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Abstract
Weprovide a characterization of the Radon–Nikodým property for a Banach space Y in terms
of the denseness of bounded linear operators into Y which attain their norm in a weak sense,
which complement the one given by Bourgain and Huff in the 1970s for domain spaces. To
this end, we introduce the following notion: an operator T : X −→ Y between the Banach
spaces X and Y is quasi norm attaining if there is a sequence (xn) of norm one elements
in X such that (T xn) converges to some u ∈ Y with ‖u‖ = ‖T ‖. We prove that strong
Radon–Nikodým operators can be approximated by quasi norm attaining operators, a result
which does not hold for norm attaining operators. It shows that this new notion of quasi norm
attainment allows us to characterize the Radon–Nikodým property in terms of denseness of
quasi norm attaining operators for both domain and range spaces, which in the case of norm
attaining operators, was only valid for domain spaces due to the celebrated counterexample
by Gowers in 1990. A number of other related results are also included in the paper: we
give some positive results on the denseness of norm attaining nonlinear maps, characterize
both finite dimensionality and reflexivity in terms of quasi norm attaining operators, discuss
conditions such that quasi norm attaining operators are actually norm attaining, study the
relation with the norm attainment of the adjoint operator and, finally, present some stability
results.
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1 Introduction

Let X and Y be Banach spaces over the fieldK (which will always be R or C). We write BX

and SX to denote the unit ball and the unit sphere of X , respectively. ByL(X , Y )wemean the
Banach space of all bounded linear operators from X to Y endowed with the operator norm;
we just write X∗ = L(X ,K) for the dual space of X . The space of compact (respectively,
weakly compact) operators from X to Y will be denoted byK(X , Y ) (respectively,W(X , Y )).
We denote byT the unit sphere of the base fieldK and use Re(·) to denote the real part, being
just the identity when dealing with real scalars.

Recall that T ∈ L(X , Y ) attains its norm (T ∈ NA(X , Y ) in short) if there is a point
x0 ∈ SX such that ‖T x0‖ = ‖T ‖; in this case, we say that T attains its norm at x0.
Equivalently, T ∈ NA(X , Y ) if and only if T (BX )∩‖T ‖SY �= ∅. The study of norm attaining
operators goes back to the 1963’s paper [43] byLindenstrauss,whofirst discussed the possible
extension to the setting of general operators of the famous Bishop–Phelps’ theorem on the
denseness of norm attaining functionals, that is, to study when the set NA(X , Y ) is dense in
L(X , Y ). He showed that this is not always the case and provided several positive conditions.
We refer the reader to the expository paper [4] for a detailed account on the main results on
this topic. Let us just mention that classical contributions to this topic were given by, among
other authors, Bourgain, Huff, Partington, Schachermayer, Stegall, and Zizler in the 1970s
and 1980s. Nowadays it is still an active area of research by many authors, mainly in the
related topic of the study of the Bishop–Phelps–Bollobás property introduced in 2008 [9].
We refer to [6, 24, 47] for an account of the recent development. Among the most relevant
results on this topic, we would like to mention the following ones by Bourgain [18] and
Huff [35]. First, if a Banach space X has the Radon–Nikodým property (RNP in short), then
NA(X , Y ) is dense in L(X , Y ) for all Banach spaces Y ; second, if the space X fails the RNP,
then there are equivalent renorming X1 and X2 of X such that NA(X1, X2) is not dense in
L(X1, X2). Therefore, X has the RNP if and only if NA(X ′, Y ) is dense inL(X ′, Y ) for every
equivalent renorming X ′ of X and every Banach space Y . For range spaces, one implication
is still true: if NA(X , Y ′) is dense inL(X , Y ′) for every Banach space X and every equivalent
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renorming Y ′ of a Banach space Y , then Y has the RNP. The question whether the RNP on
Y is sufficient to get that NA(X , Y ) is dense in L(X , Y ) for every X was open until 1990,
when Gowers [33] showed that there exists a Banach space X such that NA(X , �p) is not
dense in L(X , �p) for 1 < p < ∞. The search of a notion of norm attainment which could
be used to get a result analogous to the Bourgain–Huff one, but for range spaces, has been
latent since Gowers’ result. Our main aim in this paper is to give such a notion.

Definition 1.1 We say that a bounded linear operator T ∈ L(X , Y ) quasi attains its norm (in
short, T ∈ QNA(X , Y )) if T (BX ) ∩ ‖T ‖SY �= ∅. Equivalently, T ∈ QNA(X , Y ) if and only
if there exists a sequence (xn) ⊆ SX such that (T xn) converges to some vector u ∈ Y with
‖u‖ = ‖T ‖; in this case, we say that T quasi attains its norm towards u.

The concept presented in Definition 1.1 appeared previously in a paper by Godefroy [31]
of 2015 in the more general setting of Lipschitz maps, as follows. We write Lip0(X , Y ) for
the real Banach space of all Lipschitz maps from a Banach space X to a Banach space Y
vanishing at 0, endowed with the Lipschitz number ‖ · ‖Lip as a norm.

Definition 1.2 Let X and Y be real Banach spaces. A Lipschitz map f ∈ Lip0(X , Y ) attains
its norm towards u ∈ Y (in short, f ∈ LipA(X , Y )) if there exists a sequence of pairs(
(xn, yn)

) ⊆ X̃ such that

f (xn) − f (yn)

‖xn − yn‖ −→ u with ‖u‖ = ‖ f ‖Lip,

where X̃ = {(x, y) ∈ X2 : x �= y}.

Observe that it is clear from the definitions that

QNA(X , Y ) = L(X , Y ) ∩ LipA(X , Y ) (1)

for all Banach spaces X and Y . It is shown in [31] that no Lipschitz isomorphism from c0
to any renorming Z of c0 with the Kadec–Klee property belongs to LipA(c0, Z) (recall that
a Banach space X has the Kadec–Klee property provided the weak topology and the norm
topology agree on SX ). This complements an old result by Lindenstrauss [43] concerning
linear operators. In the words of Godefroy, the example shows that even the greater flexibility
allowed by non linearity (and the weakening of the new definition of norm attainment) does
not always provide norm attaining objects. From this example, it follows that LipA(c0, Z) is
not dense in Lip0(c0, Z) (see [21,Example 3.6] for the details). Besides, from (1), no linear
isomorphism from c0 onto Z belongs toQNA(c0, Z), and being the set of linear isomorphisms
open in L(c0, Z), this gives:

Example 1.3 If Z is a renorming of c0 with the Kadec–Klee property, then QNA(c0, Z) is
not dense in L(c0, Z).

Observe that this result shows that denseness of quasi norm attainment is not a trivial
property. On the other hand, going to positive results, the following straightforward remarks
will provide the first ones.
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Remark 1.4 Let X and Y be Banach spaces. Then, we have:

(a) NA(X , Y ) ⊆ QNA(X , Y ).

(b) K(X , Y ) ⊆ QNA(X , Y ).

Now, if NA(X , Y ) is dense in L(X , Y ) for a pair of Banach spaces then, in particular,
QNA(X , Y ) is dense inL(X , Y ). This happens, for instance,when X has theRadon–Nikodým
property (Bourgain), or when Y has a geometric property called property β (Lindenstrauss)
which is accessible by equivalent renorming to every Banach space (Schachermayer). It is
also the case for some concrete pairs of Banach spaces that one may find in the already
mentioned survey [4] as (L1(μ), L1(ν)), (L1(μ), L∞(ν)), (C(K1), C(K2)) in the real case,
(L1(μ), Y ) when Y has the RNP, among many others. More recent examples include (X , Y )

when X is Asplund and Y is a uniform algebra [20,Theorem 3.6] and (C0(L), Y ) for a locally
compact Hausdorff space L and a C-uniformly convex space Y [5,Theorem 2.4], among
others. Similarly, if all operators from a Banach space X to a Banach space Y are compact,
then QNA(X , Y ) = L(X , Y ) by Remark 1.4, so this produce a long list of examples of pairs
by using Pitt’s Theorem or some results by Rosenthal. For instance, this happens for (X , Y )

when X is a closed subspace of �p and Y is a closed subspace of �r with 1 ≤ r < p < ∞
(Pitt’s Theorem, see [10,Theorem 2.1.4], for instance), or when X is a closed subspace of
c0 and Y is a Banach space which does not contain c0 (Rosenthal [54,Remark 4]), among
others.

A further comment on this line is that it was proved in 2014 that there are compact
linear operators which cannot be approximated by norm attaining operators, see [46]. This
result together with Remark 1.4(b) allow to present an example of pair of Banach spaces
(X , Y ) such that QNA(X , Y ) is dense in L(X , Y ) (actually QNA(X , Y ) = L(X , Y )), while
NA(X , Y ) is not dense. Indeed, it is shown in the proofs of [46,Theorem 1 and Proposition
6] that for 1 < p < ∞, p �= 2, there exist closed subspaces X of c0 and Y of �p such
that NA(X , Y ) is not dense in L(X , Y ); on the other hand, L(X , Y ) = K(X , Y ) by Pitt’s
Theorem (see [10,Theorem 2.1.4]), so QNA(X , Y ) = L(X , Y ). Let us also comment that
it is still an open problem whether every finite-rank operator can be approximated by norm
attaining (finite-rank) operators, both in the real case and in the complex case. We refer the
reader interested in this research direction to the recent reference [40].

To give examples of pairs (X , Y ) such that QNA(X , Y ) is dense while not every operator
from X to Y is compact is much easier: just consider the pairs (c0, c0), (�1, �1), and many
others forwhichNA(X , X) is dense (this follows easily from the results in [43]).Nevertheless,
to give an example of a pair (X , Y ) such that QNA(X , Y ) is dense in L(X , Y ), NA(X , Y )

is not dense, and L(X , Y ) does not coincide with K(X , Y ) is a little more involved. We will
produce many examples of this kind in Sect. 3, see Example 3.7.

About negative results on the density of quasi norm attaining operators, the following
immediate result will be the key to transfer some classical results about norm attaining
operators to this new setting.

Remark 1.5 Let X and Y be Banach spaces and let T ∈ L(X , Y ) satisfy that T (BX ) is closed.
Then, T ∈ NA(X , Y ) if (and only if) T ∈ QNA(X , Y ).

It is clear that the requirement of the above remark is fulfilled both by operators whose
domain is a reflexive space and by isomorphisms (actually, by monomorphisms). The latter
will allowus to show inSect. 2 that someknownexamples of pairs ofBanach spaces (X , Y ) for
which NA(X , Y ) is not dense in L(X , Y ) actually satisfy the stronger result that QNA(X , Y )

is not dense in L(X , Y ). This is the case of (c0, Y ) when Y is any strictly convex renorming
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of c0 (see Example 2.3), extending Example 1.3 above, or (L1[0, 1], C(S)) for a Hausdorff
compact space S constructed in [37]. The same idea also allows us to deduce from an already
commented result of Huff [35] that if a Banach space X does not have the RNP, then there are
equivalent renorming X1 and X2 of X such that QNA(X1, X2) is not dense inL(X1, X2) (see
Proposition 2.5). Therefore, a Banach space X has the RNP if (and only if) QNA(X ′, Y ) is
dense in L(X ′, Y ) for every equivalent renorming X ′ of X and every Banach space Y , giving
a stronger result than the Bourgain and Huff one for norm attaining operators. If we focus
on range spaces, it also follows from Proposition 2.5 that a Banach space Y has the RNP
provided that for every Banach space X and every renorming Y ′ of Y , the set QNA(X , Y ′) is
dense inL(X , Y ′). Aswe already commented, the reciprocal result for range spaces is not true
when it comes to norm attaining operators: a celebrated result due to Gowers [33,Appendix]
shows that there is a Banach space X satisfying that NA(X , �p) is not dense in L(X , �p)

for 1 < p < ∞. Here is where the differences between the denseness of norm attaining
operators and the denseness of quasi norm attaining operators are more clear. We show in
Theorem 3.1 that strong RNP operators can be approximated by operators which quasi attain
their norms in a strong sense (uniquely quasi norm attaining operators, see Definition 3.9). As
a consequence, with quasi norm attaining operators we obtain characterizations of the RNP
which are symmetric on the domain and range spaces (see Corollary 3.8). This also allows
us to present examples of pairs (X , Y ) such that QNA(X , Y ) is dense, NA(X , Y ) is not, and
K(X , Y ) �= L(X , Y ) (Examples 3.7). The particular cases of Theorem 3.1 for compact or
weakly compact operators are actually interesting (Corollary 3.11).

