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A rapid diagnosis of black rot in brassicas, a devastating disease caused by

Xanthomonas campestris pv. campestris (Xcc), would be desirable to avoid significant

crop yield losses. The main aim of this work was to develop a method of detection of

Xcc infection on broccoli leaves. Such method is based on the use of imaging sensors

that capture information about the optical properties of leaves and provide data that can

be implemented on machine learning algorithms capable of learning patterns. Based on

this knowledge, the algorithms are able to classify plants into categories (healthy and

infected). To ensure the robustness of the detection method upon future alterations in

climate conditions, the response of broccoli plants to Xcc infection was analyzed under

a range of growing environments, taking current climate conditions as reference. Two

projections for years 2081–2100 were selected, according to the Assessment Report of

Intergovernmental Panel on Climate Change. Thus, the response of broccoli plants to

Xcc infection and climate conditions has been monitored using leaf temperature and five

conventional vegetation indices (VIs) derived from hyperspectral reflectance. In addition,

three novel VIs, named diseased broccoli indices (DBI1-DBI3), were defined based on

the spectral reflectance signature of broccoli leaves upon Xcc infection. Finally, the nine

parameters were implemented on several classifying algorithms. The detection method

offering the best performance of classification was a multilayer perceptron-based artificial

neural network. This model identified infected plants with accuracies of 88.1, 76.9, and

83.3%, depending on the growing conditions. In this model, the three Vis described in

this work proved to be very informative parameters for the disease detection. To our

best knowledge, this is the first time that future climate conditions have been taken into

account to develop a robust detection model using classifying algorithms.

Keywords: biotic stress, climate change, hyperspectral reflectance imaging, machine learning, thermography

INTRODUCTION

The cultivation of broccoli (Brassica oleracea var. italica) has become increasingly attractive and
profitable. It is highly regarded for its nutritional value and also its antioxidant and anticancer
properties (Owis, 2015). In Spain, the production of broccoli has increased exponentially in the last
decades, and it is expected to continue rising in future. In 2018, broccoli crop yields reached up to
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561,000 tons in Spain, and most of them were exported to
European countries (latest available data reported by Ministerio
de Agricultura, Pesca y Alimentación, www.mapa.gob.es).

Pests and plant diseases are a great challenge in modern
agriculture and the main cause of production and economic
losses in agriculture worldwide (Savary et al., 2012). Current
practices and social activities, such as intensified monoculture
in large areas, the use of genetically uniform plant varieties, and
international trading of agricultural commodities, contribute
largely to the widespread of plant disease epidemics and rapid
pathogen evolution (Zhan et al., 2015). Like other Brassica
crops, broccoli plants are susceptible to infection by fungi
(Alternaria leaf spot, anthracnose, blackleg, or mildews), some
viruses (virus mosaic), and bacteria (black rot, soft rots, bacterial
leaf spots). Among the bacterial pathogens, Xanthomonas
campestris is one of the most important in brassicas (Mansfield
et al., 2012; Ekman et al., 2014; Dep. Primary Industries and
Regional Development, Government Western Australia 2018,
www.agric.wa.gov.au/broccoli/diseases-vegetable-brassicas).
The most notable pathovar of X. campestris is campestris
(Xcc), which is the causal agent of black rot of crucifers
and affects all cultivated brassicas. Indeed, and according
to the report elaborated by EIP-AGRI Focus Group for the
European Commission, Xcc is a threat to the production of
broccoli, cauliflower, and cabbage throughout Europe (2016,
Integrated Pest Management for Brassica, https://ec.europa.
eu/eip/agriculture/en/publications/eip-agri-focus-group-ipm-
brassica-final-report). Moreover, Xcc can be subdivided into
nine races on the basis of the responses they induce on different
cultivars. Among the nine races described for Xcc, races 1 and 4
are considered the most virulent and spread worldwide (Fargier
and Manceau, 2007; Tortosa et al., 2018).

