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1. Introduction

The shape of a hanging homogeneous flexible chain of given length
and suspended from its ends has attracted the interest of scientists
since the times of Leonardo Da Vinci and Galileo. Johann Bernouilli, Leib-
niz and Huygens gave separately an answer to a challenge proposed by
Jacob Bernouilli asking what curve describes the shape of a hanging
chain. The solution is the catenary

y(x) :% cosh(cx+d), c,dER,c > 0. (1)

Under ideal hypotheses, the only forces acting on the chain are tan-
gential, hence if its shape is inverted, these forces convert into compres-
sion forces. As a consequence, the catenary can be used as a model for
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the construction of arches [4,16,21,30]. The Spanish architect Antonio
Gaud (1852-1926) used catenaries in many of his projects, especially
in the construction of corridors (Fig. 1, left). For these corridors, he
inverted a vertical catenary and repeated its shape along a horizontal di-
rection. In the real world, arches are subjected to a variety of forces
other than its own weight. This is the case of the cables of a suspended
bridge as the Golden Gate Bridge at San Francisco. The weight of the
road is very considerable in comparison with that of the cables. The
curve that models the cables is the parabola y(x) = cx* + d, ¢, d € R. Ac-
cording to [36], funicular forms are the shapes that the structures adopt
when only tension or compression forces are induced by loading. Cate-
naries and parabolas are examples of funicular shapes. Although these
curves are similar at small scales, both curves are very different when
one moves far from the lowest point because the catenary has an expo-
nential growth whereas that of the parabola is quadratic.

A natural problem is to study the analogue of the catenary in dimen-
sion 2, that is, to investigate the shape of a surface suspended by its
weight. Let R? be the 3-dimensional Euclidean space with Cartesian
coordinates (x,y,z) and denote by (-~} the Euclidean product of R>.
As usually, the z-axis will represent the vertical direction and the gravity
will act on the negative direction of the z-axis. Consider a heavy uniform
surface S of given area A and spanned by a closed curve I. Assume that
the only force exerted on S is the gravity. Then the equation that governs
the shape of S in static equilibrium is

0960-0779/© 2022 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



R. Lopez

Chaos, Solitons and Fractals 161 (2022) 112350

Fig. 1. Left: Corridor in the Colegio Teresiano, Barcelona [41]. Right: a hanging model of the church of Colonia Giiell used by Gaud with funicular structures [42].
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where H is the mean curvature of S, N is the unit normal vector to S and
es = (0,0,1). A surface is called singular minimal surface if satisfies [2] [6,
10,12].

Historically, many mathematicians were interested in the shape of a
hanging surface, including Beltrami, Germain, Lagrange and Jellet [3,14,
18,22]. Poisson derived eq. (2) within of the theory of calculus of varia-
tions [33,p. 185]. A singular minimal surface is a model in architecture of
aroof or adome as the catenary is a model of an arch. The reason is sim-
ilar because when S is suspended by its own weight, the only tension
forces acting on S are tangent forces. In consequence, if S is inverted,
then these forces are transformed into internal compression forces.
This provides solidity in the construction and the risk of collapse and
sagging is significantly diminished. In few words, the surface is a
model of a ‘perfect roof’ according to the German architect Frei Otto [32].

A first example of solution of [2] is a vertical plane because H = 0
and <(N,e3) = 0. Non-planar solutions of [2] can be found in the

class of surfaces invariant along a direction v. These surfaces are param-
eterized by X(s, t) = y(s) + tv, where y = y(s), s € C R, is a curve in-
cluded in a plane orthogonal to v. If, in addition, S is a singular
minimal surface then v must be a horizontal vector. If y is the graph

of z = z(x) situated the xz-plane, then v = (0,1,0) and the parameteri-
zation of the surface is X(x,y) = (x,y,z(x)). Then eq. (2) is

z' 1

1422 2z

This is the one-dimensional version of [2] whose solution is the catenary
[1]. As a consequence, the mathematical model of a long corridor is a cy-
lindrical surface whose section is a catenary. This is just what Gaud did
in its constructions of corridors by repeating the shape of a vertical cat-
enary [17,23]. As mathematical surfaces, the stability of long corridors
has been recently investigated by the author [27].

Assuming a general geometry of the surface, it is not possible to find
explicit solutions of [2] by quadratures. Although Gaud was unaware of
the Poisson's work on hanging surfaces, he already suspected that their
shapes were difficult to be described. That is why Gaud used models of
hanging skeletons made by threads with small sand bags suspended
from them (Fig. 1, right). Moving the vertices and changing the weights,

he succeeded in finding approximated models of domes and roofs.
Some of these models were later employed in the construction of the
church of Parque Giiell and Sagrada Familia (Barcelona). Antonio Gaud
and Frei Otto were architects that found in nature the shapes of their de-
signs, and both were part of the architectural movement called ‘form
finding’. Without to be a complete list, classical references in architec-
ture about the constructions of domes are [7,8,15,28,39]. However, as
far as the author knows, there is no literature on the employ of singular
minimal surfaces for the construction of roofs and domes.

