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ABSTRACT: We propose a search for long lived axion-like particles (ALPs) in exotic top
decays. Flavour-violating ALPs appear as low energy effective theories for various new
physics scenarios such as t-channel dark sectors or Froggatt-Nielsen models. In this case
the top quark may decay to an ALP and an up- or charm-quark. For masses in the few
GeV range, the ALP is long lived across most of the viable parameter space, suggesting a
dedicated search. We propose to search for these long lived ALPs in tt events, using one
top quark as a trigger. We focus on ALPs decaying in the hadronic calorimeter, and show
that the ratio of energy deposits in the electromagnetic and hadronic calorimeters as well
as track vetoes can efficiently suppress Standard Model backgrounds. Our proposed search
can probe exotic top branching ratios smaller than 104 with a conservative strategy at the
upcoming LHC run, and potentially below the 10~7 level with more advanced methods.
Finally we also show that measurements of single top production probe these branching
ratios in the very short and very long lifetime limit at the 1073 level.
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1 Introduction

More than 10 years after the start of the LHC, the search for new physics continues. With
increasing luminosity, the hunt for light but very weakly coupled new particles becomes
more and more feasible. One prime example are axions or axion-like particles (ALPs), which
are pseudo-scalar fields whose mass is protected from large corrections by an approximate
shift symmetry. They are of great interest as possible solutions to the strong CP problem [1-
4], but are also predicted as lightest new degrees of freedom in many new physics scenarios
such as composite models [5-10], strongly coupled dark sectors [11-17], supersymmetric
models [18, 19] or in models with horizontal symmetries [20-32].

Given the current lack of experimental guidance for choosing a new physics scenario, a
promising approach is to systematically parameterise the ALP couplings to standard model
(SM) particles using effective lagrangians [33-37]. ALPs with flavour violating couplings
to one type of SM fermions are predicted in various new physics models such as t-channel
dark sectors [15] or Froggat-Nielsen models of flavour [38, 39] where only one type of right-
handed (RH) quarks have non-zero charges. The case where the ALP couples dominantly
to RH up-type quarks was studied in [40] (see also [41]), and it was shown that this model
is poorly constrained in particular for ALP masses above the charm quark threshold. In
this mass range the flavour violating coupling to the top quark offers new possibilities for
experimental probes, using both precision top quark physics as well as new search strategies
where the top quark is used as a trigger object. In this work we will explore both avenues.

The flavour violating coupling of the top quark to a lighter quark and an ALP allows for
exotic top decays, as well as direct production of the ALP in association with a top quark.



The ALP mainly decays to hadrons, either promptly or with a long lifetime. Therefore
it can easily contribute to single top events. In the first part of our work, we show that
precision measurements of the single top cross section are able to probe this new physics
scenario. We perform a recast of existing single top searches and obtain new constraints
on the parameter space of the ALP for both prompt ALP decays to jets and for detector
stable ALPs.

Furthermore we propose a new strategy to search for ALPs in events containing pairs
of top quarks. Thanks to the humongous cross section of t¢ events at hadron colliders,
even a small branching ratio of the top into an ALP and a light jet will lead to a large
rate of top plus ALP events. ALP decays are easily distinguishable from SM jets when
they are displaced from the primary vertex, which is possible for ALPs close to the lower
end of the allowed mass range. For decays happening in the hadronic calorimeter, one
expects only a small energy deposit in the electromagnetic calorimeter as well as fewer
tracks associated with the jet. This can be exploited to suppress the backgrounds by
several orders of magnitude, and thus our proposed search will be sensitive to very small
exotic top branching ratios.

As usual, our paper starts with an Introduction, followed by an overview of the charm-
ing ALP model and its interactions. In section 3 the bounds from a recast of existing
searches and constraints are presented. The newly proposed search for long lived ALPs
produced in association with a top quark is introduced in section 4, before concluding.
Projections for the high luminosity LHC as well as further details on the simulations are
available in the appendix.

2 Charming ALPs and exotic top decays

Similarly to ref. [40], we focus on scenarios where ALPs only interact with up-type quarks
at tree-level, that we have dubbed charming ALPs. In this case, the relevant EFT reads
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a hermitian matrix. Such EFTs will be generated at tree-level by UV completions involving
dark QCD-like sectors with scalar mediators or some models of flavour a la Froggatt-
Nielsen, see e.g. the discussion in ref. [40].