Precision agriculture demands the development of imaging
sensor-based methods of detection and diagnosis of plant
stress, including diseases. Several optical sensors are currently
implemented to monitor crop fields (Aasen et al., 2019; Gerhards
et al., 2019; Maes and Steppe, 2019; Pérez-Bueno et al.,
2019a; Kashyap and Kumar, 2021; Pineda et al., 2021). Their
applicability at lab scale and in high-throughput platforms by
proximal sensing, and in the field by remote sensing, makes
them particularly useful. However, the data provided by imaging
sensors are large and complex and, consequently, difficult
to interpret. Hence, improving our ability to extract useful
information from these vast datasets requires the use of machine
learning algorithms (Sperschneider, 2020). Machine learning is a
subset of artificial intelligence (AI), consisting of algorithms that
are able to learn patterns from a database of known samples and,
based on those patterns, identify or categorize new samples. In
agriculture, these algorithms can assist in the monitoring and
decision-making processes of crop management (Chlingaryan
et al., 2018; Golhani et al., 2018; Liakos et al., 2018; Gao et al.,
2020). Thus, the implementation of imaging sensors and AI is
a pivotal tool for crop management based on digital agriculture
(Talaviya et al., 2020; Jung et al., 2021). However, alteration in
growth conditions due to climate change imposes an additional
challenge to plant disease detection methods based on AI. The
expected rises in CO2 concentration and temperature associated

to climate change would have an impact on agriculture, affecting
plants and pathogen physiology (Trivedi et al., 2022) and their
geographical distribution (Aidoo et al., 2021). For that reason,
potential future climate should be considered as an experimental
variable to develop more robust detection methods.

Thermography and multi/hyperspectral reflectance imaging
are the most common sensors applied in agriculture (Zarco-
Tejada et al., 2018; Maes and Steppe, 2019; Pérez-Bueno
et al., 2019b). On the one hand, canopy to air differential
temperature (TC-TA) is an indirect measurement of the
vegetation transpiration rate (Scarth et al., 1948; Milthorpe and
Spencer, 1957; Fuchs and Tanner, 1966) and is widely used in
proximal and remote sensing for stress detection, as recently
reviewed by Pineda et al. (2021). On the other hand, the high
spectral resolution of hyperspectral reflectance imaging allows
the creation of a growing collection of vegetation indices (VIs).
These VIs are transformations of two or more spectral bands
which allow reliable temporal and spatial inter-comparisons of
vegetation attributes. Thus, VIs are quite simple and effective
parameters to quantitatively and qualitatively evaluate vegetation
traits such as vigor, fitness, and pigment composition, among
other applications (Huete et al., 2002).

In fact, many VIs can be found in the literature. One of the
most widely used is the normalized difference vegetation index
(NDVI), which is related to vitality of canopies (Tucker, 1979;
Pettorelli, 2013). Other VIs correlate with a wide range of plant
physiological traits. For example, the photochemical reflectance
index (PRI) correlates with photosynthetic activity (Gamon et al.,
1992); the carotenoid reflectance index (CRI) (Gitelson et al.,
2002) and the anthocyanin reflectance index (ARI) (Gitelson
et al., 2001) are related to pigment contents; and the water balance
index (WBI) is connected to water content in leaves (Peñuelas
et al., 1993). Indeed, recent works have implemented VIs to
the study of plants infected by Xanthomonas spp. Abdulridha
et al. (2019) used a collection of VIs (ARI and NDVI among
them) implemented on classifying algorithms to successfully
identify tangerine plants infected by X. citri pv. citri. Similarly,
NDVI values correlated well with the extension of the lesions
caused by X. campestris pv. oryzae on rice leaves (Zhang et al.,
2022). Moreover, several works have compared the association
between climate change and the interannual variability registered
on NDVI in several locations around the world (Kalisa et al.,
2019; Bagherzadeh et al., 2020; Zhao et al., 2021). Nonetheless,
new reflectance parameters could be defined for a given purpose
to maximize differences when standard VIs are not sensitive
enough (Miao et al., 2007; Mahlein et al., 2013; Zhang et al., 2017;
El-Hendawy et al., 2019; Jia et al., 2019; Yuan et al., 2019).

The main aim of this work was to develop an efficient method
for the detection of Xcc infection in broccoli plants based on
thermal and hyperspectral reflectance imaging on individual
leaves. For this purpose, six parameters were recorded: leaf
temperature (particularly TC-TA) and five already known VIs.
Moreover, three novel VIs specifically designed for detecting
the Xcc infection were extracted from the reflectance spectra of
healthy and diseased broccoli leaves. They were named diseased
broccoli indices (DBI1-DBI3). This set of nine parameters were
implemented on a selection of algorithms widely used on
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TABLE 1 | Climatic conditions assessed for broccoli growth: CCC (current climate

conditions), RCP 4.5, and RCP 8.5 (Representative Concentration Pathways 4.5

and 8.5) regionalized for Region of Murcia for years 2081–2100.

