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Background: Adequate nutrient intake during the first few months of life plays a critical

role on brain structure and function development.

Objectives: To analyze the long-term effects of an experimental infant formula (EF) on

neurocognitive function and brain structure in healthy children aged 6 years compared

to those fed with a standard infant formula or breastfed.

Methods: The current study involved 108 healthy children aged 6 years and participating

in the COGNIS Study. At 0–2 months, infants were randomized to receive up to 18

months of life a standard infant formula (SF) or EF enriched with milk fat globule

membrane (MFGM), long-chain polyunsaturated fatty acids (LC-PUFAs) and synbiotics.

Furthermore, a reference group of breastfed (BF) infants were also recruited. Children

were assessed using neurocognitive tests and structural Magnetic Resonance Imaging

(MRI) at 6 years old.
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Results: Experimental infant formula (EF) children showed greater volumes in the left

orbital cortex, higher vocabulary scores and IQ, and better performance in an attention

task than BF children. EF children also presented greater volumes in parietal regions than

SF kids. Additionally, greater cortical thickness in the insular, parietal, and temporal areas

were found in children from the EF group than those fed with SF or BF groups. Further

correlation analyses suggest that higher volumes and cortical thickness of different

parietal and frontal regions are associated with better cognitive development in terms

of language (verbal comprehension) and executive function (working memory). Finally,

arachidonic acid (ARA), adrenic acid (AdA), docosahexaenoic acid (DHA) levels in cheek

cell glycerophospholipids, ARA/DHA ratio, and protein, fatty acid, and mineral intake

during the first 18 months of life seem to be associated with changes in the brain

structures at 6 years old.

Conclusions: Supplemented infant formula with MFGM components, LC-PUFAs, and

synbiotics seems to be associated to long-term effects on neurocognitive development

and brain structure in children at 6 years old.

Clinical Trial Registration: https://www.clinicaltrials.gov/, identifier: NCT02094547.

Keywords: neuroimaging, early nutrition, infant formula, breastfeeding, MFGM, LC-PUFAs, synbiotics, cognition

INTRODUCTION

Proteins, long–chain polyunsaturated fatty acids (LC-PUFAs),
iron, zinc, iodine, and B vitamins play a critical role on brain
function and structure development (1–3). Nevertheless, given
that the infant brain evolves from early childhood to adolescence,
early-life nutritional deficiencies may have negative long-lasting
or permanent effects on later cognitive function (4), including
impairment on visuo-perceptual functions (5), working memory
(6, 7), language (8), and executive functions (9).

It is well-established that breastfeeding is related to optimal
brain maturation (10, 11) and neurodevelopment (12) in life.
When breastfeeding is not possible, infant formulas are available
to satisfy infant’s nutritional and energy requirements. However,
their functional and nutritional properties vary considerably
from breast milk, and new bioactive compounds are being
added to narrow the functional and nutritional gap with
breast milk (13). In this regard, supplementation of infant
formula with LC-PUFAs, mainly with docosahexaenoic and
arachidonic acids (DHA and ARA, respectively), seems to
be related with short and long-term beneficial effects on
cognitive and visual development (14), learning, vocabulary,
intelligence (15), processing information (16), and attention and
inhibition systems (17). Other studies, however, have shown

Abbreviations: ARA, Arachidonic acid; AdA, Adrenic acid; BENCI,

Computerized battery for neuropsychological evaluation of children; BF,

Breastfed infants; BMI, Body Mass Index; DHA, Docosahexaenoic acid; DPA,

docosapentaenoic acid; EF, Experimental infant formula; EFSA, European Food

Safety Authority; EPA, Eicosapentaenoic acid; FAs, Fatty acids; GWG, Gestational

Weight Gain; IQ, Intelligent quotient; K-BIT, Kaufman brief intelligence test; LC-

PUFAs, Long-chain polyunsaturated fatty acids; LNA, α-linolenic acid; MFGM,

Milk fat globule membrane; MRI, Magnetic resonance imaging; PLON-R, Oral

language test of Navarra revised.

no long-term effects of LC-PUFA-enriched infant formula on
neurodevelopmental and psychomotor outcomes (18, 19). On
the other hand, infant formula supplementation with milk fat
globule membrane (MFGM) has also gained interest due to
its content in bioactive components and complex polar lipids
that might have a potential role on infant neurodevelopment
(20–22). Furthermore, it is important to notice that synbiotics
(pre-plus probiotics) are also being added to infant formulas
to ensure a healthy establishment of gut microbiota and
communication along the microbiota-gut-brain axis, thus
modulating neurodevelopment, brain function, and behavior
throughout the life span (23, 24). However, the combined long-
term effects of all these bioactive components are not well-
established, and further studies are still needed to clarify the role
of early nutrition based on bioactive compound-enriched infant
formula on brain structure and cognitive function later in life.

Having in mind these considerations, the aim of this study
was to analyze the long-term effects of an infant formula
supplemented with MFGM, LC-PUFAs, and synbiotics on
neurocognitive function and brain structure in healthy children
aged 6 years compared to those who received a standard infant
formula or breastfeeding.

MATERIALS AND METHODS

Ethics, Informed Consent, and Permissions
The COGNIS study was conducted according to the updated
principles of the Declaration of Helsinki II (25, 26), and
was approved by the Research Bioethical Committee from the
University of Granada (Spain), the Bioethical Committees for
Clinical Research from San Cecilio University Clinical Hospital,
and University Mother-Infant Hospital of Granada (Spain). Prior
to involving each child in the study, families were informed about
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study procedures and a signed written informed consent was
obtained from each parent, legal guardian, or caregiver.

Study Design and Subjects
The current analysis included 108 children aged 6 years and
participating in the COGNIS Project, a prospective, randomized,
and double-blind study consisting in a nutritional intervention
based on an infant formula supplemented with bioactive
nutrients (registered at https://clinicaltrials.gov/ct2/show/NC
T02094547?term=NCT02094547&draw=2&rank=1, Identifier:
NCT02094547). Detailed information on this project, including
study design, subject recruitment, and population characteristics,
have been previously described (27, 28). Originally, a total of
220 full-term healthy Spanish infants were included in the
study. One hundred seventy infants, aged between 0 and 2
months old, were randomized (ratio 1:1) to receive, during
their first 18 months of life, either a standard infant formula
(SF: n = 85) or an experimental infant formula (EF: n =

85) enriched with MFGM components [10% of total protein
content (wt:wt)], synbiotics [Fructooligosaccharides (FOS):
Inulin proportion 1:1; Bifidobacterium longum subsp infantis
CECT7210 (Bifidobacterium infantis IM1) and Lactobacillus
rhamnosus LCS-74], LC-PUFAs (including DHA and ARA),
gangliosides, nucleotides, and sialic acid. A full description of
the nutritional composition of both infant formulas has been
previously reported (28). Infants received initiation formula up
to 6 months of age and the corresponding follow-on formula
between 6 and 18 months of age. Additionally, 50 exclusively
breastfed infants (BF) for at least 2 months were enrolled
between 0 and 6 months old as a reference group.

A detailed participant’s flowchart from the baseline visit
to 6 years old is shown in Figure 1. Up to 18 months of
life, a total of 40 infants had to be excluded in the formula
groups as follows: 24 were excluded in the SF group (1
infant due to perinatal hypoxia, 1 infant had formula non-
related growth deficiency, 15 infants did not take the infant
formula, 2 had infantile colic, 3 were excluded due to lactose
intolerance, 1 infant due to digestive surgical intervention, and
1 infant suffered hydrocephalus); 16 infants were excluded in
the EF group (2 infants presented formula non-related growth
deficiency, 2 infants lactose intolerance, 11 infants did not take
the infant formula, and 1 was excluded due to epileptic seizure).
Furthermore, one infant from the BF group was excluded because
he was not exclusively breastfed for at least 2 months. During
the follow-up visits, some participants decided to drop out of the
study. Afterwards, 108 children attended the follow up call at 6
years old, and their neurocognitive performance was evaluated
using the Kaufman Brief Intelligence Test (K-BIT) (29), the
Oral Language Test of Navarra Revised (PLON-R) (30), and
the Computerized Battery for Neuropsychological Evaluation of
Children (BENCI) (31) (SF: n = 37; EF: n = 39; BF: n = 32).
All participants were also invited to participate in a Magnetic
Resonance Imaging (MRI) session. However, some data from
participants (n = 30) were taken out of current analysis due to
poor image quality caused by the excessive motion of children
during MRI acquisition. Therefore, neuroimage data were finally
obtained from 78 children aged 6 years (SF: n = 30; EF:

n = 27; BF: n = 21). Furthermore, nutritional information from
participants in the COGNIS study was also collected, including
fatty acid (FA) status up to 18 months of age (SF: 33; EF: 34; BF:
31) and complete dietary intake up to 6 years old (SF: 35; EF: 35;
BF: 30).