The already quoted Theorem 3.1 has also consequences of different type: other kind
of applications can be given for Lipschitz maps, multilinear maps, and n-homogeneous
polynomials. For instance, LipA(X , Y ) is dense in Lip0(X , Y ) for every Banach space X
and every Banach space Y with the RNP as stated in Corollary 3.13. On the other hand,
there is a natural definition of quasi norm attaining multilinear maps (see Definition 3.14) or
quasi norm attaining n-homogeneous polynomials (Definition 3.16) for which the RNP of
the range space is a sufficient condition, see Corollaries 3.15 and 3.17, respectively.

We study in Sect. 4 when each of the inclusions in the chain NA(X , Y ) ⊂ QNA(X , Y ) ⊂
L(X , Y ) can be an equality. In the first case, we show that the equality NA(X , Y ) =
QNA(X , Y ) characterizes the reflexivity of X if its holds for a nontrivial space Y (and
then holds for all Banach spaces Y ), see Proposition 4.1. On the other hand, we characterize
finite dimensional spaces in terms of the equality QNA(X , Y ) = L(X , Y ) (Corollary 4.5),
and we show that this provides a result related to remotality (Corollary 4.6).

In Sect. 5, we first study the relation between quasi norm attainment and (classical) norm
attainment of the adjoint operator. If T ∈ QNA(X , Y ), then T ∗ ∈ NA(Y ∗, X∗) (Proposi-
tion 3.3), but the reciprocal result is not true (a concrete example is given in Example 5.3).
However, the equivalence holds for weakly compact operators (Proposition 5.1). Secondly,
we study possible extensions of Lemma 2.1 on conditions assuring that quasi norm attainment
implies (classical) norm attainment. We show that quasi norm attaining operators with closed
range and proximinal kernel are actually norm attaining (Proposition 5.7), and the same is
true if the annihilator of the kernel of the operator is contained in the set of norm attaining
functionals on the space (Proposition 5.11). We will see that some of those conditions cannot
be removed from the assumption by presenting specific examples; for instance, Example 5.10
reveals that there exists a quasi norm attaining injective weakly compact operator which does
not even belong to the closure of the set of norm attaining operators.

We discuss in Sect. 6 some stability properties for the denseness of quasi norm attaining
operators, which can be obtained analogously from the ones on norm attaining operators.

Finally, we devote Sect. 7 to present some remarks and open questions on the subject.
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2 Some negative examples on the denseness of the set of quasi norm
attaining operators

To present some negative results on the denseness of quasi norm attaining operators we will
use the following result which has been suggested to us by Payá. Recall that amonomorphism
between two Banach spaces X and Y is an operator T ∈ L(X , Y ) which is an isomorphism
from X onto T (X). It is well-known that T ∈ L(X , Y ) is a monomorphism if and only if
there is C > 0 such that ‖T x‖ ≥ C‖x‖ for all x ∈ X , and if and only if ker T = {0} and
T (X) is closed (see [39, § 10.2.3], for instance). It is immediate that the image of the closed
unit ball by a monomorphism is closed (indeed, T (X) is closed, T is open and injective), so
Remark 1.5 gives the following result.

Lemma 2.1 Let X and Y be Banach spaces. If T ∈ QNA(X , Y ) is a monomorphism, then
T ∈ NA(X , Y ).

We will extend Lemma 2.1 in Sect. 5, where we will also show that the hypothesis of
monomorphism cannot be relaxed to the injectivity of the operator (see Example 5.10).

As an easy consequence of Lemma 2.1 and the fact that the set of all monomorphisms
between two Banach spaces is open in the space of all bounded linear operators (see
[1,Lemma 2.4], for instance), we get the following result which will be the key to derive all
of our negative results.

Lemma 2.2 Let X and Y be Banach spaces. If T ∈ L(X , Y ) is a monomorphism such that
T /∈ NA(X , Y ), then T /∈ QNA(X , Y ).

We are now able to get the negative results. As we commented in the introduction (see
Example 1.3), the first example can be deduced from the results in [31]: QNA(c0, Z) is not
dense in L(c0, Z) when Z is an equivalent renorming of c0 with the Kadec–Klee property.
Next, we generalize the result of Lindenstrauss to the quasi norm attainment case where the
statement is somewhat similar to the former one. Note that there are strictly convex equivalent
renormings of c0 which does not have theKadec–Klee property (see [27,Theorem1 in p. 100],
for instance).

Example 2.3 Let X be an infinite-dimensional subspace of c0 and let Y be a strictly convex
renorming of c0. Then, QNA(X , Y ) is not dense in L(X , Y ). In particular, QNA(c0, Y ) is
not dense in L(c0, Y ).

Indeed, it follows from [46,Lemma 2] that NA(X , Y ) is contained in the set of finite-rank
operators, so the inclusion from X to Y (which is a monomorphism) does not belong to
QNA(X , Y ) by Lemma 2.2.

The next example extends the result [38,Corollary 2], providing a new example such that
QNA(X , Y ) is not dense in L(X , Y ).

Example 2.4 There exists a compact Hausdorff space S such that the set QNA(L1[0, 1],
C(S)) is not dense in L(L1[0, 1], C(S)).

Proof We basically follow the arguments in [38]. Let S be given by the weak∗-closure in
L∞[0, 1] of the set

S0 =
{

n∑

i=1

(
1 − 1

2i

)
χDi : D1, . . . , Dn ⊆ [0, 1] are disjoint, μ(Di ) <

1

2i

}

,
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and define T0 ∈ L(L1[0, 1], C(S)) by

[
T0 f

]
(s) :=

∫ 1

0
f (t)s(t) dt for s ∈ S, f ∈ L1[0, 1]

as in [38,Corollary 2]. It is proved there that T0 cannot be approximated by elements in
NA(L1[0, 1], C(S)), so the result follows from Lemma 2.2 if we prove that T0 is a monomor-
phism. Indeed, choose any f ∈ L1[0, 1], and we may assume by taking − f if necessary
that

∫

A
f dμ ≥ 1

2
‖ f ‖1

where A = {w ∈ [0, 1] : f (w) ≥ 0}. Let ( fn) ⊆ L1[0, 1] be a sequence of nonzero simple
functions such that

‖ fn − f ‖ <
1

n
for every n ∈ N.

For each n ∈ N, we can choose In ∈ N and D1, . . . , DIn ⊂ A with μ(Di ) < 1/2i for
i = 1, . . . , In such that

μ

(
A \
⋃In

i=1
Di

)
<

1

4

‖ f ‖1
‖ fn‖∞

.

Now, consider s =
In∑

i=1

(
1 − 1

2i

)
χDi ∈ S. Then, we have that

∣∣[T0 fn](s)∣∣ =
∣∣∣∣

∫ 1

0
fn(w)s(w) dμ(w)

∣∣∣∣

=
∫

⋃In
i=1 Di

fn(w)s(w) dμ(w) ≥ 1

2

∫

⋃In
i=1 Di

fn(w) dμ(w)

= 1

2

[∫

A
fn(w) dμ(w) −

∫

A\⋃In
i=1 Di

fn(w) dμ(w)

]

≥ 1

2

(∫

A
f (w) dμ(w) − 1

n

)
− 1

2
μ

(
A \
⋃In

i=1
Di

)
‖ fn‖∞

≥ 1

4
‖ f ‖1 − 1

2n
− 1

8
‖ f ‖1 = 1

8
‖ f ‖1 − 1

2n
,

which implies that ‖T0 fn‖ ≥ 1
8‖ f ‖1 − 1

2n for each n ∈ N. As n tends to ∞, we obtain that
‖T0 f ‖ ≥ 1

8‖ f ‖1. It follows that T0 is a monomorphism between L1[0, 1] and C(S) since
f ∈ L1[0, 1] was arbitrary. ��
The last negative result that we want to present is related to the Radon–Nikodým property.

It was proved by Huff [35], extending previous results of Bourgain [18], that if a Banach
space X fails to have the RNP, then there exist Banach spaces X1 and X2, which are both
isomorphic to X , such that the formal identity from X1 to X2 cannot be approximated by
elements of NA(X1, X2). Combining this fact with Lemma 2.2, we have just obtained the
following result, stronger than Huff’s one.

Proposition 2.5 If a Banach space X does not have the RNP, then there exist Banach spaces
X1 and X2 both isomorphic to X such that QNA(X1, X2) is not dense in L(X1, X2).
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It follows from Bourgain’s result [18,Theorem 5] that the above proposition is actually a
characterization of the RNP.Wewill show in the next section stronger characterizations of the
RNP using quasi norm attaining operators which are not valid for norm attaining operators
(see Corollary 3.8).

3 The relation with the Radon–Nikodým property: a new positive result

We begin this section with our main result. Recall that a closed convex subset D of a Banach
space X is said to be an RNP set if every subset of D is dentable. Observe that a Banach space
X has the RNP if and only if every closed bounded convex subset of X is an RNP set (see
[19]). Given Banach spaces X and Y , T ∈ L(X , Y ) is a strong Radon–Nikodým operator
(strong RNP operator in short) if T (BX ) is an RNP set.

Theorem 3.1 Let X and Y be Banach spaces. Let ε > 0 be given and let T ∈ L(X , Y ) be a
strong RNP operator. Then, there exists S ∈ QNA(X , Y ) such that

(i) ‖S − T ‖ < ε,
(ii) there exists z0 ∈ S(BX )∩‖S‖SY such that whenever (xn) ⊆ BX satisfies that ‖Sxn‖ −→

‖S‖, we may find a sequence (θn) ⊆ T such that S(θn xn) −→ z0; in particular, there is
θ0 ∈ T and a subsequence (xσ(n)) of (xn) such that Sxσ(n) −→ θ0z0.

In order to give a proof of Theorem 3.1, we need a deep result proved by Stegall, usually
known as the Bourgain–Stegall non-linear optimization principle. For a Banach space Y , a
point y0 of a bounded subset D ⊆ Y is a strongly exposed point if there is y∗ ∈ Y ∗ such
that whenever a sequence (yn) ⊆ D satisfies that limn y∗(yn) = sup{y∗(y) : y ∈ D}, yn

converges to y0 (in particular, y∗(y0) = sup{y∗(y) : y ∈ D}). In this case, we say that y∗
strongly exposes D at y0 and that y∗ is a strongly exposing functional for D at y0.

Lemma 3.2 (Bourgain–Stegall non-linear optimization principle, [57,Theorem 14]) Suppose
D is a bounded RNP set of a Banach space Y and φ : D −→ R is upper semicontinuous and
bounded above. Then, the set

{y∗ ∈ Y ∗ : φ + Rey∗ strongly exposes D}
is a dense Gδ subset of Y ∗.

Proof of Theorem 3.1 Assume that ‖T ‖ �= 0. As T (BX ) is an RNP set, by Lemma 3.2 applied
to the function φ(y) = ‖y‖ for every y ∈ D = T (BX ), there exists y∗

0 ∈ Y ∗ with ‖y∗
0‖ <

ε/‖T ‖ such that ‖ · ‖ + Rey∗
0 strongly exposes T (BX ) at some y0 ∈ T (BX ). Then,

‖y‖ + Rey∗
0 (y) ≤ ‖y0‖ + Rey∗

0 (y0) for all y ∈ T (BX ).

By rotating y ∈ T (BX ), we also obtain that

‖y‖ + |y∗
0 (y)| ≤ ‖y0‖ + Rey∗

0 (y0) for all y ∈ T (BX ), (2)

and we have that y∗
0 (y0) = |y∗

0 (y0)|. Besides, if (yn) ⊆ T (BX ) satisfies that

‖yn‖ + Rey∗
0 (yn) −→ ‖y0‖ + Rey∗

0 (y0),

then yn −→ y0. So, if (yn) ⊆ T (BX ) satisfies that

‖yn‖ + |y∗
0 (yn)| −→ ‖y0‖ + y∗

0 (y0), (3)
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then we can find (θn) ⊆ T so that θn yn −→ y0.
Now, define S ∈ L(X , Y ) by

Sx := T x + y∗
0 (T x)

y0
‖y0‖ for every x ∈ X .