Climate Scenario Temperature (◦C) CO2 (ppm)

Day Night

CCC 31 17 408

RCP 4.5 34 20 650

RCP 8.5 37 23 1000

precision agriculture for their success in classifying infected
plants: the multilayer perceptron-based artificial neural network
(MLP), the support vector machine (SVM), and the k-nearest
neighbor (kNN). Finally, the suitability of the trained models
was evaluated by comparing their performances in correctly
classifying new samples as healthy or diseased leaves under a
range of climate conditions, including intermediate and extreme
climate change scenarios, as well as current climate conditions.
Furthermore, the relevance of every input parameter for the
detection of Xcc infection in broccoli plants was evaluated.

MATERIALS AND METHODS

Plant Growth at Different Climate
Conditions
Growth conditions under two possible future climate change
scenarios were chosen taking into account the 5th Assessment
Report by the Intergovernmental Panel on Climate Change
(AR5; IPCC, 2014). In that assessment, a range of projections of
greenhouse gases emissions responding to both socio-economic
development and climate policy was considered. Future
climate conditions were estimated based on representative
concentration pathways (RCPs), depending on potential
scenarios of greenhouse gases emissions and their atmospheric
concentrations, air pollutant emissions, and land use for the year
2100. Thus, current climate conditions (CCC) were compared
to future scenarios, being RCP 8.5 the most extreme scenario,
meaning most dramatic increase in CO2 levels and subsequent
global warming. In turn, the so called RCP 4.5 would represent
an intermediate scenario between CCC and RCP 8.5 and was
considered by the AR5 as the most probable scenario by 2100.

The C3 broccoli plants (Brassica oleracea var. italic cv.
calabrese natalino) were grown in a growth chamber in a 16/8-
h day/night regime with 60% relative humidity, 200mol photon
m−2 s−1 of PAR light. The ambient temperature and CO2

concentrations (Table 1) were chosen according to the data
regionalized by the Spanish State Meteorology Agency (AEMet)
for Region of Murcia (largest Spanish broccoli producer) for
current climate conditions and those corresponding to RCP 4.5
and RCP 8.5 in years 2081–2100. Day and night temperatures
correspond to the average values in Region of Murcia during
the growing season. For each experiment, plants were sown
and grown at the corresponding CCC, RCP 4.5, or RCP
8.5 conditions.

Bacterial Growth and Inoculation
Xanthomonas campestris pv campestris (Xcc) race 1 and race
4 were grown for 24 h at 28◦C in LB (Luria-Bertani) plates.
Bacterial suspensions were prepared in sterile 10mM MgCl2 at
108 colony-forming units per ml (cfu mL−1) by adjusting the
optical density at 600 nm to 0.1.

The third leaf of four-week-old plants (under CCC or RCP 4.5)
or five-week-old plants (in case of RCP 8.5) was mock-inoculated
with sterile 10mMMgCl2 or inoculated with bacterial suspension
by clipping four secondary veins per leaf with rat tooth tweezers
previously dipped in the corresponding solution (Figure 1). For
each experiment, twelve plants per treatment (CCC and RCP 4.5)
and four plants per treatment (RCP 8.5) were inoculated. Leaves
were imaged at 1, 2, 3, 6, and 9 days post-inoculation (dpi). At
least two experiments per climate condition were carried out,
providing similar results.

Thermal Imaging
Thermal images of whole leaves were recorded using a FLIR
A305sc camera (FLIR Systems, Wilsonville, OR, USA) vertically
positioned 30 cm above the leaf, according to Pérez-Bueno
et al. (2016). For each measurement, 10 thermal images were
collected in the plant growth chamber over 10 s. These images
were averaged to extract temperature values for whole leaves.
Image processing was carried out using the FLIR ResearchIR v.
3.4 software.

Hyperspectral Reflectance Imaging
Reflectance spectra (400–1,000 nm) of broccoli leaves were
recorded using a Pika L hyperspectral imaging camera (Resonon,
Bozeman, MT, USA) in the visible (400–700 nm) to near-
infrared spectral range (700–1,000 nm), with a spectral sampling
at 2.1 nm and a spectral resolution (full width at half
maximum) of 3.7 nm. The camera was positioned vertically
45 cm over the sample, which was placed on a translation
stage. Thus, a datacube with 281 images was built for each
attached leaf.

