
Neural Networks 152 (2022) 380–393

G
a

b

c

d

e

(
w
H
t
t
m
m
t
e
h
s
V
m
b

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Replacing pooling functions in Convolutional Neural Networks by
linear combinations of increasing functions
Iosu Rodriguez-Martinez a, Julio Lafuente a, Regivan H.N. Santiago b,
raçaliz Pereira Dimuro a,e, Francisco Herrera c,d, Humberto Bustince a,∗

Department of Statistics, Computer Science and Mathematics, Public University of Navarre, Pamplona, 31006, Navarre, Spain
Department of Computer Science and applied Mathematics, Universidade Federal do Rio Grande, 1524, Rio Grande, Brasil
Andalusian Research Institute in Data Science and Computational Intelligence, University of Granada, Granada, 18071, Granada, Spain
Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
Centro de Ciências Computacionais, Universidade Federal do Rio Grande, 96201-900, Rio Grande, Brasil

a r t i c l e i n f o

Article history:
Received 16 September 2021
Received in revised form 7 March 2022
Accepted 27 April 2022
Available online 6 May 2022

Keywords:
Convolutional Neural Networks
Pooling function
Order statistic
Generalized Sugeno integral

a b s t r a c t

Traditionally, Convolutional Neural Networks make use of the maximum or arithmetic mean in
order to reduce the features extracted by convolutional layers in a downsampling process known
as pooling. However, there is no strong argument to settle upon one of the two functions and, in
practice, this selection turns to be problem dependent. Further, both of these options ignore possible
dependencies among the data. We believe that a combination of both of these functions, as well
as of additional ones which may retain different information, can benefit the feature extraction
process. In this work, we replace traditional pooling by several alternative functions. In particular, we
consider linear combinations of order statistics and generalizations of the Sugeno integral, extending
the latter’s domain to the whole real line and setting the theoretical base for their application. We
present an alternative pooling layer based on this strategy which we name ‘‘CombPool’’ layer. We
replace the pooling layers of three different architectures of increasing complexity by CombPool
layers, and empirically prove over multiple datasets that linear combinations outperform traditional
pooling functions in most cases. Further, combinations with either the Sugeno integral or one of its
generalizations usually yield the best results, proving a strong candidate to apply in most architectures.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Since the breakthrough of Krizhevsky, Sutskever, and Hinton
2012) on the Imagenet competition, Convolutional Neural Net-
orks, or CNNs (Fukushima & Miyake, 1982; LeCun, Bengio, &
inton, 2015), have set the state-of-the-art for image processing
asks. In this context, extensive research has been dedicated
o developing new CNN designs: more heavily parameterized
odels have been proved to produce more robust and opti-
al architectures, offering impressive results for image classifica-

ion (He, Zhang, Ren, & Sun, 2016; Liu & Deng, 2015); production
nvironment constraints (e.g. smartphones or autonomous ve-
icles) have led to the development of more ‘‘compressed’’ but
till competitive architectures (Howard et al., 2017; Huang, Liu,
an Der Maaten, & Weinberger, 2017; Tan & Le, 2019). Still,
ost of these strategies keep operating according to the same
asic operations already presented in Fukushima and Miyake

∗ Corresponding author.
E-mail address: bustince@unavarra.es (H. Bustince).
ttps://doi.org/10.1016/j.neunet.2022.04.028
893-6080/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
(1982): convolution, which extracts local features of a given im-
age; and pooling, which downsamples those extracted features
sequentially.

Although in the case of the pooling process there have been
some new proposals (Forcén, Pagola, Barrenechea, & Bustince,
2020; Graham, 2014; He, Zhang, Ren, & Sun, 2015; Zeiler &
Fergus, 2013), most state-of-the-art models default to traditional
maximum or average pooling. However, there is still no clear
guide as to when to settle for one of the two options. Some
theoretical studies defend that maximum pooling favours sparser
feature representations (Boureau, Bach, LeCun, & Ponce, 2010;
Boureau, Ponce, & LeCun, 2010) which are common in CNNs, but
offer no explanation as to why average pooling performs better
for some modern architectures (Huang et al., 2017). Therefore, the
selection of pooling aggregation appears to be dependent on the
input data as well as the precise model employed, acting as an
additional hyperparameter.

Further, both maximum and average pooling ignore all pos-
sible relationship among the values to be reduced, potentially
ignoring important spatial dependencies among the data.

Functions from aggregation theory (Beliakov, Sola, & Sánchez,
2016) such as fuzzy integrals can alleviate this problem, since
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.neunet.2022.04.028
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.04.028&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:bustince@unavarra.es
https://doi.org/10.1016/j.neunet.2022.04.028
http://creativecommons.org/licenses/by/4.0/

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393

t
e
p
o
D
M
b

i
n
t
i
e
w

a
m
m
s
a
t
t
r

t
e
i
t
t
i
v
t
H
l

c
r
l
t
m
w
p
r

w
c
m
m
r
t
c
o

f
t
t
t
p
a
S
i
m
a

w

hey may model the dependencies among input values (Dimuro
t al., 2020). These functions have been used with success in the
ast to this end (Dias et al., 2018), as well as in the context
f other image processing tasks (Bardozzo et al., 2021; Bueno,
ias, Pereira Dimuro, Santos, & Bustince Sola, 2019; Mendoza,
elin, & Licea, 2009), so we believe they can improve the classic
ehaviours.
With respect to the selection of maximum or average pooling,

n Lee, Gallagher, and Tu (2018) the authors test a convex combi-
ation of both methods as an alternative that, not only mitigates
heir individual shortcomings, but improves upon both of them
n the general case. We think that this approach can be further
xtended if we consider a combination of additional functions
hich can retain different information.
In this paper, we propose to replace the pooling function of
CNN by functions other than the maximum and arithmetic
ean, taking into account their respective behaviour. Since the
aximum ignores all values but one, we consider other order
tatistics. By contrast, the arithmetic mean takes into account
ll the aggregated information, so we propose the Sugeno in-
egral (Beliakov et al., 2016), as well as some new generaliza-
ions (Bardozzo et al., 2021), as an alternative that models the
elationship between the input values.

It is important to remark that, although different in nature,
he maximum and the arithmetic mean also share some prop-
rties. One such property is the monotonicity, in particular the
ncreasingness. In the context of information fusion computing,
he increasingness property is very important, since it guarantees
hat the higher the ‘‘quality of the information’’ provided by the
nputs, the best the quality of the information of the aggregated
alue representing them (Dimuro, Costa, , & Claudio, 2000), on
he light of Domain Theory (Abramsky & Jung, 1994; Stoltenberg-
ansen, Lindström, & Griffor, 1994). Motivated by this, we would
ike to keep this property in our proposal.

Thus, we present the linear combination of the previous in-
reasing functions as a replacement for classic pooling layers, and
efer to this strategy as Combination Pooling layer, or CombPool
ayer for short. We model the contribution of each function
hrough new parameters of the model, whose values are opti-
ized via the backpropagation algorithm, alike the rest of
eights of a CNN. In order to obtain a resulting function which
reserves increasigness, we study the conditions that these pa-
ameters must satisfy and ensure that they hold.

To empirically show the usefulness of the CombPool layer,
e have replaced the pooling layers of three different CNN ar-
hitectures of different complexity. The performance of every
odel is evaluated over five different datasets, showing improve-
ents with respect to the traditional models. We compare our

esults with the traditional pooling functions, as well as some of
he additional mentioned alternatives. We show that, in general,
ombinations which use a generalization of the Sugeno integral
utperform most of them.
The paper is structured in the following way: Section 2 re-

reshes important notions related with CNNs and pooling func-
ions, as well as several of the used functions; Section 3 presents
he definitions and theorems that set the theoretical justifica-
ion for the performed experiments and introduces the new
ooling layer; Section 4 describes the different considered CNN
rchitectures and datasets used in our experimentation, while
ection 5 presents the obtained results; a brief discussion is held
n Section 6, in which the strengths of the proposal are com-
ented; finally, Section 7 ends the paper with some conclusions
nd ideas for future works.
Additionally, all lemmas and mathematical proofs related

ith the theory presented in Section 3 have been gathered in
381
Appendix, with the intention of easing the readability of the
paper.

2. Preliminaries

In this section, we recall some important notions, both related
to CNN architectures as well as to increasing functions, which
will be subsequently taken into account on the theoretical and
experimental parts.

2.1. Convolutional neural networks

In the field of Deep Learning (Schmidhuber, 2015), convo-
lutional neural networks (CNN) are a type of neural network
designed for dealing with data where local information is of
relevance, such as in temporal series (Abdel-Hamid, Deng, & Yu,
2013), image (Krizhevsky et al., 2012) or video (Le Callet, Viard-
Gaudin, & Barba, 2006). These models perform two different
processes over the input data: the first one is universal to all
tasks and consists on the extraction of relevant features from
the raw data, mapping input samples to a latent vector space.
The second one uses the extracted features as input and can
vary depending on the specific problem at hand, e.g. classifying
samples into predefined categories or segmenting the different
objects represented on a given image. Hereafter, we focus on
image classification.

CNN receive their name in relation to the first aforementioned
process, since the feature extraction is performed via the convo-
lution of image kernels over an input. By input, we understand
a matrix X ∈ Rh×w×c , which can represent either an image of
size h × w, where each pixel Xij ∈ Rc is represented by c colour
channels (c = 1 for grey scale images, c = 3 for colour images)
or a feature image, where each channel Xd

∈ Rh×w represents the
presence or absence of a feature over all parts of a given image.
Each of those c feature maps will have been produced, at the same
time, by the convolution of another kernel representing a specific
feature over all parts of a previous input.

To be more precise, the output produced by a feature kernel
W ∈ Rk1×k2×c for a k1 × k2 window (where k1, k2 ∈ N are odd
numbers) of an input X ∈ Rh×w×c centred on the pixel Xm,n is
given by the following expression:

Ym,n =

c∑
d=1

k2∑
j=1

k1∑
i=1

W d
ij · Xd

m−1+i− k1−1
2 ,n−1+j− k2−1

2
(1)

The values of these kernels are ‘‘learnt’’ similarly to the
weights of any conventional neural network: they are randomly
initialized and optimized iteratively using some variation of the
gradient descent algorithm, usually stochastic gradient descent
(Ruder, 2016).

CNN are composed of several convolutional layers (in addition
to other types of layers) that operate sequentially over the input
data so that the output generated by the lth layer is provided as
input for the (l+1)th layer. Each convolutional layer is composed
of cl feature kernels that are applied to the received input, gener-
ating cl different feature images that are stacked together before
sending the output to the following layer.

Although the objective of the feature extractor is the reduction
of the input image, the previous process has the opposite effect.
In order to ensure this reduction, pooling layers are added at dif-
ferent points during the network. When a pooling layer receives
an input X ∈ Rh×w×c , each independent channel is separated in
disjoint windows of size k1 × k2. After that, the values of each
window are aggregated by means of some function. The most

popular ones are the maximum and the average.