It is easy to see that ‖S − T ‖ ≤ ‖y∗
0‖‖T ‖ < ε and that

‖Sx‖ ≤ ‖T x‖ + |y∗
0 (T x)| ≤ ‖y0‖ + y∗

0 (y0) for all x ∈ BX

by (2). Write z0 =
(
1 + y∗

0 (y0)
‖y0‖

)
y0 and observe that ‖z0‖ = ‖y0‖ + y∗

0 (y0). Now, take a

sequence (xn) ⊆ BX such that T xn −→ y0 ∈ T (BX ), and observe that

Sxn = T xn + y∗
0 (T xn)

y0
‖y0‖ −→

(
1 + y∗

0 (y0)

‖y0‖
)

y0 = z0.

It follows that ‖S‖ = ‖y0‖ + y∗
0 (y0) = ‖z0‖ and thus, S ∈ QNA(X , Y ). Moreover, if

(zn) ⊆ BX satisfies ‖Szn‖ −→ ‖S‖, then we have

‖y0‖ + y∗
0 (y0) = lim

n

∥
∥
∥
∥T zn + y∗

0 (T zn)
y0

‖y0‖
∥
∥
∥
∥

≤ lim
n

(‖T zn‖ + |y∗
0 (T zn)|)

≤ ‖y0‖ + y∗
0 (y0) by (2) .

Thus by applying (3), we can find (θn) ⊆ T such that T (θnzn) −→ y0, and hence

S(θnzn) = T (θnzn) + y∗
0

(
T (θnzn)

) y0
‖y0‖ −→

(
1 + y∗

0 (y0)

‖y0‖
)

y0 = z0.

��
Some remarks on the operator constructed in the proof of Theorem 3.1 are pertinent. We

first need the following easy result which relates the quasi norm attainment with the norm
attainment of the adjoint operator. We will provide some comments and extensions of this
result in Sect. 5. Recall that the adjoint operator T ∗ : Y ∗ −→ X∗ of an operator T ∈ L(X , Y )

is defined by [T ∗y∗](x) := y∗(T x) and satisfies that T ∗ ∈ L(Y ∗, X∗) with ‖T ∗‖ = ‖T ‖.
Proposition 3.3 Let X and Y be Banach spaces and T ∈ L(X , Y ). If T ∈ QNA(X , Y ), then
T ∗ ∈ NA(Y ∗, X∗). Moreover, if T quasi attains its norm towards y0 ∈ ‖T ‖SY , then T ∗
attains its norm at any y∗ ∈ SY ∗ such that y∗(y0) = ‖y0‖.

Proof Let (xn) ⊆ BX be such that T xn −→ y0 ∈ ‖T ‖SY . Take y∗ ∈ SY ∗ with |y∗(y0)| =
‖y0‖ = ‖T ‖. Then

‖T ∗y∗‖ ≥ ∣∣[T ∗y∗](xn)
∣∣ = |y∗(T xn)| −→ |y∗(y0)| = ‖T ‖,

which implies that ‖T ∗y∗‖ = ‖T ‖. ��
We are now able to present the remarks on the construction given in the proof of Theo-

rem 3.1.

Remark 3.4 Let X and Y be Banach spaces and let T ∈ L(X , Y ) be a strong RNP operator.
Consider for ε > 0 the point y0 ∈ T (BX ) ⊂ Y and the operator S ∈ QNA(X , Y ) given in
the proof of Theorem 3.1. Then,
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(a) T − S is a rank-one operator.
(b) S(BX ) ⊆ T (BX ) + {λy0 : λ ∈ K, |λ| ≤ ρ} for some ρ > 0.
(c) S(X) = T (X).
(d) S quasi attains its norm towards a point of the form z0 = λy0 for some λ > 0.
(e) S∗ attains its norm at some z∗ ∈ SY ∗ which strongly exposes S(BX ) at z0.

Proof We only have to prove (e), the other assertions are obvious from the proof of
Theorem 3.1. Let z0 ∈ S(BX ) ∩ ‖S‖SY be the point satisfying the condition stated in The-
orem 3.1.(ii) and take any z∗ ∈ SY ∗ such that z∗(z0) = ‖z0‖ = ‖S‖. As S ∈ QNA(X , Y )

quasi attains its norm towards z0, Proposition 3.3 gives that S∗ attains its norm at z∗.
We claim that z∗ strongly exposes S(BX ) at z0. Indeed, suppose that (zn) ⊆ S(BX )

satisfies that
Rez∗(zn) −→ sup{Rez∗(y) : y ∈ S(BX )} = ‖z0‖.

Choose (xn) ⊆ BX such that ‖Sxn − zn‖ < 1/n for every n ∈ N. Observe that z∗(Sxn) −→
‖z0‖ and so, in particular, ‖Sxn‖ −→ ‖S‖. By Theorem 3.1.(ii), there is a sequence (θn) ⊆ T

such that S(θn xn) −→ z0. Since (1 − θn)z∗(Sxn) −→ 0 and z∗(Sxn) −→ ‖z0‖ �= 0, we
obtain that θn −→ 1. Therefore, we deduce that Sxn −→ z0. Hence, zn −→ z0 as desired.

��
As a consequence of Theorem 3.1 and [18,Theorem 5], if either X or Y has the RNP, then

QNA(X , Y ) is dense in L(X , Y ).

Corollary 3.5 Let X, Y be Banach spaces. If X or Y has the RNP, then QNA(X , Y ) is dense
in L(X , Y ).

This covers the case when at least one of the spaces X or Y is reflexive. Actually, in this
case the result is also covered by the next statement which follows from Theorem 3.1, the
well-known fact that weakly compact convex sets are RNP sets (see [19], for instance), and
Remark 3.4(a).

Corollary 3.6 For every Banach spaces X and Y ,

QNA(X , Y ) ∩ W(X , Y ) = W(X , Y ).

We may present now examples of pairs of Banach spaces (X , Y ) for which QNA(X , Y )

is dense in L(X , Y ) while NA(X , Y ) is not and that not every operator is compact.

Example 3.7 (a) Let Y be a strictly convex infinite-dimensional Banach space with the RNP
(in particular, let Y = �p with 1 < p < ∞). Then, there is a Banach space X such that
NA(X , Y ) is not dense in L(X , Y ) and K(X , Y ) does not cover the whole of L(X , Y ),
while QNA(X , Y ) is.

(b) There is a Banach space X such that NA(X , �1) is not dense andK(X , �1) does not cover
the whole of L(X , �1), while QNA(X , �1) is dense in L(X , �1).

(c) In the complex case, given a decreasing sequence w ∈ c0 \ �1 of positive numbers, let
d(w, 1) be the corresponding Lorentz sequences space and let d∗(w, 1) be its natural
predual. If w ∈ �2, then NA(d∗(w, 1), d(w, 1)) is not dense in L(d∗(w, 1), d(w, 1))
while QNA(d∗(w, 1), d(w, 1)) is dense as d(w, 1) has the RNP.

Examples 3.7(a) follows from [2,Theorem 2.3] (for Y = �p is actually consequence of
[33,Appendix]) and Examples 3.7(b) follows from [3,Theorem 2.3]. For (c), we refer to
[22, §4] for the definitions and basic properties of the spaces; the result on non-denseness of
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NA(d∗(w, 1), d(w, 1)) appears in [22, §4], while the RNP of d(w, 1) is immediate as it is a
separable dual space.

We do not know whether there is a Banach space Z such that QNA(Z , Z) is dense in
L(Z , Z) while NA(Z , Z) is not dense, see the comments just after Problem 7.3.

We are now ready to present another important consequence of Theorem 3.1: two char-
acterization of the RNP in terms of denseness of quasi norm attaining operators. Note that
the RNP is an isomorphic property and so it is a sufficient condition to get the universal
denseness conditions on equivalent renormings.

Corollary 3.8 Let Z be a Banach space. Then, the following are equivalent.

(a) Z has the RNP.
(b) QNA(Z ′, Y ) is dense inL(Z ′, Y ) for every Banach space Y and every equivalent renorm-

ing Z ′ of Z.
(c) QNA(X , Z ′) is dense inL(X , Z ′) for every Banach space X and every equivalent renorm-

ing Z ′ of Z.

Proof (a)⇒(b) is a consequence of [18,Theorem 5]. (b)⇒(a) and (c)⇒(a) can be obtained
from Proposition 2.5. Finally, (a)⇒(c) follows from Theorem 3.1. ��

Let us comment that in the case of norm attaining operators in the classical sense, while
the analogous statement of (a) and (b) are equivalent, the same is not true for statement (c), as
(a)⇒(c) does not hold (see Examples 3.7). Therefore, the use of quasi norm attaintment gives
a symmetry in the characterization of the Radon–Nikodým property which is not possible
for the classical norm attainment.

We next would like to take the advantage of Theorem 3.1 in particular cases. To this end,
we introduce some terminologies here.

Definition 3.9 Let X and Y be Banach spaces. We say that T ∈ L(X , Y ) uniquely quasi
attains its norm if there is u ∈ Y such that every sequence (xn) ⊂ BX satisfying ‖T xn‖ −→
‖T ‖ has a subsequence (xσ(n)) such that T xσ(n) −→ θu for some θ ∈ T. In this case, we
will say that T uniquely quasi attains its norm towards u and that T is a uniquely quasi
norm attaining operator. Of course, a uniquely quasi norm attaining operator is quasi norm
attaining.

While it is obvious that norm attaining operators are quasi norm attaining (Remark 1.4),
it is not true that norm attaining operators are uniquely quasi norm attaining: the identity
on any Banach space of dimension greater than one is clearly an example. Also, the fact
that BX is an RNP set does not imply that so is T (BX ): indeed, consider a surjective map
T ∈ L(�1, c0) with T (B�1) = Bc0 (see [29,Theorem 5.1] for example). Therefore, a version
of Corollary 3.5 for uniquely quasi norm attainment does not follow from Theorem 3.1 for
the RNP in the domain space. However, the following notion introduced by Bourgain in
[18, p. 268], extending the concept of strongly exposing functional, forces uniquely quasi
norm attainment. For Banach spaces X and Y , an operator T ∈ L(X , Y ) absolutely strongly
exposes the set BX (T is an absolutely strongly exposing operator) if there exists x ∈ BX

such that whenever a sequence (xn) ⊂ BX satisfies that limn ‖T xn‖ = ‖T ‖, there is a
subsequence (xσ(n)) which converges to θx for some θ ∈ T. It is clear that an absolutely
strongly exposing operator T ∈ L(X , Y ) is uniquely quasi norm attaining. It follows then
from [18,Theorem 5] that if BX is an RNP set (i.e. X has the RNP), then the set of uniquely
quasi norm attaining operators is dense in L(X , Y ). Therefore, the following result follows
from this fact and Theorem 3.1.
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Corollary 3.10 Let X and Y be Banach spaces. If either X or Y has the RNP, then the set of
uniquely quasi norm attaining operators from X to Y is dense in L(X , Y ).

Two more consequences of Theorem 3.1 can be stated for compact operators and weakly
compact operators (as compact and weakly compact sets are RNP sets) with the help of
Remark 3.4(a), as it follows that when we start with a compact or weakly compact operator
T in the proof of Theorem3.1, the operator S that it is obtained is compact orweakly compact,
respectively. In the case of compact operators, we already know that they quasi attain their
norms (see Remark 1.4(b)), but the result is still interesting as it is stronger than that (observe
that the identity on a two-dimensional Banach space is compact but it is not uniquely quasi
norm attaining).

Corollary 3.11 Let X and Y be Banach spaces.

(a) Compact operators from X to Y which uniquely quasi attain their norm are dense in
K(X , Y ).

(b) Weakly compact operators from X to Y which uniquely quasi attain their norm are dense
in W(X , Y ).

The following result is an immediate consequence of Corollary 3.10, which will be useful
in many applications later on. We write co(A) to denote the closed convex hull of a subset A
of a Banach space.

Corollary 3.12 Let X and Y be Banach spaces,  ⊆ BX such that co(T) = BX and suppose
that Y has the RNP. Then, for every T ∈ L(X , Y ) and every ε > 0, there is S ∈ L(X , Y )

with ‖T − S‖ < ε and a sequence (xn) ⊆  such that (Sxn) converges to some y0 ∈ ‖S‖SY .
In other words, the set

{
T ∈ L(X , Y ) : T xn −→ y0 for some (xn) ⊆  and y0 ∈ ‖T ‖SY

}

is dense in L(X , Y ).