Leaves were illuminated with four calibrated xenon
lamps with homogeneous light intensity between 400 and
1,000 nm, positioned above the samples and around the
camera. Previous to leaf measurements, dark and light
corrections were made in darkness and illuminating a
white homogenous calibration tile provided by Resonon,
respectively. Dark and light corrections, build-up of datacubes
and analysis, were carried out with the software Spectronon v.
2.134 (Resonon).

Reflectance spectra averaged for whole leaves were obtained
and used to calculate images corresponding to several widely used
VIs, as summarized in Table 2. To avoid overfitting of machine
learning models, only not redundant VIs were selected.

Data Analysis
Numerical data obtained from thermal and reflectance images
(including reflectance spectra and VIs) were managed using
Microsoft Office Excel 2016 (Microsoft Corporation, Redmond,
WA, USA). Aiming to design a simple method of detection,
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FIGURE 1 | Timecourse of symptoms evolution of mock-control, Xcc race 1-infected, and Xcc race 4-infected broccoli plants at current climate conditions (A; CCC),

and the representative concentration pathways RCP 4.5 (B) and RCP 8.5 (C). White arrows indicate the inoculation points. For simplicity, they have only been shown

in mock-controls leaves at CCC. Dpi, days post-inoculation.

values were averaged from whole leaves rather than regions
of interest.

Two-tailed Student’s t-test (Microsoft Excel) was performed
to compare, for every treatment and at every dpi assayed: (a)
spectra reflectance profiles; (b) values of novel VIs (DBIs). The
null hypothesis was that there were no differences between
treatments. This hypothesis was considered false at p < 0.05, and
variables were treated as different when p-value was below this
value. Figure graphs were plotted using Microsoft Excel.

Classification Analysis by Machine
Learning
Data collected through whole experiments were organized in
databases (Microsoft Excel), one per climate condition. Each
database contained values of selected parameters (TC-TA, NDVI,
PRI, ARI, CRI, WBI, DBI1, DBI2, and DBI3) at every dpi (1–9
dpi) and treatment (mock-control, Xcc race 1-, and Xcc race 4-
infected plants). In addition, data were rescaled from zero to one
to ensure comparison between treatments and days, according
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TABLE 2 | Common vegetation indices (VIs) from the literature that were used in this work.

VIs name Related to Equation References

Anthocyanins reflectance index 1 Anthocyanins ARI = 1
R550 −

1
R700 Gitelson et al., 2001

Carotenoids reflectance index 2 Carotenoids CRI = 1
R510 −

1
R700 Gitelson et al., 2002

Normalized difference vegetation index Vigor NDVI =
R800 − R670
R800 + R670 Tucker, 1979

Photochemical reflectance index Photosynthesis PRI =
R531 − R570
R531 + R570 Gamon et al., 1992

Water balance index Water WBI = R900 − R970 Peñuelas et al., 1993

TABLE 3 | Sample size (n) of the training and test databases created for each

growth condition.

Treatment Training dataset (n) Test dataset (n)

CCC 98 41

RCP 4.5 84 39

RCP 8.5 42 18

to the equation: rescaled value= (x-minimum)/maximum. Then,
the three databases were randomly partitioned into training
and test datasets, in a proportion of 7:3, respectively (Table 3).
This partition was carried out using a seed that ensured that
every category (treatment and dpi) was well represented in
both datasets. The experimental data were analyzed by the free
version of KNIME v. 4.3.2 (KNIME AG, Zurich, Switzerland;
www.knime.com; Berthold et al., 2008).

Three models were built for each one of the three growing
conditions by analyzing the corresponding databases with three
supervised classifying algorithms: MLP, SVM, and kNN. MLP
is a network inspired by biological neural networks in which
different interconnected nodes (called neurons) organized in
layers transmit information to each other, learning from both
input and output data (Hahn, 2009; Behmann et al., 2015). In
contrast, SVM distributes samples in a high-dimensional feature
space defined by support vectors. In this case, new samples
are categorized based on what side of hyperplanes they fall
on (Behmann et al., 2015). Finally, kNNs assign proportional
weights to the contributions of the sample neighbors based
on distances. These weights determine to what category a new
sample would most likely belong to (Blanzieri and Melgani,
2008).

