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In this paper we study how to assess the performance of a group of individuals according to their 

achievements in several attributes or categories by means of a scoring system. Such an assessment is 

the composition of two steps. First, each individual obtains a partial score in each category (that may 

potentially depend on her opponents’ performance). And second, those partial scores are combined into 

a global assessment. The partial score in each attribute is upper bounded by an exogenous threshold or 

cap. Each problem is determined by four elements: a set of agents (or tenders), a set of attributes to be 

evaluated, a matrix of achievements that specified the score each agent has obtained in each attribute, 

and a vector of caps. By means of the axiomatic methodology, we identify the families of assessment 

functions that satisfy some natural requirements ( anonymity, continuity, monotonicity, null contribution, 

additivity , and separability ). Our findings state that these families are weighted averages of the attribute 

assessments. Finally, as an illustration, we analyze a public tender whose purpose was to carry out an 

accounts auditing of a public company. As a practical implication of our theoretical results, we show 

that truncation presents significant advantages with respect to other methods. Particularly, it avoids the 

exclusion paradox. 

© 2022 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

In 2019 over 20 0 0 billion euros of EU citizens’ money was spent

n public procurement procedures to provide goods and services 

o cities, regions, nations, and EU institutions. The destinations of 

ost of the budget were medical equipment, pharmaceuticals and 

ersonal care products (329.3 million euros), IT services (375.4 mil- 

ion euros), and business services (297.3 million euros). The ad- 

udication of contracts is made through a tendering process by 

hich potential contestants submit their offers [20] . A committee 

ssesses the offers and chooses the winner. Therefore, it is crucial 

o have good and appropriate scoring rules to assess bids, even 

ore in those cases that may have particular relevance because 

f the budget, the economic consequences, or the political impli- 

ations [14] . The purpose of this work is precisely that, we provide 

 mechanism to assess offers in a public procurement process. The 

ethod we propose is well founded from a social choice perspec- 

ive, since we mathematically prove that it is the only one that sat- 

sfies a collection of suitable properties. In addition, it also avoids 
� Area: Data-Driven Analytics. This manuscript was processed by Associate Editor 

tanko Dimitrov. 
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ome of the malfunctioning of other methods. The comparisons are 

one by means of a detailed case study. 

In public tenders, bidders submit their offers in detailed memos 

hat explain several aspects of their proposals. Then, a commit- 

ee of experts assesses those offers according to several attributes 

price, technical quality, experience, proposed improvements,...) 

nd assigns a score to each bidder in each attribute. Usually, each 

ttribute has a cap, that is, a maximum threshold of the points that 

an be obtained in that attribute (40% for price, 30% for technical 

uality, 10% for experience, 10% for proposed improvements,...). The 

verall assessment of the bidder is the lump sum of points across 

ttributes. The use of caps in the assessment of tenders is well set- 

led by the EU regulations (Directives of the of the European Parlia- 

ent and of the Council 2014/23/EU and 2014/24/EU [ 10 ], for ex- 

mple) but there exists a vivid controversy on how to apply those 

aps. Several resolutions of judicial courts have justified different 

ethods such as truncation, proportionality , or linearity . As we will 

how in the case study we analyze in this work, the first method 

resents significant advantages. In addition, truncation is very well 

rounded from the perspective of the decision theory and social 

hoice. 

Tendering is just a particular case of a more general class of 

roblems, where the performance of a group of agents must be 
under the CC BY-NC-ND license 
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ssessed by means of a scoring process taking into consideration: 1 

i) their own performance in several attributes, (ii) the perfor- 

ance of their peers, and (iii) the existence of a cap that bounds 

he score of each attribute. In our setting, a problem has four el- 

ments: the set of agents, the set of attributes, the matrix of 

chievements that indicates the performance of each agent at each 

ttribute, and the vector of caps that stipulates the maximum score 

ny agent may obtain at each attribute. An assessment function is a 

echanism to assess the agents considering all the elements of the 

roblem. We consider assessment functions that are the composi- 

ion of two other processes: a partial assessment function and an 

ggregation function . As in reality, a partial assessment functions 

ssigns to each agent (each bidder, for example) a score that does 

ot exceed the cap in each attribute (60 for price and 40 for tech- 

ical quality, for instance). This score depends on the own perfor- 

ance and the other agents’ achievements. An aggregation func- 

ion summarizes, for each agent, the scores across attributes. 