Of course ALP couplings to vector bosons and to other SM fermions (down-type quarks
and leptons) will be generated radiatively via top loops and from the renormalization group
equations (RGEs) [35-37]. While these operators are suppressed relative to the tree level
interactions of eq. (2.1), they induce decays that can be relevant in some regions of the
parameter space where the hadronic channels are kinematically inaccessible. This can be
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Figure 1. Left: ALP decay branching ratios as a function of the ALP mass m, for f, = 10% GeV.
The dashed lines show the contributions to the hadronic channel. Right: lifetime of the ALP as a
function of the ALP mass. The blue, orange and green lines show Br(t — aq) = 107!,10~% and
1078, respectively. Solid, dashed and dotted lines refer to (cy,)ii/(cup)3q = 1,0.1 and 10.

seen in figure 1, where we plot the different ALP branching ratios as a function of the ALP
mass Mg for (cyy)i2 = 0 = (cup)21 and (cyy)ij = 1 otherwise, as well as f, = 106 GeV.
Loop-generated decays like a — pu*u~, a — gg or a — v have been computed using
the expressions present in ref. [40] and we have used the quark-hadron duality [42, 43] to
compute the inclusive hadronic decay rate. When a — cc is not kinematically allowed,
a — gg tends to dominate the ALP branching ratio. This channel also dominates for large
enough values of the ALP mass, since the loop generated vector boson decays grow as m3
while the fermionic decay widths are linear in the ALP mass.

One should note that the RGE-induced decays into two fermions are logarithmically
sensitive to the scale of the matching A ~ f,, so smaller values of f, will reduce their
relative impact. Small enough values of (¢,,,)12 and (¢, )21 are required in order to evade
constraints from D? — DY mixing. For values of m, below 1GeV, one would need to use
chiral perturbation theory instead of perturbative QCD but we focus here on the case
mq 2 1 GeV that is much less constrained by current searches (see results of ref. [40]).

Light particles that mainly decay to hadrons are difficult to find at hadron colliders
such as the LHC, due to the large amount of hadronic background events. Two features
of our scenario will make such a search possible however, namely the presence of flavour
violating decays in the up-quark sector and the possibly long lifetime of the ALP. Since
neutral meson mixing requires (¢, ;)12 and (¢, )21 to be extraordinarily small, a novel and
interesting way of searching for ALPs at colliders is to concentrate on flavour-violating top
decays involving long-lived ALPs. As can be seen from the right panel of figure 1, the
ALPs decay length can easily reach the typical length scales of LHC detectors for masses
in the 1 GeV-10 GeV range. To simplify the parameter space, the couplings are chosen as

(Cur)ii = (Cup)11 = (Cug)22 = (Cug)33 and (cup)3q = (Cur)13 = (Cug)23 = (Cup)31 = (Cup)32-



While the ALPs lifetime is mainly set by the diagonal coupling (¢, )ii, the exotic top decay
depends on the off diagonal couplings (c,,)34 via
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with I'; the total top decay width.
Since all branching ratios just depend on the ratio ¢,,/f, and the exotic decays only

involve off-diagonal couplings, we can use Br(t — agq) and the ratio (cup)ii/(Cug)3q as
free parameters. In particular, we represent cTarp as a function of m, for Br(t — aq) =
1071, 107* and 1072 as well as hierarchies of diagonal versus non-diagonal couplings of
(cug)ii/(cup)3g = 0.1,1,10. One can then readily see that the ‘natural’ mass region to
find long-lived ALPs without resorting to tiny values of Br(t — aq) is m, ~ 1-10 GeV.
Moreover, since the ALP decay width is dominated by decay modes involving diagonal
couplings, we can trade {Br(t — aq), (cuy)ii/(Cug)3q} for {Br(t — aq),ctarp}. We will
use this last set of ALP lifetime and exotic top branching ratio as our independent model
parameters for our phenomenological studies. Note that a change in f, can be absorbed in
a redefinition of the couplings (up to small logarithmic corrections to the branching ratios).
We can therefore fix it to an arbitrary scale which we choose to be f, = 10° GeV.