Broccoli leaves were categorized into mock-control, Xcc race
1-, and Xcc race 4-infected plants using the classifying algorithms
MLP, SVM, and kNN. The performance of classification was
evaluated in terms of (i) sensitivity (true positive rate); (ii)
specificity (true negative rate); (iii) accuracy (percentage of right
guesses); and (iv) F-measure (harmonic mean of precision and
sensitivity; where precision is the number of correct control
samples divided by the number of all plants classified as
“control”). All the three feedforward backpropagation MLPs
tested were designed to have one hidden layer with four neurons
(half the number of variables used to feed them). Higher
number of hidden layers or their neurons did not result in an
improvement of the performance. A polynomial kernel was used

for the SVMs, with bias = 1 and gamma = 1. More complex
spatial kernels did not improve the performance of the algorithm.
Finally, the optimal number of neighbors for the kNN algorithm
was k = 5 using the Euclidean distance. Regarding SVM and
kNN libraries, we have used the basic nodes (SVM learner and K
nearest neighbor, respectively) implemented on Knime software
v. 4.3.2. This process was performed independently for each of
the three climate conditions under study.

Finally, the global variable importance was calculated
for each parameter (TC-TA, NDVI, PRI, ARI, CRI, WBI,
DBI1, DBI2, and DBI3), that is, how informative was a given
parameter for the model to make a correct decision. For such
a purpose, global surrogate random forest (RF) models were
trained to estimate the variable importance using the Global
Feature Importance component developed for Knime software
(https://hub.knime.com/knime/spaces/Examples/latest/00_
Components/Model%20Interpretability/Global%20Feature
%20Importance$\sim$xsR90ymhRbHOc78Z). RF was trained
on the standardly pre-processed input data. Feature importance
was then calculated by counting how many times it had been
selected for a split and at which rank (level) among all available
features (candidates) in the trees of the RF.

RESULTS

Evolution of Symptoms Under a Range of
Growth Conditions
Plants grown from sowing under CCC, RCP4.5, or RCP8.5
conditions were inoculated with Xcc race 1 or 4, and the
evolution of symptoms was followed up to 9 dpi. At CCC and
RCP 4.5, Xcc infection on broccoli plants consisted in chlorosis
followed by a progressive necrosis of the tissue surrounding the
inoculation site to finally reach the V-shaped lesions typical of
this bacterial infection (Figure 1). Xcc race 4 caused the most
severe symptoms, with necrosis at the clipping point starting at
3 dpi and evident at 6 dpi; chlorosis surrounded the inoculated
area at 6 dpi, and V-shaped lesions were patent at 9 dpi. In
contrast, Xcc race 1 produced similar symptoms in a slower
time course, with a delay of 3 days. Mock-control leaves only
displayed the actual lesions. It is worth noticing that there was no
evolution in symptoms from 0 to 1 dpi under any of the assayed
growth conditions.

The RCP 8.5 conditions affected the growth of broccoli plants,
which displayed stunting and early senescence. Moreover, leaves
were smaller and thicker than those of plants grown at CCC or
RCP 4.5 conditions. At RCP 8.5, the evolution of the infection by
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FIGURE 2 | Spectral profiles of whole leaves of mock-control, Xcc race 1-infected, and Xcc race 4-infected broccoli plants at current climate conditions and at

different days post-inoculation (dpi). Graphs represent mean values for every treatment. Sample size (n) is given for each timepoint and treatment: mock-control

(green); Xcc race 1-infected (orange); and Xcc race 4-infected broccoli plants (purple). A, B, C, and D: 1, 3, 6, and 9 dpi, respectively.

either race resembled that described for Xcc race 4 under CCC.
Moreover, Xcc race 1 was more virulent than Xcc race 4 at 9 dpi.

Novel VIs Could Discriminate Between
Healthy and Xcc-Infected Broccoli Leaves
For every treatment (mock-control, Xcc race 1-, and Xcc race 4-
infected), whole leaf reflectance spectra were registered at 1, 2, 3,

6, and 9 dpi. Those profiles revealed specific spectral patterns for
each treatment, showing clear differences between them from the
first timepoint measured (Figure 2; Supplementary Figures 1,
2). Thus, the use of VIs based on hyperspectral reflectance
measurements seemed to be useful to distinguish between control
and Xcc (race 1 or 4)-infected plants. The common VIs ARI, CRI,
PRI, NDVI, and WBI were obtained from the spectra for every
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TABLE 4 | Novel vegetation indices (VIs) firstly described in this work.

