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Abstract: Sunburn is an important issue affecting the yield of many crops, mainly in arid and
semi-arid regions. Excessive solar radiation and high temperatures can reduce growth and cause
leaf chlorosis, oxidative stress, and photosynthesis impairment. It is thus necessary to develop
agricultural techniques to protect plants in a cost-effective and reproducible manner. A potential
method is through the spray of protective compounds based on particulate films, such as those
based on kaolin. The objective of this study is to evaluate the effects of spraying the protective
product Archer® Eclipse, created by Atlántica Agrícola S.A. (Alicante, Spain), on sunburn damage in
a sensitive species such as the cucumber plants (Cucumis sativus L.). To evaluate the effects of sunburn
on the plants, parameters related to biomass, leaf temperature, photosynthesis, and oxidative stress
were analysed. Plants sprayed with Archer® Eclipse showed fewer sunburn symptoms and obtained
43% more shoot biomass than those that were not treated. In addition, plants sprayed with Archer®

Eclipse showed 3 ◦C lower leaf temperatures, higher photosynthesis performance, 88% more water
use efficiency, and 21% more chlorophyll concentration. Finally, plants treated with Archer® Eclipse
presented 6% less accumulations of carotenoids and 67% less total phenols, but lower oxidative
stress indicators. In conclusion, this study confirms the efficiency of Archer® Eclipse in protecting a
sensitive vegetable plant such as the cucumber from sunburn-inducing conditions.

Keywords: Cucumis sativus; kaolin; sun protector; reactive oxygen species; photo-oxidative stress

1. Introduction

Injuries caused by what is commonly referred to as “sunburn” on many plants are
major problems that affect the yield of many crops, mainly in arid and semi-arid regions [1].
These areas are characterised by high solar radiation and elevated temperatures during the
crops’ growing season [2]. In addition, in the coming years, climate change will increase
both temperature and drought and this, in turn, will increase the frequency of sunburn in
plants, bringing about a loss in terms of production and profits in agricultural systems [2].

Solar damage in plant tissues, caused by excessively high temperatures and light irradi-
ation, generates photo-oxidative stress due to the high accumulation of ROS (a phenomenon
called photo-oxidation) and leads to the manifestation of typical sunburn symptoms [3].
These symptoms include tissue discoloration, yellowing, browning, and necrosis in cases of
severe damage [4]. Chlorophyll (Chl) concentrations decrease, while other pigments, such
as xanthophyll carotenoids, increase, leading to the symptoms being visualised [4]. Indeed,
the Chl content of leaves was one of the most important physiological characteristics that
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were altered under this type of stress, and it is considered one of the most important indica-
tors of sunburn in plants [4]. Furthermore, under environmental conditions of sunburn, a
loss of Chl causes a reduction in light absorption by the plant and, therefore, the generation
of ROS and photo-oxidative stress [1]. On the other hand, some defence mechanisms
against photo-oxidative stress described in plants have been: (i) a change in the redox
state and (ii) the regulation and induction of antioxidant metabolites by increasing the
activity of antioxidant enzymes and the accumulation of phenolic compounds that act as
protectors [5].

To mitigate “sunburn” effects, it is necessary to develop and implement the use
of agricultural techniques to protect plants from both extreme solar radiation and high
temperatures, doing so at a low financial cost. Some solutions include the use of coloured
nets to cast shade on crops and sprinkler irrigation systems that cool the crops to counteract
the effects of high summer temperatures [6–8]. However, some problems with these systems
are that they require a large amount of technology, the availability of good quality water,
and they are expensive, as well as having a secondary effect on the spread and appearance
of some diseases.

In recent years, the direct application to plants of protective compounds, mostly based
on the use of particle films, has been proposed as a new tool that is useful and effective
in the prevention of sunburn [9]. Thus, several studies have delved into this technique in
different crops, confirming the effectiveness of these compounds in protecting plant tissues,
leaves, and fruits from extreme solar radiation and high temperatures [10].