Proof Given T ∈ L(X , Y ), since Y has the RNP, Corollary 3.10 provides an operator S ∈
QNA(X , Y ) such that ‖T − S‖ < ε and z0 ∈ ‖S‖SY such that given any sequence (xn) ⊆
BX with ‖Sxn‖ −→ ‖S‖, then there exists a subsequence (xσ(n)) and θ0 ∈ T such that
Sxσ(n) −→ θ0z0. Now, as

sup{‖Sx‖: x ∈ } = ‖S‖
by the assumption, we may find a sequence (xn) ⊆  such that ‖Sxn‖ −→ ‖S‖ and the
result follows. ��

The rest of this section is devoted to the applications of Corollary 3.12 in some situations:
norm attainment on Lipschitz maps, multilinear maps, and homogeneous polynomials.

3.1 An application: Lipschitz maps attaining the norm towards vectors

As a consequence of Corollary 3.10, we obtain the following result.

Corollary 3.13 Let X and Y be real Banach spaces such that Y has the RNP. Then,LipA(X , Y )

is dense in Lip0(X , Y ).
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In order to prove Corollary 3.13, we need to introduce some terminology. The Lipschitz-
free space F(X) over X is a closed linear subspace of Lip0(X ,R)∗ defined by

F(X) := span{δx : x ∈ X},
where δx is the canonical point evaluation of a Lipschitz map f at x given by δx ( f ) := f (x).
We refer the reader to the paper [30] and the book [60] (where it is called Arens–Eells space)
for a detailed account on Lipschitz free spaces. The following properties of F(X) can be
found there. It is well known that F(X) is an isometric predual of Lip0(X ,R). Moreover,
for any Lipschitz map f ∈ Lip0(X , Y ), we can define a unique bounded linear operator
T f ∈ L(F(X), Y ) by T f (δx ) := f (x), which satisfies that ‖T f ‖ = ‖ f ‖Lip; furthermore,
Lip0(X , Y ) is isometrically isomorphic to L(F(X), Y ) via this correspondence between f
and T f . We define the set of molecules of X by

Mol(X) :=
{

mx,y := δx − δy

‖x − y‖ : (x, y) ∈ X̃

}
⊆ F(X).

An easy consequence of the Hahn-Banach theorem is that BF(X) = co(Mol(X)).

Proof of Corollary 3.13 Let ε > 0 and f ∈ Lip0(X , Y ) be given. As Y has the RNP, applying
Corollary 3.12 for the set  = Mol(X), there exists G ∈ QNA(F(X), Y ), a sequence(
m pn ,qn

) ∈ Mol(X), and y0 ∈ ‖G‖SY such that

‖T f − G‖ < ε and G
(
m pn ,qn

) −→ y0.

If we take (the unique) g ∈ Lip0(X , Y ) such that Tg = G, then ‖ f − g‖Lip = ‖T f − G‖ < ε

and

g(pn) − g(qn)

‖pn − qn‖ = G
(
m pn ,qn

) −→ y0.

This shows that g ∈ LipA(X , Y ) and it completes the proof. ��

3.2 An application: quasi norm attainingmultilinear maps and homogeneous
polynomials

Let X1, . . . , Xn and Y be Banach spaces. The set of all bounded n-linear maps from X1 ×
· · · × Xn to Y will be denoted by L(X1, . . . , Xn; Y ). As usual, we define the norm of
A ∈ L(X1, . . . , Xn; Y ) by

‖A‖ = sup
{‖A(x1, . . . , xn)‖: (x1, . . . , xn) ∈ BX1 × · · · × BXn

}
.

The following definition is a natural extension of quasi norm attainment from linear operators
to multilinear maps.

Definition 3.14 We say that A ∈ L(X1, . . . , Xn; Y ) quasi attains its norm (in short, A ∈
QNA(X1, . . . , Xn; Y )) if

A(BX1 × · · · × BXn ) ∩ ‖A‖SY �= ∅,

or, equivalently, if there exist a sequence
(
x (1)

m , . . . , x (n)
m
) ⊆ BX1 × · · · × BXn and a point

u ∈ ‖A‖SY such that

A
(
x (1)

m , . . . , x (n)
m

) −→ u.

In this case, we say that A quasi attains its norm towards u.
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Here, the consequence of Corollary 3.12 in this setting is the following.

Corollary 3.15 Let X1, . . . Xn and Y be Banach spaces. If Y has the RNP, then QNA(X1,

. . . , Xn; Y ) is dense in L(X1, . . . , Xn; Y ).

Analogously to what happens with Lipschitz maps, we present a way to linearize mul-
tilinear maps: the projective tensor product of X1, X2, . . . , Xn , which will be denoted
by X1 ⊗π · · · ⊗π Xn , and it is the space X1 ⊗ · · · ⊗ Xn endowed with the projective
norm π . We write X1⊗̃π · · · ⊗̃π Xn for its completion. It is well known that given any
A ∈ L(X1, . . . , Xn; Y ), there is a unique Â ∈ L (X1⊗̃π · · · ⊗̃π Xn, Y

)
such that

Â(x1 ⊗ · · · ⊗ xn) = A(x1, . . . , xn) for all x1 ⊗ · · · ⊗ xn ∈ X1⊗̃π · · · ⊗̃π Xn .

Moreover, the spaces L(X1, . . . , Xn; Y ) and L (X1⊗̃π · · · ⊗̃π Xn, Y
)
are isometrically iso-

morphic through this correspondence and the unit ball of X1⊗̃π · · · ⊗̃π Xn is the absolutely
closed convex hull of

BX1 ⊗ · · · ⊗ BXn := {x1 ⊗ · · · ⊗ xn : xi ∈ BXi , 1 ≤ i ≤ n}
(see [25,Proposition 16.8], for instance).

Proof of Corollary 3.15 Let ε > 0 and A ∈ L(X1, . . . , Xn; Y ) be given. Let Â ∈ L(X1⊗̃π · · ·
⊗̃π Xn, Y ) be the corresponding linear operator on the tensor product space defined as above.
Now, it follows by Corollary 3.12 applied to

 := BX1 ⊗ · · · ⊗ BXn ⊆ BX1⊗̃π ···⊗̃π Xn
,

that there exist Ŝ ∈ QNA(X1⊗̃π · · · ⊗̃π Xn, Y ), a sequence
(
x (m)
1 ⊗ · · · ⊗ x (m)

n
)

m∈N ⊆ 

and a point u ∈ ‖Ŝ‖SY such that ‖Ŝ − Â‖ < ε and Ŝ
(
x (m)
1 ⊗ · · · ⊗ x (m)

n
) −→ u. Define a

n-linear map S ∈ L(X1, . . . , Xn; Y ) by S(x1, . . . , xn) := Ŝ(x1 ⊗ · · · ⊗ xn). Then, we get
S(x (m)

1 , . . . , x (m)
n ) −→ u with ‖u‖ = ‖Ŝ‖ = ‖S‖ and ‖S − A‖ < ε.

Finally, we can get a similar result on quasi norm attaining homogeneous polynomials.
Let X and Y be Banach spaces, and let n ∈ N be given. Recall that an n-linear map-
ping A ∈ L(X , n. . ., X; Y ) is said to be symmetric if A(x1, . . . , xn) = A(xσ(1), . . . , xσ(n))

for any (x1, . . . , xn) ∈ X × n· · · × X and any permutation σ of the set {1, . . . , n}. We let
Ls(X , n. . ., X; Y ) denote the space of all bounded symmetric n-linear mappings endowed
with the norm

‖A‖ = sup
{‖A(x, . . . , x)‖: x ∈ BX

}
.

A mapping P : X −→ Y is an n-homogeneous polynomial if there is a symmetric n-linear
map P̌ ∈ Ls(X , n. . ., X; Y ) such that P(x) = P̌(x, . . . , x). We denote by P(n X; Y ) the
space of all continuous n-homogeneous polynomials from X to Y equipped with the usual
norm ‖P‖ = supx∈BX

‖Px‖ for P ∈ P(n X; Y ).

Definition 3.16 We say that P ∈ P(n X; Y ) quasi attains its norm (in short, P ∈
QNA(P(n X; Y ))) if

P(BX ) ∩ ‖T ‖SY �= ∅,

or equivalently, if there exist a sequence (xm) ⊆ BX and a point u ∈ ‖P‖SY such that
Pxm −→ u.
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The consequence of Corollary 3.12 in this setting is the following.

Corollary 3.17 Let X and Y be Banach spaces, and let n ∈ N be given. If Y has the RNP,
then QNA(P(n X; Y )) is dense in P(n X; Y ).

The proof is almost the same as the one given for Corollary 3.15. Here, the linearization of
n-homogeneous polynomial is done through the n-fold symmetric tensor product of a Banach
space X , endowed with the symmetric tensor norm πs . We refer the reader to the Chapter 16
of the recent book [25] for details. The needed concrete reference there to adapt the proof of
Corollary 3.15 to homogeneous polynomial is [25,Proposition 16.23].

4 On the set of quasi norm attaining operators

Given Banach spaces X and Y , our goal here is to analyze when any of the inclusion

NA(X , Y ) ⊆ QNA(X , Y ) ⊆ L(X , Y )

can be an equality. For the first inclusion, the equality allows to characterize reflexivity in
terms of quasi norm attaining operators.

Proposition 4.1 Let X be a Banach space. Then the following statements are equivalent:

(a) X is reflexive.
(b) NA(X , Y ) = QNA(X , Y ) for every Banach space Y .
(c) NA(X , Y ) = QNA(X , Y ) for a nontrivial Banach space Y .

Proof (a)⇒(b). For every operator defined on a reflexive space, the image of the unit ball is
a weak-compact (so norm-closed) set. Therefore, Remark 1.5 gives the result.

(b)⇒(c) is clear, so it remains to show that (c)⇒(a). Fix any x∗ ∈ X∗ and y0 ∈ SY ,
and consider the rank-one operator T = x∗ ⊗ y0 given by T (x) := x∗(x)y0. It is clear
that ‖T ‖ = ‖x∗‖ and that T ∈ NA(X , Y ) if and only if x∗ ∈ NA(X ,K). On the other
hand, as rank-one operators are compact, T ∈ QNA(X , Y ) by Remark 1.4(b). Now, if
NA(X , Y ) = QNA(X , Y ), it follows that NA(X ,K) = X∗, and this implies that X is
reflexive by James’ theorem (see [29,Corollary 3.131] for instance). ��

The version for range spaces of the above result does not give any interesting characteri-
zation.

Remark 4.2 There is no nontrivial Banach space Y such that NA(X , Y ) = QNA(X , Y ) for
every Banach space X .
Indeed, just consider a non-reflexive Banach space X and observe that Proposition 4.1 implies
that NA(X , Y ) �= QNA(X , Y ).

Our next aim is to discuss the equality in the inclusion QNA(X , Y ) = L(X , Y ) to show
that finite-dimensionality can also be described in terms of the set of quasi norm attaining
operators: every infinite-dimensionalBanach space can be the domain or the range of bounded
linear operators which do not quasi attain their norms. The case of the domain space is easier
and it is based on [48,Lemma 2.2].

Proposition 4.3 If X is an infinite dimensional Banach space, then there is T ∈ L(X , c0)
which does not belong to QNA(X , c0).
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Proof By the Josefson–Nissenzweig theorem (see [28, § XII]), there exists a weak∗ null
sequence (x∗

n ) ⊆ SX∗ . Define an operator T : X −→ c0 by

T (x) =
(

m

m + 1
x∗

m(x)

)

m∈N
for x ∈ X .

It is clear that ‖T ‖ = 1. Assume that there exist a sequence (xn) ⊆ SX and a vector u ∈ Sc0
such that T xn −→ u = (um)m∈N. Then, for each m ∈ N,

m

m + 1
x∗

m(xn) −→ um

as n −→ ∞. Therefore,

|um | = lim
n→∞

∣
∣
∣
∣

m

m + 1
x∗

m(xn)

∣
∣
∣
∣ ≤

m

m + 1
< 1

for every m ∈ N. If we take m0 ∈ N such that |um0 | = ‖u‖ = 1 (which exists as u ∈ Sc0 ),
we get a contradiction. ��

The case of the range space is analogous, but the proof is rather more involved.