Data Collection and Assessment
Baseline information regarding parents was obtained upon
study entry, including age, pre-conceptional maternal body
mass index (BMI), gestational weight gain (GWG), smoking
during pregnancy, educational level, place of residence,
employment, and socioeconomic status. Postpartum depression
was evaluated with the Spanish version of the Edinburgh
Postnatal Depression Scale (32). Parents’ intelligence quotient
(IQ) was assessed using the G factor of the Cattel Intelligence
test (33, 34).

Baseline characteristics of infants (gestational age, type of
delivery, sex, siblings, and timing of breastfeeding) were collected
using questionnaires and medical records. In addition, child
anthropometric parameters such as BMI, head circumference,
and waist circumference were also registered at 6 years
of age.

Fatty Acid Status
Analysis of FA status was performed from cheek cell samples
collected at 3, 6, 12, and 18 months of life, as previously
reported (35). This method is a valid index of essential fatty
acid status as it can be monitored frequently and is reported
to be associated with functional parameters in infants (36). In
addition to the easy and non-invasive nature of this technique,
cheek cell fatty acids may serve as a marker of the essential
fatty acid content, especially of DHA and ARA, in plasma,
tissue concentrations (red blood cells), and the diet (37). Briefly,
samples from the inside of the infants’ cheeks were collected 1 h
after feeding using a Rovers R© EndoCervex-Brush R© supplied by
Deltalab (Barcelona, Spain), and cell pellets were obtained by
centrifugation and stored at −80◦C until further analysis. Cheek
cell glycerophospholipid fraction was isolated using methanol
with butylated hydroxytoluene (BHT), while FA methyl esters
were obtained using sodium methylate in methanol (25 wt%
in methanol) and boron trifluoride methanol solution (14%
v/v). Rapid gas chromatography was used to separate FAs in
cheek cell samples (35, 38), and quantification was done by
normalization. Lastly, the results were expressed in relative
amounts (percentage).

Dietary Intake
Participants’ dietary intake was evaluated at 6, 12, and 18 months
and 2.5, 4, and 6 years old by a quantitative 3-day dietary
record based on the methods for food monitoring and nutrient
intake indicated by Food and Agriculture Organization of the
United Nations (FAO) (39). DIAL software (Alce Ingeniería,
Madrid, Spain) (40) was used to analyze dietary records, which
converts food consumption data into nutrient intake (macro-
and micronutrients, including FAs profile) in accordance to a
previously described methodology (41).
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FIGURE 1 | Participant flow-chart from baseline visit to 6 years old. BF, Breastfed infants; D, Drop-outs; E, Exclusions; EF, Experimental infant formula; MRI, Magnetic

Resonance Imaging; n, Sample size; R, Recovered; SF, Standard infant formula. Fatty acid (FA) status was analyzed from available cheek cell samples of children who

attended to 6 years follow-up visit. Incomplete dietary intake data were excluded from the current analysis. At 6 years old: *2 children did not attend to cognitive

assessment. Some MRI data from participants (n = 30) were eliminated because the quality of the brain images was not adequate to be analyzed due to excessive

movement of children inside the scanner:
†
Unable to analyze the data from 7 children; ‡Unable to analyze the data from 14 children; §Unable to analyze the data from

11 children. aBF infants were randomized between 0–6 months of age.
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Neurocognitive Evaluation

Kaufman Brief Intelligence Test
The Spanish version of K-BIT (29) was used to evaluate verbal
and non-verbal intelligence through two subtests: vocabulary and
matrices. In the vocabulary subtest, children observed a series
of pictures and named the object presented on them. Matrices
subtest is a measure of abstract reasoning. In this case, the
child selected a picture or abstract design that best completes
a visual pattern following a visual analogy. In both subtests,
the dependent variable was the number of correct responses.
Furthermore, the K-BIT test also provides a general IQ based
on the sum of scores obtained in the vocabulary and matrices
subtests. According to K-BIT test standards, the normal range of
typical scores is between 85 and 115 points (29, 42).

Oral Language Test of Navarra Revised (PLON-R):

Language Assessment
Oral Language Test of Navarra Revised (PLON-R) is a
standardized test that allows an early detection or screening
of the oral language development in children aged between 3
and 6 years old. This test is not only focused on the language
dimensions (form, content, and use) with specific activities
for each dimension, but also provides a total punctuation on
language development. The scores of each one of the dimensions
are transformed into typical scores. The normal score, according
to PLON-R test standardized by age, is as follows: form = 65;
content ≥ 62; use ≥ 52; total ≥ 51 (30).

Computerized Battery for Neuropsychological Evaluation

of Children
Computerized Battery for Neuropsychological Evaluation
of Children (BENCI) is a computerized tool that evaluates
neuropsychological functions and neurodevelopmental
domains in children, such as immediate and delayed memory,
attention, visual motor coordination, verbal fluency and
comprehension, processing speed, and executive functions (31, 43).
All these tests were developed using valid neuropsychological
procedures assumed from the literature of neuropsychological
assessment, and were principally based on the NUTRIMENTHE
Neuropsychological Battery (43, 44). In the current study,
neurocognitive function was assessed using the following
tasks (45):

- Verbal Comprehension (images) (language). A combination
of images of a given category (animals) was shown, and
the children received instructions (auditory) through which
they should select a given image that fulfills the indicated
conditions (type of animal, position, type of activity that one
can carry out, and/or color: e.g., “Touch the frog that is next to
the dog”).

- Continuous performance (sustained attention). Various blocks
in a series of letters (100 essays) appeared on the screen and
the child should touch the tablet screen each time the correct
stimulus appears (an A after an X). The rest of the letters were
used as distractor elements.

- Semantic Fluency (executive function). This test indicates a
category (for example, animals) and the child should respond,

as fast as he/she can, with all the words he/she knows within
the same category in 60 s.

- Working Memory (executive function). The children listened to
8 series of number and color sequences. After each sequence,
the child should separately repeat the numbers and the colors
that he/she had heard in the same order.

- Verbal Memory (short and long-term memory). At the
beginning of the task, the child listened to 6 series of words,
and should memorized as many as possible. After each
sequence, the child should repeat all the words that he/she
could remember. After 20min, in the delayed recall essay,
the child should repeat out loud all those words he/she could
remember from the previous list. Finally, in the recognition
essay, the child listened to a series of words, half of which were
in the list above. The child answered “yes” or “no” to whether
each word was in the list.

- Simple Reaction Time Test (processing speed). This test required
that the child to press any key as fast as possible every time a
cross (+) appeared on the screen (50 essays).

- Go/no-Go task (executive function: inhibition).During this test,
two alternating elements (bear and dolphin) kept appearing
on the screen. In the first phase of the test, the child should
state the distinctive element of the two (bear) and touch the
tablet screen when it appeared. After listening to a sound that
represents the phase change, the distinctive element appeared
to be the other (dolphin), to which the child should press the
tablet screen when it appeared. The dependent measure was
the total number of correct answers.

Magnetic Resonance Imaging Procedure

Imaging Data Acquisition
Prior to the neuroimaging session, children were familiarized
with scanner’s sounds and MRI environment using a mock
MRI scanner. Brain data were acquired using a 3T MRI
scanner equipped with a 32-channel phased-array head coil
for reception (Magnetom Trio Siemens Medical System,
ERLANGEN, Germany) located at Mind, Brain, and Behavior
Research Center (CIMCYC, University of Granada, Spain). A
high resolution T1-weighted 3D magnetization-prepared rapid
gradient-echo (MPRAGE) sequence was acquired for each
participant with the following parameters: Repetition Time (TR)
= 2.3ms, Echo Time (TE)= 3.1ms, flip angle= 9◦, Field of View
(FOV) = 256 × 256mm, matrix size=320 × 320, and number
of slices=208, resulting in an isotropic resolution of 0.8 × 0.8
× 0.8mm. Total acquisition time for the T1 sequence was 6min
and 35 s. Head movements were minimized using a foam system
around the participant’s head. Furthermore, a cartoon film was
projected to reassure the child during the MRI scanning.