The organization of this paper is as follows. Section 2 presents the
objectives of the paper and the definitions of the three surfaces of
study. Section 3 gives a theoretical approach of singular minimal sur-
faces using calculus of variations, together with a description of those
surfaces that are of rotational type. Next, the heights of the centers of
gravity of catenary rotation surfaces and paraboloids are compared in
relation with that of singular minimal surfaces (Sections 4 and 5, respec-
tively). The results of these computations appear at the end of each sec-
tion. In Section 6, the curvatures of the profile curves of the three
surfaces are compared with each other. A discussion of conclusions is
given in Section 7. Finally, an appendix shows the Mathematica codes
utilized in the computations.

2. Objectives and definitions

This section is devoted to formulate the objectives of this paper to-
gether with the required definitions. The shape of a hanging surface is
characterized for having the lowest center of gravity among all surfaces
with the same boundary and the same area. The focus of this paper is
domes with axial symmetry and all surfaces that will appear are axi-
symmetric with respect to the z-axis. Recall that this axis is the direction
of the gravity. These surfaces of revolution are generated by the rotation
with respect to the z-axis of planar curves contained in the coordinate
xz-plane. In the next section, it will prove the existence of singular min-
imal surfaces of rotational type that do not intersect the rotation axis.
These surfaces present a ‘hole’ around the z-axis. Thus these surfaces
are not realistic domes and must be discarded.

Definition 2.1. Let S be an axisymmetric singular minimal surface with
respect to the z-axis. The surface S is called a rotational tectum if S meets
the rotation axis.

Rotational tectums are the models of perfect rotational domes be-
cause they have the lowest center of gravity. The objective of this
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paper is to compare the heights of the centers of gravity of rotational
tectums with another two rotational surfaces which, not being singular
minimal surfaces, may be candidates for the construction of rotational
domes. The first surface is motivated by the catenary.

Definition 2.2. A catenary rotation surface is the surface of revolution
generated by rotating a vertical catenary with respect to its symmetry
axis.

Therefore, if a bounded piece of a catenary rotation surface is
spanned by a horizontal circle, its center of gravity must be situated in
a higher position with respect to that of the rotational tectum with the
same boundary curve and the same surface area.

Question 1.Is there a significant difference between the height of the
centers of gravity of a rotational tectum and a catenary rotation sur-
face?

The second candidate surface is the paraboloid, also known as ellip-
tic paraboloid or paraboloid of revolution.

Definition 2.3. A paraboloid is the surface of revolution generated by
rotating a vertical parabola with respect to its symmetry axis.

It is natural to consider paraboloids as candidates because the parab-
ola is other funicular curve. Hence that the corresponding rotational
surface generated by the parabola may be a good approximation of a
dome.

Question 2. Is there a significant difference between the height of the
centers of gravity of a rotational tectum and a paraboloid?

If the comparison between each one of the candidate surfaces with
the mathematical model is one of the objectives, by the way, it is nat-
ural to compare both candidate surfaces.

Question 3. With respect to the centers of gravity, which surface, a
catenary rotation surface or a paraboloid, is more accurate to the
mathematical model of a rotational tectum?

The answer to these questions, or at least an investigation to com-

pare the three surfaces, may have important implications in archi-

tecture. When a mathematical model is implemented to the
construction of a building, the nature of the functions employed is
crucial in the computations [29,34,35]. Going back to the three above
surfaces, the mathematical model is governed by an axisymmetric
solution of [2]. This equation is of second order and it is necessary
numerical methods to solve it. The catenary rotation surface is con-
structed with the catenary [1] as profile curve, a curve determined
by exponential functions, which are difficult to implement in prac-
tice. In contrast, the paraboloid is defined with a polynomial func-
tion, being the parabola much simpler than the catenary. In fact,
the parabola is the simplest curve after a straight line because it is

determined by a polynomial of degree 2.

The aim of the study is to investigate if the two candidate surfaces
adjust to the mathematical model in the sense that their centers of grav-
ity are closed or far from the mathematical model. The height of the cen-
ter of gravity is, up to physical constants, the weight of the surface.
However, despite the fact that rotational tectums, or in general, singular
minimal surfaces are considered to be the mathematical model, a com-
parison study of the center of gravity with other surfaces has not been
examined in the literature. To determine the center of gravity of the ro-
tational tectum, it will be employed a numerical method with
Mathematica [43] because the differential equation that governs this
surface cannot be integrated by quadratures. In contrast, the centers of
gravity of the two candidates can be explicitly calculated. Following
Shah, Animasaun and Wakif et al., the statistical method of slope of lin-
ear regression line will be used to compare and discuss the results from
the data obtained of the three surfaces [1,38,40].

Other parameters that will be investigated are the curvatures of
these surfaces. On a mathematical surface as model in architecture,
stresses due to elastic deformations are related to the curvatures of
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the surface. In general, high curvatures (small radius of curvature) are
difficult to implement in real constructions. The surfaces studied in
this paper are all surfaces of revolution, hence that it is interesting to in-
vestigate the curvature of the profile curve. An example is the study of
the curvature at the vertex of the surface, which corresponds with the
top of the dome after the surface is reversed.