Proposition 4.4 Let Y be an infinite dimensional Banach space. Then there exists T ∈
L(�1, Y ) which does not belong to QNA(�1, Y ).

Proof We divide the proof into two cases.
Case 1: Assume first that Y does not have the Schur property. Then, it is well-known that

there is a sequence (yn) ⊆ SY such that yn
w−−→ 0 (see [28,Exercise XII.2], for instance).

Choose an increasing sequence (tn) with 0 < tn < 1 for each n ∈ N such that limn tn = 1.
Consider an operator T : �1 −→ Y defined as

T (x) =
∞∑

n=1

tn x(n)yn for each x : N −→ K in �1.

It is clear that ‖T ‖ = 1. Assume T belongs to QNA(�1, Y ), then there exist a sequence
(xm) ⊆ S�1 and a vector u ∈ SY such that limm T xm = u. Choose u∗ ∈ SY ∗ so that
|u∗(u)| = 1. We have that

u∗(T xm) =
∞∑

n=1

tn xm(n)u∗(yn) −→ u∗(u) = 1 as m −→ ∞. (4)

As yn
w−−→ 0, we can choose n0 ∈ N so large that |u∗(yn)| < 1/2 for all n > n0 and

tn0 ≥ 1/2. It follows that
∣∣∣∣∣

∞∑

n=1

tn xm(n)u∗(yn)

∣∣∣∣∣
< tn0

n0∑

n=1

|xm(n)| + 1

2

∞∑

n=n0+1

|xm(n)| ≤ tn0 < 1

for every m ∈ N, which contradicts (4). Let us comment that the above argument is inspired
in the proof of [49,Remark 3].

Case 2: Now suppose thatY has the Schur property. It follows fromRosenthal’s �1 theorem
that Y contains a subspace which is isomorphic to �1 (see [28,Exercise XI.3] for instance),
that is, there exists a monomorphism Q : �1 −→ Y , so ker Q = {0} and Q(�1) is closed.
Write un = Q(en) for every n ∈ N, then there is C > 0 such that C < ‖un‖ ≤ ‖Q‖ for
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every n ∈ N. Take an increasing sequence (tn) with 1/2 < tn < 1 for every n ∈ N such that
limn tn = 1. Consider the operator T : �1 −→ Q(�1) ⊆ Y defined by

T (x) =
∞∑

n=1

tn x(n)
un

‖un‖ for each x : N −→ K in �1.

It is clear that ‖T ‖ = 1, ker T = ker Q = {0}, and T (�1) = Q(�1). Therefore, T is a
monomorphism. If T ∈ QNA(�1, Y ), thenLemma2.1 implies that T ∈ NA(�1, Y ). However,
if ‖T x‖ = 1 for some x ∈ S�1 , then

1 = ‖T x‖ ≤
∞∑

n=1

|tn ||x(n)| <

∞∑

n=1

|x(n)| = 1,

which is a contradiction. Thus, we conclude that T /∈ QNA(�1, Y ) as desired. ��
From Propositions 4.3 and 4.4, we obtain the following characterization of finite-

dimensionality in terms of quasi norm attaining operators.

Corollary 4.5 Let Z be a Banach space. Then, the following assertions are equivalent:

(a) Z is finite-dimensional.
(b) QNA(Z , Y ) = L(Z , Y ) for every Banach space Y .
(c) QNA(Z , c0) = L(Z , c0).
(d) QNA(X , Z) = L(X , Z) for every Banach space X.
(e) QNA(�1, Z) = L(�1, Z).

Proof The fact that (a) implies the rest of assertions follows from Remark 1.4; (b) ⇒ (c) and
(d)⇒ (e) are immediate. Finally, (c)⇒ (a) and (e)⇒ (a) are consequences of Propositions 4.3
and 4.4, respectively. ��

Some remarks on the previous result are pertinent. Observe that if T ∈ L(X , Y ) \
QNA(X , Y ) has norm one, then the set K = T (BX ) is contained in the open unit ball
of Y but supy∈K ‖y‖ = 1. This phenomena has a relation with the so-called remotality. A
bounded subset E of a Banach space X is said to be remotal from x ∈ X if there is ex ∈ E
such that ‖x − ex‖ = sup{‖x − e‖: e ∈ E}, and E is said to be remotal if it is remotal from
all elements in X (see [17] for background). Notice that up to translating and re-scaling, the
existence of a non-remotal subset of a Banach space is equivalent to the existence of a subset
E of the open unit ball such that sup{‖e‖: e ∈ E} = 1. The existence of non-remotal closed
sets in every infinite-dimensional Banach space is easy to prove (see [17,Remark 3.2]). But it
seems that the existence of closed convex non-remotal subsets in every infinite-dimensional
Banach space was an open problem until 2009–2010, when it was proved independently in
two different papers [49,Theorem 7] and [59,Proposition 2.1]. Furthermore, in 2011, a new
and easier proof was given in [42]. Observe that Proposition 4.4 gives a new proof of this
fact: indeed, if Y is infinite-dimensional, there exists T ∈ L(�1, Y ) \ QNA(�1, Y ), and we
may suppose that ‖T ‖ = 1, so K = T (B�1) is contained in the open unit ball of Y and
sup{‖y‖: y ∈ K } = 1. Moreover, the non-remotal set K given by this result is not only
closed and convex but closed and absolutely convex (i.e. convex and equilibrated). Having
a look at the previous proofs, it is not difficult to adapt the ones in [49] and [59] to get an
absolutely convex set in the real case, while the one in [42] does not give absolute convexity
even in the real case. For the complex case, the proof of [59] is not adaptable at all, while the
one of [49] seems to be. But the proof of Proposition 4.4 is simpler than the one of [49]. In
any case, as a by-product of our study of quasi norm attaining operators, we get the following
corollary.
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Corollary 4.6 Let Y be a (real or complex) infinite-dimensional Banach space. Then there
exists a closed, absolutely convex subset of BY which is not remotal from 0.

5 Further results and examples

Our aim in this section is to provide a more extensive study of two results previously stated:
first, the relation between quasi norm attainment and (classical) norm attainment of the
adjoint operator (discussing extensions of Proposition 3.3) and, second, possible extensions
of Lemma 2.1 on conditions assuring that quasi norm attainment implies (classical) norm
attainment.

We beginwith the relation among the adjoint operators. Our first result is a characterization
of quasi norm attaining weakly compact operators in terms of the adjoint and biadjoint. In
particular, it shows that Proposition 3.3 is a characterization in this case. Before stating
the result, notice from Remark 1.4(b) that the inclusion K(X , Y ) ⊆ QNA(X , Y ) holds for
all Banach spaces X and Y while this does not remain true when we replace K(X , Y ) by
W(X , Y ); just recall that for every reflexive space X , Proposition 4.3 provides an example
of T ∈ W(X , c0) = L(X , c0) which does not belong to QNA(X , c0).

Proposition 5.1 Let X and Y be Banach spaces, and T ∈ W(X , Y ). Then the following are
equivalent.

(a) T ∈ QNA(X , Y ).
(b) T ∗ ∈ NA(Y ∗, X∗).
(c) T ∗∗ ∈ NA(X∗∗, Y ).

Proof (a)⇒(b) follows from Proposition 3.3 and (b)⇒(c) is immediate, so it suffices to prove
(c)⇒(a). Pick x∗∗

0 ∈ SX∗∗ such that ‖T ∗∗(x∗∗
0 )‖ = ‖T ‖ and consider a net (xλ) ⊆ BX such

that JX (xλ)
w∗−−→ x∗∗

0 , where JX : X −→ X∗∗ denotes the natural isometric inclusion map.
Thus, we have that

T xλ = T ∗∗(JX (xλ))
w∗−−→ T ∗∗(x∗∗

0 ).

As T is weakly compact, T ∗∗(x∗∗
0 ) belongs to Y so, actually, we have that

T xλ = T ∗∗(JX (xλ))
w−−→ T ∗∗(x∗∗

0 ) ∈ Y

and then, T ∗∗(x∗∗
0 ) ∈ T (BX ). Therefore, T (BX ) ∩ ‖T ‖SY �= ∅, that is, T ∈ QNA(X , Y ). ��

This proposition gives an alternative (and probably simpler) proof of the fact presented in
Corollary 3.6 that weakly compact operators can be always approximated byweakly compact
quasi norm attaining operators.

Corollary 5.2 Let X and Y be Banach spaces. Then,

QNA(X , Y ) ∩ W(X , Y ) = W(X , Y ).

Proof By observing the proof of [43,Theorem 1], we get that every S ∈ W(X , Y )

can be approximated by a sequence (Sn) of weakly compact operators such that S∗∗
n ∈

NA(X∗∗, Y ). By Proposition 5.1, each Sn belongs to QNA(X , Y ); hence S belongs to
QNA(X , Y ) ∩ W(X , Y ). ��
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A sight to Proposition 5.1 may lead us to think that Proposition 3.3 is an equivalence,
that is, that for all Banach spaces X , Y , one has that T ∈ QNA(X , Y ) if (and only if)
T ∗ ∈ NA(Y ∗, X∗). However, this is not true in general. Indeed, it is known that the set
{T ∈ L(X , Y ) : T ∗ ∈ NA(Y ∗, X∗)} is dense in L(X , Y ) for all Banach spaces X and Y [61];
on the other hand, there exist (many) Banach spaces X and Y for which QNA(X , Y ) is not
dense in L(X , Y ), see Examples 2.3, 2.4, or Proposition 2.5. Our next result is an explicit
example of this phenomenon.

Example 5.3 Recall the Day’s norm |||·||| on c0 (see [26,Definition II.7.2]) defined as

|||x ||| = sup
n

⎧
⎨

⎩

(
n∑

k=1

|xγk |2
4k

) 1
2

⎫
⎬

⎭
,

where (xγn ) is a decreasing rearrangement of (xn) with respect to the modulus. If we let Y =
(c0, |||·|||), which is a strictly convex space, it follows from [46,Lemma 2] and Lemma 2.1 that
the formal identity map Id ∈ L(c0, Y ) does not belong to QNA(c0, Y ). But Id∗ ∈ L(Y ∗, �1)
attains its norm at z∗ =

(
1√
3

· 1
2n

)
∈ SY ∗ .

Indeed, from the construction of Y , one can derive with a few calculations that ‖Id‖ = 1√
3
.

Observe first that

∣∣∣∣∣∣z∗∣∣∣∣∣∣
Y ∗ ≥ ∣∣z∗(

√
3, . . . ,

√
3︸ ︷︷ ︸

N many terms

, 0, 0, . . .)
∣∣ ≥

N∑

j=1

1

2 j
for each N ∈ N

as (
√
3, . . . ,

√
3︸ ︷︷ ︸

N many terms

, 0, 0, . . .) ∈ BY . This implies that |||z∗||| ≥ 1.

On the other hand, we prove that |||z∗|||span{e1,...,eN } ≤ 1 for every N ∈ N by an induction
argument. It is obvious when N = 1. For fixed N ≥ 2, suppose that |||z∗|||span{e1,...,en} ≤ 1 for
every 1 ≤ n ≤ N − 1. Take y = (y1, . . . , yN , 0, 0, . . .) ∈ span{e1, . . . , eN } with |||y||| ≤ 1
(so, ‖y‖∞ ≤ 2) and write ŷ = (ŷ1, . . . , ŷN , 0, 0, . . .) for the decreasing rearrangement of y.
It follows that

|z∗(y)| = 1√
3

∣∣∣∣∣∣

N∑

j=1

y j

2 j

∣∣∣∣∣∣
≤ 1√

3

N∑

j=1

ŷ j

2 j
= 1√

3

⎛

⎝ ŷ1
2

+
N∑

j=2

ŷ j

2 j

⎞

⎠ . (5)

If ŷ1 ≤ √
3, then we have from (5) that |z∗(y)| ≤ 1. Suppose that

√
3 < ŷ1 ≤ 2. Note that

(ŷ2, . . . , ŷN , 0, 0, . . .) ∈ span{e1, . . . , eN−1} and that

∣∣∣∣∣∣(ŷ2, . . . , ŷN , 0, 0, . . .)
∣∣∣∣∣∣2 =

N−1∑

j=1

ŷ2j+1

4 j
= 4

N∑

j=2

ŷ2j
4 j

.