Neuroimage Processing
All images were visually inspected for major artifacts and
realigned to the anterior commissure-posterior commissure (AC-
PC) line. Image processing was performed using the automated
processing “recon-all” pipeline in FreeSurfer software (version
6.0, http://surfer.nmr.mgh.harvard.edu/) on the Alhambra
Cluster of the University of Granada (Spain). Preprocessing
steps involved intensity normalization, registration to Talairach
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space, skull stripping, segmentation of white matter (WM),
tessellation of the WM boundary, and automatic correction
of topological defects. After that, cerebral cortex was parceled
into regions of interest (ROIs) based on gyral and sulcal
structures from the Destrieux atlas (46–49). FreeSurfer outputs
were also visually inspected to check for correct segmentation
and parcellation. Volumes and cortical thicknesses of brain
parcellation based on the Destrieux atlas were extracted along
with brain subcortical volumes.

Statistical Analysis
All statistical analyses were performed using IBM R© SPSS
Statistics R© program, version 22.0 (SPSS Inc. Chicago, IL,
USA). Normally distributed variables were presented as mean
and standard deviation (SD), and non-normal variables as
median and interquartile range (IQR). Categorical variables
were shown as frequencies and percentages. ANOVA or Welch
test were performed for normally distributed variables, Kruskal
Wallis test was performed for non-normal continuous variables,
and Chi-square or Fisher test was performed for categorical
variables. Normal distribution was tested using Kolmogorov-
Smirnov and/or Shapiro Wilk test. We also used one-way
ANOVAs to examine differences between SF, EF, and BF
groups in neurocognitive tests scores, brain volumes, and
cortical thicknesses. Total intracranial volume was included as
covariate in all brain volume analyses. Moreover, to discard the
differences that could be driven by confounders (maternal age,
familiar socioeconomic status, smoking during pregnancy, age,
and sex) (50–52), we performed additional analyses of group
comparisons using a one-way analysis of covariance (ANCOVA)
that included these confounders. In the event of significant
group differences, Bonferroni-corrected post-hoc comparisons
were used to identify significant pair-wise group differences.
To explore whether the brain differences could be driven
by the FA concentrations and dietary intake, we performed
stepwise linear regression analyses, using one brain region
as dependent variable and FA concentration, dietary intake,
and the aforementioned confounders as independent variables.
Finally, Pearson correlation analyses were performed to estimate
the relationship between child neurocognitive performance
and brain volumes and thickness of those regions that were
statistically different between study groups. p < 0.05 were
considered statistically significant.

RESULTS

Parental and Child Characteristics of the
Study Participants at 6 Years Old
A comparative analysis between study groups of parents’ and
children’s baseline characteristics participating at 6 years old in
the COGNIS follow-up study is shown in Table 1. Significant
differences between study groups were found in parents’ age,
educational level, and in their socioeconomic status. In fact,
BF mothers were older and showed higher educational level
than mothers of SF and EF infants (p = 0.013 and p = 0.001,
respectively). No significant differences were found between
study groups in other maternal baseline characteristics related

to child neurocognitive function and brain structure, including
pre-conceptional BMI (pBMI), GWG, and smoking during
pregnancy. Table 1 also shows that fathers from the BF group
were older compared to fathers of SF infants (p = 0.033) and
presented higher educational level than EF-fed infants’ fathers (p
= 0.005). Concerning socioeconomic status, those parents whose
children were breastfed had higher status compared to both SF-
and EF-fed infants’ parents (p= 0.002).

All infants participating in the COGNIS study were more
frequently born by vaginal delivery, and no significant differences
were found for characteristics at birth among study groups. All
children were born at term and with birth weight adequate
for gestational age. However, as expected, due to the COGNIS
study design, days of breastfeeding significantly differed between
formula (SF and EF) and BF groups (p < 0.001). Finally, at 6
years old, children from the three study groups did not differ
in their anthropometric characteristics, including BMI and head
and waist circumferences.

Type of Early Feeding and Neurocognitive
Function in Children Aged 6 Years
First, we analyze the potential long-term effects of the type of
early feeding received during the first 18 months of life (EF vs. SF
vs. BF) on later neurocognitive function at 6 years, comparing the
K-BIT, PLON-R, and BENCI scores between the three COGNIS
groups (Table 2). In the adjusted model, controlling formaternal
age, smoking during pregnancy, familiar socioeconomic status, and
sex, EF children showed higher IQ and vocabulary standard score
in the K-BIT test than BF children (padj = 0.031, and padj =
0.022, respectively).Moreover, both SF and EF children presented
less errors of commission in continuous performance task from
BENCI battery (padj = 0.001) in comparison to BF children
(Table 2). No significant differences in child language dimensions
(PLON-R Test) at 6 years old were found between the three
groups (Table 2).

Analysis of Brain Volume and Cortical
Thickness in Children Aged 6 Years and
Effects of Early Nutrition
Next, we tested whether the type of early nutrition during the
first 18 months of life (SF vs. EF vs. breastfeeding) had any effects
on later brain structure, brain volume, and cortical thickness.
Significant results, adjusted by smoking during pregnancy,
maternal age, familiar socioeconomic status, age, and sex (plus
total brain volume for volume brain analysis), are presented
in Table 3. Children fed with EF presented higher volumes in
parietal regions than the SF children (padj = 0.002), particularly,
in the right postcentral gyrus (padj = 0.015) and in the right
precuneus (padj = 0.009). EF children also showed higher left
orbital volume than BF children (padj = 0.012). Regarding
cortical thickness, adjusted analyses showed that EF children
presented higher thicknesses in the left inferior circular insular
sulcus compared to SF and BF children (padj = 0.012). Moreover,
children fed with EF presented increased cortical thickness in
the left occipito-temporal sulcus compared to the SF group (padj
= 0.027), and in the right postcentral sulcus compared to the
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TABLE 1 | Baseline characteristics of parents and children participating in the COGNIS study depending on their type of feeding during infancy1.

SF (n = 37) EF (n = 39) BF (n = 32) p2

Mother

Age (years) 31.5 (10.8)a 30.0 (5.0)a 34.0 (8.5)b 0.013

pBMI (kg/m2) 24.5 ± 4.2 25.6 ± 4.3 24.6 ± 2.8 0.468

GWG (kg) 5.8 ± 5.2 6.7 ± 4.8 6.4 ± 3.4 0.723

Type of delivery Vaginal 28 (75.7) 28 (71.8) 24 (75.0) 0.919

Cesarean section 9 (24.3) 11 (28.2) 8 (25.0)

IQ (points) 104.0 (16.5) 100.0 (19.0) 111.0 (21.0) 0.105

Educational level NS/Primary 4 (10.8)a,b 12 (30.9)a 2 (6.3)b 0.001

Secondary 10 (27.0) 10 (25.6) 2 (6.3)

VT 14 (37.8) 10 (25.6) 9 (28.1)

University/Ph.D 9 (24.4)a 7 (17.9)a 19 (59.4)b

Postpartum depression No 29 (78.4) 32 (84.2) 27 (84.4) 0.749

Smoking during pregnancy No 30 (81.1) 33 (84.6) 30 (93.8) 0.299

Employment status Unemployed 9 (24.3) 5 (12.8) 5 (15.6) 0.525

Domestic work 1 (2.7) 3 (7.7) 1 (3.1)

Temporary contract 2 (5.4) 7 (17.9) 4 (12.5)

Stable employment 25 (67.6) 24 (61.5) 22 (68.8)

Familiar

Socioeconomic status Low 7 (18.9) 8 (20.5) 1 (3.1) 0.002

Middle-Low 18 (48.6) 19 (48.7) 8 (25.0)