In terms of the protective compounds based on the use of particulate films, one of
the most widely used is kaolin, which consists of a crumbly clay that is rich in the mineral
kaolinite, whose chemical composition is Al2Si2O5(OH)4. Once sprayed as a suspension on
the leaf surface, water evaporates to leave behind a protective particle film. To obtain the
desired results on plant tissue, an effective particle film must have certain characteristics.
In particular, the mineral particle must have a diameter < 2 µm, it must be formulated to
spread and create a uniform film, it should transmit photosynthetically active radiation but
exclude ultraviolet and infrared radiation to some extent, it should not interfere with gas
exchange from plant organs, and, of fundamental importance, it must be removable from
harvested commodities [11].

Foliar spraying of kaolin on different woody plants improved their growth rate and
increased their leaf Chl content, as compared to non-treated plants [12]. Overall, the
protective effect of kaolin is due to an increase in reflected light reaching the surface of
plant tissues, which prevents overheating, thus significantly reducing damage by severe
sunburn [12]. Moreover, kaolin should be applied before high temperatures are experienced
and it must be reapplied to protect new growth or after a heavy rain [11].

The use of protective compounds against sunburn could prove to be an essential and
low-cost tool to improve the yield and quality of crops subjected to long periods of extreme
solar radiation and high temperatures. Therefore, the objective of this study was to evaluate
the efficacy of the protective product Archer® Eclipse, created by the company Atlántica
Agrícola S.A., against experimentally induced sunburn conditions. The species used was
the cucumber (Cucumis sativus L.), which is a sensitive species that is usually grown in the
summer period and is, therefore, subjected to conditions of high solar radiation and high
temperatures during its development.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Cucumber plants (C. sativus L. cv. Prior) were used for the experiment. The seeds
were germinated and grown for 35 days in a seedbed. Subsequently, the seedlings were
transferred to a culture chamber under controlled conditions with a relative humidity of
60–80% (day/night), temperature of 25 ◦C/15 ◦C (day/night), and a 16 h/8 h photoperiod
with a PPFD (photosynthetic photon-flux density) of 350 µmol−2 s−1 (measured with an SB
quantum 190 sensor, LI-COR Inc., Lincoln, NE, USA). Under these conditions, the plants
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were grown in a tray with cells (cell size, 3 cm × 3 cm × 10 cm) filled with a peat:perlite
mixture. Fertigation consisted in a complete Hoagland-type nutrient solution, with minor
modifications for cucumber cultivation, consisting of: 4 mM KNO3, 2 mM Ca(NO3)2, 2 mM
MgSO4, 1 mM KH2PO4, 1 mM NaH2PO4, 2 µM MnCl2, 1 µM ZnSO4, 0.25 µM CuSO4,
0.1 µM Na2MoO4, 125 µM Fe-EDDHA, and 50 µM H3BO3, with a pH of 5.8, applied when
needed, according to the requirements of the plants. The plants were watered with 100 mL
of water each, when needed.

2.2. Description of the Treatments and Experimental Design

After 35 days, the experiment began with the implementation of the specific condition
to generate “sunburn”. This condition consisted of illuminating the plants with high-
pressure sodium vapor lamps (SONLIGHT HPS-TS 600W). These lamps were placed at a
height of about 60–90 cm from the plant to obtain a level of illumination (PPFD) higher than
1200 µmol m−2 s−1. These conditions were set daily for a period of 5 h, starting at 12:00 p.m.
and ending at 5:00 p.m. The plants were separated into two groups. One group was sprayed
with a homogenous layer of Archer® Eclipse (2%, v/v) via a foliar spraying technique just
one time, and each plant in this group was treated with an amount of 50 mL of spraying
solution once the high light and temperature conditions had started. The other group, which
was considered the control group, was not sprayed. The experimental design included a
complete randomised block with nine plants per treatment arranged in individual cells
on trays, with the treatments being randomly distributed in the culture chamber. Archer®