3. Theoretical review
3.1. The Euler-Lagrange equation

This section presents the Euler-Lagrange equation of the variational
problem associated to the problem of a hanging surface. Let I’ be a closed
curve and let S C R® be a compact surface S spanned by I'. Suppose that S
is made by an incompressible material with uniform density o per unit
of area. The area A of S is fixed because it is assumed that the surface
cannot be stretched. As physical assumptions, the only forces acting
on S will be the force of gravity. After the presentation of the problem
of the hanging surface. The question is what is the equation that
describes the surface when it reaches a static equilibrium. To derive
the Euler-Lagrange equation, the techniques of calculus of variations
are employed. Since the problem is local, it suffices to assume that S is
the graph of a function u = u(x,y) defined in a bounded domain Q) C
R?, where 30 parameterizes the boundary curve I. The position of
equilibrium is characterized by the fact that the center of gravity of S
attains its lowest position. If the weight is measured with respect to
the plane z = 0, then the height of the center of gravity is

o8 / 2 42
M/Q uX,y)y/1+uz + uj dxdy, (3)

where g is the gravitational acceleration and M is the mass of the curve.
The subindices stand for the corresponding derivatives of the function u
with respect to the variables x and y. Here it is assumed implicitly that S
lies over the plane z = 0. The Lagrange multiplier of the area of S is

Ap = /ﬂ,/l +uZ + uZ dxdy.

Define the functional

Jiu] :%/u\/l +|Du\2dxdy+)\/\/1 + |Dul? dxdy
9] JQ
_ o8 2
—/Q(Mu+>\)\/1+|nu| dxdy,

where Du = (uy,u,) is the gradient of u and A € R. Under an arbitrary
infinitesimal variation u(x,y) + to(x,y) of u = u(x,y), where ¢ is
smooth in  and ¢ = 0 along 09, if the function u is a critical point of
J then

4)

d
@i, Jurel=o

Using standard arguments, an integration by parts and the Fundamental
Lemma of the calculus of variations, the Euler-Lagrange equation is

Uy uy _ og/M 5

+ = .
y1+Du?) o \y/1+[Duf , (0g/Mu + \)y/1 + |Duf?

To simplify the arguments, all physical constants o, M and g will be as-
sumed to be 1. The constant A can be A = 0 after a vertical translation
of the surface. Thus eq. (5) reduces into

. Du 1
div = :
\/1 + |Duf? u\/l + |Duf?

(6)
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In this equation, the left-hand side of [6] is just twice the mean curva-
ture H of S. The right-hand side can be expressed in terms of the unit
normal vector N of S because for a graph z = u(x,y),

(- Du,1)
\/1+ |Duf?

Definitively [6] is the nonparametric form of [2].

The Euler-Lagrange eq. (6) is the first order approach to the problem
of minimization of the energy [3]. In general, the problem of finding
minimizers for given area and boundary is open in all its generality. Mo-
tivated by Nitsche [31], the next example shows a family of surfaces
with prescribed area and boundary whose center of gravity can be as
lower as one desires (Fig. 2). Let T be a circle of radius 1 and contained
in the plane P of equation z = 0. For each 0 <R < 1, define the surface
Sg = Qg U Cg, where Qg C Pis the annulus R? < x*> + y? <1 and Gy is
the cone u(r) = — h(R — r)/R in polar coordinates, 0 < r < R and

h=/2+ 1/R%. All surfaces Sg share the same boundary I' and the
same area Ag = 2m, but the height of the center of gravity of Sg is

N =

— 1R \/1 4 2R?, which goes to — as R — 0.
3.2. Rotational tectums

Let S be an axisymmetric singular minimal surface about the z-axis.
Suppose that its generating curve is X — (x,0,u(x)), where u : IC R™
— R™ is a positive function. Consider the parameterization of S given
by X(x,0) = (x cos 6,x sin 6,u(x)). Then [2] becomes

u”’ u o1

—1+u'2+?:ﬂ' (7)

Comparing [7] with [6], the hypothesis on the axial symmetry makes
that the eq. (6) converts into an ordinary differential equation. If ry >
0, standard theory implies local existence of solutions of [7] for any
two initial conditions on u(rp) and u/(rp). A detailed description of the
solutions of [7] appears in [9,11]. A class of solutions corresponds with
curves that do not meet the rotation axis. These solutions have winglike
shape and appear with the initial conditions ro > 0, u(rg) = zo > 0 and v’
(ro) = 0 (Fig. 3, left).

The objects of study in this paper are those rotational surfaces that
meet the z-axis, and thus, the intersection with this axis must be orthog-
onal (Fig. 3, right). However, eq. (7) is degenerated at z = 0 and stan-
dard theory does not ensure, in principle, local existence around this
value. This can be overcome by using the fixed point theorem for Banach
spaces, proving that eq. (7) has a solution for initial conditions

u(0) =200, 1/(0) =0. (8)

See [24] for details. The surface generated by this solution is a rotational
tectum according to Definition 2.1. Another solution of 7] is v(x) = x for
x> 0, that is, a cone with vertex at the origin of coordinates. This surface

r

Cr
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does not meet the z-axis and its shape is a conical tent once inverted the
surface. The most remarkable properties of the rotational tectums are
[11]:

(1) The maximal domain of the solution is [0, ).
(2) The function u is strictly increasing and presents a minimum at x
=0.

(3) The function u is asymptotic to the conical solution v(x) = x.

—

Rotational tectums are peculiar in the family of singular minimal
surfaces in the following sense. It is natural to ask if there are other com-
pact non-rotational singular minimal surfaces whose boundary is a hor-
izontal circle. The answer is negative and given in the following result
[25,26].

