ON THE ENUMERATION OF THE SET OF ELEMENTARY NUMERICAL SEMIGROUPS WITH FIXED MULTIPLICITY, FROBENIUS NUMBER OR GENUS

J. C. ROSALES ${ }^{1}$ AND M. B. BRANCO ${ }^{2}$

Abstract

In this paper we give algorithms that allow to compute the set of every elementary numerical semigroups with given genus, Frobenius number and multiplicity. As a consequence we obtain formulas for the cardinality of these sets.

1. Introduction

Let \mathbb{N} be the set of nonnegative integers. A numerical semigroup is a subset S of \mathbb{N} which is closed under addition, $0 \in S$ and $\mathbb{N} \backslash S$ has finitely many elements. The cardinality of the set $\mathbb{N} \backslash S$ is called the genus of S and it is denoted by $\mathrm{g}(S)$.

Given a positive integer g, we denote by $\mathcal{S}(g)$ the set of all numerical semigroups with genus g. The problem of determining the cardinality of $\mathcal{S}(g)$ has been widely treated in the literature (see for example [2,4-7] and [13]). Some of these works were motivated by Amorós's conjecture [5], which says that the sequence of cardinals of $\mathcal{S}(g)$ for $g=1,2, \ldots$ has a Fibonacci behavior. It is still not known in general if for a fixed positive integer g there are more numerical semigroups with genus $g+1$ than numerical semigroups with genus g.

An algorithm that allows us to compute the set of numerical semigroups with genus g is provided in [3], where elementary numerical semigroups play an important role. In fact, in [3] an equivalence binary relation R is defined over $\mathcal{S}(g)$ such that $\frac{\mathcal{S}(g)}{R}=\{[S] \mid S$ is a elementary numerical semigroup with genus $g\}$. Moreover, it is proved that if S and T are elementary numerical semigroups with genus g then $[S]=[T]$ if and only if $S=T$. The main idea of the algorithm in [3] is to compute

[^0]every elementary numerical semigroups S with genus g and, then, to enumerate the elements in [S] for each S.

For any numerical semigroup S, the smallest positive integer belonging to S (respectively, the greatest that does not belong to S) is called the multiplicity (respectively Frobenius number) of S and it is denoted by $\mathrm{m}(S)$ (respectively $\mathrm{F}(S)$) (see [9]).

We say that a numerical semigroup S is elementary if $\mathrm{F}(S)<2 \mathrm{~m}(S)$. This type of numerical semigroups were also studied in [8] and [13]. We denote by $\mathcal{E}(m, F, g)$ the set of elementary numerical semigroups with multiplicity m, Frobenius number F and genus g (when one of the parameters to $\mathcal{E}(m, F, g)$ is replaced by the symbol - , it represents the set of elementary numerical semigroups in which no restrictions are placed on that parameter).

For any finite set $A, \# A$ denotes the cardinal of A. Given a rational number q we denote by $\lceil q\rceil=\min \{z \in \mathbb{Z} \mid q \leq z\}$.

In Section 2, we review the results of Y. Zhao in [13] which give formulas for $\# \mathcal{E}(m,-,-), \# \mathcal{E}(m,-, g)$ and $\# \mathcal{E}(-,-, g)$, and state that $\# \mathcal{E}(-,-, g+1)=$ $\# \mathcal{E}(-,-, g)+\# \mathcal{E}(-,-, g-1)$. Therefore, we get that $\{\# \mathcal{E}(-,-, g)\}_{g \in \mathbb{N}}$ is a Fibonacci sequence.

In Section 3, we study the sets $\mathcal{E}(m, F,-)$ and $\mathcal{E}(-, F,-)$, find formulas for their cardinality, and describe the behavior of the sequence of cardinals of $\mathcal{E}(-, F,-)$.

In Section 4, we present algorithms for calculating $\mathcal{E}(-, F, g)$ and $\mathcal{E}(m, F, g)$. From these algorithms, we can derive the cardinality of these sets.