VIs name Related to Equation

Diseased broccoli

index 1

Xcc infection DBI1 =
R400 − R690

R850

Diseased broccoli

index 2

Xcc infection DBI2 =
R400
R850

Diseased broccoli

index 3

Xcc infection DBI3 =
R578
R529

treatment and dpi measured and recorded in a database for each
climate condition.

In addition, novel VIs were designed, based on spectral
differences between healthy and Xcc-infected broccoli leaves.
Reflectance spectra were compared by Student’s t-test in order
to determine at which wavelengths reflectance values were
statistically different (at least p < 0.05) between treatments.
Thus, three spectral ranges were found to show maximal
differences between treatments at every dpi tested: 400–500,
600–700, and 900–1000 nm. On the contrary, the regions 520–
570 and 730–890 nm were very stable and not affected by the
infection until 9 dpi. For this reason, they were selected for
“normalization” of the designed parameters. Several wavelengths
were chosen within these spectral regions of interest. To avoid
redundancy of adjacent wavelengths in the reflectance spectra,
only wavelengths separated by at least 40 nm were used in
this process. Finally, the selected wavelengths were combined
by different mathematical calculations (additions, subtractions,
divisions, or combinations thereof) in order to find novel VIs
showing statistical differences (p < 0.05 according to Student’s t-
test) between treatments along entire experiments at each climate
condition. Among the large collection of proposed VIs, three of
them, named diseased broccoli indices 1–3 (DBI1−3; Table 4),
offered maximum significant differences between mock-control
and Xcc-infected broccoli plants. It is worth noticing that DBI1−3

did not show statistically significant correlation with each other,
meaning that DBI1−3 did not provide redundant information to
the classifiers.

Identification of Xcc-Infected Leaves by
Classificatory Algorithms
For each experimental condition, an independent database was
built containing the values of selected parameters (TC-TA, NDVI,
PRI, ARI, CRI, WBI, DBI1, DBI2, and DBI3) for every treatment
and dpi assayed. The three databases were normalized and then
randomly split in two datasets: training (70%) and testing (30%).
Each of the three training dataset was used to feed supervised
classifying algorithms (MLP, SVM, and kNN) to classify samples
into the following categories: mock-control, Xcc race 1-, and Xcc
race 4-infected leaves; each of the three testing dataset was used
to calculate their performance of classification.

The MLPs provided the highest accuracy for every climate
condition (Figure 3). They also provided the highest F-measure
under every condition and, in general terms, the highest
sensitivity. In contrast, SVM and kNN showed similar accuracies

for CCC; however, these two algorithms were not able to
identify control and infected samples at RCP 4.5 or RCP 8.5,
with accuracies of 45–50% and rather low specificity. Moreover,
any attempt of classification by MLP, SVM, or kNN into two
categories (mock-control vs Xcc-infected) was inefficient. This
was probably due to the underrepresentation of mock-control
samples in the datasets (1/3 healthy vs. 2/3 of infected), whereas
in three-category models, every group had the same size.

The suitability of the designed VIs for the identification of
Xcc-infected leaves was evaluated in terms of global variable
importance in the classifiers, calculated by a surrogate RF
algorithm (Figure 4). The accuracies obtained for the fit of each
RFwere 85.7%, 87.2%, and 88.9% for CCC, RCP 4.5, and RCP 8.5,
respectively. Under CCC, the most informative parameters were
DBI1, DBI2, and WBI. In contrast, under RCP 4.5 conditions,
TC-TA, DBI3, and PRI obtained the highest global variable
importance. Finally, under RCP 8.5 conditions, DBI2, CRI, and
NDVI were the most instructive parameters.

DISCUSSION

Imaging techniques appear to be essential for precision
agriculture due to their fast time-spatial response to biotic
and abiotic stress in a non-destructive manner (Barón et al.,
2016; Mahlein, 2016). In the last years, thermal and (multi-
or hyper-) reflectance imaging sensors have been broadly used
for monitoring stress in crop fields. Furthermore, sustainable
agriculture is increasingly relying on AI (such as classifying
algorithms) coupled with computer vision, to solve farming
issues and to promote the automation of decision-making
process (Tian et al., 2020; Nabwire et al., 2021). However, these
methods require basic research to define informative parameters
that efficiently report the health state and fitness of a particular
crop. This work aims to define optimal VIs and classifiers
for the detection of Xcc-infected broccoli leaves. Furthermore,
the robustness of those models was analyzed under climate
conditions mimicking those expected for Region of Murcia in
years 2081–2100.