Proposition 3.1. Let S be a compact singular minimal surface without
self-intersections. If the boundary of S is a horizontal circle, then S is a
surface of revolution.

The hypothesis that the surface has not self-intersections is natural if
one thinks in models of realistic domes. From the architectural view-
point, this proposition says that if one wants to construct a dome with
circular boundary, then the surface must be rotational. This is in concor-
dance with the intuition that the axial symmetry of the boundary curve
is inherited to the whole surface that spans.

4. Rotational tectums versus catenary rotation surfaces
4.1. Approach and methodology

This section is devoted to compare the centers of gravity of rotational
tectums and catenary rotation surfaces having the same boundary curve
and surface area. A rotational tectum 7 is generated by a solution u = u
(x) of (7)- [8]. Suppose that the boundary of 7 is the horizontal circle of
radius R > 0
Tk = {(xy.ho) s 52 +y2 = R},
where hy = u(R) is the height of the circle ['s. The area Ay of 7 is

R
Ag = 211/ xV1 4 u?dx,
Jo

and the height hy of its center of gravity is

R
hT:i—"/ xuv/ 1+ u?dx.
0.J0

In the comparison analysis between both surfaces, it is enough to fix the
position of one of them. To facilitate the computations, the rotational
tectum will be fixed and next, the catenary rotation surface will be
moved vertically until that the boundary curve and the area coincide

r r

Cr

Fig. 2. A family of surfaces parameterized by R, where all surfaces have the same area and boundary, but the height of the center of gravity goes to —e as R — 0.
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Fig. 3. Profiles curves of rotational singular minimal surfaces. Left: the initial condition are u(1) = 1 and u’(1) = 0 and the curve does not intersect the z-axis. Right: the initial conditions

are u(0) = 1,u’/(0) = 0 and the curve meets the z-axis (rotational tectum).

with that of 7. Consider the catenary [1] contained in the xz-plane
where the z-axis is its axis of symmetry. This implies d = 0 in [1]. The
equation of the catenary is

Zem(X) :% cosh (cx)+m, x€[O,R], 9)

where ¢, m € R and ¢ > 0. The rotation of this catenary with respect to
the z-axis defines a catenary rotation surface denoted by C. . Notice
that C. is not a catenoid because a catenoid is generated when the cat-
enary rotates about a horizontal axis that does not intersect the cate-
nary. Take the parameters ¢ and m in [9] so that the area of C., is Ag
and its boundary is I'x. Since the boundary is Iy, a first condition is

% cosh (cR) +m = hy. (10)

The area of C.,; can be computed by quadratures, obtaining

R ; 211(cR sinh (cR) — cosh (cR) + 1)
A:ZH/O /142 (0% dx = - (1)

Finally the height h¢ of the center of gravity of C., is

2m (R 2
he = —/ XZem(X)\/ 1+ 2, (x)“ dx
Ao Jo ’

Tr<2c2R2 + 2R sinh(2cR)— cosh(2cR) + 1)
= +m.
4C3A0

According to this scheme, first the boundary Iy is prescribed and
next, this provides the area Ay of 7. The area Ag and the height hy of
the center of gravity of the rotational tectum are calculated with
Mathematica. Therefore, the methodology follows the next steps:

(1) Fix zo > 0 in [8], the lowest point of 7. By using the function
NDSolve of Mathematica, solve the initial value problem (7)-
[8]. The domain of the solution u is [0, ).

(2) Fix R > 0. Restrict the function u to the interval [0,R]. This deter-
mines a compact rotational tectum 7. Let I'; be its boundary curve.

(3) Compute the area Ag of 7 by using the function NIntegrate of
Mathematica.

(4) Calculate the parameters ¢ and m of C., in such a way that the
area of C.m is Ap and its boundary is I'z. Here the function
FindRoot of Mathematica solves the egs. (10) and (11).

(5) Compute the values of the heights hy and hc. For hy, the function
Nintegrate of Mathematica is used and for hc, the formula given
in[12].

The value z, of the lowest point of the rotational tectum can be
previously fixed after a dilation from the origin. This is because if u =
u(x) is a solution of [7], the function v(x) = cu(x/c), c > 0, is also a
solution of [7]. Thus, the value zg = 1 will be assumed in the initial
condition (8).

In this paper, this process will be computed for the rotational tec-
tums whose boundary is a circle of radius R, where R goes from 2 to
20 in increments of two. Table 1 shows the data corresponding to the
mathematical model of the rotational tectum. In it, the values of the ra-
dius of the boundary curve Ik, the height hg of this curve, the area Ag of
the surface and its center of gravity are shown.

Table 2 shows the comparison of the values hr and hc. In order to
conduct a suitable analysis, the deviation hc — hr of the centers of
gravity of both surfaces is computed in relation to the total height of
the surface. The height of the surface is u(R) — u(0).

Another useful information is the determination of the lowest points
of the rotational tectums and the catenary rotation surfaces. These
points are denoted by lwr and Iwc, respectively. From the architectural
viewpoint, the lowest point determines the height of the dome once is
reversed the position of the surface. These heights are u(R) — Iwrand
u(R) — lwg, respectively. Here lwy = zo = 1 in all cases because zg =
1 in [8]. For C.m, the value of Iwc occurs evaluating z., ,(x) at x = 0.
Thus Iwc = 1/c + m. Table 2 presents the deviation Iwc — Iwy in
relation to the height of the rotational tectum, namely, (Iwc — Iwy)/(u
(R) — 1). These computations are shown in Table 3. Fig. 8 shows some
pictures of rotational tectums and catenary rotation surfaces.

