Supplementary Material

Microrheology of nematic and smectic liquid crystals of hard rods by dynamic Monte Carlo simulations

Fabián A. García Daza¹, Antonio M. Puertas², Alejandro Cuetos³, and Alessandro Patti^{1,4}

¹Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, UK
²Department of Chemistry and Physics, University of Almería, 04120, Almería, Spain
³Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013, Sevilla, Spain
⁴Department of Applied Physics, University of Granada, Fuente Nueva s/n, 18071 Granada, Spain

S1. Details of the Spherical Tracers and Bath of Hard Spherocylinders Systems

We present the details of the systems studied in this paper, consisting of $N_r = 1400$ rod-like particles with length-to-diameter ratio $L^* \equiv L/\sigma = 5$ and 1 spherical tracer with diameter d_t . For comparison, we report d_t , the bath volume fraction $\phi = N_r v_r / V$ with v_r the single rod volume, elementary time steps $\delta t_{\text{MC},t}$ and $\delta t_{\text{MC},r}$ in units of τ , maximum displacements δr_{\parallel} , δr_{\perp} , δr in units of σ , maximum rotations $\delta \varphi$, and acceptance rates \mathcal{A}_t and \mathcal{A}_r .

Table S1: Details of the tracer-rods systems studied in this work. The diameter d_t , MC time step $\delta t_{\text{MC},t}$, maximum displacement δr of the tracer particle are presented with the acceptance rates \mathcal{A}_t and \mathcal{A}_r of the tracer and rods, respectively. In all the simulations the time step of the hard rods has been set to $\delta t_{\text{MC},r}/\tau = 10^{-2}$, which fixes the maximum parallel, perpendicular and angular displacements of the rods to $\delta r_{\parallel}/\sigma = 2.99 \cdot 10^{-2}$, $\delta r_{\perp}/\sigma = 2.67 \cdot 10^{-2}$, and $\delta \varphi/\text{rad} = 1.10 \cdot 10^{-2}$, respectively.

Isotropic phase, $\phi = 0.35$				
d_t/σ	$\delta t_{{ m MC},t}/ au$	$\delta r/\sigma$	\mathcal{A}_t	\mathcal{A}_r
0.5	$8.41 \cdot 10^{-3}$	$5.97 \cdot 10^{-2}$	0.927	0.780
1	$8.59 \cdot 10^{-3}$	$4.27 \cdot 10^{-2}$	0.908	0.780
2	$9.15 \cdot 10^{-3}$	$3.12 \cdot 10^{-2}$	0.853	0.780
4	$1.10 \cdot 10^{-2}$	$2.42 \cdot 10^{-2}$	0.712	0.781
6	$1.43 \cdot 10^{-2}$	$2.23 \cdot 10^{-2}$	0.550	0.784
8	$2.35 \cdot 10^{-2}$	$2.51 \cdot 10^{-2}$	0.334	0.785
Nematic phase, $\phi = 0.45$				
d_t/σ	$\delta t_{\mathrm{MC},t}/ au$	$\delta r/\sigma$	\mathcal{A}_t	\mathcal{A}_r
1	$7.89 \cdot 10^{-3}$	$4.09 \cdot 10^{-2}$	0.859	0.678
2	$8.83 \cdot 10^{-3}$	$3.07 \cdot 10^{-2}$	0.769	0.679
3	$1.03 \cdot 10^{-2}$	$2.71 \cdot 10^{-2}$	0.658	0.679
Smectic phase, $\phi = 0.51$				
d_t/σ	$\delta t_{\mathrm{MC},t}/ au$	$\delta r/\sigma$	\mathcal{A}_t	\mathcal{A}_r
1	$7.92 \cdot 10^{-3}$	$4.12 \cdot 10^{-2}$	0.838	0.663
2	$9.29 \cdot 10^{-3}$	$3.16 \cdot 10^{-2}$	0.714	0.663
3	$1.11 \cdot 10^{-2}$	$2.79 \cdot 10^{-2}$	0.596	0.663

