · σ( j) τ(i) · τ( j),

O(5)
i j = S(i, j), O(6)

i j = S(i, j) τ(i) · τ( j), (6)

where σ and τ are the spin and the isospin operators, respec-
tively, and S(i, j) is the usual tensor operator.

The use of the expression (4) in the definition (2) of the
density distribution allows an expansion in clusters, each of
them identified by the number of two-body correlation func-
tions

h(p)(ri j ) = f (p)(ri j ) − δp,1 (7)

that it includes. In the previous equation, δ indicates the
Kronecker symbol. The key point of the model of Ref. [47]
consisted in retaining only those terms of the expansion that
contain a single correlation function h(p). Explicit expressions
of the contribution of these diagrams in terms of the radial s.p.
wave functions are given in Ref. [47]. While this truncation
of the cluster expansion is a very poor approximation in the
evaluation of the ground-state energy, it is rather good for the
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density distribution. Its validity was tested by comparing the
results of this model with the density distributions obtained in
Fermi-hypernetted-chain (FHNC) calculations [50], in which
almost all the cluster terms of the expansion are considered.

Even though the D1S and D1M interactions do not contain
tensor-dependent terms, we used all the six operator compo-
nents of the correlation (5). In order to disentangle the effects
of the various terms of the correlation function, we carried
out calculations by including only the scalar part, i.e., f (1),
the first four terms, and the complete two-body correlation
function. We call SRC1, SRC4, and SRC, respectively, the
results obtained in these three types of calculations.

We used the two-body correlation functions f (p) obtained
in Ref. [50] with a minimization procedure that generates spe-
cific correlations for each nucleus investigated. In the present
study, we considered the two-body correlation functions ob-
tained for the 48Ca and 208Pb nuclei by using the microscopic
Argonne V8′ two-body force plus the Urbana IX interaction
(see Fig. 21 of Ref. [50]). These two correlation functions are
very similar and produce results which differ by few parts on
a thousand; therefore, we show here only those obtained with
the 208Pb correlation.

The effects of the SRC on the proton and neutron rms radii
calculated with the D1S interaction can be seen in Fig. 4,
where we show the differences between correlated and IPM
proton and neutron rms radii. The SRC1 results are shown by
the black circles. We observe that the values of all the rms
radii increase with respect to the IPM ones. The inclusion of
the other operator-dependent central terms of the correlation
(see SRC4 results) reduces the effect of the scalar term as it is
shown by the red triangles in the figure. Also, the remaining
two terms of the correlation, the tensor ones, reduce the effect
of the scalar correlation, producing the SRC shown by the
green squares. These are the same green squares of Fig. 3
where they are compared to the LRC results.

It is remarkable the difference between the behaviors of
LRC and SRC. The effects of the former ones on the rms radii
strongly depend on the structure of the nucleus considered.
For example, the size of these effects on 90Zr is much larger
than in 132Sn. In contrast, the SRC effects are almost constant
in all the nuclei considered, indicating that the short-range
features are really almost independent of the presence of the
surface and shell effects.

As we have already pointed out for the LRC, also in the
case of the SRC the effects are slightly different for protons
and neutrons rms radii and, consequently, the final result is
an increase of the IPM neutron skin in the all five nuclei an-
alyzed, as indicated by the corresponding column of Table II.
The size of the effect of the SRC is of the same order of
magnitude of that found for the LRC, even though it depends
strongly on the specific features of nucleus considered. We
obtain a minimum increase of 6.2% for the 132Sn nucleus
calculated with the D1S force and a maximum value of 24.6%
in 208Pb with the D1M interaction.

Since the treatments of SRC and LRC are based on differ-
ent grounds, we defined the totally correlated density as

ρ tot
α (r) = ρLRC

α (r) + ρSRC
α (r) − ρIPM

α (r), α ≡ π, ν. (8)

By considering these densities, we calculated the totally cor-
related rms radii. The differences with the IPM radii are

indicated in Fig. 3 by the black squares, which are roughly
the sum of the LRC and SRC results. The total effects of the
correlations on the neutron skins are presented in Table II:
It is evident that they produce an increase of the skin values
obtained in the IPM. The only exception is the case of the 90Zr
when the D1M force is used.

The results of our study given in Table II show some
regularity, but the specific structure of each isotope is more
important than any general trend. As example of this, we ob-
serve that size of the neutron skin increases when the value of
the (N − Z )/A ratio increases, i.e., when the neutrons become
more important. The results of the 208Pb nucleus are out of
this trend.

IV. CONCLUSIONS

To summarize our results, we can state that, in general,
correlations increase the values of the neutron skins obtained
in the IPM. Our treatment of correlations distinguishes be-
tween long- and short-range correlations. While we treated
the former ones with an approach completely consistent with
the IPM, the SRC were considered by inserting an additional
physics ingredient not constrained by the choice of the IPM.
The presence of operator-dependent terms in the correlation
function reduces the global effect of SRC with respect to
results obtained with purely scalar functions. It turns out that
the effects of the SRC in the rms radii are relatively small
as compared to those of the LRC and they are almost iden-
tical in each nucleus we studied. The dominant effects of
the LRC are strongly related to the structure of the nucleus
considered.

The correlation effects are, on average, two times larger
than those related to the use of different effective interaction.
In our calculations, the values of the neutron skins obtained
with the D1S force are always larger than those obtained with
the D1M interaction.

In the case of 208Pb, the inclusion of correlations improves
the agreement with the PREX results. The IPM skin values are
located at 2.3 σ and 2.7 σ from the mean value given by the
experiment for the D1S and D1M interactions, respectively.
The corresponding correlated values are at 1.6 σ and 2.1 σ .

The proper manner of tackling the description of neutron
skins is a fully consistent, and microscopic, calculation of the
density distributions such as those carried out with the coupled
cluster model for the 48Ca in Ref. [51]. Up to now, this kind
of calculation is not feasible for heavier nuclei, certainty not
for 208Pb. To the best of our knowledge, the only microscopic
approach that has studied 208Pb is the FHNC calculation of
Ref. [50]. Unfortunately, the numerical precision of these
calculations does not allow a sufficient accuracy to obtain
reliable results for the neutron skin. It is worth mentioning
that some preliminary test calculations of this kind by using
Argonne V8′ two-body potential plus three-body Urbana IX
force show a trend in agreement with our findings [52].
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Kisieliński, P. Lubiński, P. Napiorkowski, L. Pieńkowski, F. J.
Hartmann, B. Ketzer, P. Ring, R. Schmidt, T. von Egidy,
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