3 Experimental constraints

3.1 Model independent limits on exotic top decays

Even though the top quark was discovered more than two decades ago, measuring its
decay width is still a challenging process. Direct measurements of the top decay width,
which avoid model-dependent assumptions, have large uncertainties: 0.6 < I'y < 2.5 GeV
at 95% C.L. [44, 45]. This is mainly because of the low experimental resolution to recon-
struct the jet-related properties (e.g., jet reconstruction, jet energy resolution, jet energy
scale, jet vertex fraction) [46-49]. New methods that use combinations of resonant and
non-resonant cross-sections to extract a model independent top quark decay width mea-
surement have been proposed [50-52], which can reduce the uncertainties significantly:
' = 1.28 £ 0.30 GeV [53]. However, O(10%) uncertainties still allow for large new physics
contributions. Indirect measurements of the top decay width have less uncertainties, but
they are done under certain SM assumptions [54, 55]. Hence, they are not applicable when
searching for new physics in rare top decays.

Nonetheless, flavour-changing neutral current (FCNC) decays involving the top have
been under extensive experimental scrutiny. In particular, the t¢X coupling with ¢ =
u,c and X = h/Z/v/g is carefully studied [56-65]. The SM prediction for FCNC top
decay is diminutive because of loop and CKM suppression: Br(t — ¢X) < 10719 [66].
Therefore, new physics contributions can feasibly be persued (e.g., refs. [67-71]). Due
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Figure 2. The Feynman diagrams representing top + ALP production at the LHC.

to the resemblance between a light quark jet and a b-jet, however, FCNC top coupling
searches are usually focused on exotic top quark productions,' in the form of a single top
plus X searches. In the following, we will narrow our attention to top + jets and single top
production to find the current bounds. That is because if the ALP decays at the scale of
the detector length, then the final state becomes top + jets, while if the ALP leaves the
detector before decaying, then the signature becomes a single top.

3.2 Recast of searches for exotic top decays

One of the dominant processes at the LHC involving the charming ALP is its production
in association with a single top. The main diagrams for top + ALP production are shown
in figure 2. Knowing that for the mass range of our interest the ALP mainly decays
hadronically, top + jets searches can impose some constraints on ALP couplings. The
CMS experiment has conducted a search in the top+jet channel probing the anomalous
tqg coupling [65]. Specifically, they looked for a leptonic top in association with one or
two jets, where at least one of them fails the b-tagging secondary vertex algorithm. This
algorithm selects jets with 0.0lcm < r < 2.5cm, where r is the radial distance between
the secondary vertex and the primary vertex [72]. Since in this search, they want a jet
that fails the b-tagging algorithm, and gluon and light quark jets tend to have prompt
vertices, it is clear that » < 0.01cm is considered in their search. However, it is unclear
whether » > 2.5cm is considered in their search. To stay conservative, we will assume
that jets with 2.5cm < 7 < 2m are not rejected,” and we recast the results accordingly.
Given that the upper limit on the cross section of new physics contributing to pp — t+j is
o1 = 0.29 pb at /s = 13TeV [73], an upper limit on (cuy);, /fa With ¢ = u, ¢ can be found
using MadGraphb [74]. Then, using eq. (2.3), this can be converted into an upper limit on
Br(t — aq). In deriving this limit, we have to take into account the probability that the
ALP decays such that it is (most likely) accepted by the search. For prompt decays with
r < 0.01, the efficiency factor is

107*m et
/ (yeraLp) e AL d(ct) , (3.1)
0

where v = pp/m, is the boost factor along the transverse direction. The MC generated
events were weighted according to the boost factor. Similarly, for ALPs that decay in the

'In cases where exotic top decays have been studied, the properties of X (mass, decay products, etc)
are used to tease out the signal [56-58, 61-63].
2If the ALP has not decayed by the hadronic calorimeter (r ~ 2m), it cannot be detected as a normal jet.



range 2.5cm < r < 2 m, we include an efficiency factor

2m _ ct
/ (yerarp) te” 7emaLp d(ct). (3.2)
2.5%10~2m

The dark green regions in figure 6 represent the constraints coming from the top+jet search
at CMS. The dashed line is the constraint for Br(¢ — au) and the solid line is for Br(t — ac).
In this work, we are interested in studying a long-lived ALP. Hence, the constraint coming
from r < 0.01 cm is not visible in the figure 6, except at the bottom right corner of the
plot for m, = 10 GeV. In general, larger boost factors (smaller m,), push the constraints
to lower cr.

