
����������
�������

Citation: Eddargani, S.; Oraiche, M.;

Lamnii, A.; Louzar, M. C2 Cubic

Algebraic Hyperbolic Spline

Interpolating Scheme by Means of

Integral Values. Mathematics 2022, 10,

1490. https://doi.org/10.3390/

math10091490

Academic Editor: Ioannis K. Argyros

Received: 21 March 2022

Accepted: 27 April 2022

Published: 29 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

C2 Cubic Algebraic Hyperbolic Spline Interpolating Scheme by
Means of Integral Values

Salah Eddargani 1,* , Mohammed Oraiche 2 , Abdellah Lamnii 3 and Mohamed Louzar 2

1 Department of Applied Mathematics, University of Granada, 18071 Granada, Spain
2 MISI Laboratory, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat 26000, Morocco;

m.oraiche@uhp.ac.ma (M.O.); mohamed.louzar@uhp.ac.ma (M.L.)
3 LaSAD Laboratory, Ecole Normale Supérieure, Abdelmalek Essaadi University, Tetouan 93030, Morocco;

a.lamnii@uae.ac.ma
* Correspondence: seddargani@correo.ugr.es

Abstract: In this paper, a cubic Hermite spline interpolating scheme reproducing both linear polyno-
mials and hyperbolic functions is considered. The interpolating scheme is mainly defined by means
of integral values over the subintervals of a partition of the function to be approximated, rather
than the function and its first derivative values. The scheme provided is C2 everywhere and yields
optimal order. We provide some numerical tests to illustrate the good performance of the novel
approximation scheme.

Keywords: algebraic hyperbolic splines; integro cubic interpolation; Hermite representation

MSC: 65D07

1. Introduction

Nowadays, numerical methods are a common tool, just a click away from the user.
Interpolation is a particular and very important numerical method, which is widely used
to address the solution of theoretical problems and show their full potential to numerically
solve problems that occur in many different branches of science, engineering and economics.

The interpolation approximants should be easily evaluated, differentiated and in-
tegrated. Spline functions, i.e., smooth piecewise polynomial functions, fulfil all these
requirements.

Since the introduction of the systematic study of spline functions by I. J. Schoenberg
in the 1940s [1], they have become an indispensable tool in approximation theory and
numerical computation, including computer-aided geometric design (CAGD) [2,3], the
numerical solution of PDEs, numerical quadratures, interpolation and quasi-interpolation,
regularization, least squares, isogeometric analysis and image processing.

Spline functions have been the subject of many research results that have been pre-
sented in well-known books [4,5]. Furthermore, thousands of papers related to spline
functions and their applications have been published in the last five years, in fields rang-
ing from computer science, engineering, physics and astronomy to entertainment and
conceptual design assistance.

Polynomial spline functions are the most commonly used class, especially due to the
fact that they admit normalized bases on any bounded interval [a, b] (Bernstein bases and
B-spline bases); for more details, see [5–8]. Indeed, Bernstein bases and B-splines possess
several interesting properties, such as non-negativity, local support, partition of unity and
totally positive bases [9]. Bernstein basis functions of degree n are the best among all
bases of the polynomial space of degree less than or equal to n. This means that it is the
basis relative to which the control polygon of any curve yields the best information on
the curve itself. The non-polynomial B-splines have also been studied in the literature.
For instance, the trigonometric B-splines were presented in [10,11]. The authors in [12]
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have established a recurrence relation for the trigonometric B-splines of arbitrary order. A
complete construction of exponential tension B-splines of arbitrary order was given in [13].
A more recent study on this kind of spline was given in [14,15]. The splines associated with
the exponential B-spline space are often referred to as hyperbolic splines [16].