Middle-High 10 (27.0) 10 (25.6) 13 (40.6)

High 2 (5.4)a 2 (5.1)a 10 (31.3)b

Place of residence Urban 14 (37.8) 11 (28.2) 6 (18.8) 0.216

Rural 23 (62.2) 28 (71.8) 26 (81.3)

Siblings 0 8 (21.6) 11 (28.2) 5 (15.6) 0.445

≥1 29 (78.4) 28 (71.8) 27 (84.4)

Father

Age (years) 32.3 ± 7.0a 33.2 ± 6.1a,b 36.2 ± 4.5b 0.033

Educational level NS/Primary 8 (21.6)a,b 17 (43.6)a 5 (15.6)b 0.005

Secondary 18 (48.6) 10 (25.6) 7 (21.9)

VT 5 (13.5) 8 (20.5) 8 (25.0)

University/Ph.D 6 (16.3)a,b 4 (10.3)a 12 (37.5)b

IQ (points) 106.8 ± 13.9 104.7 ± 16.2 106.5 ± 13.0 0.822

Employment status Unemployed 5 (13.5) 4 (11.1) 1 (3.1) 0.302

Domestic work 0 (0.0) 0 (0.0) 0 (0.0)

Temporary contract 6 (16.2) 2 (5.6) 3 (9.4)

Stable employment 26 (70.3) 30 (83.3) 28 (87.5)

Neonate

Gestational age (weeks) 40.0 (2.0) 40.0 (2.0) 40.0 (2.8) 0.826

Breastfeeding lactation (days) 13 (21.0)a 12 (31.0)a 450 (240.0)b <0.001

Sex Boy 24 (64.9) 25 (64.1) 13 (40.6) 0.073

Girl 13 (35.1) 14 (35.9) 19 (59.4)

Children

Age (days) 2225 (38) 2222 (42) 2221.5 (26) 0.565

BMI (kg/m2 ) 16.1 (2.4) 16.6 (2.6) 15.8 (2.1) 0.308

Head circumference (cm) 51.5 ± 1.8 51.8 ± 1.6 51.6 ± 1.1 0.797

Waist circumference (cm) 53.9 (4.7) 55.2 (5.9) 53.9 (6.5) 0.356

1Data are presented as means ± SD for parametrically distributed data, n (%) for categorical data, and medians (IQRs) for non- parametrically distributed data. 2P-values for overall

differences between COGNIS-groups. ANOVA test for normally distributed variables, Kruskal–Wallis test for non-normal continuous variables, and Chi-square or Fisher test for categorical

variables. Values not sharing the same suffix (a,b) were significantly different in the Bonferroni post-hoc test. P< 0.05 are highlighted in bold. SF, Standard infant formula; EF, Experimental

infant formula; BF, Breastfed infants; pBMI, pre-conceptional body mass index; GWG, Gestational Weight Gain; NS, No schooling; IQ, Intelligence quotient; VT, Vocational training; BMI,

Body mass index.
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TABLE 2 | Children’s neurocognitive function at 6 years old depending on the type of feeding during infancy1.

SF (n = 37) EF (n = 39) BF (n = 32) p2 padj

Kaufman brief intelligence test (K-BIT)

Vocabulary (typical score) 107.91 ± 13.44a,b 113.16 ± 13.31a 103.73 ± 14.26b 0.177 0.022

Matrices (typical score) 111.51 ± 12.07 113.21 ± 12.00 111.78 ± 11.07 0.798 0.113

IQ (typical score) 109.64 ± 11.67a,b 113.46 ± 11.50a 105.54 ± 12.40b 0.302 0.031

Oral language test of Navarra-Revised (PLON-R)

Form (typical score) 46.92 ± 17.30 47.46 ± 14.89 49.84 ± 12.61 0.702 0.991

Content (typical score) 54.95 ± 24.65 55.38 ± 15.23 60.34 ± 19.87 0.468 0.886

Use (typical score) 52.65 ± 23.01 53.95 ± 21.38 61.00 ± 16.38 0.207 0.896

Total score PLON-R (typical score) 55.78 ± 27.34 55.31 ± 20.33 63.34 ± 19.42 0.201 0.889

Computerized battery for neuropsychological evaluation of children (BENCI)

Verbal comprehension (successes) 10.65 ± 2.06 11.16 ± 1.55 11.26 ± 1.86 0.327 0.237

Continuous performance (successes) 53.92 ± 4.72 51.17 ± 10.00 50.06 ± 8.51 0.055 0.115

Continuous performance (errors of commission) 8.14 ± 7.87a 9.44 ± 12.02a 18.35 ± 17.43b 0.003 0.001

Semantic fluency (successes) 7.65 ± 2.70 7.39 ± 2.11 8.06 ± 2.39 0.518 0.927

Working memory (successes) 4.00 ± 1.43 4.05 ± 1.39 4.00 ± 1.55 0.984 0.256

Verbal short-term memory (successes) 4.39 ± 1.10a,b 4.19 ± 0.95a 4.89 ± 0.73b 0.010 0.238

Verbal long-term memory (successes) 4.41 ± 1.76 3.95 ± 2.10 4.68 ± 1.58 0.251 0.263

Verbal long-term memory (recognition successes) 10.57 ± 1.88 10.97 ± 2.02 11.13 ± 1.12 0.387 0.525

Reaction time (ms) 542.92 ± 54.25 557.55 ± 64.87 553.42 ± 151.25 0.569 0.828

Go/no-Go task (successes) 46.57 ± 4.50 48.28 ± 6.80 48.13 ± 5.73 0.308 0.335

Go/no-Go task (errors of commission) 3.24 ± 2.50 3.03 ± 2.45 3.94 ± 2.32 0.283 0.071

1Data are presented as means ± SD.
2P-values for differences between COGNIS-groups. ANOVA test for normally distributed variables.

Padj are univariate analysis of covariance (ANCOVA) adjusted by maternal age, smoking during pregnancy, familiar socioeconomic status and sex of the children. Values not sharing the

same suffix (a,b) were significantly different in the Bonferroni post-hoc test. P < 0.05 are highlighted in bold.

SF, Standard infant formula; EF, Experimental infant formula; BF, Breastfed infants; ms, milliseconds.

BF group (padj =0.017). Taken together, these results suggest a
greater volume of parietal regions and higher cortical thickness in
EF children aged 6 years than SF children (Figure 2, light blue),
BF children (Figure 2, dark blue), or both (Figure 2, purple).

Associations Between Brain Structure and
Neurocognitive Function in Children Aged
6 Years
Afterwards, we inquired whether there might be potential
associations between child neurocognitive function at 6 years
and brain structure (volume brain and cortical thicknesses),
particularly in those regions in which significant differences in
previous adjusted model analyses were found. In this regard,
Pearson correlation analyses revealed that greater volume in the
right parietal and right precuneus was positively associated with
better verbal comprehension (r = 0.267, p = 0.019 and r =

0.278, p = 0.014, respectively), while better working memory
was only positively related to higher right parietal volume (r =
0.257, p = 0.024; Table 4). In this line, our previous analysis
showed that children fed with EF or BF presented greater volume
in these regions (Table 3) and more successes, but without
statistically significant differences in verbal comprehension
and working memory in the BENCI Neuropsychological
battery (Table 2). Furthermore, cortical thickness in the left
occipito-temporal sulcus was positively correlated to better

working memory (r = 0.245, p = 0.032; Table 4). It is
important to note that children who were fed with EF showed
significantly greater cortical thickness in this region (Table 3)
and better scores in the abovementioned neuropsychological
test (Table 2), although no statistically significant differences
were found.