Finally, in Section 5 we show that the set of all elementary numerical semigroups \mathcal{E} is a Frobenius variety. This fact, together with the results of [11], allows us to construct recursively the set \mathcal{E}.

2. Multiplicity and Genus

Our aim in this section is to see that $\{\# \mathcal{E}(-,-, g)\}_{g \in \mathbb{N}}$ is a Fibonacci sequence. The next result is easy to prove and appears in [13, Proposition 2.1].
Lemma 2.1. Let m be an integer such that $m \geq 2$ and let A be a subset of $\{m+1, \ldots, 2 m-1\}$. Then $\{0, m\} \cup A \cup\{2 m, \rightarrow\}$ is an elementary numerical semigroup with multiplicity m. Moreover, every elementary numerical semigroup with multiplicity m is of this form.

As consequence of the above lemma we have that $\# \mathcal{E}(m,-,-)$ is equal to the number of subsets of a set with $m-1$ elements.
Corollary 2.1. If m is a positive integer, then $\# \mathcal{E}(m,-,-)=2^{m-1}$.
The following result is easy to prove and gives conditions imposed on two positive integers m and g so that there exists at least one elementary numerical semigroup with multiplicity m and genus g.

Proposition 2.1. Let m and g be nonnegative integers with $m \neq 0$. Then $\mathcal{E}(m,-, g) \neq \emptyset$ if and only if $m-1 \leq g \leq 2(m-1)$.

From Lemma 2.1, we know that $S \in \mathcal{E}(m,-, g)$ if and only if $S=\{0, m\} \cup A \cup$ $\{2 m, \rightarrow\}$, where A is a subset of $\{m+1, \ldots, 2 m-1\}$ and $\# A=2(m-1)-g$. So we have the following result, which is also in [13, Corollary 2.2].

Corollary 2.2. Let m and g be positive integers such that $m-1 \leq g \leq 2(m-1)$. Then $\# \mathcal{E}(m,-, g)=\binom{m-1}{g-(m-1)}$.

From the results above we get

$$
\mathcal{E}(-,-, g)=\bigcup_{m=\left\lceil\frac{g}{2}\right\rceil+1}^{g+1} \mathcal{E}(m,-, g)
$$

Thus we have the following algorithm.
Algorithm 2.1. Input: g positive integer. Output: $\mathcal{E}(-,-, g)$.

1) For all $m \in\left\{\left\lceil\frac{g}{2}\right\rceil+1, \ldots, g+1\right\}$ compute the set $\mathcal{E}(m,-, g)$.
2) Return $\bigcup_{m=\left\lceil\frac{g}{2}\right\rceil+1}^{g+1} \mathcal{E}(m,-, g)$.

Clearly, we get

$$
\# \mathcal{E}(-,-, g)=\sum_{m=\left\lceil\frac{g}{2}\right\rceil+1}^{g+1} \# \mathcal{E}(m,-, g)
$$

By applying Corollary 2.2, we obtain the following result.
Corollary 2.3. If g is a positive integer, then $\# \mathcal{E}(-,-, g)=\sum_{i=\left\lceil\frac{g}{2}\right\rceil}^{g}\binom{i}{g-i}$.
The Fibonacci sequence is the sequence of positive integers defined by the linear recurrence equation $a_{n+1}=a_{n}+a_{n-1}$, with $a_{0}=a_{1}=1$.

It is clear that $\mathcal{E}(-,-, 0)=\{\mathbb{N}\}$ and $\mathcal{E}(-,-, 1)=\{\{0,2, \rightarrow\}\}$ and so $\# \mathcal{E}(-,-, 0)=$ $\# \mathcal{E}(-,-, 1)=1$. By using Corollary 2.3, we can obtain [13, Proposition 2.3], which states that $\{\# \mathcal{E}(-,-, g)\}_{g \in \mathbb{N}}$ is a Fibonacci sequence.