Unfortunately, neither Bernstein bases nor B-splines are suitable to perfectly describe
conic sections, which are shapes of major interest in certain engineering applications. This
resulted in the introduction of NURBS [17], which can be seen as a generalization of
B-splines, inheriting from them important properties and with the additional benefit of
making possible the exact representation of conic sections. On the other hand, the NURBS
representation suffers from some drawbacks that are considered critical in CAD. In fact,
the necessity of weights does not have an evident geometric meaning and their selection
is often unclear. Furthermore, it behaves awkwardly with respect to differentiation and
integration, which are indispensable operators in analysis. On this concern, it is sufficient
to think about the complex structure of the derivative of a NURBS curve of a given order.

An alternative is to use the so-called generalized B-splines; see [18,19] and references
therein. The generalized B-splines belong to the extended space spanned by{

1, x, . . . , xn−2, u1(x), u2(x)
}

, where u1 and u2 are smooth functions. The two functions
u1 and u2 can be selected to achieve the exact representation of salient profiles of interest
and/or to obtain particular features. The most popular choices of these functions are:
(u1(x), u2(x)) = (sin(x), cos(x)) and (u1(x), u2(x)) = (exp(x), exp(−x)), which yield
algebraic trigonometric and algebraic exponential splines, respectively. The algebraic expo-
nential splines are often referred as algebraic hyperbolic splines. Algebraic trigonometric
and hyperbolic splines allow an exact representation of conic sections, as well as of some
transcendental curves, such as helix and cycloid curves. In fact, they are in a position to
provide parametrizations of conic sections that are significantly more related to the arc
length than NURBS.

These classes of splines are also known as cycloidal spaces, and they have become
the subjects of a considerable amount of research [2,20–26]. The algebraic hyperbolic
spaces spanned by the functions 1, x, . . ., xn−2, cosh(x), sinh(x), for x ∈ R, have been
widely considered in the literature; see [21] and references quoted. They yield the tension
splines, which are extremely useful for avoiding undesirable oscillations in the interpolation
curves [27].

In this paper, we consider the algebraic hyperbolic (AH) cubic spline space, spanned
by {1, x, sinh, cosh}, and let Xn = {xi := a + ih}n

i=0 be a uniform partition of a bounded
interval I = [a, b], with h = b−a

n . Given values f j
i , i = 0, . . . , n, j = 0, 1, there exists a

unique cubic AH Hermite interpolant si ∈ span{1, x, sinh, cosh} such that s(j)
i (xi+k) = f j

i+k,
i = 0, . . . , n − 1, j, k = 0, 1. The spline s defined from the local interpolants si is a C1

continuous AH spline that interpolates the data f j
i .

In this work, we suppose that the data f j
i , i = 0, . . . , n, j = 0, 1, are not given, and we

assume that the integral values over subintervals [xi, xi+1], i = 0, . . . , n− 1 are given. Then,
our purpose is the construction of the Hermite interpolant s using only this information.
This kind of approximation arises in various fields, such as mechanics, mathematical
statistics, electricity, environmental science, climatology, oceanography and so on (for more
details, see References [28,29] and references therein). More precisely, the values f j

i will be
computed by means of C2 smoothness conditions at the knots xi and the integral values
over subintervals [xi, xi+1]. This is done by solving a three-diagonal linear system. Some
final conditions are required. In particular, we assume that the three values f 0

0 , f 0
n and f 1

0 or
f 1
n are given. In general, these three values are not always available. We suggest a modified

scheme that does not involve any final conditions to avoid this limitation.
Integro spline approximation was treated in various works in the literature. The

author in [30,31] developed two types of integro spline approximants, cubic and quintic
cases, respectively. The two schemes introduced in [30,31] require various end conditions
and the solution of a three-diagonal system of linear equations. Solving a linear system
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of equations sometimes is very expensive, so the authors in [32] developed cubic integro
splines quasi-interpolant without solving any system of equations. An integro quartic
spline scheme has been constructed in [33]. The authors in [21,34] provided some integro
spline schemes for the case of non-polynomial splines. More recent work on the integro
spline approximation is given in [35,36]

In this work, a new class of integro spline approximant is introduced. The proposed
operator is C2 smooth everywhere and exactly reproduces both linear polynomials and
hyperbolic functions, which is useful to avoid undesirable oscillations in curves’ interpola-
tion. Some end conditions are needed, and to avoid this inconvenience, we have proposed
a modified scheme that does not require additional end conditions.