Infant’s LC-PUFAs Status During the First
18 Months
To gain additional insight into the effects of early nutrition
on brain structure, we analyzed FA levels of buccal cheek cell
phospholipids in the COGNIS children at 6, 12, and 18 months
of life, depending on their type of early feeding (Table 5). At
6 months of life, BF infants presented higher concentrations of
ARA (p < 0.001), adrenic acid (AdA) (p < 0.001), and DHA
(p < 0.001) in comparison to formula-fed infants. Moreover,
as expected, both ARA and DHA concentrations were also
increased in EF infants compared to SF infants. Nevertheless, we
found higher concentrations of eicosapentaenoic acid (EPA) in
EF infants than in SF infants (p < 0.001). AdA concentrations
were also higher in the BF group compared to the EF infants (p=
0.002) at 12 months of life, while both BF and EF infants showed
higher DHA levels than SF infants (p < 0.001). At 18 months of
life, formula-fed infants presented higher ARA and AdA levels
than BF infants (p= 0.002 and p< 0.001, respectively), and DHA
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TABLE 3 | Differences in brain volume and thickness between 6 years old children fed with standard infant formula (SF), experimental infant formula (EF), or breastfed (BF)

during their first 18 months of life1.

Brain region SF (n = 30) EF (n = 27) BF (n = 21) P2 padj

Volume (mm3)

Right parietal 71,562.67 ± 7,999.80a 77,167.15 ± 8,496.22b 73,602.10 ± 7,684.33b <0.001 0.002

Right postcentral gyrus 4,258.53 ± 633.89a 4,885.78 ± 911.37b 4,429.24 ± 797.78a,b 0.008 0.015

Right precuneus 7,144.43 ± 1,201.38a 7,856.89 ± 1,164.59b 7,283.62 ± 974.12a,b 0.029 0.009

Left orbital 3,071.83 ± 503.06a,b 3,098.48 ± 535.85a 2,628.38 ± 554.63b 0.006 0.012

Cortical thickness (mm)

Left inferior circular insular sulcus 3.08 ± 0.17b 3.21 ± 0.20a 3.069 ± 0.17b 0.010 0.012

Left occipito-temporal sulcus 2.69 ± 0.15a 2.78 ± 0.12b 2.734 ± 0.15a,b 0.047 0.027

Right postcentral sulcus 2.46 ± 0.13a 2.53 ± 0.13b 2.423 ± 0.12a,b 0.013 0.017

1Data are means ± SD.
2P-values for differences between the COGNIS-groups. ANOVA test for normally distributed variables. Volume analysis is corrected by total brain volume.

Padj are univariate analysis of covariance (ANCOVA) adjusted by smoking during pregnancy, maternal age, familiar socioeconomic status, age and sex of the children. Values not sharing

the same suffix (a,b) were significantly different in the Bonferroni post-hoc test. P < 0.05 are highlighted in bold.

SF, Standard infant formula; EF, Experimental infant formula; BF, Breastfed infants.

FIGURE 2 | Differences in brain volume (A) and cortical thickness (B) between children participating in the COGNIS study at 6 years of life. Analysis adjusted by

smoking during pregnancy, maternal age, familiar socioeconomic status, age, and sex of the children. Brain volume analysis was also corrected for total brain volume.

Experimental infant formula (EF) > Standard infant formula (SF) (light blue); EF > BF (dark blue); and EF > SF and EF > BF (purple). SF, Standard infant formula; EF,

Experimental infant formula; BF, breastfed infants.

concentrations were higher in the EF group compared to the SF
group (p= 0.001). Finally, ARA/DHA index, which reflects both
endogenous synthesis and exogenous supply, were lower in BF
and EF infants compared to SF infants at 6, 12, and 18 months of
life (p < 0.001; Table 5).

Differences in Dietary Intake Between the
Three Study Groups
Afterwards, dietary intake was analyzed during the follow-up
period (up to 6 years old). Regarding the age of complementary
feeding introduction, it was significantly earlier in infant formula
groups (SF: 17.06 ± 2.50 weeks; EF: 17.37 ± 2.64 weeks) than
in the BF group (22.75 ± 4.91 weeks) (p < 0.001). As shown in

Supplementary Table 1, significant differences in dietary intake
between the three groups were mainly found during the first 18
months of life. In fact, formula-fed infants at 6 months of life
showed higher proteins, carbohydrates (CHO), and n-3-PUFA
intake in terms of g/day, and calcium, iron, and zinc in terms
of mg/day compared to BF infants (all p < 0.001). However,
daily intake of total lipids (p < 0.001) and various LC-PUFAs,
including α-linolenic acid (LNA), EPA, and docosapentaenoic
acid (DPA) (p < 0.001, p = 0.024, and p < 0.001, respectively),
were higher in the BF group compared to SF and EF infants.
It is also important to note that ARA and DHA daily intake
were different between the three groups, being higher in those
infants who were breastfed and lower in those who received SF
(both p < 0.001).
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TABLE 4 | Relationship between brain structure and neurocognitive

developmental scores in children aged 6 years (n = 78)a.

Neurocognitive tasks

Brain

regions

Verbal

comprehension

(successes)

Working

memory

(successes)

Volume (cm3)

Right parietal r 0.267 0.257

P1 0.019 0.024

Right

precuneus

r 0.278 0.125

P1 0.014 0.277

Cortical thickness (mm)

Left occipito-

temporal

sulcus

r 0.048 0.245

P1 0.680 0.032

aP-values for correlations between brain structure and neurocognitive development.

P < 0.05 are highlighted in bold.

r, Pearson correlation coefficient.

At 12 months of life, BF infants presented higher total lipids
and LNA intake than SF infants (p = 0.001 and p = 0.022,
respectively). Furthermore, higher linoleic acid (LA) and n−6-
PUFA intake were found in infants fed with EF compared to BF
infants (p = 0.024 and p = 0.004, respectively). Interestingly,
EF and BF infants presented similar ARA and DHA daily
intake, but had higher intake than SF infants (both p < 0.001).
Conversely, formula-fed infants showed lower daily intakes of
EPA and DPA but higher n-3 PUFAs intakes compared to those
who were breastfed (all p < 0.001). Regarding minerals, EF
infants presented higher calcium daily intake than BF ones (p
= 0.016), and both formula-fed groups showed higher intake
of iron and zinc compared to BF group (all p < 0.001;
Supplementary Table 1).

Our analysis also showed that participants significantly
differed in daily intake of essential macronutrients at 18 months
of life. In this regard, daily energy intake was higher in EF-fed
infants compared with BF-fed infants (p = 0.047). In addition,
their protein intake was higher compared to both SF and BF
groups (p = 0.001). Regarding total lipid intake, the analysis
revealed that SF infants showed lower intake than EF and BF
infants (p = 0.046). However, carbohydrate (CHO) intake was
significantly higher in both formula groups in comparison with
the BF group (p= 0.002). Significant differences were also found
for the daily intake of specific PUFAs. Overall, n−3-PUFA intake
was higher in infants fed with EF compared with BF infants (p=
0.021), without differences in n-6 PUFAs between study groups.
Particularly, both ARA and DHA intake remained higher in EF
and BF infants compared to SF infants (both p < 0.001). Daily
EPA intake was lower in formula-fed infants in contrast to the
BF group (p < 0.001), and DPA intake was lower in the SF
group with respect to the BF group (p = 0.007). Furthermore,
higher daily intake of iron and zinc were found in EF infants

TABLE 5 | Influence of type of early feeding on long-chain polyunsaturated fatty

acids (LC-PUFAs) concentration in infants at 6, 12, and 18 months of life1.