Theorem 2.1. If g is a positive integer, then $\# \mathcal{E}(-,-, g+1)=\# \mathcal{E}(-,-, g)+$ $\# \mathcal{E}(-,-, g-1)$.

3. Multiplicity and Frobenius Number

Our first goal in this section is to describe sufficient conditions for two positive integers m and F so that there exists at least one elementary numerical semigroups with multiplicity m and Frobenius number F.

Lemma 3.1. If S is an elementary numerical semigroup such that $S \neq \mathbb{N}$, then $\frac{\mathrm{F}(S)+1}{2} \leq \mathrm{m}(S) \leq \mathrm{F}(S)+1$ and $\mathrm{m}(S) \neq \mathrm{F}(S)$.

Proof. Since $S \neq \mathbb{N}$, then $\mathrm{m}(S) \geq 2$ and $\mathrm{m}(S)-1 \notin S$. Therefore, we have that $\mathrm{m}(S)-1 \leq \mathrm{F}(S)$. In addition, as S is an elementary numerical semigroup then $\mathrm{F}(S)<2(\mathrm{~m}(S))$ and thus $\mathrm{F}(S)+1 \leq 2(\mathrm{~m}(S))$.

From the previous lemma we obtain the following result.
Proposition 3.1. Let m and F be positive integers. Then $\mathcal{E}(m, F,-) \neq \emptyset$ if and only if $\frac{F+1}{2} \leq m \leq F+1$ and $m \neq F$.

It is clear that $\mathcal{E}(F+1, F,-)=\{\{0, F+1, \rightarrow\}\}$ and $\mathcal{E}(F-1, F,-)=$ $\{\{0, F-1, F+1, \rightarrow\}\}$. Hence, we can assume that $F=m+i$, where $i \in$ $\{2, \ldots, m-1\}$. By applying Lemma 2.1, we deduce that $S \in \mathcal{E}(m, F,-)$ if and only if there exists $A \subseteq\{m+1, \ldots, m+i-1\}$ such that $S=\{0, m\} \cup A \cup\{F+1, \rightarrow\}$. As a consequence we have the following algorithm.
Algorithm 3.1. Input: m and F positive integers such that $\frac{F+1}{2} \leq m \leq F+1$ and $m \neq F$.

Output: $\mathcal{E}(m, F,-)$.

1) If $m=F+1$, then return $\{\{0, F+1, \rightarrow\}\}$.
2) If $m=F-1$, then return $\{\{0, F-1, F+1, \rightarrow\}\}$.
3) Compute the set $C=\{A \mid A \subseteq\{m+1, \ldots, F-1\}\}$.
4) Return $\{\{0, m\} \cup A \cup\{F+1, \rightarrow\} \mid A \in C\}$.

Gathering all this information, we obtain the following result which can also be deduced from equation (6) of [1].

Corollary 3.1. Let m and F be positive integers such that $\frac{F+1}{2} \leq m \leq F+1$ and $m \neq F$. Then

$$
\# \mathcal{E}(m, F,-)= \begin{cases}1, & \text { if } m=F+1, \\ 2^{F-m-1}, & \text { otherwise } .\end{cases}
$$

Next we obtain an algorithm that allows us to compute every elementary numerical semigroup with a given Frobenius number. As a consequence of Proposition 3.1, we have

$$
\mathcal{E}(-, F,-)=\bigcup_{m \in\left\{\left\lceil\frac{F+1}{2}\right\rceil, \ldots, F+1\right\} \backslash\{F\}} \mathcal{E}(m, F,-) .
$$

Algorithm 3.2. Input: F positive integer.
Output: $\mathcal{E}(-, F,-)$.

1) For all $m \in\left\{\left\lceil\frac{F+1}{2}\right\rceil, \ldots, F+1\right\} \backslash\{F\}$ compute (using Algorithm 3.1) the set $\mathcal{E}(m, F,-)$.
2) Return $\mathcal{E}(-, F,-)=\bigcup_{m \in\left\{\left\lceil\frac{F+1}{2}\right\rceil, \ldots, F+1\right\} \backslash\{F\}} \mathcal{E}(m, F,-)$.