This paper is organized as follows: in Section 2, we first present the C1 cubic AH
interpolating scheme, which is defined by means of the value and the derivative value at
each knot of the partition. We also study the error bound of the presented scheme. Then,
the conditions for achieving the C2 smoothness are described. Thus, an approach to define
the integro spline scheme by means of integral values is proposed. In Section 3, we provide
some numerical tests. Finally, we present some conclusions.

2. Algebraic Hyperbolic Spline Interpolation

Let Xn = {xi := a + ih}n
i=0 be a uniform partition of a bounded interval I = [a, b],

with h = b−a
n .

2.1. Cubic Algebraic Hyperbolic (AH) Splines of Class C1

The construction of a C1 cubic AH spline interpolant on the partition Xn should be
locally expressed in each sub-interval `i := [xi, xi+1] in terms of the function and the first
derivative values of the approximated function at knots xi and xi+1.

The space of cubic AH splines on Xn with global C1 continuity is denoted as

S1
3(Xn) :=

{
s ∈ C1(I); s|`i

∈ Γ3 for all i = 0, . . . , n
}

,

where Γ3 := span{1, x, sinh, cosh} stands for the linear space of cubic AH splines. Its
dimension equals 2(n + 1). The following Hermite interpolation problem can then be
considered: there exists a unique spline s(x) ∈ S1

3(Xn) such that

s(j)(xi) = f j
i , i = 0, . . . , n, j = 0, 1, (1)

for any given set of f j
i−values. Therefore, each spline s(x) ∈ S1

3(Xn) restricted to the
sub-interval `i can be represented as follows:

s|`i
(x) :=

1

∑
k=0

1

∑
j=0

f j
i+kφ

j
i+k(x), (2)

in which φ
j
i+k, k = 0, 1, j = 0, 1 are classical Hermite basis functions of S1

3(Xn) restricted to

the sub-interval `i. The basis functions φ
j
i+k, k = 0, 1, j = 0, 1 are the unique solution of the

interpolation problem given by (1) in s(x) ∈ S1
3(Xn), where

(
f 0
i , f 1

i , f 0
i+1, f 1

i+1
)
= (1, 0, 0, 0),(

f 0
i , f 1

i , f 0
i+1, f 1

i+1
)
= (0, 1, 0, 0),

(
f 0
i , f 1

i , f 0
i+1, f 1

i+1
)
= (0, 0, 1, 0) and

(
f 0
i , f 1

i , f 0
i+1, f 1

i+1
)
=

(0, 0, 0, 1), respectively. More precisely,
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φ0
i (xi) = 1,

(
φ0

i

)′
(xi) = 0, φ0

i (xi+1) = 0,
(

φ0
i

)′
(xi+1) = 0,

φ1
i (xi) = 0,

(
φ1

i

)′
(xi) = 1, φ1

i (xi+1) = 0,
(

φ1
i

)′
(xi+1) = 0,

φ0
i+1(xi) = 0,

(
φ0

i+1

)′
(xi) = 0, φ0

i+1(xi+1) = 1,
(

φ0
i

)′
(xi+1) = 0,

φ1
i+1(xi) = 0,

(
φ1

i+1

)′
(xi) = 0, φ1

i+1(xi+1) = 0,
(

φ1
i+1

)′
(xi+1) = 1.