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393

2

t
t
m
c
i
M
d
&
c
p
b

t
a
h
t
s
t
f
t
r
i
t
s
l
D
p

t
F
r
t
e
p
g
p
d
f
i
c
t
t
p

s

2

o

x
A

t
x

.2. Pooling functions

When LeCun, Bottou, Bengio, and Haffner (1998) presented
he LeNet architecture, they used the average as pooling func-
ion, which attains reasonable performance for their particular
odel. However, some theoretical and empirical studies show
lear improvements over similar architectures when using max-
mum pooling (Boureau, Bach, LeCun, & Ponce, 2010; Scherer,
üller, & Behnke, 2010), and it seems to have become the stan-
ard practice for most models (Krizhevsky et al., 2012; Simonyan
Zisserman, 2014; Szegedy et al., 2015). Even then, other equally
ompetitive architectures perform better when applying average
ooling (Huang et al., 2017), which hinders the selection over the
est pooling function.
To this respect, several authors have provided alternatives

o the classic pooling methods. Some of the most well known
lternative pooling options differ in the objective they pursue,
owever: Spatial Pyramid Pooling was introduced as a means
o remove the fixed size constraint of a CNN architecture, sub-
ampling the output produced by the last convolutional layer of
he network and generating fixed-length inputs for the classi-
ier (He et al., 2015); Fractional Max Pooling puts the focus on
he regions to be downsampled, which are randomly or pseudo-
andomly chosen, instead of on the method in which to aggregate
ts values (Graham, 2014); fully convolutional networks remove
he need of applying pooling functions altogether through their
ubstitution by strided convolutional layers (i.e., convolutional
ayers in which filters skip over certain positions) (Springenberg,
osovitskiy, Brox, & Riedmiller, 2015) although they add more
arameters to the model as a consequence.
There have been other attempts at substituting the aggrega-

ion function of the pooling operation nevertheless. In Zeiler and
ergus (2013), the authors present a stochastic method which
andomly chooses one of the values to downsample according
o a multinomial distribution based on their magnitude. In Lee
t al. (2018), a convex combination of both average and maximum
ooling is presented, in which the coefficients of each aggre-
ation are learnt through various different strategies: ‘‘mixed’’
ooling sets the coefficients as learnable parameters of the model
irectly; the ‘‘gated" version uses kernels which generate dif-
erent coefficients for each region to be downsampled based on
ts values, via a logistic regression (similarly to a channel-wise
onvolution); the ‘‘tree’’ version uses a differentiable decision tree
o learn the proportion of each coefficient. A tentative to use
he Choquet integral (Choquet, 1953–1954) in pooling layers was
roposed by Dias et al. (2018, 2019).
In the experimental section we compare our proposal against

ome of these strategies, in addition to classic pooling strategies.

.3. Increasing functions

We recall now some increasing functions that we use later in
rder to define linear combinations to set as pooling functions.
It will be assumed from now on that 2 ≤ n ∈ N, 1 ≤ r ∈ N.
A map A : Rn

→ R is said to be an increasing function if
, y ∈ Rn, x ≤ y, that is, xi ≤ yi for all i ∈ {1, . . . , n}, implies
(x) ≤ A(y).
Set N = {1, . . . , n} and Σn as group of all possible permuta-

ions of N . For all x = (x1, . . . , xn) ∈ Rn and σ ∈ Σn, denote
σ = (xσ (1), . . . , xσ (n)); if xσ (1) ≤ · · · ≤ xσ (n), denote σ ∈ x(↗).
Consider r ∈ {1, . . . , n}. Denote by OSr the rth order statistic,

that is, the function OSr :Rn
→ R given for all x = (x1, . . . , xn) ∈

Rn, by OSr (x) = xσ (r), where σ ∈ x(↗), independently of the
chosen σ .

We have, in particular, the maximum max = OSn and the
minimum min = OS .
1

382
The arithmetic mean, is the function AM : Rn
→ R, given by

AM(x) = (x1 + · · · + xn)/n, for all x = (x1, . . . , xn) ∈ Rn.
Now we recall the definition of fuzzy measure

Definition 2.1. A fuzzy measure on N is a map ν : 2N
→ [0, +∞)

such that

1. ν(∅) = 0 and
2. S ⊆ T ⊆ N implies ν(S) ≤ ν(T).

Definition 2.2. The Sugeno integral associated to the fuzzy mea-
sure ν is the map

Sν :Rn
→ R

given, for x = (x1, . . . , xn) ∈ Rn, by

Sν(x) = max
(
min(xσ (1), ν(Nσ

1)), . . . ,min(xσ (n), ν(Nσ
n))

)
,

where σ ∈ x(↗) and Nσ
i = {σ (i), . . . , σ (n)}.

A possible extension of the notion of Sugeno integral was
presented in Bardozzo et al. (2021). We will revise it and offer
an alternative definition in the following section.

3. Combination of increasing functions for the pooling func-
tion

As we have already said, when taking into consideration the
classic pooling layers, the maximum and the arithmetic mean
are the two most common options. Both of these functions are
particular cases of aggregation operators, which respect boundary
and monotonicity conditions. That is, both functions F : [a, b]n →

[a, b] satisfy that F(a, . . . , a) = a and F(b, . . . , b) = b, and that
F (x1, . . . , xn) ≤ F (y1, . . . , yn) if xi ≤ yi for all i ∈ {1, . . . , n}.
Therefore, both functions are increasing functions.

In this section we study the conditions required for linear
combinations of increasing functions to result into increasing
functions. We consider order statistics, the arithmetic mean, the
Sugeno integral and one of its generalizations. We conclude the
section with the introduction of the CombPool layer, a pooling
layer which enables the use of these linear combinations ensuring
that the studied conditions are satisfied.

For this work, no other property is imposed, since we want to
avoid restricting the representability capabilities of the CNNmod-
els. Due to the optimization strategy of neural networks, based on
the gradient descent algorithm, setting further constraints usually
results in weaker models rather than more robust ones.

3.1. Increasing function construction via linear combination of in-
creasing functions

In the following we study linear combinations of increasing
functions from Rn

→ R, in some cases from [0, +∞)n →

[0, +∞).
We set 0 = (0, . . . , 0), 1 = (1, . . . , 1), ei = (0, . . . , 1

i
, . . . , 0).

Let A1, . . . ,Ar :Rn
→ R be increasing functions. We denote

I(A1, . . . ,Ar) =

{(α1, . . . , αr) ∈ Rn
|

r∑
i=1

αiAi :Rn
→

R is an increasing function}.

Proposition 3.1. (I(A1, . . . ,Ar), +) is a semigroup with neutral
element 0. Moreover, let R+ denote the set of all positive real
numbers, (R+

∪ {0})r ⊆ I(A1, . . . ,Ar).
Negative coefficients may appear in elements of I(A1, . . . ,Ar):

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393

R
A
α

A

I

3

ν

m

S

D
s
ν

P
A
m
O

I

P
h

I

3

D
A

emark 3.2. Consider (α1, . . . , αr) ∈ I(A1, . . . ,Ar), where
i : Rn

→ R is an increasing function, i = 1, . . . , r , and A =

1A1 + · · · + αrAr ; if αi ̸= 0 we have

i =
1
αi

A −
α1

αi
A1 − î. . . −

αr

αi
Ar ,

hence
(

1
αi

, −
α1
αi

, î. . ., − αr
αi

)
∈ I(A,A1,

î. . .,Ar).

However it could be that negative elements are not allowed in
a particular I(A1, . . . ,Ar). This is always the case if r = 1:

Proposition 3.3. Let A : Rn
→ R be a non-constant increasing

function. Let α ∈ R. Then αA is an increasing function if and only if
α ≥ 0.

Observe that if A :Rn
→ R is a constant function, then we have

that αA is also constant for all α ∈ R.

Notation 3.4. Consider k ∈ N, a, b ∈ R, a ≤ b. We set

(a, b | k + 1) = a(e1 + · · · + ek) + b(ek+1 + · · · + en)

if k < n and (a, b | n) = a(e1 + · · · + en).

3.2. Combinations of order statistics and arithmetic mean

For the linear combination of order statistics to be an increas-
ing function, the following must hold:

Proposition 3.5. Consider i1, . . . , ir ∈ N, i1 < · · · < ir . Then, for
all order statistics OSi1 , . . . ,OSir , it holds that

I(OSi1 , . . . ,OSir) = {(α1, . . . , αr) | α1, . . . , αr ≥ 0}

As by definition AM =
1
n (OS1 + · · · + OSn), we have

Proposition 3.6. Consider i1, . . . , ir ∈ N, i1 < · · · < ir , r < n.
Then, for all order statistics OSi1 , . . . ,OSir , it holds that

I(AM,OSi1 , . . . ,OSir) =

{(α, β1, . . . , βr) | α, α + nβ1, . . . , α + nβr ≥ 0}.

Analogously, for all order statistics OS1, . . . ,OSn, we have that

(AM,OS1, . . . ,OSn) =

{(α, β1, . . . , βn) | α + nβ1, . . . , α + nβn ≥ 0}.

.3. Combinations with Sugeno integral

We write νS = ν(S) for S ⊆ N , xσ = (xσ (1), . . . , xσ (n)),
σ
i = ν(Nσ

i), Ni = {i, . . . , n} and νi = ν(Ni). So Sν(x) =

axni=1(min(xσ (i), ν
σ
i)). We know that

ν(x1, . . . , xn) = max
S⊆N

[min(νS, (min
i∈S

xi))].

efinition 3.7. A fuzzy measure ν : 2N
→ [0, +∞) is said to be

trict in k ∈ N if either k = n or there exists σ ∈ Σn such that
σ
k > νσ

k+1. ν is strict if it is strict in k, for all k ∈ N .

roposition 3.8. Consider i1, . . . , ir ∈ N, i1 < · · · < ir , r < n.
ssume that there exists k ∈ N \ {i1, . . . , ir} such that the fuzzy
easure ν : 2N

→ [0, +∞) is strict in k. Then, for all order statistics
Si1 , . . . ,OSir , and Sugeno integral Sν , it holds that

(OSi1 , . . . ,OSir , Sν) =

{(α , . . . , α , β | α , . . . , α , β ≥ 0)}.
1 r 1 r

383
Corollary 3.9. Consider i1, . . . , ir ∈ N, i1 < · · · < ir < n. For each
fuzzy measure ν : 2N

→ [0, +∞) one has, for all order statistics
OSi1 , . . . ,OSir , and Sugeno integral Sν ,

I(OSi1 , . . . ,OSir , Sν) =

{(α1, . . . , αr , β) | (α1, . . . , αr , β ≥ 0)}.

Proposition 3.10. Let ν : 2N
→ [0, +∞) be a fuzzy measure. If

α1, . . . , αn, α1 + β, . . . , αn + β ≥ 0,

then, for all order statistics OSi1 , . . . ,OSir , and Sugeno integral Sν ,
α1OS1+· · ·+αnOSn+βSν is increasing. If α1OS1+· · ·+αnOSn+βSν

is increasing and ν is strict in k ∈ N, then αk + β ≥ 0; hence if ν is
strict, one has that

I(OS1, . . . ,OSn, Sν) =

{(α1, . . . , αn, β) | α1, . . . , αn, α1 + β, . . . , αn + β ≥ 0}.

roposition 3.11. Let ν : 2N
→ [0, +∞) be a fuzzy measure. We

ave

(AM, Sν) = {(α, β) ∈ R2
| α, α + nβ ≥ 0}.