S2. Comparison between the Fourier and Compliance Approaches to Calculate the Viscoelastic Moduli of a Bath of Hard Rods in Isotropic Phase

Along with Fourier-based methods, compliance approaches are an appropriate choice (see comment on [Soft Matter, 14, 8666, 2018] and reply on [Soft Matter, 14, 8671, 2018] as well as references therein) for calculating the viscoelastic properties of soft matter systems. Essentially, the frequencydependent complex modulus, $G^*(\omega)$ can be computed by transforming the time dependent material's compliance, J(t), which is defined as

$$J(t) = \left(\frac{\pi a}{k_{\rm B}T}\right) \langle \Delta r_t^2(t) \rangle,\tag{S1}$$

where a is the tracer radius, $k_{\rm B}$ the Boltzmann's constant, T the absolute temperature, and $\langle \Delta r_t^2(t) \rangle$ the tracer mean-squared displacement (MSD). Following the work of Evans *et al.* [1], the relationship between J(t) and $G^*(\omega)$ reads

$$\frac{i\omega}{G^*(\omega)} = \left(1 - e^{-i\omega t_1}\right) \frac{J(t_1)}{t_1} + 6De^{-i\omega t_{N_t}} + \sum_{k=2}^{N_t} \frac{J_k - J_{k-1}}{t_k - t_{k-1}} \left(e^{-i\omega t_{k-1}} - e^{-i\omega t_k}\right),\tag{S2}$$

where N_t refers to the number of time points where the MSD was calculated, J_k indicates the value of J(t) at time t_k , and $D \sim \eta^{-1}$ is related to the inverse of the system's steady-state viscosity. By using Eq. S2, it is possible to calculate the elastic, $G'(\omega)$, and viscous, $G''(\omega)$, moduli from $G^*(\omega) =$ $G'(\omega) + iG''(\omega)$.

In Fig. S1, we compare G'' and G' by employing Fourier transformation approach by Mason [2], as reported in the manuscript (see Eqs. 14-16), and the compliance-based method [1]. In both cases, we calculated the MSD of a spherical tracer of diameter 1σ and 8σ embedded in an bath of hard spherocylinders in isotropic phase.

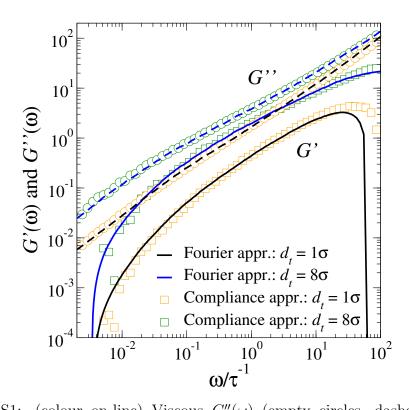


Figure S1: (colour on-line) Viscous $G''(\omega)$ (empty circles, dashed lines) and elastic $G'(\omega)$ (empty squares, solid lines) moduli as obtained with the compliance-based method by Evans [1] (symbols) and the Fourier-transform method by Mason [2] (lines) for an isotropic bath of hard rods incorporating a spherical tracer of size 1σ (orange symbols, black curves) and 8σ (green symbols, blue curves).

S3. Viscous and Elastic Moduli of a Bath of Hard Rods in Isotropic, Nematic, and Smectic Phases

Viscous (G'') and elastic (G') moduli for a tracer with different diameters immersed in a bath of hard rods in isotropic (I), nematic (N), and smectic (Sm) phases. The rods are modelled as hard spherocylinders with aspect ratio $L^* = 5$ and form I, N, and Sm phases with volume fractions $\phi = 0.35$, 0.45, and 0.51, respectively. The tracers are hard spheres whose diameter ranges between 0.5σ and 8σ . Figures S2, S3, and S4 depict, respectively, G'and G'' for systems in I, N and Sm phases and different sizes of the tracer.