Since, in reality, the achievements are usually above the cap, a 

rst adjustment needs to be made. The partial assessment func- 

ion does this work. For each attribute, it assigns to each agent a 

core that fits within the cap. It depends potentially on her perfor- 

ance, the performance of her peers at that attribute, and the cap. 

he aggregation function aggregates the scores across attributes to 

etermine the final assessment of the agents. 

We analyze the problem from the perspective of the axiomatic 

ethodology, by which the assessment functions are justified in 

erms of the axioms or properties they satisfy. In general, suitable 

ombinations of properties are imposed as the desirable or mini- 

al requirements that the assessment functions must satisfy. The 

oal is then to identify the solutions or unique solution that satisfy 

hese axioms. For this purpose, we propose a collection of proper- 

ies that are suitable for this problem. 

The first group of properties we consider reflects basic prin- 

iples of fairness. In particular, monotonicity states that the as- 

essment of an individual cannot decrease if her performance in- 

reases. Null contribution requires that, if the achievement of an 

gent at one attribute is null, then zero points are scored. Null 

gent imposes that, if an agent is scored zero at all attributes, then 

er overall evaluation must also be zero. Anonymity says that the 

dentity of the individuals cannot affect the assessment. The sec- 

nd group of axioms relates to the stability of the assessment with 

espect to changes in the achievements. Thus, continuity implies 

hat small changes in the performance of individuals do not dras- 

ically alter the assessment. Additivity states that the assessment 

ust be additive. This requirement has been widely applied for 

imilar problems. However, we show that, in our framework, the 

ull assessment function is the only solution that satisfies additiv- 

ty. 2 This is due to the existence of caps. As an alternative, we pro-

ose restricted additivity , which follows the lines of additivity but it 

s not so demanding. In essence, restricted additivity requires ad- 

itivity when there is no conflict with the caps. It is the furthest 

oint to which we can extend this notion in our model. As an al- 

ernative to restricted additivity, we also analyze the separability 

rinciple, which has a long tradition in the decision-making liter- 

ture [8,32] . We propose two properties: attribute separability and 

gent separability . The former states that difference in the evalua- 

ions due to a change in just one attribute is independent of the 

chievements in the rest of attributes. In the same line, agent sep- 
1 Even though public procurement is the main application of our mathematical 

odel, other situations can also be embedded. Such is the case of the assessment of 

andidates for university positions, the performance of regions for the distribution 

f a federal budget, etc. With this in mind, we develop a theoretical framework 

eneral enough to encompass all these situations. 
2 The null assessment function is identically equal to zero, regardless the perfor- 

ance of the individuals. 
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2 
rability requires that the difference in the evaluations due to a 

hange in just one achievement of an agent is independent of the 

est of achievements. 

We show that the unique assessment functions that satisfy 

onotonicity, null contribution, continuity, and restricted additiv- 

ty is the weighted sum of truncated partial assessment functions. 

hese truncated partial assessment functions work as follows: for 

 given attribute, the score an agent obtains is the maximum be- 

ween a linear transformation of her achievement and the cap. 

he aggregation function is simply the weighted sum of all those 

cores. The unique assessment method that is compatible with the 

revious properties is the composition of these two functions. The 

inear transformations and the weights may be different for differ- 

nt agents. If, in addition to the previous axioms, we also require 

nonymity, then the linear transformation and the weights must 

e the same for all individuals. 

We also identify the unique assessment functions that satisfy 

ull agent, monotonicity, null contribution, continuity, attribute 

eparability, and agent separability. As in the family of the pre- 

ious paragraph, the aggregation functions is a weighted sum of 

cores. However, for this combination of properties the partial as- 

essment functions are continuous cumulative distribution func- 

ions, adjusted by the caps. The truncated partial assessment func- 

ions are just particular cases of the latter family. 

.1. Empirical illustration 

To complete our analysis we propose a case study. In particu- 

ar, we study the contract AD-13-009 of the Sociedad Urbanística 

unicipal de Vitoria - Gasteizco Udal Hirigintza Elkartea, whose 

ask was to carry out the reports of accounts auditing and finan- 

ial control actions of this public company. Six tenders submitted 

heir offers, which were assessed according to six attributes, in- 

luding price, experience, partner, etc. We show that, out of the 

hree considered methods, truncation emerges as the most conve- 

ient. Its assessments are more stable (the relative position of two 

ompanies in the ranking is not affected by a third contestant) and 

t is the only one that avoids the exclusion paradox. Clauses to ex- 

lude abnormal or disproportionate bids are very usual in public 

endering [11] . This prevents the adjudication to a tender whose 

id is so low and unrealistic that the completion of the project is 

ot guaranteed. When this happens, the tender is excluded from 

he process. What is the impact of the exclusion on the rest of the 

ontestants? We say that a method suffers the exclusion paradox 

f the exclusion of a non-winning company changes the winner of 

he contract. If the method has this malfunction, the process would 

e easily manipulable; some tenders may have the incentive to in- 

ite third companies to participate with disproportionately low of- 

ers in order to alter the contest. 