According to Fargier and Manceau (2007), when a cultivar
of a brassica is infected by Xcc, a collection of polymorphisms
is obtained depending on the race inoculated. In the case
of broccoli plants used for this study (B. oleracea var. italic
cv. calabrese natalino), the symptoms developed under CCC
triggered by races 1 and 4 were similar. However, Xcc race
1 showed a slower timecourse than race 4 under the same
ambient conditions. The process of undergoing climate change
could affect considerably plant biochemistry and therefore plant
defense responses. For this reason, it is relevant to include
future climate conditions in disease detection studies. Indeed,
each disease may respond differently to these variations, and
thus, climate change would cause neutral, positive, or negative
effects on plant responses to diseases (Trebicki et al., 2017;
Velásquez et al., 2018; Cheng et al., 2019). According to the
results reported here, symptoms caused by Xcc on susceptible
broccoli plants would not be altered on an intermediate climate
change scenario like RCP 4.5. These results are in accordance
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FIGURE 3 | Performance of three algorithms for the classification of samples into the categories control, Xcc race 1-infected, and Xcc race 4-infected leaves in terms

of overall accuracy (A), F-measure (B), sensitivity (C), and specificity (D) for each climate scenario. SVM, support vector machine; MLP, multilayer perceptron-based

artificial neural network; kNN, k-nearest neighbors (k = 5 neighbors). CCC, current climate conditions; RCP 4.5 and 8.5, representative concentration pathways 4.5

and 8.5.

with previous works, as extensively reviewed by Gullino et al.
(2018). However, the RCP 8.5 imposed a stress condition
limiting or slowing down plant growth. It will be of particular
interest to gain knowledge about the impact of combined high
temperature and high CO2 on photosynthetic processes of the
broccoli plant which, as a C3 species, is well adapted to mild
temperatures. Nevertheless, further research would be needed
to fully understand the impact of climate change on broccoli
plant physiology (particularly on photosynthesis), as well as
on the physiology of Xcc races, and/or their interaction with
host plants.

In literature, a number of classic VIs derived from
multispectral (and hyperspectral) imaging can be found. This
VIs can be used to detect, classify, and quantify specific diseases
with varying degrees of success (Lowe et al., 2017). However,
high-resolution spectra recorded with hyperspectral imaging
sensors allow the selection of an optimized set of wavelengths to
maximize differences between healthy and infected plants. Those
wavelengths can be used to create novel parameters specific for
a given host–pathogen system or stress factor. This approach has
already been demonstrated to be suitable to detect diseased plants
when combined with AI algorithms. Thus, Mahlein et al. (2013)
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FIGURE 4 | Global variable importance calculated using a global surrogate random forest (RF) model. CCC, current climate conditions; RCP 4.5 and 8.5,

representative concentration pathways 4.5 and 8.5; ARI, anthocyanin reflectance index; CRI, carotenoid reflectance index; DBI1−3, disease broccoli index 1–3; NDVI,

normalized difference vegetation index; PRI, photochemical reflectance index; TC-TA, normalized temperature; WBI, water balance index.

reported specific spectral disease indices for the detection of sugar
beet plants infected with Cercospora leaf spot, sugar beet rust, or
powdery mildew. Those indices improved disease detection and
identification when implemented on classifiers. Similarly, Yuan
et al. (2019) proposed a novel method for detecting anthracnose
in tea plants based on hyperspectral imaging that included two
new disease indices in the classificatory models. Moreover, the
analysis of reflectance spectral data of healthy and diseased wheat
ears allowed the creation of a novel index that demonstrated
a stronger ability to determine the severity of the Fusarium
head blight compared with other sixteen existing spectral indices
(Zhang et al., 2020).

In this work, three novel VIs have been developed to
successfully distinguish between healthy and Xcc-infected
broccoli plants (Table 4). Leaf reflectance is a complex
phenomenon dependent on biochemical and biophysical
properties of the canopy leaves, which in turn are affected by
growth conditions and diseases. Thus, the visible reflectance
range (400–700 nm) is mostly influenced by the leaf pigment

content; the reflectance in the near-infrared range (700–
1100 nm) depends on water content and leaf structure, or
internal scattering processes; and the short-wave infrared
(1,100–2,500 nm) is influenced by the composition of leaf
chemicals and water, as reviewed by Mahlein (2016). Since
chlorophylls are the main pigments influencing reflectance
spectrum at 400 and 690 nm, both DBI1 and DBI2 indices could
be indicative of the severity of chlorosis. Moreover, DBI3 could
be also related to the contents on chlorophylls and carotenes
(Carter and Knapp, 2001).