.4. Generalized Sugeno integrals and combinations

efinition 3.12. Let U be a connected subset of R such that 0 ∈ U.
U-fuzzy measure on N is a map ν : 2N

→ U such that

1. ν(∅) = 0 and
2. S ⊆ T ⊆ N implies ν(S) ≤ ν(T).

Obviously im ν ⊆ [0, +∞), but we need this more general
assumption on U in the following.

Definition 3.13. Let U and I be two connected subsets of R such
that 0 ∈ U ⊆ I. Let ν : 2N

→ U be a U-fuzzy measure.
We say that the maps F : I × U → I and G : In → U are

ν-admissible if the map A : In → I given, for x1, . . . , xn ∈ I, by

A(x1, . . . , xn) = G(F(xσ (1), ν(Nσ
1)), . . . , F(xσ (n), ν(Nσ

n))),

where σ ∈ x(↗) and Nσ
i = {σ (i), . . . , σ (n)}, is well defined (that

is, the result does not change for σ , σ ′
∈ x(↗)) and increas-

ing. Then we set A = A(F,G, ν) and name it the Sugeno-like
(F,G, ν)-function,

We write νS = ν(S) for S ⊆ N , xσ = (xσ (1), . . . , xσ (n)),
νσ
i = ν(Nσ

i), Ni = {i, . . . , n} and νi = ν(Ni). So, for x1, . . . , xn ∈ I,
we have that

A(x1, . . . , xn) = G(F(xσ (1), ν
σ
1), . . . , F(xσ (n), ν

σ
n)).

Examples 3.14.

• With U = I = R, if F(x, y) = min(x, y) and G(x) =

max(x1, . . . , xn), we have the Sugeno integral Sν given in 2.2.
Assume, moreover, that the fuzzy measure ν is symmetrical
(that is, ν(A) = ν(B) if A, B ⊆ N and |A| = |B|; we set then
νσ
i = νi, as this only depends on i and, as usually it is not

necessary to specify the permutations σ , also x(i) = xσ (i)).
If G(x1, . . . , xn) = x1+· · ·+xn, we set A(F,G, ν) = A(F, Σ, ν),
so that, if x ∈ In,

A(F, Σ, ν)(x) =

n∑
i=1

F(x(i), νi).

For instance with x = (0, 1 | i + 1), y = (0, 1 | i), i ∈ N ,
we have x(i) < y(i) and x(j) = y(j) if i ̸= j ∈ N . Thus F and
Σ are ν-admissible if and only if x, y ∈ I, x ≤ y implies
F(x, ν) ≤ F(y, ν) for i = 1 . . . , n.
i i

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393

−

a
o
‘
i

4

u

4

e

• For F(x, y) = xy, set Dν = A(Π, Σ, ν). Then Dν is the
aggregation function given by Dν(x) =

∑n
i=1 x(i)νi, that is,

Dν =
∑n

i=1 νi OSi.
Let now U = [0, 1], I = [0, +∞), ν satisfying ν(N) = 1,

• Let H be the Hamacher t-norm corresponding to the null
parameter and restricted to [0, 1], that is, for x ∈ [0, +∞),
y ∈ [0, 1],

H(x, y) =

{
xy/(x + y − xy) if (x, y) ̸= (0, 0),
0 if (x, y) = (0, 0).

Set Tν = A(H, Σ, ν). Thus Tν(x) =
∑n

i=1 H(x(i), νi).

Remarks 3.15. In cases 2 and 3 above it is necessary to impose
the restriction on ν to be symmetrical: consider for instance the
case n = 2 and assume that ν({i}) = ni, i = 1, 2 and n1 ̸= n2.
Take x = (1, 1); the identity id and the transposition τ = O(1, 2)
both belong to x(↗), and

xid(1)ν id
1 + xid(2)ν id

2 = νN + n2 ̸= xτ (1)ν
τ
1 + xτ (2)ν

τ
2 = νN + n1

hence to be Dν well defined the symmetry of ν is necessary. We
obtain the same result in relation to Tν .

The restriction in the case 3 to U = [0, 1], I = [0, +∞) is
stated to avoid the occurrence of indeterminations.

In the following, consider the case of Dν = A(Π, Σ, ν), where
ν : 2N

→ R is a symmetric fuzzy measure.
It is immediate that Dν(c x) = c Dν(x) for all x ∈ Rn, c ∈

[0, +∞), that is, Dν is positively homogeneous.
Of course the above situation does not appear if ν1 = 1, except

in the trivial case in which further ν2 = · · · = νn = 0.

Proposition 3.16. Let us assume that νn ̸= 0 and x, y ∈ Rn, x ≤ y.
Then Dν(x) = Dν(y) if and only if x = y.

Proposition 3.17. Consider M ⊆ N and set M ′
= N \ M. We have

I(OS1, . . . ,OSM ,Dν) =

{(α1, . . . , αM , β) | (αi + βνi ≥ 0 if i ∈ M) and
(βνi ≥ 0 if i ∈ M ′)}.

Corollary 3.18. Taking into account Proposition 3.17 and the fact
that ν1 ≥ ν2 ≥ · · · ≥ νn ≥ 0, the following result holds.

I(AM,Dν) =

{(α, β) | (β, α + nβνn ≥ 0) or (β ≤ 0 and α + nβν1 ≤ 0)}.

Proposition 3.19. Let ν be strict. Then, we have

I(Dν, Sν) =

{(α, β) | α, ανn + β ≥ 0}.

3.5. CombPool layer: Combinations of increasing functions as pool-
ing functions

Based on the previous theoretical developments, we now pro-
ceed to introduce a replacement for the classic max and average
pooling layers, which we refer to as CombPool layer. Its process is
as follows: we initially choose r increasing functions A1, . . . ,Ar
such that Ai : Rn

→ R, for all i = 1, . . . , r and generate r
coefficients α1, α2, . . . , αr ∈ R, αi ≥ 0, for all i = 1, . . . , r .
Then, when reducing all x = (x1, . . . , xn) values of each disjoint
window of size k1 × k2, with k1 · k2 = n, of a feature image
channel X c , the n increasing functions are used, generating n

different outputs y1, y2, . . . , yn. The combined output produced l

384
by our layer is calculated as the result of the following increasing
function combination:

y =

r∑
i=1

α2
i · Ai(x) =

r∑
i=1

α2
i · yi (2)

An example of the resulting pooling process is represented in
Fig. 1.

Coefficients α1, . . . , αr are set as additional parameters of the
model, in the same way as the weights of a multilayer perceptron
or the kernels of a CNN. In this way we can take profit of the
backpropagation algorithm of neural networks in order to fine-
tune their values. Notice that, in order to ensure that the resulting
pooling function is increasing, we do not weight each output yi
with αi, but with its squared value, a strategy that satisfies that
monotonicity and differentiability hold for all possible combi-
nations without needing to impose constraints to the learning
process of αi. Despite some of the Propositions in Sections 3.1–
3.4 allowing for different parameterizations for the combinations
to remain increasing, we find the strategy of squaring the coef-
ficients to be the most efficient one. The conditions required by
Propositions 3.5, 3.6, 3.10, 3.11, 3.17, Corollary 3.18 and Propo-
sition 3.19, which cover all the combinations considered in our
experimentation, are all satisfied following this approach.

Although learning a different set of coefficients for each win-
dow of the input is a valid approach, there are different strategies
we can follow in order to reduce the number of learnable pa-
rameters of the resulting model, and therefore its complexity.
We have tested the following options for each αi coefficient,
based on the approach presented in Lee et al. (2018): the same
parameter for all windows and channels in the same layer; a
different parameter for each independent window (shared among
all channels); a different parameter for each channel (shared
for each independent window); a different parameter for each
channel and independent window.

In the end, however, results do not differ enough as to justify
taking all combinations into account, and we have decided to
report the models that use a different coefficient for each channel
(shared by all windows), which appears to be a good compromise
between representability capacity for the model and number of
extra parameters.

If the increasing property of CombPool layers were to be
dropped, the exponent of the coefficients could be removed
from Eq. (2), and any function Rn

→ R could be applied as
function Ai. However, examples following this approach usually
yield worse results. As a rather informal example, take Fig. 2.
Here we have tested the performance of the same model on
the same dataset when setting the function F (x) = α max x +

β 1
n

∑n
i=1 xi as pooling function. Instead of setting α and β as

learnable parameters, we fix them to one of the values in {−1,
0.5, −0.1, 1}. The best results are obtained when both values
re fixed to 1, which corresponds to the only increasing function
ut of all of them, and that accuracy rates tend to worsen the
‘more decreasing’’ the function becomes with respect to one of
ts terms.

. Experimental framework

We now present the models and datasets which have been
sed to test the effectiveness of the CombPool layer.

.1. Deep learning architectures

We have tested the effect of replacing the classic pooling lay-
rs of several different well known architectures by the CombPool
ayer presented in Section 3.5. We have chosen representative

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393

t

m
a
d
w
m
f

Fig. 1. Example of the combination of pooling functions. We compute r reductions for each different window, which are afterwards weighted by r parameters α ∈ R.
Fig. 2. Results obtained for different combinations of α and β when setting
the values of the pooling function F (x) = α max x + β 1

n

∑n
i=1 xi for the same

experimental setting as one of the values in {−1, −0.5, −0.1, 1}. Results worsen
he ‘‘more negative’’ one of the terms becomes.

odels of exponentially increasing parameter count and over-
ll complexity, to test the effectiveness of CombPool layers on
ifferent contexts. In this way, we intend to get an intuition on
hether CombPool layers may be more beneficial on simpler or
ore complex learning tasks. The chosen models have been the

ollowing ones:

• Architecture 1: LeNet-5
The structure of this network, presented in LeCun et al.
(1998) is the one associated with the canonical CNN. It is
composed of two blocks of convolution and pooling lay-
ers (traditionally average pooling), followed by a 3 layer
perceptron which acts as classifier. We have set the ReLU
function as activation function for the hidden layers and
the Softmax function for the output layer. We have also
inserted ‘‘Batch Normalization’’ layers after each pooling
layer (Ioffe & Szegedy, 2015) in order to improve model
convergence and mitigate overfitting. The architecture is
detailed in Table 1.
385
• Architecture 2: Network in Network
This architecture is identical to the one presented in Lee
et al. (2018), and we have tested it because of the similarity
between our proposals. It is based, in turn, in the concept
of ‘‘Network in Network’’ models, which replace convolu-
tion layers by multilayer perceptrons (i.e. universal function
approximators) and the final classifier by a Global Average
Pooling layer (Lin, Chen, & Yan, 2014).
Furthermore, this architecture version includes ‘‘hidden
layer supervision’’ (Lee, Xie, Gallagher, Zhang, & Tu, 2015), a
strategy which includes several classifiers at different points
through the network in order to reinforce the gradient flow
during training time and alleviate the ‘‘vanishing gradient’’
problem which deep models tend to suffer. Details of the
architecture are available in Table 2.