.2. Related literature 

One may interpret the problem we study as a situation 

n which several judges (the attributes) have opinions (agents’ 

chievements) on some individuals (agents). The solution would 

e a social ordering or assessment of the individuals as a function 

f the judges’ opinions. Several authors have analyzed the prob- 

em of information aggregation from different approaches. Arrow 

2] demonstrated that when individuals’ preferences are ordinal, 

here is no aggregation procedure that holds for a minimum set of 

easonable conditions. Many other papers in the literature, follow- 

ng [21,22] , or [23] , among others, have focused on cardinal pref- 

rences. In our context, ordinality would allow for positive mono- 

onic transformation of the achievements, that would not alter the 

ocial assessment. Cardinality, however, restricts the possibilities 

o only linear transformation. In our model, the existence of cap 
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recludes any possible transformation of the original achieve- 

ents, since it would alter both the absolute and relative compar- 

sons between the caps and the agents’ goals. 

The problem in hand can be analyzed from the perspective 

f multiple criteria decision analysis (MCDA), since we have sev- 

ral alternatives to evaluate according to various criteria. In fact, 

t is not difficult to classify this problem as a MCDA problem ac- 

ording to the the MCDA taxonomy in [7] . There are many MCDA 

ethod but not all are suitable for all decision problems. Watrób- 

ki et al. [44] study this problem of how to select a MCDA method 

or a particular decision situation and propose a methodological 

nd practical framework for that. In this paper, we analyze the 

CDA problem of public tendering and focus on the assessment 

unctions most commonly used for this problem. In the MCDA lit- 

rature we can find numerous papers on public tendering. A survey 

n this topic is [12] . Some recent references on public tendering or 

ublic procurement are the following. Mattar et al. [29] propose a 

ethod of exclusion and pairwise comparison as an alternative to 

he least-cost sufficient performance and the weighted utility opti- 

ization in procurement process in order to obtain a more robust 

rocedure. Hatush and Skitmore [19] propose multi-criteria addi- 

ive utility functions as method in contractor selection. Maybe one 

f the major problems of this approach is how to determine the 

tility functions associated with each criterion. Bana e Costa et al. 

6] propose a methodology based on two phases: (1) determina- 

ion, structuring and levelage of the criteria, (2) weighting of the 

riteria based on the MACBETH approach (see [4,5] ). This method- 

logy ends in an additive value model to assess the different pro- 

osals in a public call for tenders. 

The most usual mistakes in practical public procurement are 

nalyzed in [33] . Then they propose the use of a card system to

etermine the weights of the different criteria and the evaluation 

f the alternatives as a possible solution to avoid those mistakes. 

ohemad et al. [31] propose an ontological extraction framework 

or the development of decision support systems to enhance the 

ender assessment process, in particular in construction tendering 

rocesses. Lorentziadis [26] studies the problem of the determina- 

ion of the weights associated with the criteria after the opening of 

he sealed bids, instead of fixing the weights before. He analytically 

evelops a variety of post-objective methods of weight determina- 

ion. He proposes that, in the tendering process, the selected post- 

bjective method for weight determination would be publicly an- 

ounced with the call, so that the evaluation process would remain 

air and objective. He justifies that as the exact weights are not 

nown prior to the opening of the bids, corruption, specially in the 

reparation of the tender terms, might be significantly contained. 

alagario et al. [16] propose the use of the cross efficiency evalua- 

ion based on the Data Envelopment Analysis (DEA), for evaluating 

ifferent offers in a public tender awarded through the Most Eco- 

omically Advantageous Tender (MEAT) criterion. To do that, some 

riteria are considered as inputs and the rest of criteria as outputs. 

s in [26] , in this DEA-based approach there are also no weightings 

f the criteria before the sealed bids are opened. Vahdani et al. 

42] and Diabagate et al. [9] use fuzzy logic for analyzing public 

rocurement procedures. Vahdani et al. [42] propose the use of a 

ompromise solution between the positive ideal solution and the 

egative ideal solution, in such a way that the chosen alternative 

o be as close as possible the best and as far away from the worst

s possible, while [9] propose the use of the rule of proportion. 