DBI1, DBI2, and DBI3, together with thermal (TC-TA) and
other common hyperspectral reflectance parameters (NDVI,
PRI, ARI, CRI, and WBI), were implemented in three
different supervised classifiers (MLP, SVM, and kNN) for each
experimental condition. Since the learning process of each
algorithm differs from each other, so will the quality of its
predictions on the new samples. In this sense, it is a common
procedure to compare the performance of several algorithms
when sorting new samples (the validation datasets) after training
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on the same dataset. Metrics such as specificity (true negative
rate), sensitivity (true positive rate), accuracy (percentage of
right guesses), or F-measure (harmonic mean of precision and
sensitivity) evaluate the performance of classification, that is,
the estimation of the true risk of error of the output prediction
of a machine learning algorithm (Shalev-Shwartz and Ben-
David, 2014; Liakos et al., 2018). The MLPs were the most
effective classifier, with the highest overall accuracy and F-
measure under the three growing conditions assayed. The
performance of theMLPmodels was comparable to that reported
by other authors for disease detection classifiers. Indeed, an
increasing number of studies apply classifiers to spectral data
(including or not thermal parameters) to identify infected plants
at conditions resembling CCC. For example, Sankaran et al.
(2013) reported an accuracy of 87% when classifying citrus
trees infected by Candidatus Liberibacter spp, a bacteria causing
Huanglongbing disease. Zarco-Tejada et al. (2018) obtained
accuracies of disease detection exceeding 80% when classifying
Xylella fastidiosa-infected olive trees. This pathogen, alike Xcc, is
a xylem bacterium. Abdulridha et al. (2020a,b) identified tomato
plants infected with tomato yellow leaf curl virus, Xanthomonas
perforans, or Corynespora cassiicola (a fungus) with 94–100%
accuracy depending on the pathogen. Pérez-Bueno et al. (2019b)
detected avocado trees suffering white root rot (caused by the
fungus Rosellinia necatrix) with accuracies up to 82.5%. Nguyen
et al. (2021) achieved accuracies ranging from 82 to 96.75% when
identifying vines affected by the Grapevine vein-clearing virus.
Similarly to the results here reported, Yuan et al. (2019) designed
novel hyperspectral reflectance indices which help to identify
Gloeosporium theae-sinesis Miyake-infected tea plants with 94
and 98% accuracies at pixel and leaf levels, respectively.

The performance of the models was affected differentially by
growing conditions, depending on the classifier. In both RCPs,
the accuracy of the classifiers decreased in all cases. However,
the accuracy of models based on MLP only decreased from
88.1% at CCC to 76.9 and 83.3% for RCP 4.5 and RCP 8.5,
respectively. This advantage of MLPs against SVM and kNN
models could be related to the fact that MLPs are less affected
by noise factors (compared to other algorithms), which in turn
reduces significantly the influence of the unknown variability.
Therefore, MLPs are usually more robust models that often
outperform other classifying algorithms in solving a variety of
classification problems (Basheer and Hajmeer, 2000; Bala and
Kumar, 2017). To our best knowledge, this is the first time that
machine learning classifiers have been applied to hyperspectral
and thermal data taken under climate conditions mimicking
those projected for the future in order to classify healthy and
infected plants.

DBI1, DBI2, and DBI3 proved to be important features for
plant classification according to a surrogate RF used for testing
the global importance of variables. Overall, DBI1 and DBI2 were
themost informative parameters of the set for CCC. However, the
global variable importance varied for each parameter depending
on the climate conditions. Under RCP 4.5 conditions, TC-TA and
DBI3 were the most informative parameters. In contrast, DBI2

was the parameter with the highest global variable importance
at RCP 8.5. This effect may be due to the impact of growing
conditions on the symptomatology (degree of chlorosis and/or
necrosis) of the infections, as discussed above.

CONCLUSION

The parameters DBI1, DBI2, and DBI3 here presented are good
reporters for Xcc infection in broccoli leaves. Furthermore,
the model based on MLP and the set of parameters DBI1,
DBI2, and DBI3 along with common VIs (ARI, CRI, NDVI,
PRI, and WBI) and TC-TA would be an effective procedure
for the identification of Xcc-broccoli infected plants. In
addition, this model proved to be robust regardless of the
climate conditions.
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