Thus,

|||y|||2 = ŷ21
4

+
N∑

j=2

ŷ2j
4 j

= ŷ21
4

+ 1

4

∣∣∣∣∣∣(ŷ2, . . . , ŷN , 0, 0, . . .)
∣∣∣∣∣∣2 ≤ 1
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which implies that
∣
∣
∣
∣
∣
∣(ŷ2, . . . , ŷN , 0, 0, . . .)

∣
∣
∣
∣
∣
∣ ≤

√
4 − ŷ21 . By induction hypothesis, we have

that

1√
3

N−1∑

j=1

ŷ j+1

2 j
= 1√

3

N∑

j=2

ŷ j

2 j−1 ≤
√
4 − ŷ21 .

Combining this with (5), we obtain that

|z∗(y)| ≤ ŷ1

2
√
3

+
√

1 − ŷ21
4

. (6)

Consider the function g(t) = t
2
√
3

+
√
1 − t2

4 for t ∈ [0, 2]. As g(t) ≤ 1 for
√
3 ≤

t ≤ 2, we obtain from (6) that |z∗(y)| ≤ 1. This finishes the induction process showing
that |||z∗|||span{e1,...,eN } ≤ 1 for every N ∈ N, and we can deduce that |||z∗||| = 1. Finally,
‖Id∗(z∗)‖ = 1√

3
= ‖Id∗‖ gives the desired result.

Wenowwant to characterize quasi normattainingoperators in termsof thenormattainment
of the adjoint operator.

Proposition 5.4 Let X, Y be Banach spaces and let T ∈ L(X , Y ). Then, the following are
equivalent:

(a) T ∈ QNA(X , Y ),
(b) T ∗ attains its norm at some y∗ ∈ SY ∗ for which |y∗| attains its supremum on T (BX ).

Proof (a)⇒(b). This is contained in Proposition 3.3. Just observe in the proof there that the
supremum of |y∗| on T (BX ) is ‖T ‖ and it is attained at y0.

(b)⇒(a). By hypothesis, there are y∗ ∈ SY ∗ and y0 ∈ T (BX ) such that |y∗(y0)| =
sup
{
|y∗(y)| : y ∈ T (BX )

}
. Observe that, as ‖T ∗(y∗)‖ = ‖T ‖, it follows that the supremum

of |y∗| on T (BX ) equals ‖T ‖, so we get that ‖y0‖ = ‖T ‖ and then T (BX ) ∩ ‖T ‖SY �= ∅,
that is, T ∈ QNA(X , Y ). ��

Observe that the condition in Proposition 5.4(b) is weaker than the one given in
Remark 3.4.(e).

To finish the study of the norm attainment of the adjoint operator, we include the next
straightforward result which shows that the quasi norm attainment and the norm attainment
are equivalent for adjoint operators. It follows immediately from Remark 1.5 and the weak-∗
compactness of every dual ball.

Proposition 5.5 Let X and Y be Banach spaces and T ∈ L(X , Y ). T ∗ ∈ QNA(Y ∗, X∗) if
and only if T ∗ ∈ NA(Y ∗, X∗).

Next, we would like to deal with possible extensions of Lemma 2.1, looking for sufficient
conditions assuring that quasi norm attaining operators are actually norm attaining. We start
with the following useful characterization of quasi norm attaining operators.

Lemma 5.6 Let X and Y be Banach spaces and T ∈ L(X , Y )be given. Consider the following
commutative diagram:

X Y

X/ ker T

T

q
T̃
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where q : X −→ X/ ker T is the canonical quotient map and T̃ : X/ ker T −→ Y is the
induced (injective) operator. Then, the following are equivalent.

(a) T ∈ QNA(X , Y ).
(b) T̃ ∈ QNA(X/ ker T , Y ).

If T (X) is closed, then the following statement is also equivalent to the others:

(c) T̃ ∈ NA(X/ ker T , Y ).

Proof (a)⇒(b). Suppose that T ∈ QNA(X , Y ). Let (xn) ⊆ SX and u ∈ ‖T ‖SY be such
that T xn −→ u. Note that (q(xn)) ⊆ BX/ ker T and T̃ (q(xn)) −→ u. As ‖T̃ ‖ = ‖T ‖, this
implies that T̃ ∈ QNA(X/ ker T , Y ). Conversely, suppose that T̃ ∈ QNA(X/ ker T , Y ). Let
(x̃n) ⊆ SX/ ker T and u ∈ ‖T̃ ‖SY be such that T̃ x̃n −→ u. As q(Int(BX )) = Int(BX/ ker T )

(where Int(A) is the norm interior of the set A), there exists a sequence (xn) ⊆ Int(BX ) so
that q(xn) = n

n+1 x̃n for each n ∈ N. Observe that

T xn = T̃ (q(xn)) =
(

n
n+1

)
T̃ x̃n −→ u,

hence T ∈ QNA(X , Y ).
In order to prove the last equivalence, just observe that if T (X) is closed, then T̃ is a

monomorphism, so Lemma 2.1 gives the equivalence between T̃ ∈ QNA(X/ ker T , T (X))

and T̃ ∈ NA(X/ ker T , T (X)). ��
Our next aim is to present conditions allowing us to get that norm attainment and quasi

norm attainment are equivalent. In the first result, we start with an operator T ∈ L(X , Y )

with closed range such that T ∈ QNA(X , Y ) and get that T ∈ NA(X , Y ) from the fact that
T̃ ∈ NA(X/ ker T , Y ) using proximinality of the kernel of the operator. Recall that a (closed)
subspace Y of a Banach space X is said to be proximinal if for every x ∈ X the set

PY (x) := {y ∈ Y : ‖x − y‖ = dist(x, Y )}
is nonempty (we refer to [56] for background). An easy observation is that a hyperplane is
proximinal if and only if it is the kernel of a norm attaining operator (see [56,Theorem 2.1]). It
is well known (and easy to prove) thatY is proximinal if and only if q(BX ) = BX/Y where q is
the quotient map from X onto X/Y [56,Theorem 2.2]. Another basic result on proximinality
is that reflexive subspaces are proximinal in every superspace [56,Corollary 2.1].

We are now able to present our first result, which is an extension of Lemma 2.1.

Proposition 5.7 Let X and Y be Banach spaces. If T ∈ QNA(X , Y ) satisfies that T (X) is
closed and ker T is proximinal, then T ∈ NA(X , Y ).

Proof Since T (X) is closed, T̃ ∈ NA(X/ ker T , Y ) by Lemma 5.6. Let x̃ ∈ BX/ ker T be a
point so that ‖T̃ x̃‖ = ‖T̃ ‖. Now, by proximinality, there exists x ∈ BX such that q(x) = x̃ .
As T x = T̃ (q(x)) = T̃ (x̃), we get ‖T x‖ = ‖T̃ x̃‖ = ‖T̃ ‖ = ‖T ‖. ��

We present some consequences of the above result. The first one follows from the fact
that reflexive subspaces are proximinal in every superspace [56,Corollary 2.1].

Corollary 5.8 Let X, Y be Banach spaces and let T ∈ L(X , Y ). If T ∈ QNA(X , Y ), T (X)

is closed and ker T is reflexive, then T ∈ NA(X , Y ).

We next give some examples showing that the conditions of Proposition 5.7 are all nec-
essary. The first example shows that proximinality cannot be dropped.
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Example 5.9 Let X be a non-reflexive Banach space. Then every f ∈ L(X ,K) belongs to
QNA(X ,K) by Remark 1.4(b) and, clearly, f (X) is closed. Nevertheless, there are elements
in L(X ,K) \ NA(X ,K) by James’ theorem (see [29,Corollary 3.131] for instance).

The second example, more interesting, shows that being injective is not enough for a quasi
norm attaining operator to be norm attaining. It also shows that closedness of the range of the
operator is needed in both Proposition 5.7 and Corollary 5.8.We need to present the so-called
Gowers’ space G introduced in [33, proof of Theorem in Appendix] (see also [8,Example
7] or [7] for our notation, some properties, and the obvious extension to the complex case of
Gowers’ results). For a sequence x of scalars and n ∈ N, we write

�n(x) = 1

Hn
sup
{∑

j∈J
|x( j)| : J ⊂ N, |J | = n

}

where |J | is the cardinality of the set J and Hn =∑n
k=1 k−1. Gowers’ space G is the Banach

space of those sequences x satisfying that

lim
n→∞ �n(x) = 0

equipped with the norm given by

‖x‖ = sup
{
�n(x) : n ∈ N

}
for x ∈ G.

Example 5.10 LetG beGowers’ space and given 1 < p < ∞, let T : G −→ �p be the formal
identity map. Then, T ∈ QNA(G, �p), ker T = {0}, but T /∈ NA(G, �p) and /∈ K(G, �p).

Proof From the proof of [33,Theorem in Appendix], we can see that ‖T ‖ = (∑∞
i=1 i−p

)1/p

and that T /∈ NA(G, �p) ∪ K(G, �p). Consider

xn = (1, 1
2 , . . . ,

1
n , 0, 0, . . .

) ∈ SG

for n ∈ N. From the facts that ‖xn‖G = 1, ‖T xn‖p = (∑n
i=1 i−p

)1/p for every n ∈
N, and that (T xn) converges to

(
1, 1

2 , . . . ,
1
n , 1

n+1 , . . .
)

∈ ‖T ‖S�p , we deduce that T ∈
QNA(G, �p). ��

In the next proposition, we give a connection between the set QNA(X , Y ) and the line-
ability of the set NA(X ,K). It is an extension of [40,Proposition 2.5] where the result was
proved for compact operators and, actually, its proof is based on the proof of that result.

Proposition 5.11 Let X and Y be Banach spaces and let T ∈ L(X , Y ). If T ∈ QNA(X , Y )

and (ker T )⊥ ⊆ NA(X ,K), then T ∈ NA(X , Y ).

Proof Consider T̃ : X/ ker T −→ Y as in Lemma 5.6 and use this result to get that T̃ ∈
QNA(X/ ker T , Y ). ByProposition3.3 orProposition5.4,weget T̃ ∗ ∈ NA

(
Y ∗, (X/ ker T )∗

)
,

so there is y∗ ∈ SY ∗ such that

‖T̃ ∗(y∗)‖ = ‖T̃ ‖ = ‖T ‖.
Now, the functional x∗ = T ∗(y∗) = [

q∗T̃ ∗](y∗) ∈ X∗ vanishes on ker T , so it belongs to
(ker T )⊥ ⊂ NA(X ,K). This implies that there is x ∈ SX such that

|x∗(x)| = ‖x∗‖ = ∥∥[q∗T̃ ∗](y∗)
∥∥ = ∥∥q∗(T̃ ∗y∗)

∥∥ = ∥∥T̃ ∗(y∗)
∥∥ = ‖T ‖,

where we have used the immediate fact that q∗ is an isometric embedding as q is a quotient
map. Therefore, ‖T ‖ = |[T ∗y∗](x)| = |y∗(T x)| and so ‖T x‖ = ‖T ‖, as desired. ��
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Observe that for a reflexive space X , Proposition 5.11 reproves the result in Proposition 4.1
that QNA(X , Y ) = NA(X , Y ) for every Banach space Y .

6 Stabilities on quasi norm attaining operators

The aim of this section is to present some results which allow to transfer the denseness of the
set of quasi norm attaining operators from some pairs to other pairs. The first result is that the
denseness is preserved by some kinds of absolute summands of the domain space and to every
kind of absolute summands of the range space. Recall that an absolute sum of Banach spaces
X and Y is the product space X × Y endowed with the norm ‖(x, y)‖a := |(‖x‖, ‖y‖)|a ,
where | · |a is an absolute norm (i.e. a norm in R

2 satisfying that |(1, 0)|a = |(0, 1)|a = 1,
and |(x, y)|a = |(|x |, |y|)|a for all x, y ∈ R). A closed subspace X1 of a Banach space
X is said to be an absolute summand if X = X1 ⊕a X2 for some absolute sum ⊕a and
some closed subspace X2 of X . An absolute norm | · |a is said to be of type 1 if (1, 0) is a
vertex of B(R2,|·|a) or, equivalently, if there is K > 0 such that |x | + K |y| ≤ |(x, y)|a for
all x, y ∈ R (see [23,Lemma 1.4]). We refer to [23] for the use of absolute sums related to
norm attainment and to the reference given there for general background on absolute sums.
Classical examples of absolute sums are the �p-sums for 1 ≤ p ≤ ∞. In the case of p = 1,
⊕1 summands are usually known as L-summands and it is clear that they are of type 1.