4.2. Analysis of results and discussion

Overall, differences of less than one decimal in Table 2 between the
values hr and hc prove that the height h¢ of the center of gravity of the
catenary rotation surfaces is very close to the value hy. The slope of
the linear regression line through data points on Microsoft Excel has
been used to compare the information between rotational tectums

Table 1

Values of R, ho, Ao and hr for the rotational tectum when the lowest height is zo = 1.
R ho = u(R) Ao hr
2 1.8854 14.63 1.4773
4 3.7295 66.22 2.5786
6 5.7681 155.99 3.8651
8 7.8292 282.30 5.1997
10 9.8837 444.43 6.5477
12 11.9278 642.08 7.8989
14 13.9628 875.13 9.2498
16 15.9903 1143.55 10.5993
18 18.0120 1447.30 11.9471
20 20.0290 1786.39 13.2932
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Table 2
Comparison of the values hr, hc and hp together with the deviations with the height of the
rotational tectum.

foom he e e
2 1.4773 1.4782 1.4778 0.0969 0.0482
4 2.5786 2.58811 2.5843 0.3488 0.2119
6 3.8651 3.8887 3.8805 0.4942 0.3232
8 5.1997 5.2377 52253 0.5573 0.3753
10 6.5477 6.5994 6.5830 0.5819 0.3975
12 7.8989 7.9632 7.9430 0.5891 0.4046
14 9.2498 9.3261 9.3023 0.5887 0.4057
16 10.5993 10.6870 10.6598 0.5849 0.4033
18 11.9471 12.0458 12.0152 0.5798 0.4002
20 13.2932 13.4025 13.3686 0.5744 0.3962
Sip 0.6639 0.6701 0.6682 0.0196 0.0150

and catenary rotation surfaces. This value may be useful when testing
whether the slope of the regression line for the height of the center of
gravity hc is significantly different from hr. Another interesting
quantity is the relation of the difference hc — hr and the height of the
rotational tectum. In percentage, this deviation is very small. Fig. 4
shows some pictures of rotational tectums and catenary rotation
surfaces with the same area and boundary. The list of conclusions of
Tables 2 and 3 are now presented.

(1) Asexpected, the height h¢ of the center of gravity of C., is higher
than hr. The center of gravity hr of the mathematical model 7
increases as R — « with a rate of increase of S;, = 0.6639. The
same occurs for the value h¢, where the rate is Sj, = 0.6701.
The fact the both slopes almost coincide indicate the good
approximation of the catenary rotation surface. In percentage,
the error of hc with respect to hris only of 0.93%.

(2) Taking in consideration the difference hc — hrin relation with
the total height of the rotational tectum 7, the deviation is less
than 0.60% for all values of R. The rate of increase is Sj, = 0.0196.

The deviation percentage uiéfe)ihzl attains a maximum and next

decreases. This is shown in Fig. 5. In view of it, the (circle) points
fit to a parabola. The equation of this concave parabola is com-
puted with Microsoft Excel, being y(R) = — 0.0031R*> +
0.0887R + 0.0076. The maximum is attained at the value R =
14.30. In Table 2, this value is R =~ 12.

(4) The value lwr = 1 is always less than Iwc. This is understandable,
although there is no an a priori relation between the centers of
gravity and the lowest points.

(5) The deviation Iwc — lwrincreases as R — < and it is significant.
The rate of increase is S, = 0.2782. Thus the top of the
(inverted) catenary rotation surface is clearly below than of the
rotational tectum and this difference increases when R — o,
This is confirmed with the slope of the deviation rate (Iw. — zo/
(u(R) — zo), which is Sj, = 1.0158.

(3

—

Table 3
Comparison of Iwc, lwp and the deviations with respect to the height of the rotational
tectum.

? e Ptk e otk
2 1.0452 5.1079 1.0318 3.5900
4 1.3236 11.8550 1.2565 9.3987
6 1.7781 16.3190 1.6501 13.6348
8 2.3128 19.2236 2.1270 16.5027
10 2.8847 21.2156 2.6442 18.5085
12 3.4751 22.6495 3.1822 19.9690
14 4.0751 23.7228 3.7313 21.0701
16 4.6803 24.5515 4.2866 21.9246
18 5.2883 25.2075 4.8453 22.6035
20 5.8976 25.7377 5.4059 23.1536
Sip 0.2782 1.0158 0.2516 0.9852
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5. Rotational tectums versus paraboloids
5.1. Approach and methodology

This section compares rotational tectums and paraboloids. With the
same effort, catenary rotation surfaces and paraboloids also are com-
pared with each other. This will answer to Questions 2 and 3.