Eclipse was formulated with calcium (Ca) and zinc (Zn) salts, as well as vegetal extract
coming from co-products from the corn processing industry (corn steep liquor, CSL, as a
nitrogen source). CSL is a viscous liquid mixture consisting entirely of the water-soluble
components of corn steeped in water. The steeping process starts with soaking corn grain
in open tanks at 45 to 52 ◦C for 40 to 48 h. Sulphur dioxide (SO2) is added to prevent fungi
growth and to aid in solubilising the material. Initial concentrations of SO2 are between
0.1 and 0.2% (pH 3.8 to 4.5) and decrease to 0.05% and 0.01% after 5 and 10 h, respectively.
Active fermentation occurs in the steep water, and lactic acid bacterial populations increase
as SO2 concentrations decrease. This separates the starch from the gluten, solubilises
and breaks down proteins, and softens the corn to facilitate grinding. The amino acid
and peptide rich steep liquor is collected and concentrated. This vegetal extract contains
(µg g−1): 4-aminobutyrate (33.20), alanine (311.58), asparagine (70.26), isoleucine (48.43),
leucine (103.24), valine (76.99), 3-phenyllactate (46.94), 4-hydroxyphenylacetate (100.16),
formate (2.67), lactate (2487.15), indoleacetic acid (7.48), choline (28.96), and trigonelline
(3.15). This analysis was performed via nuclear magnetic resonance spectroscopy (NMR):
Ascend 500 MHz AVANCE III HD H–NMR (Bremen, Germany). The resulting spectra were
evaluated with the programme ‘Chenomx NMR Suite’, version 8.3, and a LC/MSD Trap,
version 3.2 (Bruker Daltonik GmbH, Bremen, Germany).

2.3. Plant Sampling

At the end of the experiment, 15 days after the application of sunburn-inducing condi-
tions (das) (when the appearance of sunburn symptoms on leaves was clearly detected),
subsamples of plant material were harvested just after daily sunburn treatment was fin-
ished. These subsamples were then washed with Milli-Q water and dried on filter paper
to obtain fresh weight (FW). Other subsamples were frozen at −40 ◦C and used for the
biochemical analysis. All the plants were harvested and dried in a forced-air oven to
determine the dry weight (DW).

2.4. Leaf Temperature and Thermographic Images

Both leaf temperature and thermographic images were taken directly using the HTi
Thermal Imaging Camera, model HT-19. The data reported are from the last day of the
experiment [13]. Leaf temperature was measured in one leaf of every plant (9 plants per
treatment) and randomly in 6 more leaves to increase sample size.
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2.5. Gas Exchange Measurements

Measurements were recorded using a LICOR 6800 Portable Photosynthesis System
infrared gas analyser (IRGA: LI-COR Inc. Lincoln, NE, USA). Intermediate leaves were
placed in the measuring cuvettes under optimal growth conditions. Prior to use, the in-
strument was warmed for 30 min and calibrated. Measurements used standard optimum
cuvette conditions at 500 µmol m2 s−1 of photosynthetically active radiation (PAR) and
400 µmol mol−1 of CO2 concentration, and ambient leaf temperature and relative humidity.
Net photosynthetic rate, transpiration rate, and stomatal resistance were recorded simul-
taneously. The data were stored in the LICOR device and analysed using the “Photosyn
Assistant” software. Instantaneous water use efficiency (WUE) was calculated by dividing
the net photosynthetic rate (ACO2) by the corresponding transpiration rate (Eleaf). The data
reported are from the last day of the experiment [14].

2.6. Chl a Fluorescence Analysis

Plants were adapted to 30 min of darkness before taking the measurements, using a
special leaf clip placed on each leaf. The kinetics of Chl a fluorescence were determined
using the Handy PEA Chlorophyll Fluorimeter (Hansatech Ltd., King’s Lynn, Norfolk, UK);
OJIP phases were induced by red light (650 nm), with a light intensity of 3000 µmol pho-
tons m−2 s−1. OJIP fluorescence phases were analysed using the JIP test [15]. Measurements
were performed on fully developed leaves at the mid-plant position of nine plants per
treatment. The following parameters obtained from the JIP test were used to study energy
fluxes and photosynthetic activity: initial fluorescence (Fo), maximum fluorescence (Fm),
variable fluorescence (Fv = Fm − Fo), performance index (PIABS), the ratio of active reac-
tion centres (RC) (RC/ABS), and the ΨEo value, indicating electron output primarily from
photosystem II (PSII) [15].