Proposition 6.1 Let X and Y be Banach spaces such that QNA(X , Y ) is dense in L(X , Y ).

(a) If X1 is an absolute summand of X of type 1, then QNA(X1, Y ) is dense in L(X1, Y ).
(b) In particular, if X1 is an L-summand of X, then QNA(X1, Y ) is dense in L(X1, Y ).
(c) If Y1 is an absolute summand of Y , then QNA(X , Y1) is dense in L(X , Y1).

The proofs of these results are adaptation of the corresponding ones given in [23] for norm
attaining operators.

Proof (a) Let T ∈ L(X1, Y ) and ε > 0 be given. Write X = X1 ⊕a X2 and define T̃ ∈
L(X , Y ) as T̃ (x1, x2) := T x1 for every (x1, x2) ∈ X . Then there exists S̃ ∈ QNA(X , Y ) such
that ‖S̃‖ = ‖T̃ ‖ and ‖S̃ − T̃ ‖ < ε. Choose a sequence (xn) = (x (1)

n , x (2)
n ) ⊆ SX satisfying

S̃xn −→ u for some u ∈ Y with ‖u‖ = ‖S̃‖. Define S ∈ L(X1, Y ) as S(x1) := S̃(x1, 0) for
every x1 ∈ X1, then ‖S‖ ≤ ‖S̃‖ and

‖Sx1 − T x1‖ = ‖S̃(x1, 0) − T̃ (x1, 0)‖ ≤ ‖S̃ − T̃ ‖ < ε

for all x1 ∈ BX1 . Thus ‖S − T ‖ < ε. Moreover,

‖S̃(0, x2)‖ = ‖S̃(0, x2) − T̃ (0, x2)‖ ≤ ‖S̃ − T̃ ‖ < ε

for all x2 ∈ BX2 . We claim that S ∈ QNA(X1, Y ). Indeed, As⊕a is of type 1, there is K > 0
such that ‖x1‖ + K‖x2‖ ≤ ‖(x1, x2)‖a for every (x1, x2) ∈ X . Passing to a subsequence,
we may assume that ‖x (1)

n ‖ −→ λ1 and ‖x (2)
n ‖ −→ λ2. Then we have that λ1 + Kλ2 ≤ 1.

If λ2 > 0, passing to a subsequence again, we may assume that ‖x (2)
n ‖ > 0 for each n ∈ N.

Now,

‖u‖ = lim
n

‖S̃(x (1)
n , x (2)

n )‖ ≤ lim
n

‖S̃(x (1)
n , 0)‖ + ‖x (2)

n ‖
∥∥∥∥∥

S̃

(

0,
x (2)

n

‖x (2)
n ‖

)∥∥∥∥∥

≤ lim
n

(‖u‖‖x (1)
n ‖ + ‖u‖‖x (2)

n ‖ ε).
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If we choose ε > 0 to be smaller than K > 0, we have

1 ≤ λ1 + ελ2 < λ1 + Kλ2 ≤ 1,

which is a contradiction. This implies that λ2 = 0 and

‖Sx (1)
n − u‖ ≤ ‖S̃(x (1)

n , 0) − S̃(x (1)
n , x (2)

n )‖ + ‖S̃(x (1)
n , x (2)

n ) − u‖
≤ ‖S̃‖‖x (2)

n ‖ + ‖S̃xn − u‖ −→ 0.

This shows that S ∈ QNA(X1, Y ), finishing the proof of (a).
(b) is a particular case of (a) as L-summands are of type 1.
(c) Put Y = Y1 ⊕a Y2, and let ε > 0 and T ∈ L(X , Y1) be given. Define T̃ ∈ L(X , Y )

by T̃ (x) := (T x, 0) for every x ∈ X . Then ‖T̃ ‖ = ‖T ‖ and there exists S̃ ∈ QNA(X , Y )

such that ‖S̃‖ = ‖T̃ ‖ and ‖S̃ − T̃ ‖ < ε. If we write S̃ = (S̃1, S̃2) where S̃ j ∈ L(X , Y j ) for
j = 1, 2, then

‖(S̃1x − T x, S̃2x)‖∞ ≤ ‖S̃x − T̃ x‖a ≤ ‖S̃ − T̃ ‖ < ε

for all x ∈ BX . It follows that ‖S̃1 − T ‖ < ε and ‖S̃2‖ < ε. Choose a sequence (xn) ⊆ SX

such that
S̃xn −→ u = (u1, u2) ∈ Y with ‖u‖a = ‖S̃‖.

This implies that S̃1xn −→ u1 and S̃2xn −→ u2. Notice from ‖u2‖ < ε that ‖u1‖ > ‖T ‖−ε.
Let y∗ = (y∗

1 , y∗
2 ) ∈ Y ∗ such that

‖y∗‖a∗ = 1 and y∗(u) = y∗
1 (u1) + y∗

2 (u2) = ‖u‖a .

It is easy to deduce that y∗
1 (u1) = ‖y∗

1‖‖u1‖ and y∗
2 (u2) = ‖y∗

2‖‖u2‖. Define S ∈ L(X , Y1)

by

S(x) := ‖y∗
1‖S̃1x + y∗

2 (S̃2x)
u1

‖u1‖ for x ∈ X .

Then, we have that

‖Sx‖ ≤ ‖y∗
1‖‖S̃1x‖ + ‖y∗

2‖‖S̃2x‖ ≤ ‖S̃x‖a‖y∗‖a∗ = ‖S̃x‖;
hence ‖S‖ ≤ ‖S̃‖. Note that

Sxn = ‖y∗
1‖S̃1xn + y∗

2 (S̃2xn)
u1

‖u1‖ −→ ‖y∗
1‖u1 + y∗

2 (u2)
u1

‖u1‖ = ‖u‖a

‖u1‖u1.

Thus, S ∈ QNA(X , Y1). To see that S is close enough to T , observe first that ‖y∗
1‖‖u‖a ≥

‖y∗
1‖‖u1‖ > ‖u‖a − ε. Hence for every x ∈ BX ,

‖Sx − T x‖ ≤ ‖‖y∗
1‖S̃1x − T x‖ + ‖y∗

2 (S̃2x)‖
< (1 − ‖y∗

1‖)‖S̃‖ + ‖S̃1 − T ‖ + ε

≤ ε

‖u‖a
‖S̃‖ + 2ε = 3ε.

So, ‖S − T ‖ ≤ 3ε. ��
A similar result to the previous one is the following one which borrows ideas from

[13,Proposition 2.8].

Proposition 6.2 Let X and Y be Banach spaces and K be a compact Hausdorff space. If
QNA(X , C(K , Y )) is dense in L(X , C(K , Y )), then QNA(X , Y ) is dense in L(X , Y ).

123



On quasi norm attaining operators between... Page 25 of 32   133 

Proof Let ε > 0 and T ∈ L(X , Y ) be given. Define T̃ ∈ L(X , C(K , Y )) as (T̃ x)(t) := T x
for every x ∈ X and t ∈ K . It is clear that ‖T̃ ‖ = ‖T ‖. Let S̃ ∈ QNA(X , C(K , Y ))

be such that ‖S̃‖ = ‖T̃ ‖ and ‖S̃ − T̃ ‖ < ε. Let (xn) ⊆ SX be a sequence such that
S̃xn −→ f ∈ C(K , Y ) with ‖S̃‖ = ‖ f ‖. Let t0 ∈ K so that ‖ f (t0)‖ = ‖ f ‖, then
[S̃xn](t0) −→ f (t0) ∈ ‖ f ‖SY . Define S ∈ L(X , Y ) as S(x) := [S̃x](t0) for every x ∈ X ,
then ‖S‖ ≤ ‖S̃‖ and Sxn = [S̃xn](t0) −→ f (t0). It follows that S ∈ QNA(X , Y ). Note that

‖Sx − T x‖ = ∥∥[S̃x](t0) − [T̃ x](t0)
∥
∥ ≤ ‖S̃x − T̃ x‖ < ε

for every x ∈ BX ; hence ‖S − T ‖ < ε. ��
The third result of the section is that the denseness is preserved under �1-sums of the

domain space. Given a family {Zi : i ∈ I } of Banach spaces, we denote by [⊕i∈I Zi
]
�1

the
�1-sum of the family.

Corollary 6.3 Let {Xi : i ∈ I } be a family of Banach spaces, let X be the �1-sum of {Xi }, and
Y be a Banach space. Then, QNA(X , Y ) is dense in L(X , Y ) if and only if QNA(Xi , Y ) is
dense in L(Xi , Y ) for every i ∈ I .

The proof of the “if part” is based on the corresponding one given in [53] for norm attaining
operators.

Proof As each Xi is an L-summand of X , it follows from Proposition 6.1(b) that they inherit
the property from X . Conversely, let ε > 0 and T ∈ L(X , Y ) with ‖T ‖ = 1 be given. As
‖T ‖ = sup{‖T Ei‖ : i ∈ I } where Ei is the natural isometric inclusion from Xi into X ,
we may choose i0 ∈ I such that ‖T Ei0‖ > 1 − ε. Choose Si0 ∈ QNA(Xi0 , Y ) such that
‖Si0‖ = 1 and ‖Si0 − T Ei0‖ < ε. Let (xn) ⊆ SXi0

be a sequence such that Si0 xn −→ u
for some u ∈ Y with ‖u‖ = 1. Consider the operator S ∈ L(X , Y ) so that SEi0 = Si0 and
SE j = T E j for every j �= i0. Then ‖S‖ ≤ 1 and ‖S − T ‖ = ‖Si0 − T Ei0‖ < ε. Notice that
S(Ei0 xn) = Si0 xn −→ u, thus S ∈ QNA(X , Y ). ��

In the aforementioned paper [53] it is shown an analogous result to the above one for
the denseness of norm attaining operator for c0- or �∞-sums of range spaces. We do not
know whether such result has a version for quasi norm attainment. Actually, we do not
know whether the denseness of QNA(X , Y1) and QNA(X , Y2) implies the denseness of
QNA(X , Y1 ⊕∞ Y2), see Problem 7.3 below.

7 Remarks and open problems

Our final aim in the paper is to present some open problems and remarks on quasi norm
attaining operators.

7.1 Extensions of results on norm attaining operators

We would like to study whether some results valid for norm attaining operators remain true
for quasi norm attaining operators. First, it would be of interest whether some more negative
results on the denseness of norm attaining operators actually provide negative examples on
the denseness of quasi norm attaining operators or not. For instance, the following questions
can be of interest.

123



  133 Page 26 of 32 G. Choi et al.

Problem 7.1 Is QNA(L1[0, 1], C[0, 1]) dense in L(L1[0, 1], C[0, 1])?
Observe that it is shown in [55] that NA(L1[0, 1], C[0, 1]) is not dense in L(L1[0, 1],

C[0, 1]).
Problem 7.2 Let Y be a strictly convex Banach space. Is it true that Y has the RNP if (and
only if) QNA(L1[0, 1], Y ) is dense in L(L1[0, 1], Y )?

It is shown in [58] that the analogous result for norm attaining operators is true.
On the other hand, a couple of questions which have been stated along the paper can

be also included in this subsection as they are related to results for the denseness of norm
attaining operators.

Problem 7.3 Let X , Y1, Y2 be Banach spaces such that QNA(X , Y j ) is dense in L(X , Y j )

for j = 1, 2. Is QNA(X , Y1 ⊕∞ Y2) dense in L(X , Y1 ⊕∞ Y2)?

The positive answer to this question for norm attaining operators was given in [53].
Let us comment that a positive answer to Problem 7.3 would give an example of a Banach

space Z such that QNA(Z , Z) is dense in L(Z , Z) while NA(Z , Z) is not dense (indeed,
Z = G ⊕∞ �2 where G is Gowers’ space describe in Example 5.10 would work). We do not
know whether such an example exists.