• Architecture 3: DenseNet
This CNN is a direct adaptation of the DenseNet architec-
ture presented in Huang et al. (2017), and we have chosen
it for being a clear representative of modern deep CNNs,
composed by dozens of layers grouped in similar ‘‘blocks’’.
DenseNets iterate on the concept of identity connections
which ResNet architectures include as a mean to mitigate
vanishing gradients, connecting the output of a layer with
the input of the two following ones. In the case of DenseNet,
each layer is connected with all the following ones.
DenseNet networks are composed of a series of ‘‘dense
blocks’’, formed by repetitions of Batch Normalization, ReLU,
Convolutional and, optionally, Dropout layers (Srivastava,
Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). Since
the output of each layer is processed by all the remaining
layers, the authors refer by the factor k to the number of
feature images which each convolutional layer adds to the
‘‘global knowledge’’ of the network. In order to avoid the
number of filters of each following layer to keep increasing,
1 × 1 convolutions are set before each convolutional layer,
in order to fix the size of these filters to a certain size.
Pooling layers are added between every two dense blocks
in order to progressively reduce the extracted feature di-
mensionality. 1 × 1 convolutions can be added again in
order to reduce the number of channels of the global knowl-
edge of the network G by a factor θ . Table 3 sums up the
architecture.

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393

t
c
f

u

Table 1
Architecture 1 description.
Layer type Output size Kernel size

Conv1 32 × 32 × 64 3 × 3
ReLU 32 × 32 × 64 –
Pool1 16 × 16 × 64 2 × 2
BatchNorm1 16 × 16 × 64 –

Conv2 16 × 16 × 64 3 × 3
ReLU 16 × 16 × 64 –
Pool2 8 × 8 × 64 2 × 2
BatchNorm2 8 × 8 × 64 –

Flatten 4096 –
MLP1 384 –
MLP2 192 –
MLP3 10 –

Table 2
Architecture 2 description. The output of the layers named ‘‘HLSu-
pervision’’ are not used as input for the following layer, but
output as a prediction vector that will be taken into account when
computing the value of the loss function. The following layer takes
its input from the layer previous to the ‘‘HLSupervision’’ one.
Layer type Output size Kernel size

Conv1 32 × 32 × 128 3 × 3
ReLU 32 × 32 × 128 –
HLSupervision1 10 –
Conv2 32 × 32 × 128 3 × 3
ReLU 32 × 32 × 128 –
HLSupervision2 10 –
Mlpconv1 32 × 32 × 128 1 × 1
Pool1 16 × 16 × 128 3 × 3

Conv3 16 × 16 × 192 3 × 3
ReLU 16 × 16 × 192 –
HLSupervision3 10 –
Conv4 16 × 16 × 192 3 × 3
ReLU 16 × 16 × 192 –
HLSupervision4 10 –
Mlpconv2 16 × 16 × 192 1 × 1
Pool2 8 × 8 × 192 3 × 3

Conv5 8 × 8 × 256 3 × 3
ReLU 8 × 8 × 256 –
HLSupervision5 10 –
Conv6 8 × 8 × 256 3 × 3
ReLU 8 × 8 × 256 –
HLSupervision6 10 –
Mlpconv3 8 × 8 × 256 1 × 1
Mlpconv4 8 × 8 × 10 1 × 1
GlobalAvgPool 10 8 × 8

Although our main study focuses on these 3 initial architec-
ures, we have also tested the use of CombPool layers in other
urrently relevant areas. For these tests, we also consider the
ollowing two architectures:

• Architecture 4: RegNetX
The authors of Radosavovic, Kosaraju, Girshick, He, and Dol-
lár (2020) focused, not in presenting a particular architec-
ture, but a method for statistically searching for the most
effective architecture design decisions. They started study-
ing a family of models based on the RESNet architecture, and
progressively restricted the model until reaching a family of
models named RegNetX. The specific details of the research
goes beyond the scope of this work and can be found in the
original paper.
Interestingly, RegNetX models dispense with pooling lay-
ers, similarly to other current models such as RESNet, Mo-
bileNet (Howard et al., 2017) and EfficientNet (Tan & Le,
2019). Instead, they perform feature downsampling through
convolution layers with stride bigger than 1. However, most
of these architectures do use Global Average Pooling lay-
ers, which aggregate all the values on each output channel
386
Table 3
Description of the third architecture. k represents the growth rate of the
network, which has been set to 12. G specifies the number of global knowledge
channels up until each layer, and increases by k after each convolution of a
dense block. We explicitly represent the compression of this global knowledge
indicating at the output of the transition block convolutions that the number
of feature images becomes G/2, since we set θ = 0.5. However, we return to
sing G on following layers in favour of clearer notation.
Layer type Output size Kernel size

Initial block
Conv 32 × 32 × 2k 3 × 3
BatchNorm 32 × 32 × 2k –
ReLU 32 × 32 × 2k –

Dense block 1 (×16)

BatchNorm 32 × 32 × G –
ReLU 32 × 32 × G –
Conv 32 × 32 × 4k 1 × 1
BatchNorm 32 × 32 × 4k –
ReLU 32 × 32 × 4k –
Conv 32 × 32 × k 3 × 3

Transition block 1

BatchNorm 32 × 32 × G
ReLU 32 × 32 × G
Conv 32 × 32 × G/2 1 × 1
Pool 16 × 16 × G/2

Dense block 2 (×16)

BatchNorm 16 × 16 × G –
ReLU 16 × 16 × G –
Conv 16 × 16 × 4k 1 × 1
BatchNorm 16 × 16 × 4k –
ReLU 16 × 16 × 4k –
Conv 16 × 16 × k 3 × 3

Transition block 2

BatchNorm 16 × 16 × G
ReLU 16 × 16 × G
Conv 16 × 16 × G/2 1 × 1
Pool 8 × 8 × G/2

Dense block 3 (×16)

BatchNorm 8 × 8 × G –
ReLU 8 × 8 × G –
Conv 8 × 8 × 4k 1 × 1
BatchNorm 8 × 8 × 4k –
ReLU 8 × 8 × 4k –
Conv 8 × 8 × k 3 × 3

GlobalAvgPool G 8 × 8
MLP 10 –

through the arithmetic mean. We have tested if the re-
placement of Global Average Pooling by Global CombPool
layers could be of interest for its consideration in these
architectures.
For our experiments, we have worked with the RegNetX-
200MF version. All hyperparameters are kept the same with
respect to the original paper, with the difference that we
work with smaller image sizes.

• Architecture 5: Scalable Vision Transformer
The original transformer architecture was presented
in Vaswani et al. (2017) and has seen huge success in the
Natural Language Processing (NLP) domain, with results as
impressive as those of Brown et al. (2020) and Devlin, Chang,
Lee, and Toutanova (2018), among others.
It is based on the concept of ‘‘self-attention’’, a mechanism
by which the relationship between the different values of
an input is weighted, in order to give more importance to
the most relevant ones. In the context of NLP, this would
allow to measure the relationship between every pair of
words in a sentence, according to a given objective. Actually,
transformers use ‘‘multi-head attention’’ layers, which per-
form the previous process multiple times, each one focusing
on a particular feature of the input. Similarly to DenseNets
or ResNets, transformers are composed of a concatenation
of similar blocks which perform the same operations. A
detailed explanation of the architecture goes beyond the
scope of this paper, and can be found in Dosovitskiy et al.

(2020).

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393

s
t

4

a

b
e
o
d
t
p
w
t
r
s
r

5

W
a
p
p
p
g
h
v
f
p

Table 4
Datasets MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao, Rasul, & Vollgraf,
2017), EMNIST (Cohen, Afshar, Tapson, & van Schaik, 2017), CIFAR10 and
CIFAR100 (Krizhevsky, Hinton, et al., 2009) used in the experimental part. By
‘‘balanced’’ EMNIST we refer to the balanced partition of all the available subsets
of the EMNIST dataset.
Dataset Train Test Classes Colour Description

MNIST 60000 10000 10 No Digits from 0 to 9
Fashion MNIST 60000 10000 10 No Clothing categories
Balanced EMNIST 112800 18800 47 No Digits and characters
CIFAR10 50000 10000 10 Yes Real life images
CIFAR100 50000 10000 100 Yes Real life images

NLP Transformers split an input sentence into parts and
encode each of them generating a different input ‘‘token’’.
In Dosovitskiy et al. (2020), the authors propose an adapta-
tion of this strategy to work on image data instead, which
they refer to as Vision Transformer (ViT). Unlike CNNs which
work with whole images, for ViT inputs are previously split
into disjoint patches which are encoded to generate the
distinct input tokens. These input tokens are afterwards
sequentially processed via a series of blocks of layers un-
til obtaining the probability vector which can be used to
classify the image.
In our experiments we have worked with a particular imple-
mentation of ViT, known as Hierarchical Visual Transformer
(HVT) which appends pooling layers between the different
blocks of the transformer (Pan, Zhuang, Liu, He, & Cai, 2021).
Outputs are sequentially reduced in dimensionality, and the
later blocks operate over the reduced feature vectors. Our
preliminary results are presented in Section 5.5.

All models have been optimized via stochastic gradient de-
cent with momentum and L2 regularization, setting Cross En-
ropy as loss function. We use batch sizes of 128 samples.

.2. Datasets

The performance of all the different models has been evalu-
ted on the datasets presented in Table 4.
All models have been trained for 50 epochs over all datasets

ut CIFAR10/CIFAR100, in which they have been trained for 200
pochs. Architecture 3, due to its significantly higher amount
f parameters, has been trained for 300 epochs over that same
ataset. In order to try to limit the influence of stochastic ini-
ialization over our final results, each model has been inde-
endently trained 5 times and we report their mean accuracy,
ith the exception of the third architecture over datasets other
han CIFAR10/CIFAR100. We consider that the variance over the
esults obtained for those datasets with that architecture were so
mall that it did not justify the computational and temporal cost
equired.

. Experimental study

In this section we test the effectiveness of the CombPool layer.
e compare the differences among the different combinations,

s well as with models that use individual functions as their
ooling method, including the classic maximum and average
ooling. Additionally, we include results obtained with other
ooling methods presented in Section 2.2, namely stochastic and
ated pooling. Stochastic pooling replaces the deterministic be-
aviour of max pooling by randomly choosing one of the input
alues, sampling from a multinomial distribution constructed
rom those values. Gated pooling computes a combination of
ooling functions through a convex combination of the type
387
F (x) = αA1(x) + βA2(x), with the difference that α and β are
computed as the result of a linear transformation of the values in
x. In that sense, rather than learning those parameters directly,
the coefficients of the linear transformations are learnt.

Whenever the Sugeno integral Sν or its Dν generalization is
used, we set the ‘‘power measure’’ νpm given by νpm = |X |

q/n
for all X ⊆ N as ν, a well known fuzzy measure which has been
used with success in plenty of applications (Bardozzo et al., 2021;
Lucca et al., 2019). Notice that, as commented in Remarks 3.15,
in order for Dν to be well defined, ν must be symmetrical, which
νpm satisfies. We have set the value of q = 2 based on the results
of preliminary tests and previous experience in other domains.

5.1. Pooling by means of individual functions

Initially, we tested several models that use a single function for
the pooling process. Apart from average and maximum pooling,
we have tested the minimum, the median, the Sugeno integral
and the Dν generalization. The test results are shown in Table 5.