2.7. Concentration of Chls and Carotenoids

The concentrations of Chls and carotenoids were analysed according to [16] with some
modifications. Plant material, 0.1 g, was ground with 1 mL of methanol. Subsequently,
it was centrifuged for 5 min at 5000× g. The absorbance was measured at three different
wavelengths: 666 nm, 653 nm, and 470 nm, and the following calculations were performed
based on the following equations:

Chl a (Chl a) = 15.65 × A666nm − 7.34 × A653nm (1)

Chl b (Chl b) = 27.05 × A653nm − 11.21 × A666nm (2)

Carotenoids = (1000 × A470nm − 2.86 × Chl a − 129.2 × Chl b)/221 (3)

2.8. Electrolyte Leakage

Cell membrane stability was determined by performing the electrical conductivity
(EC) test [17]. For this purpose, 0.3 g of fresh plant material was weighed, cut into pieces,
lightly washed with deionised water, and placed in a test tube, after which 30 mL of
deionised water was added. The tubes were shaken in a vortex for 1 min. The initial
conductivity (EC1) was measured using a conductivity meter (Cond 8; XS Instruments,
Carpi, Italy). Subsequently, the tubes were incubated in a water bath at a temperature
of 100 ◦C for 20 min to extract the released electrolytes and they were allowed to cool to
room temperature. Next, the final conductivity (EC2) was measured. The percentage of
electrolyte loss was calculated using the following formula: (EC1/EC2) × 100.

2.9. Determination of the Concentration of Oxidative Indicators (Malondialdehyde (MDA), H2O2,
and O2

−)

MDA concentration was determined in accord with [18]. Fresh material was extracted
with TBA + TCA and, after extraction, absorbance was recorded at 532 nm and 600 nm
to correct for turbidity. The H2O2 concentration was measured colorimetrically accord-
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ing to [19], based on the reaction with KI and reading absorbance at 350 nm. For O2
−

determination, the method described by [20] was followed. The method was based on the
reaction with hydroxylamine, sulfanilic acid, and α-1-naphthylamine. Colour intensity was
measured at 530 nm.

2.10. Determination of Total Phenol Concentration

Total phenols from plant tissue were extracted with methanol. The content was
quantified at an absorbance of 765 nm using the Folin–Ciocalteau reagent [21]. The phenol
concentration was obtained using a caffeic acid standard curve.

2.11. Statistical Analysis

The results were statistically evaluated with an analysis of variance (one-way ANOVA),
with a 95% confidence interval. All the biochemical analyses were repeated three times
and their average was considered one experimental unit. All physiological measurements
were taken from one leaf per plant. Thus, the average was obtained from nine experimental
units (n = 9). Leaf temperature, however, was measured on 15 single leaves per treatment
(n = 15). Differences between the means of the two treatments were compared using Fisher’s
least significant difference (LSD) test at a 95% probability level. Significance levels were
expressed as: * p < 0.05; ** p < 0.01; *** p < 0.001; and NS not significant. The experiment was
replicated twice and no significant differences were found between the two replications.
Data were from the first experiment.

3. Results
3.1. Visual Symptoms and Biomass

High light treatment (1.200 µmol m−2 s−1) for 5 h per day caused sunburn symptoms
in the leaves of both treated and non-treated plants. Thus, cucumber plants from both
treatments showed leaf margin chlorosis and chlorotic spots. However, these symptoms
were much more severe in the plants that did not receive the sunblock treatment. Indeed,
Archer® Eclipse plants showed leaves that were greener than those from non-treated plants
(Figure 1). In addition, the average shoot biomass per plant was significantly higher in
plants treated with Archer® Eclipse when compared to the control plants (Figure 2).
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Figure 1. Appearance of leaves in the different treatments, in sampling days, after the application of
sunburn-inducing conditions.
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Figure 2. Average shoot biomass of control plants and plants treated with Archer® Eclipse. Values
are means ± standard error (n = 9). Differences between means were compared with Fisher’s least
significant difference test (LSD; p = 0.05). The levels of significance were represented by p < 0.05 (*).