They can be expressed as follows:

φ0
i (x) :=

1
θ
(1, x, sinh(x), cosh(x))


− cosh(h) + sinh(h)(h + xi) + 1

− sinh(h)
sinh(h + xi)− sinh(xi)
cosh(xi)− cosh(h + xi)

,

φ1
i (x) :=

1
θ
(1, x, sinh(x), cosh(x))


− cosh(h)− sinh(h)xi + 1

sinh(h)
sinh(xi)− sinh(h + xi)
cosh(h + xi)− cosh(xi)

,

φ0
i+1(x) :=

1
θ
(1, x, sinh(x), cosh(x))


h cosh(h)− sinh(h) + (cosh(h)− 1)xi

1− cosh(h)
cosh(xi)− cosh(h + xi) + h sinh(h + xi)
−h cosh(h + xi)− sinh(xi) + sinh(h + xi)

,

φ1
i+1(x) :=

1
θ
(1, x, sinh(x), cosh(x))


−h + sinh(h) + (cosh(h)− 1)xi

1− cosh(h)
− cosh(xi) + cosh(h + xi)− h sinh(xi)

h cosh(xi) + sinh(xi)− sinh(h + xi)

,

where θ = h sinh(h)− 2 cosh(h) + 2.
Figure 1 shows the typical plots of the basis functions φ

j
i+k, k = 0, 1, j = 0, 1, on the

sub-interval [xi, xi+1] = [0, 1].

ϕi+1

1.0

-0.2

0.2

0.4

0.6

0.8

1.0

Figure 1. Plots of the basis functions on [xi, xi+1] = [0, 1].

Consider that the values of f j
i are related to an explicit function f , i.e., f j

i = f (j)(xi),
j = 0, 1. Then, it holds that

‖s− f ‖∞,[xi ,xi+1]
= O

(
h4
)

. (3)
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In order to prove this statement, consider an arbitrary but fixed value t̃ different from
xi and xi+1, and define

R(t) = s(t)− f (t)− ρ
1

∏
k=0

(t− xi+k)
2,

in which the constant ρ is chosen such that R(t̃) = 0, that is,

ρ =
s(t̃)− f (t̃)

∏1
k=0(t̃− xi+k)

2 .

The function R has at least three roots in [xi, xi+1], which are xi, xi+1 and t̃.
According to Rolle’s theorem, R′ has at least two roots in [xi, xi+1] that are different

from xi, xi+1, t̃ and also R′(xi) = R′(xi+1) = 0, which means that R′ has at least four roots
in [xi, xi+1]. Analogously and progressively, it is shown that R(2) has three roots in the
interval [xi, xi+1], R(3) has two and R(4) has only one root, say ξ. It then states

R(4)(ξ) = s(4)(ξ)− f (4)(ξ)− 24ρ = 0.

It holds that

s(t̃)− f (t̃) =
1
24

(
s(4)(ξ)− f (4)(ξ)

) 1

∏
k=0

(t̃− xi+k)
2.

This proves Equation (3).
The proposed interpolant s is defined from the values and first derivative values at

the break points. Unfortunately, this dataset is not always at hand. This paper deals with
the case where neither the values nor the derivative values are known. Instead, we assume
that the integral values over the sub-intervals are available.

The strategy pursued in this work is the following: we first highlight the relationship
between function and first derivative values by imposing the C2 smoothness at the set of
break points. Next, we express the derivative values in the mean integral values provided.

The C2 smoothness of s′′(x) at xi, i = 1, ..., n − 1 yields the following consistency
relations:

α f 1
i−1 + β f 1

i + α f 1
i+1 = f 0

i+1 − f 0
i−1, i = 1, ..., n− 1. (4)

where α = sinh(h)−h
cosh(h)−1 and β = csch2

(
h
2

)
(h cosh(h)− sinh(h)).

The error related to the approximation scheme (4) can be derived from the following
result.

Lemma 1. Let f ∈ C3 ([a, b]); then, the local truncation errors ti, i = 1, 2, . . . , n, associated
with the scheme (4) are given by the expressions

ti = −
1
6

h2 f (3)(xi)(h(cosh(h) + 2)− 3 sinh(h)) + O
(

h2
)

.
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Proof. The function f is supposed to be of class C3([a, b]), that is,

f (xi + h) = f (xi) + f ′(xi) h + f ′′(xi)
h2

2
+ f (3)(xi)

h3

6
+ O

(
h3
)

,

f (xi − h) = f (xi)− f ′(xi) h + f ′′(xi)
h2

2
− f (3)(xi)

h3

6
+ O

(
h3
)

,

f ′(xi + h) = f ′(xi) + f ′′(xi)h + f (3)(xi)
h2

2
+ O

(
h2
)

,

f ′(xi − h) = f ′(xi)− f ′′(xi)h + f (3)(xi)
h2

2
+ O

(
h2
)

.