FAs concentrations (%) SF EF BF p2

6 months (n = 33) (n = 37) (n = 32)

ARA 1.75 ± 0.56a 2.16 ± 0.63b 2.80 ± 0.59c <0.001

AdA 0.22 ± 0.08a 0.21 ± 0.08a 0.29 ± 0.08b <0.001

EPA 0.10 ± 0.05a 0.13 ± 0.06b 0.12 ± 0.05a,b 0.027

DHA 0.35 ± 0.19a 0.83 ± 0.31b 1.10 ± 0.33c <0.001

ARA/DHA 5.52 ± 1.52a 2.79 ± 0.73b 2.72 ± 0.78b <0.001

12 months (n = 34) (n = 37) (n = 32)

ARA 2.08 ± 0.56 2.13 ± 0.56 2.36 ± 0.59 0.101

AdA 0.24 ± 0.05a,b 0.21 ± 0.05a 0.27 ± 0.07b 0.002

EPA 0.12 ± 0.06 0.14 ± 0.06 0.12 ± 0.05 0.144

DHA 0.48 ± 0.18a 0.77 ± 0.25b 0.87 ± 0.30b <0.001

ARA/DHA 4.59 ± 1.29a 2.90 ± 0.60b 2.86 ± 0.72b <0.001

18 months (n = 33) (n = 34) (n = 19)

ARA 2.21 ± 0.55a 2.33 ± 0.56a 1.79 ± 0.46b 0.002

AdA 0.28 ± 0.07a 0.27 ± 0.06a 0.21 ± 0.05b <0.001

EPA 0.13 ± 0.06 0.16 ± 0.07 0.15 ± 0.10 0.172

DHA 0.59 ± 0.20a 0.84 ± 0.29b 0.75 ± 0.33a,b 0.001

ARA/DHA 4.05 ± 1.18a 2.96 ± 0.82b 2.70 ± 0.95b <0.001

1Data are means± SD for parametrically distributed data. 2P-values for overall differences

between COGNIS-groups in the ANOVA test (normally distributed variables). Values not

sharing the same suffix (a,b,c) were significantly different in the Bonferroni post-hoc

test. P < 0.05 are highlighted in bold. SF, Standard infant formula; EF, Experimental

infant formula; BF, Breastfed infants; FAs, Fatty acids; ARA, Arachidonic acid; EPA,

Eicosapentaenoic acid; AdA, Adrenic acid; DHA, Docosahexaenoic acid; ARA/DHA,

Arachidonic acid/Docosahexaenoic acid ratio.

in comparison with BF infants (p = 0.003 and p = 0.001,
respectively) (Supplementary Table 1).

It is important to note that at 2.5 and 6 years old, no differences
were found regarding dietary intake between the three groups.
Nevertheless, at 4 years old, we only found differences in total
energy (kcal/day) and n-3-PUFA intake being higher in the
SF children than in the BF ones (p = 0.043 and p = 0.022,
respectively) (Supplementary Table 1).

Relationships Between Fatty Acid Status
During the First 18 Months of Life and
Brain Structure at 6 Years Old
Using stepwise linear regression analysis, we next evaluated
potential long-term influence of FA concentrations during the
first 18 months of life on later brain structure (brain volume
and cortical thickness) at 6 years (Table 6). In this regard, we
found that both DHA levels and ARA/DHA index during early
life were strongly correlated to later brain volume, mainly in the
right parietal and right precuneus regions. In fact, our analysis
showed a positive association between the right parietal volume
at 6 years old and DHA concentrations presented in infants at 6,
12, and 18 months of age, while ARA/DHA index at these ages
were negatively related to right parietal volume later in life (all
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TABLE 6 | Potential long-term effects of fatty acids status during the first 18 months of life on children’s brain structure at 6 years olda.

Fatty acids

Brain regions 6 months 12 months 18 months

Volume (cm3) ARA EPA DHA ARA/DHA DHA ARA/DHA DHA ARA/DHA

Right parietal β = 0.176

P = 0.021

N/S β = 0.330

P < 0.001

β = −0.374

P < 0.001

β = 0.341

P < 0.001

β = −0.291

P < 0.001

β = 0.295

P < 0.010

β = −0.313

P < 0.001

Left orbital N/S N/S N/S N/S N/S N/S N/S N/S

Right postcentral

gyrus

N/S N/S β = 0.261

P = 0.021

β = −0.344

P = 0.002

N/S N/S N/S N/S

Right precuneus β = 0.203

P = 0.039

N/S β = 0.340

P = 0.001

β = −0.385

P < 0.001

β = 0.350

P = 0.001

β = −0.249

P = 0.013

N/S β = −0.350

P = 0.001

Cortical thickness (mm)

Left circular insular

sulcus

N/S β = 0.315

P = 0.012

N/S N/S N/S N/S N/S N/S

Left

occipito–temporal

sulcus

N/S N/S N/S N/S N/S N/S N/S N/S

Right postcentral

sulcus

N/S N/S N/S N/S N/S N/S N/S N/S

aP-values for linear regression analysis. P-values < 0.05 are highlighted in bold.

ARA, Arachidonic acid; EPA, Eicosapentaenoic acid; DHA, Docosahexaenoic acid; ARA/DHA, Arachidonic acid/Docosahexaenoic acid ratio; β, Beta coefficient; N/S, Not significance.
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p < 0.001). A positive association was also found between later
right parietal volume and ARA levels at 6 months (p= 0.021).

Similar associations were also found between later right
precuneus volume and FA concentrations analyzed in early life.
Thus, volume in this brain region exhibited a positive association
with ARA levels at 6 months (p= 0.039) and DHA levels at 6 and
12 months (both p= 0.001), while ARA/DHA index at 6, 12, and
18 months showed negative association with the volume of right
precuneus at 6 years old (p < 0.001, p = 0.013, and p = 0.001,
respectively). Finally, right postcentral gyrus volume in children
aged 6 years was positively related to DHA levels (p = 0.021),
but negatively associated with ARA/DHA index (p = 0.002) at
6 months.

Regarding cortical thickness, our analysis showed a positive
association between thickness of the left circular insula and EPA
levels in cheek cell glycerophospholipids at 6 months of age
(p= 0.012).

Long-Term Influences of Early Nutrient
Intake on Children’s Brain Structure at 6
Years Old
To further explore the long-term effects of early nutrition on
brain structure, we also performed stepwise linear regression
analyses that included brain regions which were different
between study groups as dependent variable, both nutrients
with which daily intake was significantly different, and several
confounder variables (maternal age, familiar socioeconomic
status, smoking during pregnancy, age, and sex of the children)
as predictors. The significant associations obtained are shown
in Table 7.

Our results showed that daily intake of certain macro- and
micronutrients during early life was positively related to right
brain region volume. In this line, we found that right parietal
volume showed a positive association with ARA and DHA daily
intake at 6 months of life (p= 0.018 and p= 0.040, respectively),
and left orbital volume presented a positive association with iron
intake at 6 months of life (p = 0.007). Likewise, right postcentral
gyrus volume displayed a positive association with lipid intake,
LNA, ARA, DHA, n-3-PUFAs, and calcium at 12months of life (p
= 0.009, p= 0.014, p= 0.019, p= 0.015, p= 0.033, and p= 0.028,
respectively), and with protein daily intake at 18 months of life
(p= 0.013). Furthermore, right precuneus volume was positively
associated with ARA intake at 6 months of life (p= 0.032), DHA
intake at both 12 and 18 months of life (p= 0.018 and p= 0.036,
respectively), and EPA intake at 18 months of life (p= 0.027).

On the other hand, negative associations were found between
the left orbital volume and lipids, ARA, DPA, and DHA daily
intake at 6 (p = 0.006, p = 0.015, p = 0.001, and p = 0.003,
respectively), and 12months (p= 0.001, p= 0.005, p= 0.001, and
p= 0.012, respectively). Daily LNA and EPA intake at 12 months
of life were also negatively associated with left orbital volume (p
< 0.001 and p= 0.002, respectively).

Regarding cortical thickness, our analysis revealed a positive
association between left circular insular sulcus and LA and n-
6-PUFA intake at 12 months of life (p = 0.029 and p = 0.033,
respectively). Finally, protein and zinc intake at 18 months were

positively related to cortical thickness of the right postcentral
sulcus (p= 0.011 and p= 0.040).

DISCUSSION

To our knowledge, this is the first study that evaluates long-
term impact of an early nutritional intervention based on an
infant formula supplemented with several bioactive compounds
during the first 18 months of life, on later brain structures, and
related neurocognitive function in healthy children aged 6 years.
Having in mind that both neurocognitive outcomes and brain
structures obtained in all participants are within the normal
range, our results seem to show a slightly better neurocognitive
performance, particularly in terms of IQ, vocabulary (K-
BIT test), and attention (BENCI test) in children fed with
the supplemented infant formula compared to those who
were breastfed. While long-term effects of early nutrition on
neurocognitive development resulted to be lesser than expected,
major changes were observed on the brain structure at 6
years old, mainly in children fed with the supplemented infant
formula compared to those who received the standard one,
and similar to those found in breastfed children. In fact, EF
children seem to have greater volumes in the parietal and
frontal regions and higher cortical thickness in the insular,
parietal, and temporal regions with respect to the SF group
(Figure 2). Interestingly, both volumes and cortical thickness in
the parietal region were similar among EF and BF groups. Further
correlation analyses suggested that EF-related changes in brain
structure were positively associated with cognitive performance.
In addition to the type of milk feeding received during the
first 18 months of life, more detailed nutritional evaluation
suggests that proteins, minerals and, fatty acid intake during
the first 18 months of life, along with FAs concentrations in
cheek cell glycerophospholipids, seem to influence later brain
structure. Overall, results obtained here suggest that the intake
of an infant formula supplemented with MFGM, LC-PUFAs,
synbiotics (nutritional composition closer to breast milk), and
key nutrients (FAs, proteins, calcium, iron, and zinc) during
the first 18 months of life and the FA status in childhood may
influence neurocognitive development and brain structure at
least up to 6 years of age.