The problem of how to tackle with abnormally low bids in 

ublic tendering is studied in [3] and [18] . In particular, [3] an- 

lyze scoring formulas and abnormally low bids criteria in sev- 

ral countries, while [18] study how to assess abnormally low bids 

y means of a statistical approach. Mielcarz et al. [30] present a 

rocedure of tender bids evaluation base on value management. 

his procedure consists of two steps. In the first step, the qualita- 
3 
ive criteria are evaluated and the decision is simply whether bids 

re admisible or not. In the second step, the quantitative criteria 

re evaluated taking into account their impacts in the Net Present 

alue (NPV) of the project and the weights of the different cri- 

erio are obtained by means of an ordinary least square method. 

he bid with highest valuation in the quantitative criteria is the 

inner. Ek et al. [15] study the suitability of two MCDA methods 

o evaluate alternatives in the procurement phase of public works 

ased on the MEAT criterion but incorporating sustainability cri- 

eria. Simoens and Cheung [41] review the literature on the in- 

lusion of value-added services (VAS) in tendering for biosimilars. 

orentziadis [27] studies the behavior of bidders in MEAT public 

rocurement when the bidders are asymmetric, and shows that 

quilibrium prices depend critically on the comparison of the cost 

ifference with respect to the increment of the score attribute. 

On the other hand, [17] analyze the impact of the number of 

ffers submitted to public procurement tenders in the healthcare 

ector by means of generalized linear models and quantile regres- 

ion. Vieira et al. [43] introduce the Collaborative Value Model- 

ng framework to build evaluation models. This method combines 

eb-Delphi and multi-criteria decision conferencing and allows to 

onsider situations with many evaluation criteria and many stake- 

olders. This approach has also been proposed, for example, for 

he selection of contractors in the public sector. Marovic et al. 

28] propose a methodology for the optimal constructor selection 

y means of combining the analytic hierarchy process (AHP) to- 

ether with PROMETHEE. On the other hand, [24] propose a com- 

ination of Exploratory Factor Analysis, MACBETH and SMART for 

ontractor selection in public sector construction. 

Differently from most papers in the public procurement liter- 

ture, we analyze the problem from the perspective of the ax- 

omatic methodology. 

The rest of the paper is structured as follows: In Section 2 we 

et the model. In Section 3 we present the properties we analyze. 

ection 4 is devoted to the main results and characterizations. In 

ection 5 we discuss the case study. Finally, Section 6 concludes. 

ll proofs are included in an Appendix. 

. Model and assessment functions 

Let us assume that we have a society consisting of n agents , 

 = { 1 , 2 , . . . , n } . We want to assess their individual performances

s a function of their achievements with respect to a set of p at- 

ributes , P = { 1 , 2 , . . . , p} . A matrix of achievements is a matrix A

ith n rows (one for each agent) and p columns (one for each at- 

ribute). The element a t 
i 

of matrix A describes the achievement of 

gent i at attribute t: 

 = 

⎛ 

⎝ 

a 1 1 . . . a p 
1 

. . . 
. . . 

. . . 

a 1 n . . . a p n 

⎞ 

⎠ ∈ R 

n 
+ × R 

p 
+ 

e assume that each a t 
i 

is non-negative, but we do not impose 

ny upper bound to its value. That is, a t 
i 

represents the original 

chievement, without any kind of truncation or normalization. We 

enote by a i and a t the i th row and tth column of the matrix A ,

espectively. We also denote by A the set of all possible matrices 

ike A . 

As explained in the Introduction, in practice, many performance 

ssessments are based on a scoring system that includes an up- 

er bound for the achievements in each attribute. We denote by 

 = (c 1 , . . . , c p ) ∈ R 

p 
++ the vector of caps , where c t is the maximum

core that can be assigned to an agent in attribute t . 

For the remainder of the paper we use the following notation. 

he null vector of size n is 0 n , while the null matrix of size n × p is

 n ×p . We use a −i to denote the matrix A where we have removed
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3 We use the notation a i ≥ a i when a t ≥ a 
t 

for all t ∈ P. 
he row corresponding to agent i . We use a −t to denote the matrix

 where we have removed the column corresponding to attribute 

. Similarly, a −t 
−i 

results from A by removing the i th row and tth 

olumn. Analogous notation is used for the vector of caps. 

An assessment problem with caps, or simply a problem , is a 4- 

uple (N, P, A, c) consisting in a set of agents N, a set of attributes

 , a matrix of achievements A and a vector of caps c. For our anal-

sis we do not require changes in N, P , or c. Thus, for the sake of

implicity, we assume that those elements are fixed and describe 

 problem simply by A . 