Although for both architectures 1 and 3 the best results are
obtained with either the arithmetic mean or the maximum, it
is interesting noting how for architecture 2, the generalization
of the Sugeno integral performs the best for most datasets. In
fact, as will be shown later, these options outperform even the
combination of maximum and arithmetic mean, which is the one
presented in Lee et al. (2018). However, in other cases, such as
for the architecture 3 on CIFAR10 and CIFAR100, the Dν general-
ization is the one that performs the worst, which lets clear that
the best function is both architecture and dataset dependant.

Another conclusion is that the more complex models seem
to have higher adaptability to non-standard functions whereas
architecture 1 performs by far the best when using either average
or maximum pooling, specially when faced with more complex
datasets. Notice that, when considering the results obtained on
CIFAR10 or CIFAR100, the only accuracy rates close to the ones
reported when using the maximum or the average, are both
versions of the Sugeno integral on CIFAR100, which perform
marginally worse nonetheless. This might be due to the fact that
the higher number of parameters of the rest of models allows
them to model more complex functions which can adapt more
easily to other pooling functions.

5.2. Pooling using combinations of increasing functions

We have repeated the previous experimentation replacing the
individual pooling layers by CombPool layers, testing plenty of in-
creasing function combinations. The accuracy rate for all models
and datasets is presented in Table 6.

As stated in the previous section, architecture 1 has difficulty
adapting to non-standard pooling functions. It is specially note-
worthy for datasets EMNIST, CIFAR10 and CIFAR100, the hardest
ones, where it only provides comparable results when one of the
standard functions is part of the combination.

Similarly, for the MNIST and FASHION dataset, most models
offer results close to the individual variants, with the combina-
tions that include the Dν generalization performing the best in
average. Specifically, architecture 2 obtains the best result of any
combination when using some of them.

If we focus on architecture 3, for datasets EMNIST and CI-
FAR10 all groups of combinations manage to outperform the
best individual accuracy obtained using the arithmetic mean. In
particular, combining the Dν generalization with the arithmetic
mean obtains the best results for CIFAR10, while combining it
with the maximum offers the second best accuracy over EM-
NIST, only slightly behind the combination of the Dν integral

and the arithmetic mean. For CIFAR100 none of the combinations

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393

g

g
t
A
t
m
c
s
c
b

5

c
T
e
c
w

Table 5
Accuracy rate for architectures that use individual functions. Column Ai indicates references results obtained with the ith architecture.

MNIST FASHION EMNIST CIFAR10 CIFAR100

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

AM 99.37 99.09 99.10 93.24 91.81 93.79 87.58 88.59 89.52 77.08 87.65 89.25 46.55 54.72 70.78
Max 99.24 99.39 99.34 92.80 92.99 92.92 87.31 89.11 89.27 77.39 87.85 87.99 45.68 57.58 68.48
Min 98.98 99.38 99.27 92.13 93.03 92.99 86.22 89.05 89.40 70.24 87.61 88.28 42.26 51.72 68.86
Median 98.98 99.17 99.03 91.80 92.28 93.48 86.58 88.81 89.31 70.62 87.07 88.76 39.29 51.65 69.58
Sν 99.14 99.24 99.39 92.01 92.07 93.56 86.51 88.71 89.44 72.47 86.79 88.97 44.73 54.71 68.42
Dν 99.26 99.46 99.08 93.05 92.67 92.86 86.64 89.27 89.31 73.42 88.70 87.20 43.52 54.11 68.97
Table 6
Accuracy rate for models that replace classic max and mean pooling layers by CombPool layers. Each row presents the obtained result for
a given combination of functions. Combinations have been grouped according to the order in which they have been presented in Section 3.

MNIST FASHION EMNIST CIFAR10 CIFAR100

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

Min + Max 99.30 99.30 99.02 92.56 91.91 92.77 87.31 88.68 89.26 77.02 87.42 88.55 45.64 55.14 68.8
Min + Max + Median 99.30 99.21 99.14 92.63 91.93 93.51 87.52 88.50 89.62 76.91 87.43 89.77 45.35 55.84 70.21

AM + Min 99.30 99.27 99.11 92.41 92.13 92.59 86.97 88.66 89.57 75.04 87.23 89.48 45.22 45.22 69.83
AM + Max 99.32 99.25 99.27 92.86 92.47 93.63 87.35 88.43 89.62 77.23 87.78 86.99 45.80 55.43 70.19
AM + Min + Max 99.30 99.25 99.35 92.68 91.91 92.99 87.14 88.86 89.75 77.17 87.25 88.52 45.78 55.79 69.40
AM + Min + Max + Median 99.33 99.26 99.29 92.72 92.17 92.85 87.34 88.91 89.22 77.04 87.57 89.83 46.27 55.98 69.95

Sν + Min 99.07 99.27 99.24 92.23 92.18 93.25 86.49 88.53 89.26 72.41 87.46 88.58 43.50 54.35 68.24
Sν + Max 99.22 99.43 99.43 92.96 92.39 93.19 87.11 88.52 89.66 77.09 87.60 89.48 46.37 54.83 67.66
Sν + Min + Max 99.27 99.36 99.45 92.71 92.01 93.18 87.33 88.87 89.41 77.30 87.01 89.42 46.29 55.71 69.43
Sν + Min + Max + Median 99.24 99.27 98.95 92.78 92.04 93.36 87.10 88.83 89.49 77.03 87.29 89.66 45.68 56.08 70.04
Sν + AM 99.34 99.21 99.49 93.21 91.93 93.25 87.07 88.35 90.03 76.93 88.23 86.99 46.46 53.92 70.00

Dν + Min 99.21 99.33 99.15 92.23 92.60 92.78 86.15 88.77 89.09 72.19 88.51 89.03 42.94 55.44 69.45
Dν + Max 99.28 99.27 99.22 92.80 92.55 93.32 86.95 89.09 89.97 76.80 88.20 89.58 46.16 55.97 69.25
Dν + Min + Max 99.27 99.38 99.27 92.66 92.53 92.69 87.37 88.69 89.46 77.81 88.61 89.83 45.78 55.73 70.31
Dν + Min + Max + Median 99.32 99.35 99.22 92.87 92.57 93.79 87.46 89.06 89.85 76.15 88.30 89.75 45.19 55.77 69.98
Dν + AM 99.32 99.35 99.39 92.69 92.56 93.21 87.37 88.40 89.61 76.39 88.40 89.87 44.89 55.04 69.56

Stochastic 99.34 99.35 99.53 92.49 92.17 93.64 87.45 88.91 89.81 77.43 87.29 91.57 47.77 58.18 70.68
Gated 99.33 99.35 99.51 92.91 92.03 93.12 87.23 88.27 89.71 77.43 88.61 90.41 46.38 57.26 69.99
outperform the arithmetic mean, but combinations with the Dν

eneralization still offer competitive results.
We have also compared our results with both stochastic and

ated pooling, which perform on par with the best functions, even
hough there is some important variance on simpler datasets.
s previously stated, architecture 3 is the one which benefits
he most from using non-standard pooling functions, and both
ethods show clear superior results for dataset CIFAR10. The
omparison with gated pooling is not completely fair however,
ince we could employ the ‘‘gated’’ strategy for learning the
oefficients of our CombPool layers and improve its respective
est results. We will test this option in the next subsection.

.3. Gated CombPool layers

Even though our main study focus is the increasing function
ombinations and not the coefficient learning strategy, results on
able 6 which show a clear higher accuracy for models which
mploy gated pooling raise the question of whether that strategy
an be adapted in CombPool layers. In order to achieve this,
e simply replace each coefficient ai by a kernel Wi ∈ Rk1×k2 .

Coefficients ai are therefore computed for each different window
via the channel-wise convolution of Wi over each window of the
input.

In order to test if the presented combinations still outperform
the average and maximum combination when using gated pool-
ing, we have focused on one of the hardest setups, the one which
trains architecture 3 on the CIFAR10 dataset and have trained a
model using the Dν generalization and arithmetic mean combina-
tion, which performs the best when following the mixed strategy.
Table 7 shows that using the gated version of this combination
increases the accuracy offered by mixed pooling by one point,
and the one obtained by the original gated pooling combination

by half a point.

388
Table 7
Effect of the ‘‘gated’’ strategy applied to the CombPool layer.
We focus on the Dν and arithmetic mean combination, the best
combination for the ‘‘mixed’’ strategy in one of the hardest
setups (Architecture 3 trained on the CIFAR10 dataset). The
responsive nature of ‘‘gated’’ pooling results in improved models
for both cases, but the presented combination still surpasses the
maximum and arithmetic mean combination in this case.
Method Accuracy

Mixed AM + Max 86.99
Mixed Dν + AM 89.87

Gated AM + Max 90.41
Gated Dν + AM 90.89

5.4. Global CombPool layers

Here we explore the modification of another pooling process
in CNNs: ‘‘Global pooling’’. Global pooling is similar to classical
pooling, with the difference that it is applied to all values of a
feature channel at once, aggregating them into a single value.
It is applied after the feature extraction process of a CNN in
order to either ‘‘flatten’’ the resulting features into a ‘‘feature
vector’’ to be fed for the classifier, or substituting the classifier
altogether. It was first introduced in Lin et al. (2014) with this
latter objective in mind, replacing the Multilayer Perceptron of
their proposed model by a last convolution layer with as many
convolution filters as classes followed by a Global Average Pooling
layer. In this context, global pooling had the objective of forcing
the last convolution filters of the model to learn transformations
directly associated with each of the predicted classes, so that each
one would search for the most representative feature of a given
class.

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393

m
m
w
r
b
i
T

o
S
p
o
t
a
i
s
o
i

5

l
i
D

s
o
c
w
l
p
d

T
w
t
a
f
H
w

6

p
B
w

e
i
S
p

t
s
s
t
o
g
b
o

m
a
a
c

s
i
t
t
i
o

f
t
o

e
s
m

7

d
p
W
t
t
i

t
m
g

a
i

Table 8
Accuracy rate for models that replace classic Global Average pooling by Global
CombPool layers.

CIFAR10 CIFAR100

A2 A3 A4 A2 A3 A4

AM 86.11 91.08 94.13 57.16 70.97 74.95
Max + AM 86.97 91.29 93.77 57.23 68.79 71.43
Max + Sν 83.04 91.28 93.40 50.96 65.4 58.96
Max + Dν 85.99 90.26 93.27 52.85 66.54 66.66
AM + Sν 86.58 91.00 94.25 57.72 69.68 74.30
AM + Dν 86.33 91.08 93.51 52.71 69.10 71.43

Nowadays, Global Average Pooling has become a staple of
odern CNN architectures. Although in the literature the arith-
etic mean is the only typical implementation of Global Pooling,
e believe that CombPool layers can be directly used in order to
eplace this process. To illustrate this possibility, we have tested
oth models 2 and 3 (which already used Global Average Pooling),
n conjunction with the more recently proposed architecture 4.
he results are presented in Table 8.
As can be seen, some of the tested CombPool layers can

utperform Global Average Pooling. In particular, the average and
ugeno integral combination obtains the best results for 2 of the
erformed tests, while offering decent accuracy rates in the rest
f settings, as does the maximum and arithmetic mean combina-
ion. It is also clear that combinations which do not include the
rithmetic mean as a member offer poor results. In fact, those
nstances obtain some of the worst all around results. This makes
ense if we take into account that, when using the maximum in
rder to aggregate many values, most of the available information
s discarded.

