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S1. Details of the Spherical Tracers and Bath of Hard
Spherocylinders Systems

We present the details of the systems studied in this paper, consisting of
Nr = 1400 rod-like particles with length-to-diameter ratio L∗ ≡ L/σ = 5
and 1 spherical tracer with diameter dt. For comparison, we report dt, the
bath volume fraction ϕ = Nrvr/V with vr the single rod volume, elementary
time steps δtMC,t and δtMC,r in units of τ , maximum displacements δr∥, δr⊥,
δr in units of σ, maximum rotations δφ, and acceptance rates At and Ar.

Table S1: Details of the tracer-rods systems studied in this work. The
diameter dt, MC time step δtMC,t, maximum displacement δr of the tracer
particle are presented with the acceptance rates At and Ar of the tracer and
rods, respectively. In all the simulations the time step of the hard rods has
been set to δtMC,r/τ = 10−2, which fixes the maximum parallel, perpendicular
and angular displacements of the rods to δr∥/σ = 2.99 · 10−2, δr⊥/σ =
2.67 · 10−2, and δφ/rad = 1.10 · 10−2, respectively.

Isotropic phase, ϕ = 0.35
dt/σ δtMC,t/τ δr/σ At Ar

0.5 8.41·10−3 5.97·10−2 0.927 0.780

1 8.59·10−3 4.27·10−2 0.908 0.780

2 9.15·10−3 3.12·10−2 0.853 0.780

4 1.10·10−2 2.42·10−2 0.712 0.781

6 1.43·10−2 2.23·10−2 0.550 0.784

8 2.35·10−2 2.51·10−2 0.334 0.785

Nematic phase, ϕ = 0.45
dt/σ δtMC,t/τ δr/σ At Ar

1 7.89·10−3 4.09·10−2 0.859 0.678

2 8.83·10−3 3.07·10−2 0.769 0.679

3 1.03·10−2 2.71·10−2 0.658 0.679

Smectic phase, ϕ = 0.51
dt/σ δtMC,t/τ δr/σ At Ar

1 7.92·10−3 4.12·10−2 0.838 0.663

2 9.29·10−3 3.16·10−2 0.714 0.663

3 1.11·10−2 2.79·10−2 0.596 0.663
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S2. Comparison between the Fourier and Compliance
Approaches to Calculate the Viscoelastic Moduli of a
Bath of Hard Rods in Isotropic Phase

Along with Fourier-based methods, compliance approaches are an appro-
priate choice (see comment on [Soft Matter, 14, 8666, 2018] and reply on
[Soft Matter, 14, 8671, 2018] as well as references therein) for calculating
the viscoelastic properties of soft matter systems. Essentially, the frequency-
dependent complex modulus, G∗(ω) can be computed by transforming the
time dependent material’s compliance, J(t), which is defined as

J(t) =

(
πa

kBT

)
⟨∆r2t (t)⟩, (S1)

where a is the tracer radius, kB the Boltzmann’s constant, T the absolute
temperature, and ⟨∆r2t (t)⟩ the tracer mean-squared displacement (MSD).
Following the work of Evans et al. [1], the relationship between J(t) and
G∗(ω) reads

iω

G∗(ω)
=

(
1 − e−1ωt1

) J(t1)

t1
+ 6De−iωtNt +

Nt∑
k=2

Jk − Jk−1

tk − tk−1

(
e−iωtk−1 − e−iωtk

)
,

(S2)
where Nt refers to the number of time points where the MSD was calculated,
Jk indicates the value of J(t) at time tk, and D ∼ η−1 is related to the
inverse of the system’s steady-state viscosity. By using Eq. S2, it is possible
to calculate the elastic, G′(ω), and viscous, G′′(ω), moduli from G∗(ω) =
G′(ω) + iG′′(ω).

In Fig. S1, we compare G′′ and G′ by employing Fourier transformation
approach by Mason [2], as reported in the manuscript (see Eqs. 14-16), and
the compliance-based method [1]. In both cases, we calculated the MSD
of a spherical tracer of diameter 1σ and 8σ embedded in an bath of hard
spherocylinders in isotropic phase.
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Figure S1: (colour on-line) Viscous G′′(ω) (empty circles, dashed lines)
and elastic G′(ω) (empty squares, solid lines) moduli as obtained with the
compliance-based method by Evans [1] (symbols) and the Fourier-transform
method by Mason [2] (lines) for an isotropic bath of hard rods incorporating
a spherical tracer of size 1σ (orange symbols, black curves) and 8σ (green
symbols, blue curves).