3.2. Leaf Temperature

The thermographic study showed that, before the application of high light inten-
sity (time 0 h), the recorded temperature was similar in the plants from both treatments
(17–18 ◦C). When light intensity increased, there was an increase in cucumber plant leaf
temperature in the treated and non-treated plants. However, plants treated with Archer®

Eclipse showed a lower average temperature in comparison with control plants. Indeed, in
the treated plants, the temperature was, on average, 3 ◦C lower at 2.5 h, and 3.5 ◦C lower at
5 h, as compared to the control plants (Figure 3). The maximum leaf temperature reached
values of 47 ◦C in the non-treated plants at 5 h after the application of high light intensity
had started.
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3.3. Photosynthetic Parameters

The leaf gas exchange parameters showed that the Archer® Eclipse treatment reduced
stomatal conductance (gs) and Eleaf values in comparison with the control plants. However,
no differences regarding A nor Ci were observed between plants from either treatment.
The WUE was higher in plants treated with Archer® Eclipse (Table 1). Considering the Chl
a fluorescence parameters, Archer® Eclipse application enhanced the values of all analysed
parameters in comparison with the values of the control plants (Table 2). Furthermore, the
concentration of total Chl and the Chl a/b ratio was higher in plants treated with Archer®

Eclipse, although these plants registered lower carotenoid concentrations, as compared to
the control plants (Table 3).

Table 1. Gas exchange parameters of control plants and plants treated with Archer® Eclipse.

Gs
(mol m−2 s−1)

Eleaf
(mmol m−2 s−1)

Ci
(µmol mol−1)

ACO2
(µmol m−2 s−1)

WUE
(µmol mol−1)

Control 0.016 ± 0.002 0.56 ± 0.07 330.16 ± 62.52 0.61 ± 0.12 1.09 ± 0.09
Treatment 0.010 ± 0.004 0.33 ± 0.11 312.99 ± 47.32 0.67 ± 0.17 2.05 ± 0.24

p-value * * NS NS **
Values are means ± standard error (n = 9) and differences between means were compared with Fisher’s least
significant difference test (LSD; p = 0.05). The levels of significance were represented by p < 0.05 (*) and p < 0.01 (**).
Leaves were measured 15 days after sunburn conditions with a Portable Photosynthesis System infrared gas analyser.

Table 2. Chl a fluorescence parameters of control plants and plants treated with Archer® Eclipse.

Fv/Fm PIABS RC/ABS ΨEo

Control 0.34 ± 0.11 2.52 ± 1.20 0.38 ± 0.22 0.47 ± 0.08
Treatment 0.83 ± 0.01 10.23 ± 1.09 1.00 ± 0.04 0.67 ± 0.01

p-value *** *** *** ***
Values are means ± standard error (n = 9) and differences between means were compared with Fisher’s least
significant difference test (LSD; p = 0.05). The levels of significance were represented by p < 0.001 (***). Measured
15 days after sunburn conditions with a Chlorophyll Fluorimeter.

Table 3. Total Chls and carotenoid concentrations in control plants and plants treated with Archer® Eclipse.

Total Chls
(mg g−1 FW)

Chl a/b Ratio
(-)

Carotenoids
(mg g−1 PF)

Control 0.373 ± 0.007 1.40 ± 0.03 0.169 ± 0.003

Treatment 0.454 ± 0.008 1.78 ± 0.01 0.159 ± 0.002

p-value *** *** **
Values are means ± standard error (n = 9) and differences between means were compared with Fisher’s least
significant difference test (LSD; p = 0.05). The levels of significance were represented by p < 0.01 (**) and
p < 0.001 (***). Leaves were measured 15 days after sunburn conditions with a spectrophotometer.