Using Equation (4), it results that

ti = α f ′(xi−1) + β f ′(xi) + α f ′(xi+1)−
1

csch2
(

h
2

) ( f (xi+1)− f (xi−1)).

By replacing f ′(xi−1), f ′(xi+1) and f (xi+1)− f (xi−1) by their Taylor expansions, the
intended result can be achieved, which completes the proof.

The next result can be easily deduced from the previous lemma.

Theorem 2. Let f ∈ C3([a, b]), then∣∣∣ f 1
i − f ′(xi)

∣∣∣ = O(h2
)

.

At this point, we have simply provided a scheme that approximates the derivative
values from the function values by imposing C2 smoothness at the break points. In what
follows, we will deal with the case where the function values themselves are not available,
whereas the integrals over the sub-intervals are known.

2.2. Cubic Algebraic Hyperbolic Spline Interpolant Based on Mean Integral Value

In traditional spline interpolation problems, it is assumed that the function values at
the knots are given. In this subsection, the function values are supposed to be unknowns
and we assume that the integrals over the sub-intervals [xi−1, xi], i = 1, . . . , n are provided
and are equal to

ti =
∫ xi

xi−1

f (x) dx, i = 1, . . . , n (5)

In the sequel, we will provide a scheme that approximates derivative values from the
integrals ti, i = 1, . . . , n.

By integrating s over [xi−1, xi] and [xi, xi+1], one can obtain

2ti = h
(

f 0
i−1 + f 0

i

)
+

(
2− h coth

(
h
2

))(
f 1
i − f 1

i−1

)
, i = 1, . . . , n (6)

2ti+1 = h
(

f 0
i + f 0

i+1

)
+

(
2− h coth

(
h
2

))(
f 1
i+1 − f 1

i

)
, i = 0, . . . , n− 1 (7)

respectively.
Subtracting (6) from (7) as a first step, and then applying (4) as a second step, allows

us to eliminate the unknowns f 0
i , as well as to achieve new relations that link only the

unknowns f 1
i with the provided data ti. It results that

µ f 1
i−1 + λ f 1

i + µ f 1
i+1 = 2(ti+1 − ti), i = 1, . . . , n− 1, (8)

with

µ =
1
2

(
4− h2csch2

(
h
2

))
and λ =

((
h2 − 2

)
cosh(h) + 2

)
csch2

(
h
2

)
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This yields a system of n− 1 linear equations, while there are n + 1 unknowns f 1
i .

Then, two additional end conditions are required to determine the unknowns. The end
conditions are the first derivative values at the end points a and b. Assume that f ′(a) = f 1

a
and f ′(b) = f 1

b are provided. Then, a (n− 1)× (n− 1) linear tridiagonal system results.

λ µ
µ λ µ

µ λ µ
. . . . . . . . .

µ λ µ
µ λ




m1

...

mn−1

 =


b1 − µc

b2
...

bn−2
bn−1 − µd

, (9)

with bi = 2(ti+1 − ti).
The following result shows that the linear system (9) has a unique solution.

Theorem 3. For h > 0, the matrix system in (9) is a strictly diagonally dominant matrix.

Proof. Let h > 0. It is easy to show that λ > 2µ. Indeed, a simple calculation gives us the
following equality:

λ− 2µ =

((
h2 − 2

)
cosh(h) + 2

)
csch2

(
h
2

)
h
(

h coth
(

h
2

)
− 2
) −

2
(

4− h2csch2
(

h
2

))
2h
(

h coth
(

h
2

)
− 2
)

=
4
h
+ 2 coth

(
h
2

)

Since coth
(

h
2

)
> 0, then λ− 2µ > 0, which completes the proof.