Therefore, we have $\# \mathcal{E}(-, F,-)=\sum_{m \in\left\{\left\lceil\frac{F+1}{2}\right\rceil, \ldots, F+1\right\} \backslash\{F\}} \# \mathcal{E}(m, F,-)$. From Corollary 3.1 we obtain the following result.
Corollary 3.2. If F is a positive integer, then $\# \mathcal{E}(-, F-)=2^{F-\left\lceil\frac{F+1}{2}\right\rceil}$.
We finish this section by describing the behavior of the sequence of cardinalities of $\mathcal{E}(-, F,-)$ for $F=1,2, \ldots$ Observe that $\# \mathcal{E}(-, 1,-)=\# \mathcal{E}(-, 2,-)=1$.

Proposition 3.2. Let F be an integer greater than or equal to 2 .

1) If F is odd, then $\# \mathcal{E}(-, F+1,-)=\# \mathcal{E}(-, F,-)$.
2) If F is even, then $\# \mathcal{E}(-, F+1,-)=\# \mathcal{E}(-, F,-)+\# \mathcal{E}(-, F-1,-)$.

Proof. 1) From Corollary 3.2 it is guaranteed that $\# \mathcal{E}(-, F,-)=2^{F-\left\lceil\frac{F+1}{2}\right\rceil}=$ $2^{F-\frac{F+1}{2}}=2^{\frac{F-1}{2}}$. By repeating this argument we obtain $\# \mathcal{E}(-, F+1,-)=2^{\frac{F-1}{2}}$. Therefore, we have $\# \mathcal{E}(-, F+1,-)=\# \mathcal{E}(-, F,-)$.
2) Again, by Corollary 3.2, we know that $\# \mathcal{E}(-, F,-)+\# \mathcal{E}(-, F-1,-)=$ $2^{F-\left\lceil\frac{F+1}{2}\right\rceil}+2^{F-1-\left\lceil\frac{F}{2}\right\rceil}=2^{F-\frac{F+2}{2}}+2^{F-1-\frac{F}{2}}=2^{\frac{F}{2}}$. We obtain $\# \mathcal{E}(-, F+1,-)=$ $2^{F+1-\left\lceil\frac{F+2}{2}\right\rceil}=2^{F+1-\frac{F+2}{2}}=2^{\frac{F}{2}}$. Consequently, $\# \mathcal{E}(-, F+1,-)=\# \mathcal{E}(-, F,-)+$ $\# \mathcal{E}(-, F-1,-)$

4. Multiplicity, Frobenius Number and Genus

In this section, we aim to find conditions for m, F and g positive integers so that there exists at least one elementary numerical semigroup with a given multiplicity m, Frobenius number F and genus g. The next results are a consequence of the results given in [3, Proposition 2 and Corollary 3].

Lemma 4.1. Let F and g be two positive integers. Then $g \leq F \leq 2 g-1$ if and only if $\mathcal{E}(-, F, g) \neq \emptyset$.
Lemma 4.2. Let F and g be two positive integers such that $g \leq F \leq 2 g-1$, and let $\mathcal{A}_{F, g}=\left\{A \left\lvert\, A \subseteq\left\{\left\lceil\frac{F+1}{2}\right\rceil, \ldots, F-1\right\}\right.\right.$ and $\left.\# A=F-g\right\}$. Then $\mathcal{E}(-, F, g)=$ $\left\{\{0\} \cup A \cup\{F+1 \rightarrow\} \mid A \in \mathcal{A}_{F, g}\right\}$.

As an immediate consequence of Lemmas 4.1 and 4.2 we have the following algorithm.

Algorithm 4.1. Input: F and g positive integers such that $g \leq F \leq 2 g-1$.
Output: $\mathcal{E}(-, F, g)$.