If the ALP is stable on the scale of the detectors, it will appear as missing energy.
In this case, measurements of single top production rates impose some constraints on the
couplings of the ALP. Single top production in the SM is suppressed by the b quark PDF
and therefore relatively small. The ATLAS experiment searched for top FCNC with gluon
mediator in the single top channel [64], and reported an upper limit in the cross section
(o¢ < 0.10 pb at /s = 13TeV) [73]. In their analysis they require exactly one jet, one
lepton, and missing energy, and they use Multivariate Analysis to find their limit. One of
the variables they used as an input is the transverse mass mr,, , which should have an upper
limit of myy in the case of true single top production. In the case of top + ALP where
ALP is another source of missing energy, however, mr should have a different distribution.
Nonetheless, we recast their limits to stay conservative regarding the potential power of the
LHC in constraining ALP couplings in this channel. In this case, to take into account the
probability that the ALP does not decay on the scale of the detector (¢t > 10 m) one has to

introduce an efficiency factor of 67%. The light green regions in figure 6 demonstrate
the constraint that the ATLAS search imposes on our model. The dashed line is the limit
for Br(t — au), and the solid line is for Br(t — ac).

Similarly, searches for single top + transverse missing energy (MET) without FCNCs
can be used to constraint the parameter space. However, single top + MET searches are
typically performed for dark matter candidates with masses O(100) GeV [75-78] and require
at least 200 GeV of MET. Instead in our scenario the typical amount of MET is < m;/2
if the ALP escapes undetected, and therefore most events would fail the experimental
selection.

4 Search strategies and LHC prospects for top decays to long lived par-
ticles

4.1 Signal properties

For the search proposed here, we focus on ALP production via flavour-violating top decays.
More precisely, we consider top-pair production where one of the tops decays via its main
SM decay mode to Wb and the other to an ALP and either an up or charm quark, see
figure 3. Consequently, the signal production cross section is

Osignal = 047 X Br(t — Wb) x Br(t — aq), (4.1)



Figure 3. The Feynman diagram for the signal: tf production, where one of the tops decay to
q = u,c and an ALP.

with o, ~ 830pb [79], Br(t — Wb) ~ 0.96 [80] and Br(t — aq) given in eq. (2.3). For
couplings (cyy,)ij of order one and fia ~ O(1079-107°) GeV~! light ALPs with m, ~ (1-
10) GeV have lifetimes of order millimeter to 100 m, while having Br(t — aq) < 1073, For
these intermediate lifetimes ALPs decay mostly in the hadronic calorimeter or the muon
spectrometer. We should remind the reader that while the ALP decays to pairs of partons,
it is highly boosted and decays displaced, so it will mainly be reconstructed as a single,
narrow jet. In the following, we will distinguish two different cases: the case where the
ALP decays at the outer edge of the electromagnetic calorimeter or inside the hadronic
calorimeter and the case where it decays in the muon spectrometer.

An ALP decaying inside the hadronic calorimeter leads to a jet that deposits most
of its energy in the hadronic calorimeter and thus, to a large value of the hadronic to
electromagnetic energy ratio Fhaq/FEem. Since the ALP is neutral we expect no tracks
associated with the jet from its decay. In addition to the displaced jet from the ALP, the
signal consists of one prompt light jet from the up or charm quark produced in the flavour
violating decay t — aq (¢ = u,c) and one to three prompt jets, one of them being a b-jet,
from the decay of the second top quark. The main background in this case is tf, where a jet
consisting of (anti-) protons, 7% and/or K*, but no photons, deposits the majority of its
energy in the hadronic calorimeter and is thus reconstructed as a “displaced” jet. However,
such a jet will leave tracks, a feature we will use to distinguish signal and background.