3.4. Oxidative Stress Indicators and Total Phenol Concentration

Plants treated with Archer® Eclipse showed significantly lower EC percentage val-
ues, MDA, O2

−, and H2O2 concentrations, as compared to the control plants (Table 4).
In addition, cucumber plants treated with Archer® Eclipse showed lower total phenol
concentrations than the control plants (Figure 4).
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Table 4. EC percentage and MDA, O2
−, and H2O2 concentrations in control plants and plants treated

with Archer® Eclipse.

EC
(%)

MDA
(µM g−1 FW)

O2−

(µg g−1 FW)
H2O2

(µg g−1 FW)

Control 31.59 ± 0.46 19.46 ± 0.92 31.44 ± 0.27 53.83 ± 11.11
Treatment 17.26 ± 0.57 5.61 ± 0.38 16.27 ± 0.44 10.97 ± 4.35

p-value *** *** *** ***
Values are means ± standard error (n = 9) and differences between means were compared with Fisher’s least
significant difference test (LSD; p = 0.05). The levels of significance were represented by p < 0.001 (***). Leaves
were measured 15 days after sunburn conditions with different chemical procedures.
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4. Discussion

Agronomic crops, such as the cucumber, whose growing period in the field occurs
in the summer season under stressful conditions such as high degrees of light and tem-
peratures, usually suffer sunburn symptoms that appear in the vegetative parts of the
plants. The appearance of these symptoms on leaves generally causes a reduction in plant
growth [1,22]. Indeed, biomass reductions under these stressful conditions have been well
characterised in various plant types and organs [23,24]. In this experiment, it was reported
that cucumber plants are very sensitive to simultaneous excess amounts of light and tem-
perature, as the plants exposed to these conditions had damage in their leaves (Figure 1).
However, the plants subjected to sunburn-inducing conditions and treated with Archer®

Eclipse had no visual damage and presented the greatest shoot growth, as evidenced by
the 43% increase in biomass when compared with the non-treated plants. Hence, these
results clearly prove the protective effect of Archer® Eclipse against high amounts of light
and temperature stress. Another piece of evidence of the protective effect under sunburn
conditions was observed in the leaf Chl concentration. The plants treated with Archer®

Eclipse had a higher total Chl concentration than the non-treated plants. The Chl content in
leaves is one of the most important physiological characteristics that is altered under this
type of stress, and it is considered one of the most important indicators of plants suffering
sunburn [25].

The data from the thermographic images and leaf temperature measurements suggest
that the application of Archer® Eclipse was effective in reducing leaf temperature under
sunburn conditions, and this protective effect was maintained over time, thus avoiding leaf
damage and favouring plant growth. One of the possible mechanisms of action of Archer®

Eclipse is the reflection of a portion of the direct incident light that reaches the surface of
plant tissues, preventing overheating and leaf damage. Cucumber plants are sensitive to
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temperature, and sunburn symptoms normally occur in plants subjected to temperatures
above 35 ◦C [26]. Therefore, any agronomical techniques that are able to reduce the incident
light under conditions of high environmental light could favour the growth of the plants.
Several studies have also reported that some products formulated with kaolin and calcium
sulphate are able to reflect a portion of the direct light radiation that reaches the surface
of the plant tissue, preventing overheating and thereby sunburn symptoms [5,12]. In
addition, Archer® Eclipse application could have reduced the quantity of UVB and UVC
reaching the leaf due to the presence of indoleacetic acid (AIA) from the vegetal extracts
that the product has. The authors in [27] report that AIA is a natural protector against
these types of radiation, which damage DNA molecules by instigating dimerisation and
ionisation of pyrimidines, resulting in disturbance of protein synthesis and disrupting of
their structures [28,29]. Despite this temperature and light reduction in the leaves, Archer®