1) Compute the set $C=\left\{A \left\lvert\, A \subseteq\left\{\left\lceil\frac{F+1}{2}\right\rceil, \ldots, \ldots, F-1\right\}\right.\right.$ and $\left.\# A=F-g\right\}$.
2) Return $\{\{0\} \cup A \cup\{F+1, \rightarrow\} \mid A \in C\}$.

As a consequence of the previous algorithm we obtain the following result which also appears in [3, Corollary 4].

Corollary 4.1. If F and g are positive integers such that $g \leq F \leq 2 g-1$, then $\# \mathcal{E}(-, F, g)=\left(\begin{array}{c}{\left[\begin{array}{c}F \\ F \\ F-g\end{array}\right) \text {. }}\end{array}\right)$.
Lemma 4.3. If m, F and g are three positive integers such that $m \geq 2$ and $\mathcal{E}(m, F, g) \neq \emptyset$, then $m-1 \leq g \leq F<2 m$.

Proof. Since $\mathcal{E}(m, F, g) \neq \emptyset$, then $\mathcal{E}(m,-, g) \neq \emptyset$ and we have that $m-1 \leq g$. From Lemma 4.1, we deduce that $g \leq F$. Finally, by Proposition 3.1, we conclude that $\frac{F+1}{2} \leq m$ and thus $F<2 m$.

Finally, we present the main result of this section.
Proposition 4.1. Let m, F and g be three positive integers such that $m \geq 2$. Then $\mathcal{E}(m, F, g) \neq \emptyset$ if and only if one of the following conditions holds:

1) $(m, F, g)=(m, m-1, m-1)$;
2) $(m, F, g)=(m, F, m)$ and $m<F<2 m$;
3) $m<g<F<2 m$.

Proof. Necessity. If $\mathcal{E}(m, F, g) \neq \emptyset$ then by applying Lemma 4.3, we deduce that $m-1 \leq g \leq F<2 m$. Assume that $S \in \mathcal{E}(m, F, g)$. We distinguish the following four cases.
a) If $g=m-1$, then $S=\{0, m, \rightarrow\}$ and so $F=m-1$. Hence, $(m, F, g)=$ ($m, m-1, m-1$).
b) If $g=m$, then $m<F<2 m$ and $S=\{0, m, \rightarrow\} \backslash\{F\}$. Whence, $(m, F, g)=$ (m, F, m) and $m<F<2 m$.
c) If $g=F$, then $S=\{0, F+1, \rightarrow\}$ and thus $F+1=m$. Once again we have $(m, F, g)=(m, m-1, m-1)$.
d) If $g \notin\{m-1, m, F\}$, then as $m-1 \leq g \leq F<2 m$ and we deduce that $m<g<F<2 m$.
Sufficiency. It is clear that $\{0, m, \rightarrow\} \in \mathcal{E}(m, m-1, m-1)$ and $\{0, m, \rightarrow\} \backslash\{F\} \in$ $\mathcal{E}(m, F, m)$. Suppose that $m<g<F<2 m$. Let A be a subset of $\{m+1, \ldots, F-1\}$, with cardinality $F-g-1$. Since $\mathrm{g}(S)=m-1+F-1-m-1+1-\# A+1=$ $F-1-F+g+1=g$, then $S=\{0, m\} \cup A \cup\{F+1, \rightarrow\} \in \mathcal{E}(m, F, g)$.

Notice that, by the sufficiency condition of the proof above, we conclude that, if $m<g<F<2 m$, knowing an element in $\mathcal{E}(m, F, g)$ is the same as knowing a subset of $\{m+1, \ldots, F-1\}$ with cardinality $F-g-1$. So we have the following algorithm.

Algorithm 4.2. Input: m, F and g integers such that $2 \leq m<g<F<2 m$.
Output: $\mathcal{E}(m, F, g)$.

1) Compute $C=\{A \mid A \subseteq\{m+1, \ldots, F-1\}$ and $\# A=F-g-1\}$.
2) Return $\{\{0, m\} \cup A \cup\{F+1 \rightarrow\}$ such that $A \in C\}$.