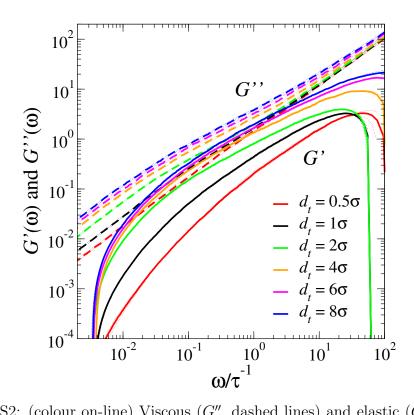


Figure S2: (colour on-line) Viscous (G'', dashed lines) and elastic (G', solid lines) moduli of a bath of hard rods forming an I phase containing a tracer particle with size 0.5σ , 1σ , 2σ , 4σ , 6σ , and 8σ represented by red, black, green, orange, magenta, and blue curves, respectively. Calculated errors are delimited by the dotted lines.

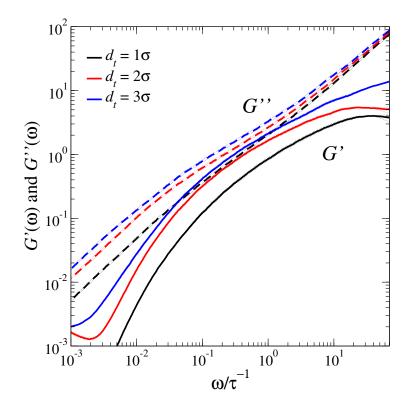


Figure S3: (colour on-line) Viscous (G'', dashed lines) and elastic (G', solid lines) moduli of a bath of hard spherocylinders in the N phase with tracer diameters 1σ , 2σ and 3σ represented by black, red, and blue solid curves, respectively. Calculated errors are delimited by the dotted lines.

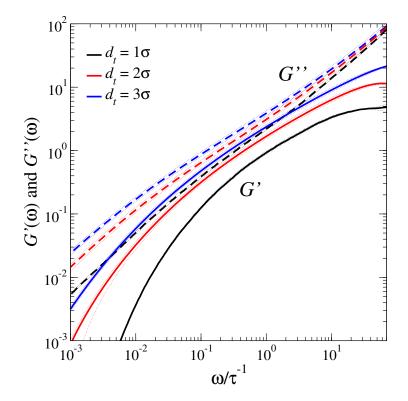


Figure S4: (colour on-line) Viscous (G'', dashed lines) and elastic (G', solid lines) moduli of a bath of hard spherocylinders in the Sm phase with tracer diameters 1σ , 2σ and 3σ represented by black, red, and blue solid curves, respectively. Calculated errors are delimited by the dotted lines.

S4. Mean Square Displacement of a Spherical Tracer in a Bath of Hard Rods in Isotropic Phase

Figure S5 shows the mean square displacement (MSD) of a tracer particle immersed in a bath of hard rods with length-to-diameter ratio $L^* = 5$ in isotropic phase at a volume fraction $\phi = 0.35$. The tracer particle is a hard sphere with a diameter that ranges from 0.5σ to 8σ . The MSD from the position of the tracer is defined as

$$MSD \equiv \left\langle \Delta \mathbf{r}_{t,d}^2(t) \right\rangle = \left\langle \left(\mathbf{r}_{t,d}(t) - \mathbf{r}_{t,d}(0) \right)^2 \right\rangle, \tag{S3}$$

where $\mathbf{r}_{t,d}(t)$ refers to the position of the tracer particle at time t, the brackets represent the averages over uncorrelated trajectories, and d is the dimensionality of the tracer's displacements. The case d = 3 corresponds to 3D displacements thus representing the total mean square displacement (MSD_{tot}). Similarly, the values d = 2, and 1 represent particle displacements in two and one dimensions, respectively.

To calculate MSD_{tot} , we have simulated 4000 independent trajectories for the dynamics of the bath and tracer particles.