Problem 7.4 Does there exist a Banach space Z such that QNA(Z , Z) is dense in L(Z , Z)

while NA(Z , Z) is not?

7.2 Lindenstrauss properties

It would be of interest to study the version for quasi norm attainment of Lindenstrauss
properties A and B. Let us say that a Banach space X has property quasi A if QNA(X , Z) =
L(X , Z) for every Banach space Z ; a Banach space Y has property quasi B if QNA(W , Y ) =
L(W , Y ) for every Banach space W .

A list of some known results that we may write down on these properties, using both
previously known results and results from this paper, is the following.

(a) X has property quasi A in every equivalent norm if and only if X has the RNP;
(b) Separable Banach spaces (actually, spaces admitting a long biorthogonal system) can be

equivalently renormed to have property A, and so property quasi A.
(c) Y has property quasi B in every equivalent norm if and only if Y has the RNP;
(d) Every Banach space can be equivalently renormed to have property B, and so property

quasi B.

Assertion (a) and (c) follows from our Corollary 3.8; (b) and (d) appear in [32] and in
[52], respectively.

Therefore, the following question seems to be open.

Problem 7.5 Is it possible for every Banach space to be equivalently renormed to have prop-
erty quasi A?

The study of Lindenstrauss properties A and B provided many interesting results on the
geometry of the involved Banach spaces, and the same can be true for the new analogous
properties. For instance, the following result is an extension of a result by Lindenstrauss [43]
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to the case of quasi norm attaining operators. Recall that a Banach space is said to be locally
uniformly rotund (LUR in short) if for all x, xn ∈ BX satisfying limn ‖xn + x‖ = 2 we have
limn ‖xn − x‖ = 0. Separable Banach spaces and reflexive ones admit LUR norms. We refer
the reader to [29,Chapter 7] for background.

Proposition 7.6 Let X be a Banach space with property quasi A.

(a) If X is isomorphic to a strictly convex space, then BX is the closed convex hull of its
exposed points.

(b) If X is isomorphic to a locally uniformly rotund space, then BX is the closed convex hull
of its strongly exposed points.

The proofs of (a) and (b) are very similar and are based on the corresponding proofs given
in [43,Theorem 2], so we only leave here the idea of the proof of (b). Indeed, it is shown in
the proof of [43,Theorem 2] that for a Banach space X which is isomorphic to a LUR space,
if BX is not the closed convex hull of its strongly exposed points, then there exist a Banach
space Y and a monomorphism T : X −→ Y such that T /∈ NA(X , Y ). Combining this result
with Lemma 2.2, we have T /∈ QNA(X , Y ) and so X fails property quasi A.

It would be interest to find other necessary conditions for properties quasi A and quasi
B. For instance, there is a necessary condition for Lindenstrauss property B given in
[43,Theorem 3] in terms of smooth points which we do not know whether it is still valid for
quasi norm attaining operators.

Let us also mention that while we know that Lindenstrauss property B is not the same that
property quasi B (for instance, Y = �2 has property quasi B as it is reflexive, but it has not
Lindenstrauss property B, see Example 3.7(a)), we do not know of any example of Banach
space having property quasi A without having Lindenstrauss property A.

Problem 7.7 Does property quasi A imply Lindenstrauss property A?

7.3 Uniquely quasi norm attaining operators

We would like now to discuss the relation between uniquely quasi norm attaining operators
and quasi normattaining operators. Itwas already commented that both concepts are different:
the identity in a Banach space of dimension greater than one is clearly quasi norm attaining
but not uniquely. Aiming at the denseness, as a consequence of the results in Sect. 3, if X
or Y has the RNP, then uniquely quasi norm attaining operators from X to Y are dense (see
Corollary 3.10). So one may wonder whether the denseness of quasi norm attaining operators
actually implies the stronger result of denseness of uniquely quasi norm attaining operators,
but the following example shows that this is not the case, even if we have denseness of norm
attaining operators.

Example 7.8 Let Id ∈ L(c0, c0) be the identity map. Then, Id ∈ NA(c0, c0) ⊂ QNA(c0, c0),
NA(c0, c0) is dense in L(c0, c0), but Id does not belong to the closure of the set of uniquely
quasi norm attaining operators.

Proof It is clear that Id ∈ NA(c0, c0) and the denseness of NA(c0, c0) follows from
[43,Proposition 3]. So it suffices to prove that Id cannot be approximated by uniquely quasi
norm attaining operators. Indeed, suppose that there exists T ∈ L(c0, c0) which uniquely
quasi norm attains its norm such that ‖T − Id‖ < 1

4 . Consider y0 ∈ ‖T ‖Sc0 such that T
uniquely quasi attain its norm towards y0 and take a sequence (xn) ⊂ Sc0 satisfying that

T xn −→ y0 and ‖xn − y0‖ <
1

2
.
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Let m0 ∈ N be such that |y0(m0)| < 1
4 , and consider the sequence

(
xn + 1

4λnem0

) ⊂ Sc0 ,
where λn ∈ {−1,+1} is chosen so that

∥
∥
∥
∥T

(
xn + 1

4
λnem0

)∥∥
∥
∥ ≥ ‖T xn‖

for each n ∈ N. This is possible by an easy convexity argument: if
∥
∥
∥
∥T

(
xn + 1

4
em0

)∥∥
∥
∥ < ‖T xn‖ and

∥
∥
∥
∥T

(
xn − 1

4
em0

)∥∥
∥
∥ < ‖T xn‖

for some n ∈ N, then

2‖T xn‖ ≤
∥
∥
∥
∥T

(
xn + 1

4
em0

)∥∥
∥
∥ +

∥
∥
∥
∥T

(
xn − 1

4
em0

)∥∥
∥
∥ < ‖T xn‖ + ‖T xn‖,

a contradiction. Now, we may assume, by taking a subsequence, that λn = λ0 for all n ∈ N.
Since ‖T xn‖ −→ ‖T ‖, we have that

∥
∥
∥
∥T

(
xn + 1

4
λ0em0

)∥∥
∥
∥ −→ ‖T ‖.

Thus, as T uniquely quasi attains its norm, there exist a subsequence (xσ(n)) of (xn) and a
scalar θ0 ∈ T such that

T

(
xσ(n) + 1

4
λ0em0

)
−→ θ0y0,

or equivalently,

1

4
λ0T em0 = (θ0 − 1)y0.

It follows that |θ0 − 1| ≤ 1
4 and hence that

1

16
≥ ∣∣(θ0 − 1)y0(m0)

∣∣ = 1

4

∣∣[T em0 ](m0)
∣∣. (7)

On the other hand, writing as usual em0 to denote the element of c0 whose m th
0 coordinate is

1 and the others one are 0, we have that

‖T − Id‖ ≥ ∥∥[T − Id](em0)
∥∥ = ‖T (em0) − em0‖ ≥ ∣∣[T em0 ](m0) − 1

∣∣ ≥ 1 − ∣∣[T em0 ](m0)
∣∣,

so

1

4

∣∣[T em0 ](m0)
∣∣ ≥ 1

4

(
1 − ‖T − Id‖) >

3

16
.

This contradicts (7), finishing the proof. ��
Thenext result gives a positive condition to pass from the denseness of quasi normattaining

operators to uniquely quasi norm attaining operators: that the range space is locally uniformly
rotund. Actually, in this case, we can get a result valid operator by operator: each quasi norm
attaining operator can be approximated by uniquely quasi norm attaining operators.

Proposition 7.9 Let X and Y be Banach spaces such that Y is LUR. Then, every T ∈
QNA(X , Y ) can be approximated by uniquely quasi norm attaining operators.
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Proof Let T ∈ QNA(X , Y ) and ε > 0 be given. We may assume that 0 < ε ≤ ‖T ‖. Let
(xn) ⊂ SX and y0 ∈ ‖T ‖SY be satisfying that T xn −→ y0. Choose y∗

0 ∈ SY ∗ so that
y∗
0 (y0) = ‖T ‖, and define an operator S ∈ L(X , Y ) by

S(x) := T x + εy∗
0 (T x)

y0
‖T ‖2 .

It is easy to see that S ∈ QNA(X , Y ) with Sxn −→ y0
(
1 + ε

‖T ‖
)
and ‖S‖ = ‖T ‖ + ε.

Suppose now that there is a sequence (zn) ⊂ BX such that ‖Szn‖ −→ ‖S‖. That is,
∥
∥
∥
∥T zn + εy∗

0 (T zn)
y0

‖T ‖2
∥
∥
∥
∥ −→ ‖T ‖ + ε as n → ∞.

We first note here that ‖T zn‖ −→ ‖T ‖ as n tends to∞, otherwise it implies that ‖Szn‖ does
not converge to ‖S‖, a contradiction. Take a subsequence (zσ(n)) of (zn) such that y∗

0 (T zσ(n))

is convergent. The fact that ‖Szσ(n)‖ −→ ‖S‖ gives us that λ0 := limn
y∗
0 (T zσ(n))

‖T ‖ ∈ T. Hence
we have that ∥

∥
∥
∥T zσ(n) + ελ0

y0
‖T ‖

∥
∥
∥
∥ −→ ‖T ‖ + ε as n → ∞. (8)

Now, we claim that ‖T zσ(n) + λ0y0‖ −→ 2‖T ‖. If the claim holds, then by the local
uniform rotundity of Y , we can conclude that T zσ(n) −→ λ0y0 and thus that Szσ(n) −→
λ0y0

(
1 + ε

‖T ‖
)
, finishing the proof.

Since it is clear that ‖T zσ(n) + λ0y0‖ ≤ 2‖T ‖, it suffices to show the opposite inequality.
By the triangular inequality, we have that

‖T zσ(n) + λ0y0‖ ≥
∥∥∥∥T zσ(n)

‖T ‖
ε

+ λ0y0

∥∥∥∥−
(‖T ‖

ε
− 1

)
‖T ‖.

Observe that (8) yields
∥∥∥∥T zσ(n)

‖T ‖
ε

+ λ0y0

∥∥∥∥ −→ (‖T ‖ + ε)
‖T ‖
ε

as n → ∞.

We then obtain that lim ‖T zσ(n) + λ0y0‖ ≥ (‖T ‖ + ε)
‖T ‖
ε

−
( ‖T ‖

ε
− 1
)

‖T ‖ = 2‖T ‖. ��

It would be interesting to study more results analogous to the previous one.

Problem 7.10 Find other sufficient conditions allowing us to approximate quasi norm attain-
ing operators by uniquely quasi norm attaining operators.

7.4 Quasi norm attaining endomorphisms

Ostrovskii asks in [50, p. 65] whether there exists an infinite dimensional Banach space such
that NA(X , X) = L(X , X), gives some remarks on the possible example, and shows that
the only possible candidates for X are separable reflexive spaces without 1-complemented
infinite-dimensional subspaces with the approximation property. Therefore, the problem
is related with the existence of reflexive spaces without complemented subspaces with
the approximation property. There is some more information in the web page https://
mathoverflow.net/questions/232291/. This open problem also appears in [34,Problem 217]
and [41,Problem 8].

The version of the problem for quasi norm attaining operators could also be of interest.
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Problem 7.11 Is there any infinite dimensional Banach space X such that QNA(X , X) =
L(X , X)?

Some observations on the problem:

• If X is reflexive, then QNA(X , X) = NA(X , X) (by Proposition 4.1) and so in this case
the new problem is the same as Ostrovskii’s problem.

• As K(X , X) ⊂ QNA(X , X), one may think that the answer can be found among those
Banach spaces with very few operators, that is, those X such that L(X , X) = {λId +
S : λ ∈ K, S ∈ K(X , X)} see [11, 12] for a reference on this. But, again, in this case
“most” quasi norm attaining operators are actually norm attaining, as the following easy
result shows.

Remark 7.12 Let X be a Banach space, λ ∈ K \ {0}, S ∈ K(X , X), and write T := λId + S.
If T ∈ QNA(X , X), then T ∈ NA(X , X).
Indeed, take (xn) in BX such that T xn −→ u ∈ ‖T ‖SX and, by compactness, consider a
subsequence (xσ(n)) of (xn) such that Sxσ(n) −→ z ∈ X . Now,

xσ(n) −→ λ−1(u − z
) =: x0

and we have that x0 ∈ BX and T x0 = u, so ‖T x0‖ = ‖T ‖ and T ∈ NA(X , X).
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