Clearly $\# \mathcal{E}(m, m-1, m-1)=\# \mathcal{E}(m, F, m)=1$. For the remaining cases the following result gives us the cardinality of $\mathcal{E}(m, F, g)$.

Corollary 4.2. Let m, F and g be positive integers such that $2 \leq m<g<F \leq 2 m$. Then $\# \mathcal{E}(m, F, g)=\binom{F-m-1}{F-g-1}$.
Proof. As a consequence of Algorithm 4.2 we have that $S \in \mathcal{E}(m, F, g)$ if and only if there exists $A \subseteq\{m+1, \ldots, F-1\}$, with cardinality $F-g-1$ such that $S=$ $\{0, m\} \cup A \cup\{F+1, \rightarrow\}$.

We conclude this section by giving an example that illustrates the previous results.

Example 4.1. Let us compute $\mathcal{E}(4,7,5)$. By Corollary 4.2 we have $\# \mathcal{E}(4,7,5)=$ $\binom{7-4-1}{7-5-1}=\binom{2}{1}=2$. Now by using Algorithm 4.2, with $m=4, F=$ 7 and $g=5$ we can conclude that $C=\{\{5\},\{6\}\}$ and $\mathcal{E}(4,7,5)=$ $\{\{0,4\} \cup\{5\} \cup\{8, \rightarrow\},\{0,4\} \cup\{6\} \cup\{8, \rightarrow\}\}$.

5. Frobenius Variety

A Frobenius variety (see for example [11]) is a nonempty set V of numerical semigroups fulfilling the following conditions:

1) if S and T are in V, then $S \cap T \in V$;
2) if S is in V and $S \neq \mathbb{N}$, then $S \cup\{\mathrm{~F}(S)\} \in V$.

Proposition 5.1. $\mathcal{E}=\{S \mid S$ is an elementary numerical semigroup $\}$ is a Frobenius variety.

Proof. If S and T belong to \mathcal{E} it is clear that $S \cap T$ is a numerical semigroup,

$$
\mathrm{F}(S \cap T)=\max \{\mathrm{F}(S), F(T)\}
$$

and

$$
\mathrm{m}(S \cap T) \geq \max \{\mathrm{m}(S), \mathrm{m}(T)\}
$$

Therefore, $\mathrm{F}(S \cap T)<2 \mathrm{~m}(S \cap T)$ and thus $S \cap T \in \mathcal{E}$.
If S is an element in \mathcal{E} and $S \neq \mathbb{N}$, then clearly $\bar{S}=S \cup\{\mathrm{~F}(S)\}$ is a numerical semigroup such that $\mathrm{F}(\bar{S})<\mathrm{F}(S)$ and $\mathrm{m}(\bar{S})$ is equal to $\mathrm{m}(S)$ or $\mathrm{F}(S)$. Therefore, $\mathrm{F}(\bar{S})<2 \mathrm{~m}(\bar{S})$ and thus $\bar{S} \in \mathcal{E}$.

We define a directed graph $G(\mathcal{E})$, with edges pointing from T to S, in the following way: the set of vertices is \mathcal{E} and $(T, S) \in \mathcal{E} \times \mathcal{E}$ is an edge of $G(\mathcal{E})$ if and only if $S \cup\{\mathrm{~F}(S)\}=T$.

The goal of this section is to see that $G(\mathcal{E})$ is a tree with root equal to \mathbb{N} and to characterize the sons of a vertex. This fact allows us to recursively construct $G(\mathcal{E})$ and consequently \mathcal{E}. To this end we need to introduce some concepts and results.