S3. Viscous and Elastic Moduli of a Bath of Hard Rods
in Isotropic, Nematic, and Smectic Phases

Viscous (G′′) and elastic (G′) moduli for a tracer with different diameters
immersed in a bath of hard rods in isotropic (I), nematic (N), and smectic
(Sm) phases. The rods are modelled as hard spherocylinders with aspect
ratio L∗ = 5 and form I, N, and Sm phases with volume fractions ϕ = 0.35,
0.45, and 0.51, respectively. The tracers are hard spheres whose diameter
ranges between 0.5σ and 8σ. Figures S2, S3, and S4 depict, respectively, G′

and G′′ for systems in I, N and Sm phases and different sizes of the tracer.
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Figure S2: (colour on-line) Viscous (G′′, dashed lines) and elastic (G′, solid
lines) moduli of a bath of hard rods forming an I phase containing a tracer
particle with size 0.5σ, 1σ, 2σ, 4σ, 6σ, and 8σ represented by red, black,
green, orange, magenta, and blue curves, respectively. Calculated errors are
delimited by the dotted lines.
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Figure S3: (colour on-line) Viscous (G′′, dashed lines) and elastic (G′, solid
lines) moduli of a bath of hard spherocylinders in the N phase with tracer
diameters 1σ, 2σ and 3σ represented by black, red, and blue solid curves,
respectively. Calculated errors are delimited by the dotted lines.
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Figure S4: (colour on-line) Viscous (G′′, dashed lines) and elastic (G′, solid
lines) moduli of a bath of hard spherocylinders in the Sm phase with tracer
diameters 1σ, 2σ and 3σ represented by black, red, and blue solid curves,
respectively. Calculated errors are delimited by the dotted lines.

S4. Mean Square Displacement of a Spherical Tracer in
a Bath of Hard Rods in Isotropic Phase

Figure S5 shows the mean square displacement (MSD) of a tracer particle
immersed in a bath of hard rods with length-to-diameter ratio L∗ = 5 in
isotropic phase at a volume fraction ϕ = 0.35. The tracer particle is a hard
sphere with a diameter that ranges from 0.5σ to 8σ. The MSD from the
position of the tracer is defined as

MSD ≡
〈
∆r2t,d(t)

〉
=

〈
(rt,d(t) − rt,d(0))2

〉
, (S3)

where rt,d(t) refers to the position of the tracer particle at time t, the brackets
represent the averages over uncorrelated trajectories, and d is the dimension-
ality of the tracer’s displacements. The case d = 3 corresponds to 3D dis-
placements thus representing the total mean square displacement (MSDtot).
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Similarly, the values d = 2, and 1 represent particle displacements in two
and one dimensions, respectively.

To calculate MSDtot, we have simulated 4000 independent trajectories for
the dynamics of the bath and tracer particles.
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Figure S5: (colour on-line) MSDtot calculated by computer simulations of a
hard spherical tracer freely diffusing in a bath of hard rods. The sizes of both
tracer and rod particles are 0.5σ − 8σ and L∗ = 5, respectively. The bath is
in an isotropic phase with ϕ = 0.35.

S5. Effective Viscosity from DMC simulations and a
Semi-Empirical Model

According to Kalwarczyk et al. [3, 4], the effective viscosity on tracer size in
a polymer matrix can be described by a semi-empirical equation of the type:

ηMR = ηs exp

[(
Reff

ξ

)a]
, (S4)

where R−2
eff = R−2

h + (dt/2)−2 is the effective radius of the tracer, being
Rh the hydrodynamic radius of the matrix elements and dt/2 the hydro-
dynamic radius of the particle. In the equation above, ξ refers to the mean
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free distance between those elements, and a is an exponent of order one.
The radius of gyration of the rods (in the transverse direction) is Rh ≈
(σ/2)

√
1/4 + (L∗ + 1)2/3 and in our case corresponds to Rh|L∗=5 ≈ 1.75σ,

ξ is obtained from the first neighbour peak of the rod-rod pair distribution
function, located at σ + ξ = 1.32σ, and the exponent a = 0.56, which is
indeed of order 1, is a fitting parameter. Figure S6 shows the rods’ radial
distribution function obtained from MC simulations.
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Figure S6: (colour on-line) Rod-rod radial distribution function geq(r) calcu-
lated by Monte Carlo simulations in a system of hard-rods with L∗ = 5 in
isotropic phase at a volume fraction ϕ = 0.35.