The LU factorization is adequate for solving (9) because the index on the diagonally
dominant property of the matrix A is equal to 1

5 for small enough h > 0. In fact, let
A :=

(
aij
)

1≤i,j≤n be the matrix coefficient of system (9). The index on the diagonally
dominant property of matrix A is given by

Dh(A) := max
i=1,...,n

1
|aii|

n

∑
j=1
j 6=i

∣∣ai,j
∣∣= 2 max

h>0

µ(h)
λ(h)

=
2
h −

h
15 + 13h3

6300 + O
(
h5)

10
h + 4h

15 −
11h3

3150 + O(h5)

Its limit when h is close to zero is equal to 1
5 .

Once the values of f 1
i , i = 1, . . . , n − 1 are determined, we can then compute f 1

i ,
i = 1, . . . , n− 1 by means of (6). However, we still need another end condition. Suppose
that one of the values f (a) and f (b) is provided; then, we can start from it and use (6) to
obtain the remaining unknowns in an iterative way.

To analyze the interpolation error, we need the following lemma to establish an error
bound for our operator.

Lemma 4. Let f ∈ C3 ([a, b]); then, the local truncation errors t̃i, i = 1, 2, . . . , n, associated
with the scheme (9), are given by the expressions

t̃i = −
1
6

h2 f (3)(xi)

(
h2 + 3h2csch2

(
h
2

)
− 12

)
+ O

(
h2
)

.

Theorem 5. Let f ∈ C4([a, b]) and s be the interpolation operator defined by (2), (6) and (9). For
a uniform step size h, we have

‖ f (x)− s(x)‖∞,[a,b] = O(h2).



Mathematics 2022, 10, 1490 8 of 13

Proof. Consider the sub-interval [xi, xi+1]. Let p be the spline in S1
3, which satisfies

p(j)(xi+k) = f (j)(xi+k), j, k = 0, 1. Then, it results that

‖s− f ‖ = ‖s− p + p− f ‖
≤ ‖s− p‖+ ‖p− f ‖

≤ O
(

h2
)
+ O

(
h4
)

≡ O
(

h2
)

.

This due to the fact that ‖s− p‖ ≤ max
{
| f ′(xi)− f 1

i |, | f ′(xi+1)− f 1
i+1|

}
, which con-

cludes the proof.

In the general context, the end conditions may not be provided. Thus, to avoid this
limitation, we will provide explicit expressions for the end conditions f (a), f ′(a) and f (b)
by means of integral values.

Lemma 6. For a given function f ∈ C2,

f (a) =
11t1 − 7t2 + 2t3

6h
, f ′(a) = −2t1 − 3t2 + t3

h2 , f ′(b) = −2tn − 3tn−1 + tn−2

h2 .

Proof. The Taylor expansion of f around a is as follows:

f (x) = f (a) + f ′(a)(x− a) +
1
2

f ′′(a)(x− a)2 +O(x− a)2.

t1 = h f (a) +
h2

2
f ′(a) +

h3

6
f ′′(a) + O

(
h3
)

,

t2 = h f (a) +
3h2

2
f ′(a) +

7h3

6
f ′′(a) + O

(
h3
)

,

t3 = h f (a) +
5h2

2
f ′(a) +

19h3

6
f ′′(a) + O

(
h3
)

.

Therefore, the following system is obtained:t1
t2
t3

 =

 h h2

2
h3

6
h 3h2

2
7h3

6
h 5h2

2
19h3

6


 f (a)

f ′(a)
f ′′(a)


Through a straightforward computation, we can obtain the expressions of f (a) and

f ′(a).
By the same approach, we can obtain the expression of f ′(b), which concludes the

proof.