.5. CombPool Layers in vision transformers

In this section we study the possibility of applying CombPool
ayers to the novel ViT architecture, in particular to the HVT
mplementation which uses pooling layers in a similar way to
enseNets.
Due to the complexity of HVT training, we have employed the

ame hyperparameter configurations as specified by the authors
f Dosovitskiy et al. (2020). In particular, we have tested the
onfigurations they refer to as HVT_Ti-1, HVT_S-1 and HVT_S-4,
hich differ both in parameter count and in number of pooling

ayers employed. Models HVT_Ti-1 and HVT_S-1 use a single
ooling layer before the last block of the model, while HVT_S-4
istributes 4 pooling layers along the architecture.
The results for the performed experiments are presented in

able 9. As it can be seen, CombPool layers perform in pair
ith maximum pooling layers, but they only slightly outperform
hem for HVT_Ti-1. However, we find this initial results promising
nd believe that further experimentation and hyperparameter
inetuning could improve the performance of CombPool layers for
VT. We would like to explore this possibility in-depth in a future
ork.

. Discussion

Table 10 sums up the best results obtained among the tests
resented in Sections 5.1 and 5.2 which use CombPool layers.
ased on it, as well as on the results of the previous experiments,
e find some interesting behaviours.
Firstly, the combination of functions results in a valuable strat-

gy for incorporating and taking profit of functions with poor
ndividual performance. For example, the minimum, median and
ugeno integral perform the worst for several of the architectures

resented, but their combination with other functions give raise

389
to some of the best solutions for each experiment. This opens the
possibility to testing other less common functions in the future.

In general, the Dν generalization appears to be the most in-
eresting function to be used as part of a CombPool layer. We
uspect that its good performance can be explained from its
imilarity to the classic convolution expression. However, in con-
rast to the convolution operation, which weighs the importance
f each value by means of learnable parameters, the Sugeno
eneralization uses a fuzzy measure, whose values can be fixed
eforehand preventing an increase on the number of parameters
f the model.
Additionally, it appears that the CombPool addition results

ore beneficial the more complex the models and datasets used
re. While for simple datasets and models its use should be
voided, most combinations offer above average results for ar-
hitecture 2 and 3 in the hardest datasets.
Finally, when compared with other pooling strategies, Table 11

hows that CombPool layers perform on par to most methods, and
ts best combinations usually outperform more heavily parame-
erized strategies such as standard gated pooling. Interestingly,
he Dν integral pooling already offers a good performance by
tself, obtaining the best results for architecture 2 in three out
f the five datasets.
We have also showed that adapting the learning mechanism

or the increasing function combination of Gated pooling can fur-
her increase the performance of CombPool layers, at the expense
f adding more parameters to the model.
Similarly, we have seen that CombPool layers can be consid-

red to replace Global Average Pooling in modern architectures,
pecially when considering combinations among the arithmetic
ean and either the Sugeno integral or the maximum.

. Conclusions and future work

In this work we have tested the performance of three fairly
ifferent convolutional network architectures and replaced their
ooling functions by linear combinations of increasing functions.
e have proven that the arithmetic mean and maximum are not

he only realistical options when testing new models, and that
he strategy of combining the results of multiple functions can
mprove the final performance of the algorithm.

The main takeaways of our experiments are the following:

• Simple architectures lack the capability of modelling com-
plex functions that might benefit from using non standard
functions. When using combinations of functions in these
architectures, adding either the maximum or the arithmetic
mean as part of the combination has been the only reliable
option for obtaining favourable results.

• Although some individual functions, such as the Sugeno
integral, are poor choices as pooling functions, combining
them with other aggregations can improve their perfor-
mance.

• The Dν Sugeno integral can obtain good results by itself,
and offers reliable good results for all architectures when
used as part of a combination of increasing functions. Most
combinations report results above the mean result of all
tests, and outperform the ones obtained by the combination
of the two standard pooling methods.

Due to the positive results obtained through the generaliza-
ion of the Sugeno integral, we intend on testing the perfor-
ance of models which include the Choquet integral and its
eneralizations as a term of the CombPool layer.
We have also found that CombPool layers can be used as
substitution for the usual Global Average Pooling employed

n modern architectures. Similarly, they can be introduced in

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393
Table 9
Accuracy rate for different configurations of Hierarchical Vision Transformer on datasets CIFAR10 and CIFAR100. Maximum pooling, average
pooling and CombPool layers are being tested.

CIFAR10 CIFAR100

HVT-Ti-1 HVT-S-1 HVT-S-4 HVT-Ti-1 HVT-S-1 HVT-S-4

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Max 86.30 99.17 88.86 99.13 90.41 99.13 58.22 82.86 55.04 77.02 57.93 78.64
AM 83.91 98.94 86.65 98.85 86.83 98.76 55.84 81.16 52.95 75.71 51.87 75.21
Max + Avg 86.24 99.17 86.92 99.01 88.40 98.91 58.15 82.71 53.79 75.95 55.49 76.64
Max + Sν 86.60 99.18 86.26 99.09 88.82 99.00 58.15 82.50 51.98 73.69 51.34 74.20
Max + Dν 86.59 99.41 88.45 99.12 88.82 99.04 57.69 82.79 55.01 76.61 53.36 74.78
Avg + Sν 84.49 99.06 86.21 98.91 87.11 98.76 55.95 80.98 52.34 74.81 51.75 74.29
Avg + Dν 85.95 99.00 88.45 99.12 88.81 98.90 57.11 81.92 54.73 76.08 55.28 77.12
Table 10
Summary of the top 3 best combinations of pooling functions for each architecture over each of the evaluated
datasets.

MNIST dataset

Arch. 1 Arch. 2 Arch. 3

1st Best AM Dν Sν + AM
Accuracy 99.37 99.46 99.49
2nd Best Sν + AM Sν + Max Sν + Min + Max
Accuracy 99.34 99.43 99.45
3rd Best AM + Min + Max + Median Max Sν + Max
Accuracy 99.33 99.39 99.43

FASHION dataset

Arch. 1 Arch. 2 Arch. 3

1st Best AM Min Dν + Min + Max + Median
Accuracy 93.24 93.03 93.79
2nd Best Sν + AM Max AM
Accuracy 93.21 92.99 93.79
3rd Best Dν Sν AM + Max
Accuracy 93.05 92.67 93.63

EMNIST dataset

Arch. 1 Arch. 2 Arch. 3

1st Best AM Dν Sν + AM
Accuracy 87.58 89.27 90.03
2nd Best Min + Max + Median Max Dν + Max
Accuracy 87.52 89.11 89.97
3rd Best Dν + Min + Max + Median Dν + Max Dν + Min + Max + Median
Accuracy 87.46 89.09 89.85

CIFAR10 dataset

Arch. 1 Arch. 2 Arch. 3

1st Best Dν + Min + Max Dν Dν + AM
Accuracy 77.81 88.70 89.87
2nd Best Max Dν + Min + Max Dν + Min + Max
Accuracy 77.39 88.61 89.83
3rd Best Sν + Min + Max Dν + Min AM + Min + Max + Median
Accuracy 77.30 88.51 89.83

CIFAR100 dataset

Arch. 1 Arch. 2 Arch. 3

1st Best AM Max AM
Accuracy 46.55 57.58 70.78
2nd Best Sν + AM Sν + Min + Max + Median Dν + Min + Max
Accuracy 46.46 56.08 70.31
3rd Best Sν + Max AM + Min + Max + Median Min + Max + Median
Accuracy 46.37 55.98 70.21
Table 11
Comparison between the best CombPool layer for each model and other pooling methods. We compare our proposal against average pooling,
max pooling and the Sugeno integral generalization pooling, as well as stochastic pooling and gated pooling.

MNIST FASHION EMNIST CIFAR10 CIFAR100

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

CombPool (best) 99.34 99.43 99.49 93.21 92.60 93.79 87.52 89.09 90.03 77.81 88.61 89.87 46.46 56.08 70.31
AM 99.37 99.09 99.10 93.24 91.81 93.79 87.58 88.59 89.52 77.08 87.65 89.25 46.55 54.72 70.78
Max 99.24 99.39 99.34 92.80 92.99 92.92 87.31 89.11 89.27 77.39 87.85 87.99 45.68 57.28 68.48
Dν 99.26 99.46 99.08 93.05 92.67 92.86 86.64 89.27 89.31 73.42 88.70 87.20 43.52 54.11 68.97
Stochastic 99.34 99.35 99.53 92.49 92.17 93.64 87.45 88.91 89.81 77.43 87.29 91.57 47.77 58.18 70.68
Gated 99.33 99.35 99.51 92.91 92.03 93.12 87.23 88.27 89.71 77.43 88.61 90.41 46.38 57.26 69.99
390

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393

t
i
i
p
f

D

c
t

A

T
N
m
o
5
i
4
a

A

P

s
β

he novel ViT architecture without difficulty, although a more
n-depth study is necessary in order to find the most suitable
mplementation for this model. We would like to explore the
articular application of CombPool layers to ViT models in a
uture work.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

The authors gratefully acknowledge the financial support of
racasa Instrumental (iTRACASA), Spain and of the Gobierno de
avarra - Departamento de Universidad, Innovación y Transfor-
ación Digital, Spain, as well as that of the Spanish Ministry
f Science, Spain (project PID2019-108392GB-I00 (AEI/10.13039/
01100011033)) and the project PC095-096 FUSIPROD. F. Herrera
s supported by the Andalusian Excellence project, Spain P18-FR-
961. G.P. Dimuro is supported by CNPq, Brazil (301618/2019-4)
nd FAPERGS, Brazil (19/2551-0001279-9).

ppendix. Mathematical proofs

roof of Proposition 3.1. Consider x, y ∈ Rn, x ≤ y.
If (α1, . . . , αr), (β1, . . . , βr) ∈ I(A1, . . . ,Ar), we have

((α1+β1)A1 + · · · + (αr + βr)Ar)(x) =

= (α1A1 + · · · + αrAr)(x) + (β1A1 + · · · + βrAr)(x)
≤ (α1A1 + · · · + αrAr)(y) + (β1A1 + · · · + βrAr)(y)
= ((α1 + β1)A1 + · · · + (αr + βr)Ar)(y)

Consider 0 ≤ α1, . . . , αr ∈ R and x, y ∈ Rn, x ≤ y; then
Ai(x) ≤ Ai(y), hence αiAi(x) ≤ αiA(y); so

(α1A1 + · · · + αrAr)(x) = α1A1(x) + · · · + αrAr (x) ≤

≤ α1A1(y) + · · · + αrAr (y) = (α1A1 + · · · + αrAr)(y);

thus (α1, . . . , αr) ∈ I(A1, . . . ,Ar). The rest is immediate. □

Lemma A.1. If A1, . . . ,Ar :Rn
→ R are functions such that Ai(0) =

0 and Ai(1) = 1, i = 1, . . . , r, and α1, . . . , αr ∈ R are such that
α1A1 + · · · + αrAr is increasing, then α1 + · · · + αr ≥ 0

Proof. With A = α1A1 + · · · + αrAr , 0 = A(0) ≤ A(1) =

α1 + · · · + αr . □

Proposition A.2. Given increasing functions A,A1, . . . ,Ar : Rn
→

R, for each 0 ≤ α1, . . . , αr ∈ R there exists an increasing function
B :Rn

→ R such that A = B − α1A1 − · · · − αrAr . □

Proof. Let us define:

B = A + α1A1 + · · · + αrAr

Since 1 + α1 + · · · + αr > 0, it follows that B is increasing. the
result follows. □

Proof of Proposition 3.3. By hypothesis there exist x, y ∈ Rn

such that A(x) < A(y). Take z ∈ Rn such that z < x and z < y.
Then we have that z < y and A(z) < A(y). As α < 0, then
αA(z) > αA(y) and αA is not increasing. □
391
Lemma A.3. Consider 2 ≤ r ∈ N. For i = 1, . . . , r, let Ai :Rn
→ R

be increasing functions and αi ∈ R such that α1A1 + · · · + αrAr is
also an increasing function. If there exist x, y ∈ Rn, x < y, such that

Ar (x) < Ar (y) and Ai(x) = Ai(y), i = 1, . . . , r − 1,

then αr ≥ 0.