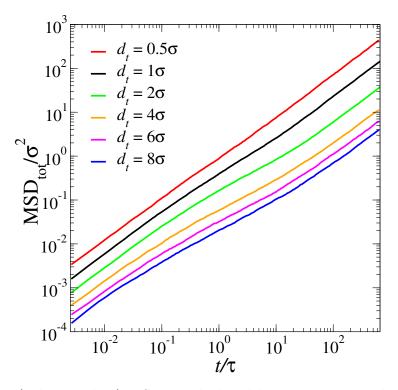


Figure S5: (colour on-line) MSD_{tot} calculated by computer simulations of a hard spherical tracer freely diffusing in a bath of hard rods. The sizes of both tracer and rod particles are $0.5\sigma - 8\sigma$ and $L^* = 5$, respectively. The bath is in an isotropic phase with $\phi = 0.35$.

S5. Effective Viscosity from DMC simulations and a Semi-Empirical Model

According to Kalwarczyk *et al.* [3, 4], the effective viscosity on tracer size in a polymer matrix can be described by a semi-empirical equation of the type:

$$\eta_{\rm MR} = \eta_s \exp\left[\left(\frac{R_{\rm eff}}{\xi}\right)^a\right],\tag{S4}$$

where $R_{\text{eff}}^{-2} = R_h^{-2} + (d_t/2)^{-2}$ is the effective radius of the tracer, being R_h the hydrodynamic radius of the matrix elements and $d_t/2$ the hydrodynamic radius of the particle. In the equation above, ξ refers to the mean

free distance between those elements, and a is an exponent of order one. The radius of gyration of the rods (in the transverse direction) is $R_h \approx (\sigma/2)\sqrt{1/4} + (L^* + 1)^2/3$ and in our case corresponds to $R_h|_{L^*=5} \approx 1.75\sigma$, ξ is obtained from the first neighbour peak of the rod-rod pair distribution function, located at $\sigma + \xi = 1.32\sigma$, and the exponent a = 0.56, which is indeed of order 1, is a fitting parameter. Figure S6 shows the rods' radial distribution function obtained from MC simulations.

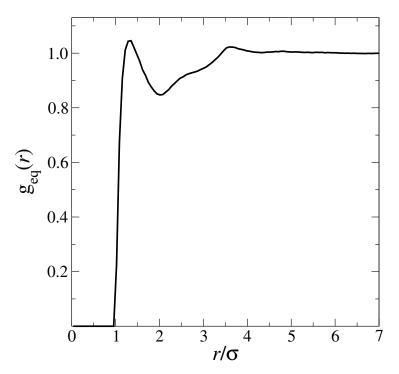


Figure S6: (colour on-line) Rod-rod radial distribution function $g_{eq}(r)$ calculated by Monte Carlo simulations in a system of hard-rods with $L^* = 5$ in isotropic phase at a volume fraction $\phi = 0.35$.

S6. Loss Tangent in Nematic and Smectic Phases for Different Tracer Sizes

In Fig. S7 we present the loss tangent $\mathcal{R} \equiv G''/G'$ calculated in the three spatial coordinates for a bath of hard rods in N and Sm phases, and spherical tracers whose diameter ranges from 1σ up to 3σ .

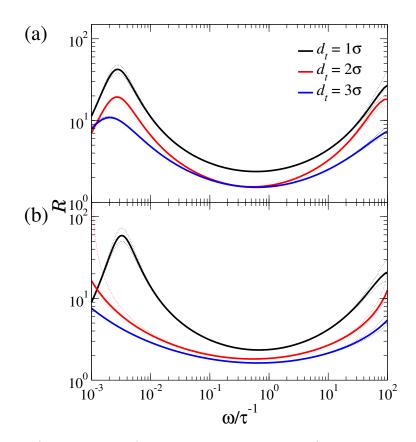


Figure S7: (colour on-line) Loss tangent, $\mathcal{R} \equiv G''/G'$, of a bath of hard spherocylinders in the N (top panel) and Sm (bottom panel) phases with tracer particle diameters 1σ , 2σ , and 3σ represented by black, red, and blue curves, respectively. Calculated errors are delimited by the dotted lines.