On the other hand, if the ALP decays in the muon spectrometer, the signal consists
of an event originating in the muon system with no associated tracks pointing to the
primary vertex, as well as the same prompt jets as for decays in the hadronic calorimeter.
Consequently, we expect 2—4 (2-5) jets and a hit in the muon spectrometer without any
associated tracks. We assume that this signal is background free.

4.2 Triggering and event selection

First, we focus on ALP decays inside the hadronic calorimeter. Here, the signal consists of
minimal three and maximal five (six) jets, one (two) of them being displaced: the decay
products of a SM decay of a top, a prompt light jet from the flavour violating top decay and
one (or rarely two) displaced jet(s) from the ALP decay. In general, one could reconstruct
both top quark masses, one from the displaced jet and one additional jet, and the other
from the remaining three jets, to reduce the background. However, we found that focussing
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Figure 4. Calorimeter energy deposit ratio log;, (Enad/Fem) distribution for the ¢t background as
well as for the signal with ctarp = 0.06, 0.4m and m, = 2GeV (left) and m, = 10 GeV (right).

on the displaced jet provides sufficient background suppression and such a reconstruction
of the invariant top masses is not necessary. Note that here and in the following, we treat
the top quark that decays to SM final states as a collider observable object, since the
experimental collaborations have demonstrated that they can trigger on and identify top
quark decays with high efficiency and accuracy. We therefore do not explicitly implement
top-tagging, however we do demand that the jets from the top decays are reconstructed
with large enough transverse momenta, so that we do not overestimate the sensitivity of
the search.

We therefore select events with 3-6 (3-5) jets with pr > 40GeV and |n| < 2.5. To
identify the displaced jet we follow the ATLAS Calorimeter Ratio trigger [81] requirements.
This trigger is taking advantage of the fact that the decay products of neutral particles de-
caying in the outer layers of the electromagnetic calorimeter or in the hadronic calorimeter
deposit most of their energy in the hadronic calorimeter. The Calorimeter Ratio trigger
requires a 7-lepton like object with Ep > 40 GeV (which fits the jet originating from the
ALP), with log,g (Ehad/Fem) > 1.2 and no tracks with pr > 1 GeV in a (0.2 x 0.2) region
in (An x A¢) around the jet direction.

In figure 4 we show the log;q (Epad/Fem) distribution for the signal with m, = 2 GeV
(left) and mg = 10 GeV (right) and ALP lifetimes ctarp = 0.06 m and 0.4m, as well as for
the tt background. We modified the FeynRules [82, 83] implementation of the linear ALP
EFT model [84, 85] to include the charming ALP couplings. Signal events were generated
with MadGraphb [74] with showering and hadronization done with Pythia8 [86]. The
energy deposit ratio logg (Epad/Fem) for the signal was assigned according to figure 5b
of [81]. For background estimation we simulated 100000 ¢t events with MadGraph5 [74]
with showering and hadronization done with Pythia8 [86] and fast detector simulation
carried out by Delphes [87].

While the background in figure 4 is evenly distributed around log;q (Epad/Fem) ~ 0,
corresponding to an equal energy deposit in the hadronic and electromagnetic calorimeter,
and has one peak in the overflow bin at log; (Fhad/Eem) = 3, the signal has several peaks:
the signal peak at log g (Ehad/Fem) ~ —0.8 corresponds to the ALPs that decay close to the
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Figure 5. Number of tracks of jets originating from t¢ with log;, (Enaq/Fem) > 1.2. The dark blue
line shows the number of tracks with pr > 2 GeV, the lighter blue line the number of all tracks for
such a jet.

interaction point. The second peak with log; (Enad/FEem) 2 1.2 is due to ALPs decaying
in the outer layers of the electromagnetic calorimeter or inside the hadronic calorimeter.
Thus, they only deposit a small amount of energy in the electromagnetic calorimeter. Note
that this peak is higher for ctarp = 0.06 m when m, = 2GeV and for crarp = 0.4m
when m, = 10 GeV, respectively. This is due to the fact that the ALP is less boosted
for higher masses. Finally, the signal has a peak at log;; (Fhad/FEem) = 3, similar to the
background, but it has a different origin than for the background. For the signal this peak
shows the amount of ALPs decaying outside of the detector and thus, do not count into
the actual signal, while for the tt background it shows jets with E., = 0 and therefore
(Ehad/Fem) = 00, which is defined as (Epaq/Fem) = 1000 in the Delphes cards, leading to
log g (Ehad/Fem) = 3. As described above this is true for jets consisting of (anti-) protons,
7t and/or K*, but no photons. These jets are counted as signal.