Eclipse application had no effect on gas exchange regulation mechanisms, as ACO2 and
gs were close to zero for both treated and non-treated plants. The daily stress period
could have drastically decreased the ACO2 and gs, as cucumber plants are a thermophilic
crop that grows optimally at 25 ◦C [30], but temperatures above 35–50 ◦C can lead to leaf
damage and even dead tissue [31]. Under these conditions, it has been reported that both
thermo-tolerant and thermo-sensitive cucumber species show decreased leaf gas exchange
parameters, but only thermo-tolerant cucumber species restore functions to a relatively
healthy level after high-temperature exposure [32]. Nevertheless, ACO2 and gs reduction
in treated plants could be due to an adaption mechanism to high light and temperature
favoured by Archer® Eclipse’s application, since leaf damage was not observed and Fv/Fm,
PIABS, RC/ABS, and ΨEO values were higher than in non-treated plants [15].

Non-treated plants, under high light and temperature conditions, increased their an-
tioxidant response relative to plants treated with Archer® Eclipse, as suggested by the data
from the Chl a/b ratio and the concentrations of carotenoids and phenols in the leaves. This
could all suggest that non-treated plants suffered a greater stress intensity than the Archer®

Eclipse plants. The Chl a/b ratio, an indicator of environmental stress [25], was higher in
treated than in non-treated plants, confirming that the treated plants suffered less stress. A
decrease in this ratio indicates that the plants suffered a strong degree of oxidative stress
and activated their antioxidant system to reduce ROS and turn part of Chl a into Chl b, as
this is an O2 consumption process which removes the aforementioned from the chloroplast.
Carotenoids are another set of pigments related to light in plants. Non-treated plants had
higher leaf carotenoid concentrations than the plants treated with Archer Eclipse. Changes
in leaf carotenoid concentrations could be triggered by ROS accumulation [1,33]. Some
of the most important antioxidant compounds in plants are phenols. These compounds
appear to be essential as physiological mechanisms for protection against sunburn, as they
are capable of absorbing excess light radiation, avoiding or reducing the photo-oxidation
process, and directly detoxifying ROS [34]. Non-treated plants had a higher leaf phenol
concentration than treated plants, indicating once again that the non-treated plants strongly
activated their antioxidant system to cope with high light and temperature conditions.
Therefore, non-treated plants, when compared with treated Archer® Eclipse plants, suffered
from more intense stress, which led to an increase in the activity of antioxidant systems
(lowered Chl a/b ratio and increased carotenoids and phenols). However, this was not
enough to avoid oxidative damage, as indicated by high values of EC and MDA. One
of the main effects of the massive presence of ROS in cells is the deterioration of the cell
membranes, which leads to an increase in permeability and therefore the loss of electrolytes.
The EC percentage and the MDA concentration are two parameters that are indicative of
membrane degradation and lipid peroxidation, and the increase in their values suggests
the excessive presence of ROS [35]. Thus, Archer® Eclipse foliar application avoided ROS
formation and loss of cell permeability by reflecting a portion of the direct light that reaches
the surface of the plant tissues. In addition, it can also not be ruled out that ROS scavenging
could have been increased by the Archer® Eclipse product due to the direct action of sugar
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and amino acids contained in the botanical extract of its formulation. Amino acids and
sugars are powerful antioxidants that are able to cope with abiotic stresses [30,36].

In a future experiment, it will be necessary to address how to optimise Archer® Eclipse
use, mainly by increasing knowledge on the plant’s response to its application. More
specifically, complementary studies should be carried out to analyse the antioxidant system
of the plants in detail, collect more information about crops that could benefit from this
technology, and determine the best time and frequency of application. Moreover, studies
examining the interactions of Archer® Eclipse application with other agronomic practices,
such as the use of cover crops and deficit irrigation strategies, are needed to improve the
effectiveness of Archer® Eclipse under more severe stress conditions.

5. Conclusions

This study confirms the efficiency of Archer® Eclipse in protecting the cucumber plant
from sunburn-inducing conditions. Furthermore, due to its composition, a protective effect
of the pit-dye mechanism is evident. Having said that, more studies are needed in order
to fully understand the protective role of the organic compounds in the Archer® Eclipse
vegetal extract and their synergies with each other.
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