S7. Directional Viscous and Elastic Moduli of a Bath of Rods in Nematic and Smectic Phases

On the basis of the work of Hasnain and Donald [5], in a nematic or smectic phase, the complex moduli parallel and perpendicular to the nematic director can be written as:

$$|G_d^*(\omega)| = \frac{d k_{\rm B} T}{3\pi \left(d_t/2 \right) \left\langle \Delta r_{t,d}^2(1/\omega) \right\rangle \Gamma \left[1 + \alpha_d \left(\omega \right) \right]},\tag{S5}$$

where d indicates the space dimension. In our case, d = 1 if $|G_d^*|$ is calculated along the nematic director (indicated with \parallel subscript), and d = 2 if it is calculated in planes perpendicular to the nematic director (marked with \perp subscript), resulting into $\langle \Delta r_{t,\parallel}^2(1/\omega) \rangle$ and $\langle \Delta r_{t,\perp}^2(1/\omega) \rangle$, with lo-

cal exponents $\alpha_{\parallel}(\omega)$ and $\alpha_{\perp}(\omega)$, respectively. $\Delta r_{t,\parallel}^2$, and $\Delta r_{t,\perp}^2$, refer, respectively, to the tracer's MSDs parallel and perpendicular to the nematic director. The directional viscous $(G''_d = |G_d^*| \sin(\pi \alpha_d(\omega)/2))$ and elastic $(G'_d = |G_d^*| \cos(\pi \alpha_d(\omega)/2))$ moduli are shown in Figs. S8 and Fig. S9 for the N and Sm phases, respectively.

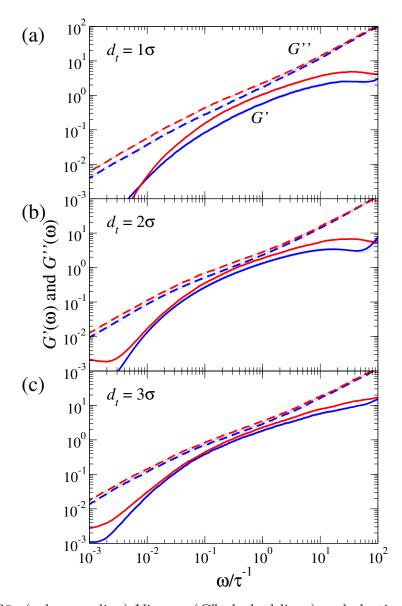


Figure S8: (colour on-line) Viscous (G'', dashed lines) and elastic (G', solid lines) moduli of a bath of hard spherocylinders in the N phase in the parallel (blue curves) and perpendicular (red curves) directions to the nematic director for tracer diameters (a) 1σ , (b) 2σ , and (c) 3σ . Calculated errors are delimited by the dotted lines.

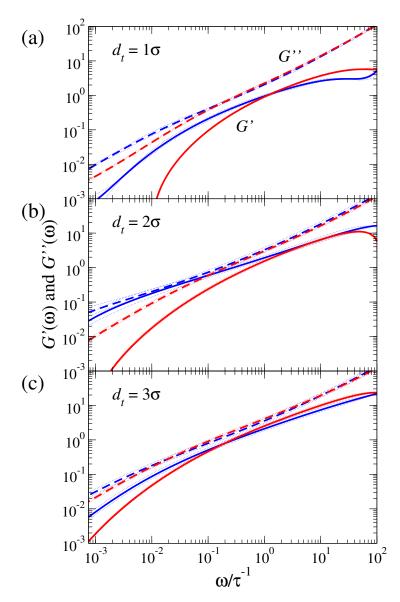


Figure S9: (colour on-line) Viscous (G'', dashed lines) and elastic (G', solid lines) moduli of a bath of hard spherocylinders in the Sm phase in the parallel (blue curves) and perpendicular (red curves) directions to the nematic director for tracer diameters (a) 1σ , (b) 2σ , and (c) 3σ . Calculated errors are delimited by the dotted lines.