To further reduce the background of SM jets that appear displaced, we now consider
the no track criterion of the Calorimeter Ratio trigger. In figure 5 the number of tracks
for background jets with log,o (Ehad/Fem) > 1.2 is shown. The light and dark blue lines
correspond to all tracks and to tracks with pr > 2GeV. It can be seen that in both cases
most jets have at least one track. At the level of our simulation, the signal events have
no tracks pointing towards the decaying ALP. However in reality pile-up events could add
tracks pointing in the direction of the displaced decaying ALP, and thus a very strict cut
on the tracks could reduce the sensitivity. We therefore choose a less stringent cut on the
number of tracks for background jets as the actual Calorimeter Ratio trigger, requiring
that jets with log g (Ehad/Fem) > 1.2 have less than two tracks with pr > 2 GeV. This cut
is indicated by the grey dashed line in figure 5. Even with this conservative cut most of
the background will be removed.



m, = 2GeV m, = 10 GeV tt

total (1) 2.79 x 10° (1) 2.79 x 10° (1) 2.91 x 108
3 — 6 jets with
pr >40GeV & |n| < 2.5 (0.8439) 2.35 x 10° | (0.8414) 2.35 x 10° | (0.71801) 2.09 x 10®

1 jet with logq, (EEhad) > 1.2 | (0.1436) 4.00 x 10* | (0.0775) 2.16 x 10* | (0.01244) 3.61 x 10°

displaced jet has < 2 tracks | (0.1436) 4.00 x 10* | (0.0775) 2.16 x 10* | (0.00022) 6.39 x 10*
with pt > 2 GeV

Table 1. Cut flow of the expected number of events for signal and background events for LHC run
3 with /s = 13TeV and £ = 350fb~!. The values in brackets are the efficiencies after each cut.
For the signal ¢tarp = 0.1m and Br(t — ag) = 0.001 was chosen.

In addition, we consider a search for ALPs decaying in the muon spectrometer. Here,
we select events with 2-5 prompt jets with pr > 40GeV and |n| < 2.5, while the ALP
should decay inside the muon calorimeter (4.3m < Lg,, < 10.7m) and fulfill py > 25 GeV
and |n| < 2.5.

4.3 LHC sensitivity and prospects at future colliders

For two ALP masses m, = 2 GeV and m, = 10 GeV, we generated 10000 signal events for
various lifetimes crarp = 0.001 — 100 m with MadGraphb and Pythia8, as before. We select
events in Pythia8 with 3-6 (3-5) jets, each with pr > 40 GeV and |n| < 2.5. We demand
that the jet from the ALP fulfils the log;q (Ehad/Fem) > 1.2 criterion of the Calorimeter
Ratio trigger according to the energy deposit ratio as a function of the decay radius in
figure 5b of [81] and further demand that the ALP satisfies pr > 40GeV and || < 2.5.
For background estimation, we select events with 3-6 (3-5) jets with pp > 40 GeV and
In] < 2.5 (from 100000 tt events generated with MadGraph5, Pythia8 and Delphes). In
addition we require that at least one of these jets has log;; (Fhad/Eem) > 1.2 and that this
jet has no more than two tracks with pr > 2 GeV.

As experimental testing grounds we consider LHC with /s = 13 TeV and the expected
total integrated luminosity after run 3 of £ = 350 fb~!, as well as the high-luminosity phase
of LHC (HL-LHC) with /s = 14 TeV and a total integrated luminosity £ = 4000fb~!. In
table 1 the cut flow (of the efficiencies) for the signal for m, = 2GeV and m, = 10 GeV
with ¢rapp = 0.1m and Br(t — agq) = 0.001, as well as for the background is shown for
Vs = 13TeV and the expected total integrated luminosity £ = 350fb~!. It can be seen
that already the cut of minimal three and maximal six jets with pr > 40 GeV and |n| < 2.5
reduces the background compared to the signal, however the cuts on log,q (Epad/FEem) and
the number of tracks are significantly stronger and allow to clearly distinguish signal and
background. Depending on the mass and lifetime of the ALP up to ~ 15% of the ALP
signal passes these cuts, while each of them reduces the number of background events by
about two orders of magnitude. In table 2 in the appendix the same cutflow is shown
for choosing events with three to five jets with pr > 40 GeV and |n| < 2.5. This reduces
signal and background in a similar way and thus does not improve the signal to background