Proof. Let

A = α1A1 + · · · + αrAr

From the hypothesis of the Lemma, A is increasing. So:

0 ≤ A(y) − A(x) = αr (Ar (y) − Ar (x))

Since Ar is also increasing, it follows that αr ≥ 0. □

Lemma A.4. Consider x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn such
that x ≤ y and σ , ρ ∈ Σn satisfying σ ∈ x(↗) and ρ ∈ y(↗). Then
xσ ≤ yρ . In this situation we have further xσ = yρ if and only if
x = y.

Proof. Assume xi > xi+1; if yi > yi+1, with the transposition
ϵ = (i i + 1), that is, interchanging the elements in positions
ith and (i + 1)th in the considered tuple., we have xϵ ≤ yϵ; if
yi ≤ yi+1, as xi+1 < xi ≤ yi, we have xϵ ≤ y; iterating this process
we obtain σ , ρ ∈ Σn with xσ ≤ yρ and xσ (1) ≤ · · · ≤ xσ (n). To
ease the notation, assume that x1 ≤ · · · ≤ xn and x ≤ y. Now, if
yi > yi+1, we have xi ≤ xi+1 ≤ yi+1 and xi+1 ≤ yi+1 < yi, hence,
with ϵ = (i i+1) again, we have x ≤ yϵ; reiterating the process we
conclude that there exist σ , ρ ∈ Σn such that xσ (1) ≤ · · · ≤ xσ (n),
yρ(1) ≤ · · · ≤ yρ(n) and xσ ≤ yρ . Now, if σ ′, ρ ′

∈ Σn satisfy
xσ ′(1) ≤ · · · ≤ xσ ′(n) and yρ′(1) ≤ · · · ≤ yρ′(n), we have xσ = xσ ′

and yρ = yρ′ .
Assume that xσ = yρ and set a = max(x); obviously a =

max(y); assume that x11 , . . . , xir = a, i1 < · · · < ir ≤ n and
xj < a if j ̸∈ {i1, . . . , ir}; as xik ≤ yik , we have y11 , . . . , yir = a and
yj < a if j ̸∈ {i1, . . . , ir}. Continue with max(N \ {i1, . . . , ir}). □

Proof of Proposition 3.5. With Proposition 3.1 it suffices to show
that if α1OSi1 +· · ·+αrOSir is increasing for α1, . . . , αr ∈ R, then
α1, . . . , αr ≥ 0.

We may assume that r > 1. Let j ∈ {1, . . . , r} and consider ij.
Take x = (0, 1 | ij+1), y = (0, 1 | ij) We have OSik (x) = OSik (y) =

0 if k < j and OSik (x) = OSik (y) = 1 if k > j. On the other hand,
OSij (x) = 0 < 1 = OSij (y). By Lemma A.3 we have αj ≥ 0. □

Proof of Proposition 3.6. Assume that A := αAM + β1OSi1 +

· · · + βrOSir is increasing. Set R = {i1, . . . , ir}. Then

A =
α

n

∑
i∈N\R

OSi +
(α

n
+ βj

) r∑
j=1

OSij ,

o by Proposition 3.5 A is increasing if and only if α
n , α

n +

1, . . . ,
α
n + βr ≥ 0. □

Lemma A.5. If S ⊆ N, then there exist σ ∈ Σn, i ∈ N such that
Nσ

i = S (and so, for a fuzzy measure ν : 2N
→ [0, +∞), νσ

i = νS .).

Proof. If S = N , take i = 1 and σ the identity. Assume that S ⊂ N .
Let S = {j1, . . . , jr}, |S| = r , and N \ S = {k1, . . . , kn−r}. Consider
the permutation

σ =

(
1 . . . n − r n − r + 1 . . . n
k1 . . . kn−r j1 . . . jr

)
.

Set i = n − r + 1. Then Nσ
= S. □
i

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393

L
α

t
s
B

L
s
O

P
t
a

L

P

L

I

y
m

S

P

x
i

A

L

a

A

S

0

x
a
0

P
·

ν

L
c
x
x

P

0

a
F

P
h

P∑

(

(
(

P
α
0
α
i

R

A

A

B

B

B

B

B

B

C

C

emma A.6. Consider i1, . . . , ir ∈ N, i1 < · · · < ir and
1, . . . , αr , β ∈ R. If α1OSi1 + · · · + αrOSir + βSν is increasing,

then α1, . . . , αr ≥ 0.

Proof. Let j ∈ {1, . . . , r}. Let a, b ∈ R such that ν1 < a < b and
ake x = (a, b | ij +1), y = (a, b | ij). Then OSis (x) = OSis (y) for all
∈ {1, ĵ. . ., r}, OSij (x) = a < b = OSij (y) and Sν(x) = Sν(y) = ν1.
y Lemma A.3, αj ≥ 0. □

emma A.7. If the fuzzy measure ν : 2N
→ [0, +∞) is strict in k for

ome k ∈ N, then there exist x, y ∈ Rn, x < y such that OSi(x) =

Si(y) for k ̸= i ∈ N, and OSk(x) = Sν(x) < OSk(y) = Sν(y).

roof. Let σ ∈ Σn such that νσ
k > νσ

k+1 (if k = n take σ

he identity on N , regardless of whether νn equals 0 or not). Let
, b ∈ R, νσ

k+1 ≤ a < b ≤ νσ
k and take x, y ∈ Rn in such a way

that xσ = (a, b | k + 1), yσ = (a, b | k). We have OSi(x) = OSi(y)
if i ̸= k and Sν(x) = OSk(x) < OSk(y) = Sν(y). □

Proof of Proposition 3.8. By Lemma A.7 there exist x, y ∈ Rn,
x < y such that OSij (x) = OSij (y), j = 1, . . . , r , and Sν(x) < Sν(y),
hence if α1OSi1 + · · · + αrOSir + βSν is increasing, then β ≥ 0 by
emma A.3. Apply now Lemma A.6 and Proposition 3.1. □

roof of Corollary 3.9. By Proposition 3.8, as ν is strict in n. □

emma A.8. Consider x, y ∈ Rn, x ≤ y. Set ai = yi − xi, i =

1, . . . , n. Then, for all fuzzy measure ν, Sν(y)− Sν(x) ≤ aj, for some
j ∈ {1, . . . , n}.

Proof. Let ∅ ̸= S ⊆ N , xk = mini∈S xi and ym = mini∈S yi.
f m = k, then (mini∈S yi) − (mini∈S xi) = yk − xk = ak; if
m ̸= k, (mini∈S yi) − (mini∈S xi) = ym − xk ≤ yk − xk = ak. Set
k(S) = k. So we have immediately that [min(νS, (mini∈S yi))] −

[min(νS, (mini∈S xi))] ≤ ak(S).
Assume that T ,U ⊆ N are such that Sν(y) = min(νT , (mini∈T

i)) and Sν(x) = min(νU , (mini∈U xi)). Then min(νT , (mini∈T xi)) ≤

in(νU , (mini∈U xi)) hence

ν(y) − Sν(x) = min(νT , (min
i∈T

yi)) − min(νU , (min
i∈U

xi))

≤ min(νT , (min
i∈T

yi)) − min(νT , (min
i∈T

xi)) ≤ ak(T). □

roof of Proposition 3.10. Set A = α1OS1 + · · · + αnOSn + βSν .
Assume that α1, . . . , αn, α1 +β, . . . , αn +β ≥ 0. Let x, y ∈ Rn,

≤ y and σ ∈ x(↗), ρ ∈ y(↗). Set ai = yρ(i) − xσ (i), 1 ≤ i ≤ r (take
n account Lemma A.4). Then

(y) − A(x) = α1a1 + · · · + αnan + β(Sν(y) − Sν(x)).

et us see that A(y) − A(x) ≥ 0. If β ≥ 0 it is clear. Assume that
β < 0. By Lemma A.8 there exists j ∈ N such that Sν(y)− Sν(x) ≤

j, hence β(Sν(y) − Sν(x)) ≥ βaj and therefore

(y) − A(x) ≥ α1a1 + · · · + (αj + β)aj + · · · + αnan ≥ 0.

o A is increasing.
Assume now that this is the case. By Lemma A.6, α1, . . . , αn ≥

.
Suppose that ν is strict in k ∈ N . By Lemma A.7, there exist

, y ∈ Rn, x < y such that OSi(x) = OSi(y), i ̸= k, and
:= Sν(x) = OSk(x) < b := Sν(y) = OSk(y). As A is increasing,
≤ A(y)−A(x) = (αk+β)(b−a). Thus αk+β ≥ 0, k = 1 . . . , n. □

roof of Proposition 3.11. Set A = αAM+βSν ; so A =
α
n (OS1 +

· ·+OSn)+βSν , and the thesis follows from Proposition 3.10, as
is strict in n. □
392
emma A.9. Assume that F and Σ are admissible for the symmetri-
al fuzzy measure ν and let A = A(F, Σ, ν). Assume that if x, y ∈ I,
≤ y and F(x, νi) = F(y, νi) implies x = y for i = 1 . . . , n. If

, y ∈ In and x ≤ y, then A(x) = A(y) if and only if x = y.

roof. Let x, y ∈ In such that x ≤ y and A(x) = A(y). Then

= A(y) − A(x) =

n∑
i=1

(F(y(i), σi) − F(x(i), σi)) ;

s by the hypothesis F(x(i), σi) ≤ F(y(i), σi), we have F(x(i), σi) =

(y(i), σi), hence x(i) = y(i), 1 ≤ i ≤ n, and x = y. □

roof of Proposition 3.16. By hypothesis ν1 ≥ · · · ≥ νn > 0,
ence if x, y ∈ R, xνi = yνi implies x = y. Apply Lemma A.9. □

roof of Proposition 3.17. We have

i∈M

αiOSi + β Dν =

∑
i∈M

αiOSi + β

n∑
i=1

νiOSi

=

∑
i∈M

(αi + βνi)OSi + β
∑
i∈M ′

νiOSi ;

apply 3.5. □

Proof of Corollary 3.18. As AM = (OS1 + · · · + OSn)/n, by 3.17,
αAM + β Dν is increasing if and only if

α/n) + βν1 ≥ 0, . . . , (α/n) + βνn ≥ 0. (1)

If β ≥ 0, as ν1 ≥ · · · ≥ νn, then βν1 ≥ · · · ≥ βνn, hence
α/n) + βν1 ≥ · · · ≥ (α/n) + βνn, and (1) is equivalent to
α/n) + βνn ≥ 0 or α + nβνn ≥ 0.