S8. Mean Square Displacement of a Spherical Tracer in a Bath of Hard Rods in Smectic Phase

The MSD of a tracer particle with varying size in a bath of hard rods in smectic phase is shown in Fig. S10. While the rods are modelled as hard spherocylinders with aspect ratio $L^* = 5$, the tracer particle is represented by a hard sphere with diameter 1σ , 2σ , and 3σ . The host system is in a smectic phase at a volume fraction $\phi = 0.51$. The MSD of the tracer is calculated from Eq. S3. While the value d = 3 represents the total mean square displacement (MSD_{tot}), the cases where d = 2 and d = 1 are used to indicate the MSDs perpendicular (MSD_{\perp}) and parallel (MSD_{$\parallel}) to the$ nematic director, respectively. At least 1000 trajectories have been computedto simulate the motion of bath and tracer particles.</sub>

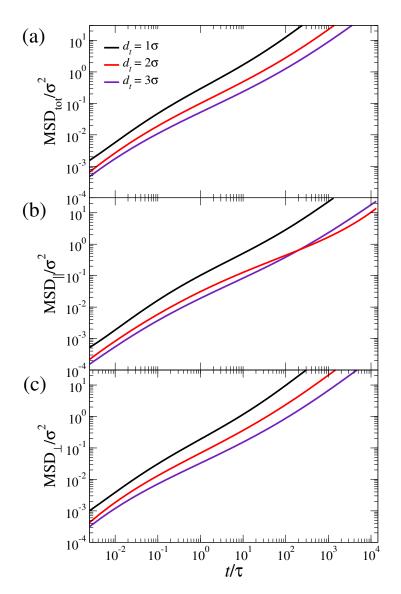
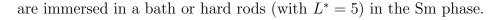


Figure S10: (colour on-line) From top to bottom: total, parallel and perpendicular MSDs of a hard spherical tracer diffusing in a bath of hard rods in smectic phase at a volume fraction $\phi = 0.51$. The rods have a fixed length-todiameter ratio $L^* = 5$, and the diameter of the tracer particle varies between 1σ , 2σ , and 3σ represented by the black, red and blue solid lines, respectively.

S9. Trajectories of a Spherical Tracer in a Bath of Rods in Smectic Phase

Figure S11 shows typical trajectories, from DMC simulations, of spherical tracers with different sizes parallel to the nematic director, $r_{t,\parallel}(t)$. Tracers



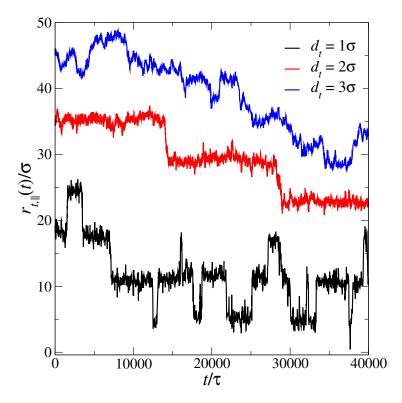


Figure S11: (colour on-line) Typical trajectories of tracers with sizes 1σ , 2σ , and 3σ represented by black, red, and blue solid lines, respectively, along the nematic director in a bath of hard spherocylinders in the Sm phase.

References

- R. M. L. Evans, Manlio Tassieri, Dietmar Auhl, and Thomas A. Waigh. Direct conversion of rheological compliance measurements into storage and loss moduli. *Phys. Rev. E*, 80:012501, 2009.
- [2] Thomas G. Mason. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. *Rheol. Acta*, 39(4):371– 378, 2000.
- [3] Tomasz Kalwarczyk, Natalia Ziębacz, Anna Bielejewska, Ewa Zaboklicka, Kaloian Koynov, Jędrzej Szymański, Agnieszka Wilk, Adam Patkowski, Jacek Gapiński, Hans-Jürgen Butt, and Robert Hołyst. Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. *Nano Lett.*, 11(5):2157–2163, 2011.

- [4] Tomasz Kalwarczyk, Krzysztof Sozanski, Anna Ochab-Marcinek, Jędrzej Szymański, Marcin Tabaka, Sen Hou, and Robert Hołyst. Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model. Adv. Colloid Interface Sci., 223:55–63, 2015.
- [5] I. A. Hasnain and A. M. Donald. Microrheological characterization of anisotropic materials. *Phys. Rev. E*, 73:031901, 2006.