3. Numerical Results

This section provides some numerical results to illustrate the performance of the above
Hermite interpolation operator. To this end, we will use the test functions

f1(x) =
3
4

e−2(9x−2)2 − 1
5

e−(9x−7)2−(9x−4)2
+

1
2

e−(9x−7)2− 1
4 (9x−3)2

+
3
4

e
1
10 (−9x−1)− 1

49 (9x+1)2
,

f2(x) =
1
2

x cos4
(

4
(

x2 + x− 1
))

,

f3(x) = −
exp

(
−x2)(log

(
x5 + 6

)
+ sin(3πx)

)
cos(2πx) + 2

,
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whose plots appear in Figure 2. The two first functions are the 1D versions of the Franke [37]
and Nielson [38] functions.
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Figure 2. Plots of test functions: f1 (left), f2 (center) and f3 (right).

Let us consider the interval I = [0, 1]. The tests are carried out for a sequence of
uniform mesh In associated with the break points ih, i = 0, . . . , n, where h = 1

n .
The interpolation error is estimated as

En( f ) = max
0≤`≤200

|s(x`)− f (x`)|,

where x`, ` = 0, . . . , 200, are equally spaced points in I. The estimated numerical conver-
gence order (NCO) is given by the rate

NCO :=
log
(
En
E2n

)
log(2)

.

In Table 1, the estimated quasi-interpolation errors and NCOs for functions f1, f2 and
f3 are shown.

Table 1. Estimated errors for functions f1, f2 and f3, and NCOs with different values of n.

n En( f1) NCO En( f2) NCO En( f3) NCO

10 1.7857× 10−1 −− 9.1243× 10−2 −− 7.4186× 10−3 −−
20 8.7411× 10−3 4.3525 9.8171× 10−3 3.2163 2.8348× 10−4 4.7097

40 1.8198× 10−4 5.5859 2.3654× 10−4 5.3751 1.0365× 10−5 4.7734

80 8.6397× 10−6 4.3967 1.1330× 10−5 4.3838 5.7600× 10−7 4.1695

Now, we will compare the numerical method proposed here with the results obtained
with different methods in other papers in the literature, although the test functions in these
papers are extremely simple, namely

g1(x) = cos(πx) and g2(x) = x sin(x) .

In Tables 2 and 3, we list the resulting errors for the approximation of the functions
g1 and g2, respectively, by using the cubic spline operator provided here and those in
References [34,39,40]. Tables 2 and 3 show that the novel numerical scheme improves the
results in References [34,39,40].

Table 2. Estimated errors for function g1, and NCOs with different values of n.

n En(g1) NCO Method in [34] NCO Method in [39] NCO

10 3.00× 10−5 −− 6.00× 10−5 −− 6.25× 10−4 −−
20 1.86× 10−6 4.01 3.28× 10−6 4.19 4.05× 10−5 3.94

40 1.16× 10−7 4.00 2.43× 10−7 3.75 2.56× 10−6 3.98
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Table 3. Estimated errors for function g2, and NCOs with different values of n.

n En(g2) NCO Method in [40] NCO

10 1.66× 10−6 −− 2.80× 10−5 −−
20 1.04× 10−7 4.00 1.75× 10−7 3.99

40 6.51× 10−9 4.00 1.10× 10−8 3.99

Next, we deal with the following four test functions also defined on [0, 1]:

k1(x) =

√
x + 2 exp

(
2x2) sin(4πx)

(x2 + 3)5/7 , k2(x) =
sinh

(
x2) sin

(
2π
√

cosh(2x)
)

x6 + 1
,

k3(x) =
exp

(
1

x2+1

)
tanh

( x
10π

)
16x3 + 1

, and k4(x) = cosh(x) exp(sinh(x)).

Their typical plots are shown in Figure 3.
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Figure 3. Plots of test functions: k1, k2, k3 and k4 (from (left) to (right) and from (top) to (bottom)).