Regarding Question 3, it deserves to give an observation about the
comparison between the centers of gravity of catenary rotation surfaces
and paraboloids. Recall that in the problem of the hanging chain, the
center of gravity of the catenary is lower than the one of parabola. How-
ever, a priori this property does not imply that the corresponding rota-
tional surfaces preserve this property. This is due because the
prescribed initial data are different in both situations. In the hanging
surface, these data are the boundary curve I'z and the area Ao. In the
hanging chain problem, the initial data are the ends of the curve and
its length. If a catenary rotation surface and a paraboloid have the
same boundary curve and area, the generating curves have the same
endpoints. However, the lengths are different. In terms of the
generating curve y(x), this is equivalent to say that there is no a

relation between the value anabx 1+y2dx (surface area) and

J2\/1 4 % dx (length of the curve).
Consider the parabola of equation

Pem(®) =cx* +m, x€[O,R], (13)

where ¢, m € R, ¢ > 0 and situated in the coordinate xz-plane. Let P, be
the paraboloid generated by rotating p., ,, about the z-axis and parame-
terized by X(x,0) = (x cos 6,x sin 6,p., (X)), x > 0, 6 € R. The height of
the center of gravity of P., is denoted by hp. Since the boundary of P,
is Tg, then p., m(R) = hp implies

cR? + m = ho.

The area of P, can be computed explicitly:

3/2

< n<<4czR2+1)/ 71>
o (x00%dx —

AO:ZH/O x\/1+p,(x)°dx = 62 .

The value hp of its center of gravity is computed again by quadratures,
namely,

2 (R
e | xpem0\/1-+ P07 ax
0 .J0

rr<<6c2R2—1> (4(:2122 i 1)3/2 i 1)

60C3A0

hp

+m.

All above quantities are polynomial in the variables ¢ and R which is much
manageable regarding the computational cost. In contrast, the analogue
calculations [10], [11] and [12] for catenary rotation surfaces are given
in terms of the exponential function. As a result of these computations,
Table 2 shows the values of hp. Table 3 gives the computations of the
lowest point of the paraboloid, which coincides with the parameter m.

5.2. Analysis of results and discussion

The almost coincidence of the values hy and hp reveals that
paraboloids are very accurate to the mathematical model in terms of
the heights of centers of gravity. Fig. 6 shows some pictures of
rotational tectums and paraboloids with the same area and boundary.

(1) As expected, the height hp of the center of gravity of the
paraboloid is higher that of the rotational tectum, but as it
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Fig. 4. Comparison between rotational tectums (thick) and catenary rotation surfaces (dashed). Left: R = 5 where hy = 3.2115, hc = 3.2278 an lwc = 1.5364. Right: R = 10, hy = 6.5477
and h¢e = 6.5994. Here Ilw = 2.8847.
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happened with the catenary rotation surface, the difference hp —
hr is very small. The rate of increase is S, = 0.6682. Comparing
with the mathematical model, which is S, = 0.6639, the
percentage error is only of 0.64 %.

In terms of percentages in relation with the total height of the ro-
tational tectum, the deviation hp — hris less than 0.41 % for all
values of R. The rate of increase is Sy, = 0.0150.

Regarding Question 3, the approximation of the paraboloid to the
rotational tectum is better than the catenary rotation surface be-
cause hr < hp < h¢ for any R. This contrasts to the reverse
property between the centers of gravity of the catenary and the
parabola as previously mentioned. Table 2 shows that the
increase is less than of the catenary rotation surface, being its
rate of S;, = 0.0150; for the catenary rotation surface is 0.0196.

The deviation percentage L’]("R)th increases until a maximum and
decreases later. This behavior is similar than in the case of the

catenary rotation surface. See (square) points in Fig. 5. Again,

the polynomial regression that fits the deviation IT("R)* 7“71 is of de-
gree 2. Its equation is y(R) = — 0.0023R? + 0.0647R — 0.0273
and its maximum attains at R = 14.06. This agrees closely with
the value R =~ 14 obtained in Table 2.

The value Iwy = 1 is less than Iwp. The difference Iwp — Iwr is
larger than hp — hr and it increases if R — «. However, this
difference is less than in the case of catenary rotation
surfaces. The rate of increase of lwp in relation with the
variable R is S;, = 0.2516, and less than the value S;, =
0.2782 for catenary rotation surfaces. This is also explained
by comparing the slope or the linear regression line through

the data of ‘%{) jZZ% and L’lv(v,% jZZ% For paraboloids, the slope of
increase is Sy, = 1.0158, which is greater than the rate in the
case of paraboloids, whose value is S;, = 0.9852. This
confirms again that paraboloids adjust better than catenary

rotation surfaces.

(6) Tosummarize, the comparison between paraboloids and cate-

nary rotation surfaces (using centers of gravity or deviation
with respect to the total height) shows that paraboloid fit bet-
ter than catenary rotation surfaces to the mathematical
model.

®

@ Catenary rotation surface

W Paraboloid

Fig. 5. Polynomial regression of second order adjusting the data points %

%

h

p

he — hy

u(R) - zo and

ul

R)ih;o of Table 2.