Given a nonempty subset A of \mathbb{N} we will denote by $\langle A\rangle$ the submonoid of $(\mathbb{N},+)$ generated by A, that is,

$$
\langle A\rangle=\left\{\lambda_{1} a_{1}+\cdots+\lambda_{n} a_{n} \mid n \in \mathbb{N} \backslash\{0\}, a_{i} \in A, \lambda_{i} \in \mathbb{N} \text { for all } i \in\{1, \ldots, n\}\right\} .
$$

It is well known (see for instance [12]) that every numerical semigroup S is finitely generated, and therefore there exists a finite subset A of \mathbb{N} such that $S=\langle A\rangle$. Furthermore, we say that A is a minimal set of generators of S if no proper subset of A generates S. Every numerical semigroup admits an unique minimal set of generators of S and we denote this set by $\operatorname{msg}(S)$. It is well known (see for instance [12]) that $\operatorname{msg}(S)=(S \backslash\{0\}) \backslash(S \backslash\{0\}+S \backslash\{0\})$ and if $x \in S$ then $S \backslash\{x\}$ is a numerical semigroup if and only if $x \in \operatorname{msg}(S)$.

As a consequence of [11, Proposition 24 and Theorem 27] we have the following result.

Theorem 5.1. The graph $G(\mathcal{E})$ is a tree with root \mathbb{N}. Furthermore, the sons of a vertex S of $G(\mathcal{E})$ are in $\{S \backslash\{x\} \mid x \in \operatorname{msg}(S), x>\mathrm{F}(S)$ and $S \backslash\{x\} \in \mathcal{E}\}$.

The following result is useful to compute the sons of a vertex of $G(\mathcal{E})$.
Proposition 5.2. Let S be an elementary numerical semigroup and $x \in \operatorname{msg}(S)$ such that $x>\mathrm{F}(S)$. Then $S \backslash\{x\}$ is an elementary numerical semigroup if and only if $x<2 \mathrm{~m}(S)$.

Proof. Suppose that $S=\{0, \mathrm{~m}(S), \rightarrow\}$. Then

$$
\operatorname{msg}(S)=\{\mathrm{m}(S), \mathrm{m}(S)+1, \ldots, 2 \mathrm{~m}(S)-1\}
$$

and clearly the result is true. If $S \neq\{0, \mathrm{~m}(S), \rightarrow\}$ then $\mathrm{m}(S \backslash\{x\})=\mathrm{m}(S)$ and $\mathrm{F}(S \backslash\{x\})=x$. Therefore, $S \backslash\{x\}$ is elementary numerical semigroup if and only if $x<2 \mathrm{~m}(S)$.

We illustrate the above results with the following example.
Example 5.1. Let us compute the sons of vertex $S=\{0,5,6,9, \rightarrow\}$ of $G(\mathcal{E})$. We have $\operatorname{msg}(S)=\{5,6,9,13\}, \mathrm{F}(S)=8$ and $\mathrm{m}(S)=5$. Whence $\{x \in \operatorname{msg}(S) \mid \mathrm{F}(S)<x<2 \mathrm{~m}(S)\}=\{9\}$. Using Theorem 5.1 and Proposition 5.2 we conclude that S has an unique son $S \backslash\{9\}=\langle 5,6,13,14\rangle$.

Now, we can recursively construct the tree $G(\mathcal{E})$ starting with \mathbb{N} and connecting each vertex with their sons. First we construct $\operatorname{msg}(S \backslash\{x\})$ from $\operatorname{msg}(S)$, when x is a minimal generator of S greater than $\mathrm{F}(S)$. It is clear that if $\operatorname{msg}(S)=\{m, m+1, \ldots, 2 m-1\}$ which is $S=\{0, m, \rightarrow\}$ then $\operatorname{msg}(S \backslash\{m\})=$ $\{m+1, m+2, \ldots, 2 m+1\}$. For the remaining cases, we use the following result that appears in [10, Corollary 18].
Proposition 5.3. Let S be a numerical semigroup with $\operatorname{msg}(S)=\left\{n_{1}, \ldots, n_{p}\right\}$. If $\mathrm{m}(S)=n_{1}<n_{p}$ and $n_{p}>\mathrm{F}(S)$ then

$$
\operatorname{msg}\left(S \backslash\left\{n_{p}\right\}\right)= \begin{cases}\left\{n_{1}, \ldots, n_{p-1}\right\}, & \text { if exists } i \in\{2, \ldots, p-1\} \text { such that } \\ \left\{n_{1}, \ldots, n_{p-1}, n_{p}+n_{1}\right\}, & n_{p}+n_{1}-n_{i} \in S, \\ \text { otherwise. }\end{cases}
$$

Note that, in the previous proposition, the elements in $\operatorname{msg}(S)$ are not necessarily ordered.