~10 -



ratio. Based on the above described selection criteria we perform a cut-and-count analysis,
using S/v/S+ B = 2 to find the expected 20 exclusion region. Since we expect that
the backgrounds can be further suppressed, we do not include systematic effects in our
sensitivity estimate.

In figure 6 we show the expected 20 exclusion region of the here proposed search for
Vs = 13TeV and £ = 350fb~! as the red solid line (labeled with ‘Hadron (2¢)’). The
bounds discussed in section 3.2 from recasting the top + jet and single top + missing
energy searches are displayed as dark and light green shaded regions, respectively. The
regions inside the dashed lines show the constraints from the tua coupling and the regions
inside the solid lines from tca coupling. Finally we show the 10-event discovery lines? for
the above discussed search in the muon system (blue line) and for a background free search
in the hadronic calorimeter (red line), to highlight the potential reach of further improved
searches. In the upper panel we use m, = 2GeV and in the lower panel m, = 10 GeV.

For small ALP lifetimes crapp < 0.006 m (ctarp < 0.02m) the top + jet search is the
most sensitive constraint and excludes branching ratios down to Br(t — agq) ~ 0.001 for
mg = 2GeV (m, = 10GeV). Top + jet searches can probe the exotic top ALP coupling
up to crarp ~ 30m (erapp ~ 100m) for large enough branching ratios. These bounds
arise for ALPs decaying inside 2.5cm < r < 2m. For m, = 10GeV in the lower panel
one can also see the exclusion line for ALPs decaying before 0.01cm in the lower right
corner. On the other hand, the single top 4+ missing energy search only becomes sensitive
for etarp 2 0.01m (erarp 2 0.1m) and is more sensitive than our newly proposed search
for crarp 2 1m (erarp 2 10m). In this region Br(t — aq) = 10~% is excluded for both
masses. Single top searches leave the intermediate lifetime region (c¢tarp ~ 0.006 — 1m
for m, = 2GeV and crapp ~ 0.02 — 10m for m, = 10GeV) largely unconstrained. The
here proposed search is sensitive in this region as shown in figure 6. For both m, = 2 GeV
and mg = 10 GeV exotic top decays with branching ratios smaller than Br(t — aq) = 1074
can be probed with 2¢ significance by using the Calorimeter Ratio trigger requirements as
event selection criteria. Different masses influence at which lifetimes this search reaches
its highest sensitivity, since ALPs with larger masses are less boosted. Here, for m, = 2
(10) GeV the search is most sensitive at crarp ~ 0.04 (0.3) m.

Finally we assume that a more advanced search strategy for long lived ALPs from
exotic top decays could be made virtually background free, e.g. by exploiting the differences
in the calorimeter showers between signal and background. The 10-event discovery lines
for such a search and for a similarly background free search in the muon spectrometer
suggest that probing the intermediate lifetime regime down to branching ratios as small as
Br(t — aq) ~ 1077 is possible.

Figure 7 in the appendix shows additionally the expected discovery lines for background
free searches for decays in the hadronic calorimeter and the muon system for the HL-LHC.
There branching ratios as low as 10~® can be reached. Note that the same pr requirement
as for LHC have been used for the jets and the ALPs. Optimizing them for HL-LHC could
move the expected 10-event lines to even smaller branching ratios.