It is well-established that early nutrition plays a key role
on optimal brain structure and function, particularly regarding
optimal intake of certain nutrients (proteins, LC-PUFAs, iron,
folate, among others) during sensitive periods of brain growth
and development (53, 54). Although breastfeeding is the gold
standard for infant nutrition during early postnatal life, infant
formula intake is currently increasing in low- and high-income
countries (55, 56). Consequently, great efforts have been made
to enrich or supplement infant formulas with bioactive nutrients
found in breast milk to narrow nutritional and functional gaps
between both types of infant feeding (13). We have previously
reported both short- and long-term positive effects of this
infant formula supplemented with bioactive nutrients, including
MFGM, LC-PUFAs, and synbiotics, on brain maturation and
function assessed as visual function and language development
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TABLE 7 | Long-Term influence of early dietary intake on brain structure in children aged 6 yearsa.

Brain regions

Volume (cm3) Cortical Thickness (mm)

Macronutrients Right parietal Left orbital Right post-central

gyrus

Right precuneus Left circular Insular

sulcus

Right post-central

sulcus

6 months

Lipids (g/day) N/S β = −0.237 N/S N/S N/S N/S

P = 0.006

ARA (g/day) β = 0.182 β = −0.222 N/S β = 0.210 N/S N/S

P = 0.018 P = 0.015 P = 0.032

DPA (g/day) N/S β = −0.297 N/S N/S N/S N/S

P = 0.001

DHA (g/day) β = 0.162 β = −0.273 N/S N/S N/S N/S

P = 0.040 P = 0.003

Iron (mg/day) N/S β = 0.249 N/S N/S N/S N/S

P = 0.007

12 months

Lipids (g/day) N/S β = −0.294 β = 0.281 N/S N/S N/S

P = 0.001 P = 0.009

LA (g/day) N/S N/S N/S N/S β = 0.242 N/S

P = 0.029

LNA (g/day) N/S β = −0.322 β = 0.264 N/S N/S N/S

P<0.001 P = 0.014

ARA (g/day) N/S β = −0.264 β = 0.257 N/S N/S N/S

P = 0.005 P = 0.019

EPA (g/day) N/S β = −0.303 N/S N/S N/S N/S

P = 0.002

DPA (g/day) N/S β = −0.300 N/S N/S N/S N/S

P = 0.001

DHA (g/day) N/S β = −0.242 β = 0.272 β = 0.237 N/S N/S

P = 0.012 P = 0.015 P = 0.018

n−6-PUFAs (g/day) N/S N/S N/S N/S β = 0.236 N/S

P = 0.033

n−3-PUFAs (g/day) N/S N/S β = 0.230 N/S N/S N/S

P = 0.033

Calcium (mg/day) N/S N/S β = 0.236 N/S N/S N/S

P = 0.028

18 months

Protein (g/day) N/S N/S β = 0.275 N/S N/S β = 0.330

P = 0.013 P = 0.011

EPA (g/day) N/S N/S N/S β = 0.218 N/S N/S

P = 0.027

DHA (g/day) N/S N/S N/S β = 0.208 N/S N/S

P = 0.036

Zinc (mg/day) N/S N/S N/S N/S N/S β = 0.267

P = 0.040

aP-values for linear regression analysis. P-values < 0.05 are highlighted in bold.

CHO, Carbohydrates; LA, Linoleic acid; LNA, α-Linolenic acid; ARA, Arachidonic acid; EPA, Eicosapentaenoic acid; DPA, Docosapentaenoic acid; DHA, Docosahexaenoic acid; PUFAs,

Polyunsaturated fatty acids; n−6, Omega-6; n−3, Omega-3; β, Beta coefficient; N/S, Not significance.
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at 18 months of life and 4 years, respectively (27, 57). In
addition to these benefits, the current study also suggests
that supplemented infant formula seems to have a beneficial
impact on child neurocognitive development at 6 years old.
In fact, children who received this type of infant formula
during their first 18 months of life showed higher scores in
IQ, vocabulary, and attention than those who were breastfed,
although values obtained were within the normal range in
both cases (29, 42). This finding should be doubly discussed.
First, better neurocognitive scores obtained in EF children
might be partially due to the supplementation of infant formula
with bioactive compounds. In this regard, according to the
European Food Safety Authority (EFSA) recommendations, our
experimental infant formula was supplemented with DHA and
ARA (58), which are not only essential for neurogenesis, neuronal
migration, and synaptogenesis processes (59), but also have a
promising beneficial role on cognitive function and visual acuity
(60–63), particularly with higher proportion of DHA and ARA,
as well as longer supplementation duration (64). Furthermore,
recent studies support the need to supplement infant formulas
with DHA together with ARA to achieve optimal plasma
concentrations of both fatty acids (14, 65). Moreover, infant
formula tested in the COGNIS study was also supplemented
with other bioactive nutrients which have separately shown
positive impact on neurodevelopment and cognitive function,
including MFGM (20–22, 66) and synbiotics (23, 24, 57).
However, keeping in mind that each stage of brain development
can be affected by different nutrients (67), we cannot determine
whether the effects on brain and cognitive function reported here
are only related with MFGM, LC-PUFAs, synbiotics or other
bioactive compounds supplementation, or, more likely, to their
synergistic action.

Secondly, it is important to highlight that the mentioned
bioactive compounds are also present in breast milk. Hence, the
results obtained here should be considered under controversial
relationship between breastfeeding and neurocognitive
development at later ages. In fact, although several studies
have reported positive effects on neurocognitive and brain
development (68–71), others failed to demonstrate long-
term effects of breastfeeding on neurocognitive functions
(72). This is particularly relevant for child IQ and other
cognitive/neurological soft outcomes later in life, on which
breastfeeding has little or no positive impact after adjustment
for confounding factors including maternal IQ, socioeconomic
characteristics, environmental factors (school or parental
stimulation), genetic background, and nutritional constituents of
breastfeeding (73–77). In the current study, although important
potential confounder factors have been considered, we have not
been able to control all related factors of social stimulation or
nutritional status of the exclusively breastfed infants, including
maternal nutritional status, maternal-infant interactions or other
physiologic, genetic, or environmental factors that may influence
bioavailability, along with status and capacity of LC-PUFAs and
other bioactive components that are transferred via breast milk
(78–80). Consequently, further studies should be carried out to
clarify the role of breastfeeding and the new infant formulas
on later cognitive performance, while always keeping in mind

that child cognitive development is influenced by a complex
mix of genetic and environmental factors, and, probably, by
gut microbiota composition and function, as is being recently
communicated by different studies (81, 82). However, despite
the ideas mentioned above, our findings should not detract from
current breastfeeding recommendations (83) because long-term
benefits of breastfeeding for both mother and child integral
development remain unmatched.