6. Comparing the curvatures along the profile curves
6.1. Approach and methodology

This section compares the curvatures of the three surfaces. The cur-
vature k of a planar curve y = y(x) is

_ Y
K(x (1 +y'(x)2>3/2

The curvatures of the three profiles will be denoted by kr, k¢ and kp. The
curvature xr is necessarily computed with numerical methods. Thanks
to [7], it suffices the derivatives of u up to the first order because

(14)

oL (w1

T VArur\x )

For the catenary and the parabola, the curvatures are calculated from
[14] and the parameterizations [9] and [13] obtaining

Re) = —S— Rl = ——
C = ’ P = .

cosh 2(cx) (1+ 4c2x2)3‘/2

For the calculations of the mean curvature H, it will be utilized the prop-
erty that H measures the normal curvatures along two orthogonal tan-
gent directions, one of them coincides with the curvature of the
generating curve. If the parameterization of the axisymmetric surface
is (x,0) — (x cos 0,x sin 6,y(x)), then

Y'(x)
x\/1+y(x)?

For the rotational tectum, H =

H(x,0) = % K(X) +

L_ thanks to [7]. For the candidate

2uy/14u?

surfaces, the expression of H(x,0) is computed using the parameteriza-
tions of the profile curves. Table 4 shows all these calculations.

It is important to notice that the symbol c has been used for catenar-
ies and parabolas, as well as, catenary rotation surfaces and paraboloids.
However, the parameters c are distinct, in general, for both curves and
surfaces because ¢ (and m) is determined by the initial conditions
(boundary curve and surface area). The value of krat x = 0 is u’’(0).
By the L'Hopital's rule, taking limits in [7] as x — 0, we obtain 2u’’
(0) = 1/u(0), so kr(0) = 1/(2u(0)). In all the computations, the value
u(0) = zo was fixed to be 1. In particular, k(0) = 1/2.

6.2. Analysis of results and discussion

In order to show the behavior of all curvatures, it has been fixed the
radius R = 14 in the hanging problem. Once the boundary curve I'z and
the surface area Ap have been fixed, let C.m and P.,, be the catenary
rotation surface and the paraboloid with the same initial data. Fig. 7
shows the plots of Ky, kc and Kp.

In the three surfaces, the curvatures have a maximum at the lowest
point x = 0 and next, the curvature changes rapidly to be almost zero as
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Fig. 6. Comparison between rotational tectums (thick) and paraboloids (dashed). Left: R = 5 where hr = 3.2115, hp = 3.2219 and Iwp = 1.4387. Right: R = 10, hy = 6.5477 and hp =

6.5994. Here lwp = 2.6442.

x — o, This is expected for the rotational tectum because u is asymptotic
to the straight-line z = x in the coordinate xz-plane (see final remarks in
Section 3.2). However, rc and Kp take values significantly lower than kr
around the lowest point. The functions ¢ and kp look like coincident not
only around x = 0 but in all its domain. The curvatures ~c and Kp go to 0
as x — « by the expressions of Table 4. However, the decay growth is
different because for a catenary rotation surface, this decay is of type
e~2* and for paraboloids of order x>

For the mean curvature H, the behaviours of Hr, Hc and Hp along the
profile curves are similar than the curvatures of the profile curves,
because H gathers part of information from the curvature of the
profile curve. For example, the inequalities Hr >H¢ and H7>Hp hold
around the lowest point. Other property is that the mean curvatures
Hc and Hp are almost identical in all its domain. All the mean
curvatures converge to 0 as x — . Again, the type of decay between
Hc and Hp is different.

As a conclusion, the curvature functions  around the lowest point of
the two candidate surfaces are close between them, but far from the
mathematical model. In all them, the functions are decreasing along
the profile curve (as one goes from x = 0 to x = R). The mathematical
model presents a great contrast between x = 0 and x = R.

The previous analysis has been done for the value R = 14. For arbi-
trary R, it is interesting to investigate the values ~c and kp for different
values of R. See Table 5. At x = 0, Kc(0) = c and kp(0) = 2c (different
constants c). Just at the vertex, the value of the mean curvature
coincides with that of k. For the rotational tectum, k(0) = 1/(2zy) =
1/2.

Since the value k1(0) is constant (equal to 0.5) the rate of increase is
0. However, for k-(0) and kp(0), the slopes of the linear regression line
are S, = — 0.01118 and S;, = — 0.0165, respectively. In order to give
an adequate comparison, let us observe that the difference between
both slopes is of 42%. This is in accordance with the different type of
decays of the curvatures ¢ and kp previously explained. As a
consequence, the value of the curvature of the catenary adjusts better
than that of the parabola.

7. Conclusions

The aim of this paper was to investigate if catenary rotation surfaces
and paraboloids are close or far from the mathematical model of a rota-
tional dome. This objective has been achieved because the centers of
gravity of these surfaces have been computed and subsequently, a com-
parative analysis of these calculations has been shown. Among the re-
sults, it is established that catenary rotation surfaces and paraboloids
have both a high degree of approximation to the rotational tectum. On

Table 4
Curvatures ~ and H along .
T Cem Pem
" (HE;)’ ? o e
K(0) ﬁ c 2c
HO) w T 3 (Gt +roonen) e

the other hand, it has been also demonstrated that paraboloids adjust
better than catenary rotation surfaces.

The fact that the solutions of the singular minimal surface eq. (7)
cannot be obtained by quadratures gives a great difficulty to use these
surfaces in architecture when implementing them in practice. This
leads to the idea of replacing the mathematical model with other math-
ematical surfaces that are easier to work with, but without losing, as far
as possible, the property that characterizes the rotational tectums. This
property is that the forces acting on the surface are only due to compres-
sion forces. It was therefore necessary to check the centers of gravity of
the two candidate surfaces.