Example 5.2. Let $S=\langle 5,6,9,13\rangle$. Let us compute $\operatorname{msg}(S \backslash\{9\})$. By Proposition 5.3, as $9+5-6 \notin S$ and $9+5-13 \notin S$, we can conclude that $\{5,6,13,14\}$ is the minimal system of generators of $S \backslash\{9\}$.

Using Theorem 5.1 and Proposition 5.2 and 5.3 we obtain the following:
. $\langle 1\rangle$ has only son $\langle 1\rangle \backslash\{1\}=\langle 2,3\rangle$;
. $\langle 2,3\rangle$ has two sons $\langle 2,3\rangle \backslash\{2\}=\langle 3,4,5\rangle$ and $\langle 2,3\rangle \backslash\{3\}=\langle 2,5\rangle$;
. $\langle 2,5\rangle$ has no sons;

Acknowledgements. We thank the anonymous referees for their detailed suggestions and comments, which have greatly improved this article.

References

[1] J. Backelin, On the number of semigroups of natural numbers, Math. Scand. 66(2) (1990), 197215.
[2] V. Blanco, P. A. García-Sánchez and J. Puerto, Counting numerical semigroups with short generating functions, Internat. J. Algebra Comput. 21(7) (2011), 1217-1235.
[3] V. Blanco and J. C. Rosales, The set of numerical semigroups of a given genus, Semigroup Forum 85 (2012), 255-267.
[4] M. Bras-Amorós, Bounds on the number of numerical semigroups of a given genus, J. Pure Appl. Algebra 213(6) (2008), 997-1001.
[5] M. Bras-Amorós, Fibonacci-like behavior of the number of numerical semigroups of a given genus, Semigroup Forum 76 (2008), 379-384.
[6] S. Elizalde, Improved bounds on the number of numerical semigroups of a given genus, J. Pure Appl. Algebra 214(10) (2010), 1862-1873.
[7] N. Kaplan, Couting numerical semigroups by genus and some cases a question of Wilf, J. Pure Appl. Algebra 216(5) (2012), 1016-1032.
[8] N. Kaplan and L. Ye, The proportion of Weierstrass semigroups, J. Algebra 373 (2013), 377-391.
[9] J. L. Ramirez Alfonsín, The Diophantine Forbenius Problem, Oxford University Press, London, 2005.
[10] A. M. Robles-Pérez and J. C. Rosales, The numerical semigroups of phases'lengths in a simple alphabet, The Scientific World Journal 2013 (2013), paper ID 459024, 9 pages.
[11] J. C. Rosales, Families of numerical semigroups closed under finite intersections and for the Frobenius number, Houston J. Math. 34 (2008), 339-348.
[12] J. C. Rosales and P. A. García-Sánchez, Numerical Semigroups, Developments in Mathematics 20, Springer, New York, 2009.
[13] Y. Zhao, Constructing numerical semigroups of a given genus, Semigroup Forum 80(2) (2009), 242-254.
${ }^{1}$ Departamento de Álgebra, Universidad de Granada,
E-18071 Granada, Spain
Email address: jrosales@ugr.es
${ }^{2}$ Departamento de Matemática,
Universidade de Évora,
7000 Évora, Portugal
Email address: mbb@uevora.pt

[^0]: Key words and phrases. Elementary numerical semigroups, Fibonacci sequence, genus, Frobenius number and multiplicity.

 2010 Mathematics Subject Classification. Primary: 20M14. Secondary: 05E99.
 DOI 10.46793/KgJMat2203.433R
 Received: June 17, 2019.
 Accepted: January 07, 2020.