If β ≤ 0, then βν1 ≤ · · · ≤ βνn and conclude analogously. □

roof of Proposition 3.19. We have α Dν+β Sν = αν1 OS1+· · ·+

νn OSn+β Sν . By 3.10, it is increasing if and only if ανi, ανi+β ≥

for i = 1 . . . , n. As ν is strict, ν1 > 0, hence in this case we have
≥ 0; reciprocally, as ν1 > · · · > νn, if ανn + β ≥ 0 and α ≥ 0,

t follows the above condition. □

eferences

bdel-Hamid, O., Deng, L., & Yu, D. (2013). Exploring convolutional neural
network structures and optimization techniques for speech recognition. In
Interspeech: Vol. 11, (pp. 73–75). Citeseer.

bramsky, S., & Jung, A. (1994). Domain theory. In S. Abramsky, D. Gabbay,
& T. Maimbaum (Eds.), Handbook of logic in computer science: Vol. 3, (pp.
1–168). Oxford Svience Publications.

ardozzo, F., De La Osa, B., Horanská, L., Fumanal-Idocin, J., delli Priscoli, M.,
Troiano, L., et al. (2021). Sugeno integral generalization applied to improve
adaptive image binarization. Information Fusion, 68, 37–45. http://dx.doi.org/
10.1016/j.inffus.2020.10.020.

eliakov, G., Sola, H. B., & Sánchez, T. C. (2016). A practical guide to averaging
functions. Springer.

oureau, Y. -L., Bach, F., LeCun, Y., & Ponce, J. (2010). Learning mid-level features
for recognition. In 2010 IEEE computer society conference on computer vision
and pattern recognition (pp. 2559–2566). IEEE.

oureau, Y. -L., Ponce, J., & LeCun, Y. (2010). A theoretical analysis of fea-
ture pooling in visual recognition. In Proceedings of the 27th international
conference on machine learning (pp. 111–118).

rown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al.
(2020). Language models are few-shot learners. arXiv preprint arXiv:2005.
14165.

ueno, J., Dias, C. A., Pereira Dimuro, G., Santos, H., & Bustince Sola, H. (2019).
Aggregation functions based on the Choquet integral applied to image
resizing. In Proceedings of the 11th conference of the European society for fuzzy
logic and technology: Vol. 1, (pp. 460–466). Atlantis Press.

hoquet, G. (1953–1954). Theory of capacities, Annales de I’Institut Fourier, 5,
131–295.

ohen, G., Afshar, S., Tapson, J., & van Schaik, A. (2017). EMNIST: Extending
MNIST to handwritten letters. In 2017 international joint conference on neural
networks (pp. 2921–2926). http://dx.doi.org/10.1109/IJCNN.2017.7966217.

http://refhub.elsevier.com/S0893-6080(22)00160-5/sb1
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb1
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb1
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb1
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb1
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb2
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb2
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb2
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb2
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb2
http://dx.doi.org/10.1016/j.inffus.2020.10.020
http://dx.doi.org/10.1016/j.inffus.2020.10.020
http://dx.doi.org/10.1016/j.inffus.2020.10.020
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb4
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb4
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb4
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb5
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb5
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb5
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb5
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb5
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb8
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb8
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb8
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb8
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb8
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb8
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb8
http://dx.doi.org/10.1109/IJCNN.2017.7966217

I. Rodriguez-Martinez, J. Lafuente, R.H.N. Santiago et al. Neural Networks 152 (2022) 380–393

D

D

D

D

L

M

P

R

R

S

S

S

S

S

S

S

T

V

X

Z

evlin, J., Chang, M. -W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

ias, C. A., Bueno, J. C. S., Borges, E. N., Botelho, S. S. C., Dimuro, G. P., Lucca, G.,
et al. (2018). Using the Choquet integral in the pooling layer in deep learning
networks. In G. A. Barreto, R. Coelho (Eds.), Fuzzy information processing (pp.
144–154). Cham: Springer International Publishing.

ias, C., Bueno, J., Borges, E., Lucca, G., Santos, H., Dimuro, G., et al. (2019).
Simulating the behaviour of Choquet-like (pre) aggregation functions for
image resizing in the pooling layer of deep learning networks. In R.
B. Kearfott, I. Batyrshin, M. Reformat, M. Ceberio, V. Kreinovich (Eds.),
Fuzzy techniques: Theory and applications (pp. 224–236). Cham: Springer
International Publishing.

imuro, G. P., Costa, A. C. R., & Claudio, D. M. (2000). A coherence space of
rational intervals for a construction of IR. Reliable Computing, 6, 139–178.
http://dx.doi.org/10.1023/A:1009913122021.

Dimuro, G. P., Fernández, J., Bedregal, B., Mesiar, R., Sanz, J. A., Lucca, G., et
al. (2020). The state-of-art of the generalizations of the Choquet integral:
From aggregation and pre-aggregation to ordered directionally monotone
functions. Information Fusion, 57, 27–43.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
et al. (2020). An image is worth 16 × 16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929.

Forcén, J., Pagola, M., Barrenechea, E., & Bustince, H. (2020). Learning ordered
pooling weights in image classification. Neurocomputing, 411, 45–53.

Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition. In Competition
and cooperation in neural nets (pp. 267–285). Springer.

Graham, B. (2014). Fractional max-pooling. arXiv preprint arXiv:1412.6071.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep

convolutional networks for visual recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37, 1904–1916.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 770–778).

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.
(2017). Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely
connected convolutional networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 4700–4708).

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd
international conference on international conference on machine learning: Vol.
37, (pp. 448–456). JMLR.org.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images. Citeseer.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems (pp. 1097–1105).

Le Callet, P., Viard-Gaudin, C., & Barba, D. (2006). A convolutional neural network
approach for objective video quality assessment. IEEE Transactions on Neural
Networks, 17, 1316–1327.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86, 2278–2324.
393
Lee, C., Gallagher, P., & Tu, Z. (2018). Generalizing pooling functions in CNNs:
Mixed, gated, and tree. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40, 863–875. http://dx.doi.org/10.1109/TPAMI.2017.2703082.

Lee, C. -Y., Xie, S., Gallagher, P., Zhang, Z., & Tu, Z. (2015). Deeply-supervised
nets. In Artificial intelligence and statistics (pp. 562–570).

Lin, M., Chen, Q., & Yan, S. (2014). Network in network. CoRR, arXiv:1312.4400.
Liu, S., & Deng, W. (2015). Very deep convolutional neural network based

image classification using small training sample size. In 2015 3rd IAPR Asian
conference on pattern recognition (pp. 730–734).

ucca, G., Sanz, J. A., Dimuro, G. P., Borges, E. N., Santos, H., & Bustince, H. (2019).
Analyzing the performance of different fuzzy measures with generalizations
of the Choquet integral in classification problems. In 2019 IEEE international
conference on fuzzy systems (pp. 1–6). IEEE.

endoza, O., Melin, P., & Licea, G. (2009). A hybrid approach for image
recognition combining type-2 fuzzy logic, modular neural networks and the
sugeno integral. Information Sciences, 179, 2078–2101.

an, Z., Zhuang, B., Liu, J., He, H., & Cai, J. (2021). Scalable vision transform-
ers with hierarchical pooling. In Proceedings of the IEEE/CVF international
conference on computer vision (pp. 377–386).

adosavovic, I., Kosaraju, R. P., Girshick, R., He, K., & Dollár, P. (2020). Designing
network design spaces. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 10428–10436).

uder, S. (2016). An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747.

cherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in
convolutional architectures for object recognition. In International conference
on artificial neural networks (pp. 92–101). Springer.

chmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural
Networks, 61, 85–117.

imonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

pringenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2015). Striving
for simplicity: The all convolutional net. In ICLR (workshop track). URL
http://lmb.informatik.uni-freiburg.de/Publications/2015/DB15a.

rivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15, 1929–1958.

toltenberg-Hansen, A., Lindström, I., & Griffor, E. B. (1994). Cambridge tracts
in theoretical computer science: Vol. 22, Mathematical theory of domains.
Cambridge: Cambridge university Press.

zegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. (2015).
Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 1–9).

an, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolu-
tional neural networks. In International conference on machine learning (pp.
6105–6114). PMLR.

aswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et
al. (2017). Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in neural
information processing systems: Vol. 30, Curran Associates, Inc..

iao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: A novel image dataset
for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.
07747.

eiler, M. D., & Fergus, R. (2013). Stochastic pooling for regularization of deep
convolutional neural networks. arXiv preprint arXiv:1301.3557.

http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb12
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb12
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb12
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb12
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb12
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb12
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb12
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb13
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb13
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb13
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb13
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb13
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb13
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb13
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb13
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb13
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb13
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb13
http://dx.doi.org/10.1023/A:1009913122021
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb15
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb15
http://arxiv.org/abs/2010.11929
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb17
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb17
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb17
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb18
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb18
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb18
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb18
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb18
http://arxiv.org/abs/1412.6071
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb20
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb20
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb20
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb20
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb20
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb24
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb24
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb24
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb24
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb24
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb24
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb24
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb25
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb25
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb25
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb27
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb27
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb27
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb27
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb27
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb28
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb29
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb29
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb29
http://dx.doi.org/10.1109/TPAMI.2017.2703082
http://arxiv.org/abs/1312.4400
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb34
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb34
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb34
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb34
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb34
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb34
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb34
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb35
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb35
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb35
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb35
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb35
http://arxiv.org/abs/1609.04747
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb39
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb39
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb39
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb39
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb39
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb40
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb40
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb40
http://arxiv.org/abs/1409.1556
http://lmb.informatik.uni-freiburg.de/Publications/2015/DB15a
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb43
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb43
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb43
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb43
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb43
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb44
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb44
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb44
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb44
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb44
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb46
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb46
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb46
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb46
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb46
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb47
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb47
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb47
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb47
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb47
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb47
http://refhub.elsevier.com/S0893-6080(22)00160-5/sb47
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1301.3557

	Replacing pooling functions in Convolutional Neural Networks by linear combinations of increasing functions
	Introduction
	Preliminaries
	Convolutional neural networks
	Pooling functions
	Increasing functions

	Combination of increasing functions for the pooling function
	Increasing function construction via linear combination of increasing functions
	Combinations of order statistics and arithmetic mean
	Combinations with Sugeno integral
	Generalized Sugeno integrals and combinations
	CombPool layer: Combinations of increasing functions as pooling functions

	Experimental framework
	Deep learning architectures
	Datasets

	Experimental study
	Pooling by means of individual functions
	Pooling using combinations of increasing functions
	Gated CombPool layers
	Global CombPool layers
	CombPool Layers in vision transformers

	Discussion
	Conclusions and future work
	Declaration of competing interest
	Acknowledgements
	Appendix. Mathematical proofs
	References