S6. Loss Tangent in Nematic and Smectic Phases for
Different Tracer Sizes

In Fig. S7 we present the loss tangent R ≡ G′′/G′ calculated in the three
spatial coordinates for a bath of hard rods in N and Sm phases, and spherical
tracers whose diameter ranges from 1σ up to 3σ.
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Figure S7: (colour on-line) Loss tangent, R ≡ G′′/G′, of a bath of hard
spherocylinders in the N (top panel) and Sm (bottom panel) phases with
tracer particle diameters 1σ, 2σ, and 3σ represented by black, red, and blue
curves, respectively. Calculated errors are delimited by the dotted lines.

S7. Directional Viscous and Elastic Moduli of a Bath
of Rods in Nematic and Smectic Phases

On the basis of the work of Hasnain and Donald [5], in a nematic or smectic
phase, the complex moduli parallel and perpendicular to the nematic director
can be written as:

|G∗
d (ω)| =

d kBT

3π (dt/2) ⟨∆r2t,d(1/ω)⟩Γ [1 + αd (ω)]
, (S5)

where d indicates the space dimension. In our case, d = 1 if |G∗
d| is cal-

culated along the nematic director (indicated with ∥ subscript), and d = 2
if it is calculated in planes perpendicular to the nematic director (marked
with ⊥ subscript), resulting into ⟨∆r2t,∥(1/ω)⟩ and ⟨∆r2t,⊥(1/ω)⟩, with lo-
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cal exponents α∥(ω) and α⊥(ω), respectively. ∆r2t,∥, and ∆r2t,⊥, refer, re-
spectively, to the tracer’s MSDs parallel and perpendicular to the nematic
director. The directional viscous (G′′

d = |G∗
d| sin(παd(ω)/2)) and elastic

(G′
d = |G∗

d| cos(παd(ω)/2)) moduli are shown in Figs. S8 and Fig. S9 for
the N and Sm phases, respectively.
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Figure S8: (colour on-line) Viscous (G′′, dashed lines) and elastic (G′, solid
lines) moduli of a bath of hard spherocylinders in the N phase in the par-
allel (blue curves) and perpendicular (red curves) directions to the nematic
director for tracer diameters (a) 1σ, (b) 2σ, and (c) 3σ. Calculated errors
are delimited by the dotted lines.
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Figure S9: (colour on-line) Viscous (G′′, dashed lines) and elastic (G′, solid
lines) moduli of a bath of hard spherocylinders in the Sm phase in the par-
allel (blue curves) and perpendicular (red curves) directions to the nematic
director for tracer diameters (a) 1σ, (b) 2σ, and (c) 3σ. Calculated errors
are delimited by the dotted lines.
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S8. Mean Square Displacement of a Spherical Tracer in
a Bath of Hard Rods in Smectic Phase

The MSD of a tracer particle with varying size in a bath of hard rods in
smectic phase is shown in Fig. S10. While the rods are modelled as hard
spherocylinders with aspect ratio L∗ = 5, the tracer particle is represented
by a hard sphere with diameter 1σ, 2σ, and 3σ. The host system is in a
smectic phase at a volume fraction ϕ = 0.51. The MSD of the tracer is
calculated from Eq. S3. While the value d = 3 represents the total mean
square displacement (MSDtot), the cases where d = 2 and d = 1 are used
to indicate the MSDs perpendicular (MSD⊥) and parallel (MSD∥) to the
nematic director, respectively. At least 1000 trajectories have been computed
to simulate the motion of bath and tracer particles.
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Figure S10: (colour on-line) From top to bottom: total, parallel and perpen-
dicular MSDs of a hard spherical tracer diffusing in a bath of hard rods in
smectic phase at a volume fraction ϕ = 0.51. The rods have a fixed length-to-
diameter ratio L∗ = 5, and the diameter of the tracer particle varies between
1σ, 2σ, and 3σ represented by the black, red and blue solid lines, respectively.

S9. Trajectories of a Spherical Tracer in a Bath of Rods
in Smectic Phase

Figure S11 shows typical trajectories, from DMC simulations, of spherical
tracers with different sizes parallel to the nematic director, rt,∥(t). Tracers
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are immersed in a bath or hard rods (with L∗ = 5) in the Sm phase.
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Figure S11: (colour on-line) Typical trajectories of tracers with sizes 1σ, 2σ,
and 3σ represented by black, red, and blue solid lines, respectively, along the
nematic director in a bath of hard spherocylinders in the Sm phase.
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