310 events were chosen to leave some room for a loss of signal efficiency, and in order to remain conser-
vative.
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5 Conclusions

In this work we have presented a new search for long-lived ALPs with flavor-violating
couplings to up-type quarks involving exotic top decays in top-pair production. We con-
centrated on topologies where one of the top quarks decay to an ALP together with an up-
or charm-quark, with the ALP subsequently decaying in the hadronic calorimeter, leading
thus to a large value of the hadronic to electromagnetic energy ratio Epaq/FEem. We have
demonstrated that a cut on this ratio, together with track vetoes, are enough to suppress
the tt background to the point of being able to test exotic top branching ratios below
10~* for m, ~ O(1) GeV in the next run of LHC. We also studied the potential reach of
more refined searches and show projections for the high luminosity LHC. Moreover, we
have presented a recast of existing single top searches and derived new constraints for both
prompt ALP decays as well as for detector stable ALPs. Together these searches can probe
exotic decays of the top quark to ALPs across the full range of ALP lifetimes. Our newly
proposed search here can increase the sensitivity by more than an order of magnitude for
ALP lifetimes in the centimeter to meter range.

Given the large number of ¢t events at the LHC, further improvements of the search
strategy might be possible. In particular here we have not used the shape of the shower
in the calorimeters, which could provide further discrimination between the signal and
background: an ALP decaying inside the hadronic calorimeter should look quite different
from a jet that travels through the full calorimeter. Due to the small ALP mass and large
boost factor, the jets should also be unusually narrow. Similarly we believe that a search
in the muon system could be essentially background free. In both cases, as few as 10
events might be enough to observe this exotic top decay, and thus probe branching ratios
as small as 1077,

There are other potentially interesting signatures which we have not discussed here.
Once the ALP is embedded again in a more UV complete theory such as the dark QCD
scenario, the top quark could decay into an emerging jet, a spectacular signature which
should easily stand out. Furthermore it would then be interesting to connect these exper-
imental signatures with the phenomenology of dark matter in such models. We plan to
address some of these exciting possibilities in the future.
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Figure 6. The expected bounds as a function of lifetime (¢7app) and the branching ratio of the
exotic top decay Br(t — aq), for my = 2GeV (top) and m, = 10GeV (bottom). The red line
labeled with ‘Hadron 20’ represents the conservative limit (table 1) where \/SiiB = 2, assuming
£ = 350fb~! integrated luminosity. The red (blue) solid line is the potential discovery line where
10 signal events are produced in the hadronic (muon) calorimeter, in case a background free search
can be designed. Finally, the green shaded regions indicate the current bounds on the model. The
dark green lines are derived from the top + jet [65] final state, and the light green lines are from
the single leptonic top search [73, 88]. The dashed lines are for the constraints on the tua coupling,

and the solid ones are that of the tca coupling.
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A Sensitivity at the high luminosity LHC

The projected sensitivity at HL-LHC (/s = 14 TeV, and integrated luminosity £ = 4ab™!)
is shown with dashed lines in figure 7. These lines indicate the potential discovery requiring
10 signal events using the same cuts as the current run of the LHC, and assuming no
backgrounds. With the higher luminosity, and the increase in the pile-up effect, the dashed
lines may need to be adjusted.
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m, = 2GeV m, = 10 GeV tt

total (1) 2.79 x 10° (1) 2.79 x 10° (1) 2.91 x 108
3 — 5 jets with
pr > 40GeV & |n| < 2.5 (0.7815) 2.18 x 10° | (0.7779) 2.17 x 10° | (0.65997) 1.92 x 10®

1 jet with logq, (EEhad) > 1.2 | (0.1330) 3.71 x 10* | (0.0699) 1.95 x 10* | (0.01022) 2.97 x 10°

displaced jet has < 2 tracks | (0.1330) 3.71 x 10% | (0.0699) 1.95 x 10* | (0.00018) 5.23 x 10
with pr > 2 GeV

Table 2. Cut flow of the expected number of events for signal and background events for LHC run
3 with /s = 13TeV and £ = 350fb~!. The values in brackets are the efficiencies after each cut.
For the signal ¢tarp = 0.1m and Br(t — ag) = 0.001 was chosen.

B Cut flow for three to five jets

The ALP in this search is highly boosted and decays displaced. Thus, while it decays to
a pair of partons, it will be seen mostly as one narrow jet. In this case the signal has
maximal five final state jets, including the one from the ALP decay. For comparison we
show in table 2 the cut flow (of the efficiency) for changing the cut on the number of jets
from 3-6 to 3-5 jets.
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