Our goal now is to compare the method introduced herein with the methods that
use only algebraic splines, as well as those that combine the features of algebraic and
hyperbolic functions. To this end, we consider the approaches presented by A. Boujraf et al.
in [29], D. Barrera et al. in [21], J. Wu and X. Zhang in [40] and S. Eddargani et al. in [34],
so we implement the approaches described in [29,34,40] to be able to execute any test
function, because those involved in the cited references are simple examples and one of
them (exponential function) is reproduced by our approach.

In Tables 4 and 5, we list the resulting errors for the approximation of the functions k1
and k2, respectively, using our approach and the one provided in [29]. Table 6 shows the
resulting errors for the approximation of the function k3, using the approach described here
and those in References [21,34,40]. In Table 7, we list the resulting errors for the approxima-
tion of the function k4 by using the approach provided here and those in References [34,40].

It is clear that the proposed scheme improves the results in the previous papers by at
least two orders of magnitude. Consequently, in certain contexts, it is highly recommended
to use splines that benefit from the features of both algebraic and hyperbolic functions
instead of using only the features of algebraic ones.
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Table 4. Estimated errors for function k1, and NCOs with different values of n.

n En(k1) NCO Method in [29] NCO

8 3.6083× 10−2 −− 7.8090× 10−1 −−
16 2.5592× 10−3 3.81755 6.3999× 10−2 3.60902

32 1.6951× 10−4 3.91625 4.6292× 10−3 3.78922

64 1.0783× 10−5 3.9745 1.5127× 10−3 1.61358

128 6.8819× 10−7 3.96986 5.2353× 10−4 1.53083

Table 5. Estimated errors for function k2, and NCOs with different values of n.

n En(k2) NCO Method in [29] NCO

8 5.0763× 10−3 −− 1.2442× 10−1 −−
16 3.6283× 10−4 3.80642 1.0854× 10−2 3.51895

32 1.8540× 10−5 4.29057 7.5616× 10−4 3.84338

64 9.9072× 10−7 4.22602 4.7513× 10−5 3.99231

128 7.4838× 10−8 3.72664 3.0252× 10−6 3.97319

Table 6. Estimated errors for function k3, and NCOs with different values of n.

n En(k3) NCO Method in [21] NCO Method in [40] NCO Method in [34] NCO

8 7.78× 10−5 −− 1.24× 10−3 −− 1.64× 10−2 −− 1.69× 10−2 −−

16 1.93× 10−6 5.33 7.81× 10−5 3.98 1.00× 10−3 4.03 1.01× 10−3 4.27

32 1.03× 10−7 4.21 4.88× 10−6 4.00 6.26× 10−5 3.99 6.28× 10−5 4.00

64 6.02× 10−9 4.10 3.05× 10−7 4.00 3.91× 10−6 4.00 3.92× 10−6 4.00

128 4.91× 10−10 3.61 1.90× 10−8 4.00 2.44× 10−7 4.00 2.45× 10−7 4.00

Table 7. Estimated errors for function k4, and NCOs with different values of n.

n En(k3) NCO Method in [40] NCO Method in [34] NCO

8 9.41× 10−5 −− 3.25× 10−4 −− 3.83× 10−4 −−
16 7.70× 10−6 3.61 2.69× 10−5 3.59 3.16× 10−5 3.59

32 5.19× 10−7 3.88 1.95× 10−6 3.78 2.29× 10−6 3.79

64 3.06× 10−8 4.08 1.32× 10−7 3.88 1.54× 10−7 3.90

4. Conclusions

Approximation from integral values represents a critical topic because of its extensive
application in many different areas. This paper considers a cubic Hermite spline interpolant
that reproduces linear polynomials and hyperbolic functions. The proposed interpolant is
C2 everywhere and is defined from the value and the first derivative value at each knot of
the partition. The function and derivative values are assumed to be unknowns, and then
they are determined using the C2 smoothness conditions and the mean integral values.
The numerical results illustrate the good performance of the novel approximation scheme.
The construction used herein requires the resolution of a system of linear equations, which
can be computationally expensive, especially when dealing with a large number of data.
Future work will address the issue of avoiding this limitation.
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