Catenary rotation surfaces and paraboloids are generated by two fa-
mous curves, the catenary and the parabola, respectively. These curves
are well known in geometry, but also in architecture because both
curves are created by funicular structures.

The accuracy of the two candidate surfaces with the rotational tec-
tum is investigated by comparing their centers of gravity. The height
of the center of gravity measures, up to physical constants, the energy
of the rotational dome when it is subjected only to forces of compres-
sion. On the basis of the numerical results, the main consequence is
that both surfaces are good approximations of the mathematical
model. In both cases, the percentage errors of the slope of linear regres-
sion line are of 0.93 % and 0.41 %, being actually low percentages for
both candidate surfaces.

A second result is that paraboloids adjust better than the catenary
rotation surfaces. This conclusion has been tested using the slopes of
the linear regression line of the heights of the centers of gravity in rela-
tion with the height of the mathematical model. Taking into account

== k-rotational tectum
k-catenary rotation surface
-------- k-paraboloid

Fig. 7. Comparison between the curvatures  of the profiles of the two candidate surfaces
and the rotational tectum. Here R = 14.

0.5
0.4

0.3 === H-rotational tectum

Outf69]= H-catenary rotation surface

........ H-paraboloid
0.1

Fig. 8. Comparison between the mean curvatures H along the generating curves of the two
candidate surfaces and the rotational tectum. Here R = 14.
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Table 5

Values of k¢ and Kp at the vertex x = 0 of the rotational surfaces for different values of R.
R K Kc(0) Kp(0)
2 0.5 0.3985 0.4268
4 0.5 0.2726 0.3091
6 0.5 0.1974 0.2288
8 0.5 0.1525 0.1782
10 0.5 0.1235 0.1448
12 0.5 0.1034 0.1215
14 0.5 0.0888 0.1044
16 0.5 0.0778 0.0914
18 0.5 0.0691 0.0813
20 0.5 0.0622 0.0731
Sip 0 —0.0118 —0.0165

both values, paraboloids clearly win to catenary rotation surfaces. To
this, we add the clear advantage of paraboloids because they are more
manageable from the computational viewpoint.

To the best of our knowledge, no research has been carried out to
test the centers of gravity of catenary rotation surfaces and paraboloids.
However, the paraboloid is an example of a well-studied surface in ar-
chitecture. Some studies concerning to the stress, equilibrium condi-
tions, elasticity and stress-strain state of paraboloids appear in [2,5,13,
19,20,37]. In all these works, it has not been considered the center of
gravity as a parameter that may useful in the construction of domes.

This paper has proved that paraboloids adjust reasonably well to the
mathematical model of the rotational tectum. In consequence, our re-
sults would demonstrate that paraboloids can serve as good designs
for construction of domes and cupolas.
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Appendix A. Appendix

This appendix shows the Mathematica codes employed to obtain
Tables 1 and 2. Similar codes are equally valid for the paraboloids in
Section 5. The first input is the equation of the catenary [1]:

(* The equation of the catenary *)

z[x ]:=1/cCoshlc x]+m

The next step is the description of the rotational tectum. For this, it is
necessary to find a solution of eq. (7). This equation presents a singular
point at x = 0. Thus the initial condition must be changed to be close to
0.1In the present case, take ro = 0.000001. The initial conditions are u(ry)
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= zo, With zo = 1, and u’(rg) = 0. The value of the radius of the
boundary circle is R. In the next code lines, the input is R = 2. The
function NDSolve is used to solve [7].

(* Solving the singular minimal surface equation *)
ro=0.000001;R=2;zo=1;sol=

NDSolve[ u”[x]/ (1+u’ [x]"2)+u’ [x]/x==1/u[x],
ul[ro]==zo,u’ [ro]==0, u[x],x,ro,R];

uul[x ]J=u[x]/.sol[[1]];

The computation of the area Ay of the rotational tectum uses the
formula 2m fr’; x\/1+w?dx. The Mathematica function employed is
NIntegrate.

(* area of the rotational tectum *)
Ao=NIntegrate[2Pi x Sgrt[l+uu’ [x]"2], %, ro,R]

The value of the height of the center of gravity of the rotational tec-
tum is calculated with the formula 3 [r'f] xuy/1 4 uw?dx:

(* height of the center of gravity of the rotational tec-
tum *)
hT=NIntegrate[2Pi uu[x]x Sqgrt[l+uu’ [x]"2],%,r0,R]/RAO

With the value Ao, the parameters c and m of the catenary C., are
calculated thanks to [10] and [11]. In Mathematica, the function to use
is FindRoot.

(* Finding the parameters c andm for the rotational cat-
enary *)

variables=

FindRoot [z [R]==uu[R],

2Pi (cRSinh[cR]-Cosh[cR]+1)/c*2==Ro,c, .3,m,-4];

The computation of the height hc of the center of gravity of the
catenary rotation surface uses the formula (12).

(* height of the center of gravity

of the rotational catenary *)

hC=

Pi (2c”2R"2+2cRSinh[2 cR]-Cosh[2cR]+1)/
(4 ¢c*3 Ao)+m/.variables

Finally it is computed the deviation of the value hc with hyin relation
with the height of the rotational tectum.

(*deviation with respect to the height of the surface *)
(hC-hT) / (uu[R]-1) 100
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