More advanced MRI techniques may offer greater insights
about the role of early nutrition on later cognitive performance,
identifying both those brain regions involved in neurocognitive
development (84) and structural and functional effects of certain
nutrients on brain development. In fact, rather than sole
nutrient composition, better brain development seems to be
associated with whole formula composition, achieving better
results in those supplemented or enriched with different bioactive
and/or essential nutrients such as LC-PUFA, iron, choline,
sphingomyelin, and folic acid (85). In this line, also in accordance
with above mentioned neurocognitive effects, our results suggest
that early intake of MFGM, LC-PUFAs, and synbiotics through
a supplemented infant formula seems to be related to in-
depth changes in brain structure development compared to
children fed with standard infant formula. Thus, having in mind
once more that values obtained are within normal range, EF
children showed higher volumes than SF children in different
brain regions localized in the parietal lobe which is closely
related to attentional and perceptual processes and linguistic
functions (86, 87). Additionally, significant differences were also
observed in cortical thickness between both formula groups,
obtaining higher values in EF children in the inferior circular
insula (associated with socio-emotional development) (88, 89),
in the occipito-temporal sulcus (related to lexically capacities)
(90, 91), and in the postcentral sulcus (related to sensorimotor
functional organization) (92). Interestingly, minor differences in
both brain volume and cortical thickness were found between
EF and BF children, although the latter presented lower volume
in the left orbital region which is associated with emotion,
attention, inhibition, and memory processes (93–96). Further
analysis of our data seems to suggest that aforementioned brain
structural differences are related to child neurodevelopment.
As a matter of fact, greater brain volumes were correlated to
better brain function in terms of executive function and language
development. According to Pietschnig et al. larger brain volume
has been linked to better cognitive performance across different
ages (97). This brain growth has been attributed to axonal
density, myelination, and/or increases of fiber diameter (98).
In this line, our findings might suggest an accelerated brain
development in children fed with the new EF compared to
those fed a SF, although further long-term studies are needed to
confirm these results.

In addition, to better understand the neurobiological basis
of child neurodevelopment, findings obtained so far also seem
to support the potential impact of early and later nutrition
on neurodevelopment. Overall, after adjusting for confounder
variables, our results showed that brain structure later in life
might be associated with FA status and protein, mineral, and
fatty acid intake during the first 18 months of life. Regarding
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FAs, among other nutrients, it is well-established that brain
myelination process requires both optimal LC-PUFA intake
and tissue concentrations (99). In addition, infant brain and
subsequent cognitive development is partly affected by the
myelination of neural networks (100, 101). In order to determine
this interaction, both FA intake analysis and FA profile present
in cheek cells were performed. In this line, different studies have
observed that dietary fat intake is reflected in the fatty acid
composition of the brain and some region-specific differences
(102). Furthermore, previous studies have found cognitive
differences in children with LC-PUFA supplementation and
pointed out a long-term beneficial effect of early life DHA
in equilibrium with ARA supplementation, specifically in the
attention and inhibition systems and structural, functional,
and neurochemical neuroimaging 8 years after supplementation
ended (17). Furthermore, during their first 18 months of life, EF
infants presented higher DHA, AdA, and ARA concentrations in
cheek cell glycerophospholipids and FA intake than SF infants,
but no significant differences with respect to the BF group
were found. Although it is known that fat quality, rather than
its total amount, plays a key role on infants’ long-term health
outcomes (80), findings obtained in the present study reflect
negative associations between the left orbital region volume and
FA intake. In fact, BF infants showed higher FA intake and lower
volume in this region, along with worse execution in the attention
task (more errors of commission in a performance continuous
attention task). This association should be interpreted with
caution. Since BF is the gold standard, the smaller left orbital
region may indicate a different growth pattern of the brain
(slower growth) in these children. However, this finding might
also suggest potential influence of other factors on brain structure
and function, apart from other bioactive components present
only in human milk, including physical activity, sleep patterns,
or scholar and family routines, that are worthy of further study
(103). Unfortunately, we cannot confirm a long-term positive
role of BF in the present study. Nevertheless, it seems that BF
promotes a better LC-PUFA status and is able to determine a
specific pattern of brain development different from that found
in formula-fed children, even in those EF with similar LC-
PUFA status.

Dietary intake analysis also showed that BF infants presented
lower mineral intake (calcium, iron, and zinc) up to 18
months of life compared to formula-fed infants. Likewise,
we found positive associations between the abovementioned
mineral intake and the left orbital and right postcentral volumes
and right postcentral sulcus cortical thickness. Due to their
key role on brain development (104), we hypothesized that
neurocognitive and brain structure outcomes obtained in BF
children aged 6 years might be partly influenced by lower
intakes of iron, calcium, and zinc. In fact, iron is essential
for neurogenesis processes, neurotransmitter synthesis, brain
growth, and dendrite density. Consequently, its deficiency
during childhood has been associated with short- and long-
term deficiencies in cognitive, motor, socio-emotional, and
behavioral development (105, 106). Iron is present in small
amounts in human milk (0.03 mg/100ml) (107) although it
has greater bioavailability in relation to infant formulas (108).

However, exclusive breastfeeding maintained after 6 months
of age is associated with increased risk of iron deficiency.
If complementary feeding does not meet this need, iron
supplementation is required in some cases (105, 109). Regarding
infant formulas, the amount of iron contained in them is
sufficient to meet the requirements (58, 110). Additionally,
calcium participates in the production of neurons and glial
cells (111). Its content in human milk is 32 mg/100ml,
while its content in infant formulas varies between 33.5 and
93.8 mg/100ml (112), which could explain the lower content
in breastfed infants compared to formula-fed ones. Finally,
zinc is essential for child growth and development (113). Its
supplementation improves motor development and cognitive
performance, especially reasoning capacity (114, 115). Its content
in human milk is 0.17 mg/100ml, while its content in infant
formulas ranges from 0.34 to 1.01 mg/100 ml (112).

The main strength of this study is its design as a prospective,
randomized, double-blind longitudinal study. The COGNIS
study is the second study in the world in healthy term infants
that includes a long-term follow-up (until 6 years of age) and
neuroimaging examination. In the current study, we aimed to
demonstrate the long-term effects of early nutrition on brain
structure and its consequences on neurodevelopment. To achieve
this aim, cognitive function was evaluated using wide range
of valid, reliable, and age-appropriate tests focused on diverse
child brain domains (43, 44) in contrast with other studies
based on evaluation of a single brain domain. Interestingly, our
nutritional intervention was performed from 0 to 2 months
and prolonged up to 18 months of life, which yields results
with added value with respect to other studies with a shorter
time of intervention. The experimental infant formula was
supplemented with a set of functional nutrients (including
MFGM, LC-PUFAs, and synbiotics), thereby providing added
value compared to other studies aiming to demonstrate the
effect of a single bioactive nutrient. Moreover, it is well-known
that neurodevelopment and brain structure in children are
influenced by several environmental factors such as nutrition,
gender, maternal education, or socioeconomic status, among
others (116–119). Thereby, although it is difficult to control all
factors involved in child neurodevelopment, several confounding
factors previously pointed out (50–52) were taken into account in
the statistical analysis performed in the present study in order to
obtain consistent results and conclusions.

Nonetheless, the current study has a series of limitations that
must be considered. At the beginning of the study, there were
no differences between infant formula groups regarding baseline
characteristics (27). However, there were differences in parents’
age, educational level, and socioeconomic status in the BF group
with respect to infant formula groups. The present study has
taken those differences into account to carry out the statistical
analysis, given that it is well-known that those confounding
factors may influence neurodevelopment. On the other side,
our study groups are relatively small, not only because of the
drop-outs along the long-term follow-up, but also because MRI
scanning requires children to remain still. Thus, these results
should be interpreted with caution. Moreover, in our study,
an individual analysis of each infant’s breast milk composition
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during follow-up has not been performed, and the nutrient
intake in the BF infants was estimated based on a complete
mature human milk composition reported in the United States
Department of Agriculture (USDA) National Nutrient Database
for standard reference (107). Furthermore, p < 0.05 was used as
the statistical threshold, but in the structural analysis, corrections
for multiple comparisons were not applied to multiple tests. The
current work is an exploratory study, and hence, future studies
will be necessary to confirm or refute these results using larger
sample size.

In conclusion, our findings suggest that MFGM component-,
LC-PUFA-, and synbiotics-supplemented infant formula might
be associated to beneficial long-term effects on neurocognitive
development and brain structure in terms of brain volumes
and cortical thickness in children aged 6 years. These results
bring us closer to understand the effects of an adequate
nutrition during the first years of life on later brain development
and its neuropsychological effects. Analysis of brain structure
could provide new knowledge about neural structure underlying
neurocognitive function and origins and progression of brain and
mental disorders. Therefore, the present study would open future
opportunities to develop prevention strategies against brain and
mental disorders based on ensuring adequate and individualized
nutrition during the first 18 months of life.
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