For each attribute t ∈ P we define a partial assessment func- 

ion , relative to this attribute, as a mapping f t : R 

n + −→ R 

n + that

cores the performance of the agents according to their outcomes 

n attribute t . That is, f (a t ) = 

(
f t 
i 
(a t ) 

)
i ∈ N and each f t 

i 
(a t ) is the

artial score obtained by agent i at attribute t . Since c t is the 

aximum partial score an agent can achieve, it must hold that 

f t 
i 
(a t ) ≤ c t for all i ∈ N and all t ∈ P . Notice that the partial assess-

ent functions may differ both across agents and across attributes. 

For each agent i ∈ N, an aggregation function is a mapping 

 i : [0 , c 
1 ] × . . . × [0 , c p ] −→ R that aggregates the scores across at-

ributes. An assessment function is a mapping S : A −→ R 

n that, 

or each problem A ∈ A , assesses the performance of agents in N

s the composition of the partial assessment functions and the ag- 

regation functions, i.e., S(A ) = ( S i (A ) ) i ∈ N , where 

 i (A ) = F i 
[

f 1 i (a 1 ) , f 2 i (a 2 ) , . . . , f p 
i 
(a p ) 

]
Next we present several assessment functions that can be ap- 

lied to our model. 

The first is straightforward, it states that the assessment of any 

gent is zero, regardless of the matrix of achievements. 

Null assessment function . For each A ∈ A and each i ∈ N, 

f t i (a t ) = 0 ∀ t ∈ P, and F i (x 1 , . . . , x p ) = 0 . 

his is, 

 i (A ) = 0 . 

The truncation assessment function works as follows. For each 

ttribute, if the achievement of an agent is below the cap then the 

core equals the achievement, but if it is above the cap then it is 

runcated and the score is equal to the cap. The final assessment 

s simply the lump sum of scores. 

Truncation assessment function . For each A ∈ A and each i ∈ 

, 

f t i (a t ) = min { c t , a t i } ∀ t ∈ P and F i (x 1 , . . . , x p ) = 

t ∑ 

t=1 

x t . 

his is, 

 i (A ) = 

p ∑ 

t=1 

min { c t , a t i } 

The previous assessment function can be generalized easily by 

ntroducing weights into the aggregation function. In principle, we 

ay weight attributes differently for different agents. 

Weighted truncation assessment functions . Given the weights 

β1 
1 , . . . , β

p 
n ) . For each A ∈ A and each i ∈ N, 

f t i (a t ) = min { c t , a t i } ∀ t ∈ P, and F i (x 1 , . . . , x p ) = 

p ∑ 

t=1 

βt 
i x 

t . 

his is, 

 i (A ) = 

p ∑ 

t=1 

βt 
i min { c t , a t i } . 

In the next method, the partial assessment function assigns the 

ap to the agent with the highest achievement in the attribute, and 
4 
hen rescales the rest of the agents proportionally. The aggregation 

unction is the lump sum of scores. 

Proportional assessment function . For each A ∈ A and each i ∈ 

, 

f t i (a t ) = 

{
a t 

i 

max j∈ N a t j 
c t if max j∈ N a t j > 0 

0 otherwise 
∀ t ∈ P 

nd F i (x 1 , . . . , x p ) = 

∑ p 
t=1 

x t . This is, 

 i (A ) = 

p ∑ 

t=1 

a t 
i 

max j∈ N a t j 
c t 

In the last case, the partial assessment function scores with the 

ap to the agent with the highest achievement and 0 to the agent 

ith the lowest one. Then, the rest of agents are rescaled accord- 

ngly. The aggregation functions adds the scores. 

Linear assessment function . For each A ∈ A and each i ∈ N, 

f t i (a t ) = 

{ 

a t 
i 
−min j∈ N a t j 

max j∈ N a t j −min j∈ N a t j 
c t if max j∈ N a t j − min j∈ N a t j � = 0 

0 otherwise 
∀ t ∈ P 

nd F i (x 1 , . . . , x p ) = 

∑ p 
t=1 

x t . This is, 

 i (A ) = 

p ∑ 

t=1 

a t 
i 
− min j∈ N a t j 

max j∈ N a t j − min j∈ N a t j 
c t 

. Properties for the assessment functions 

We now enumerate the axioms for assessment functions we 

onsider reasonably relevant for public procurement procedures. 

Monotonicity says that, if an agent increases her performance 

hen the assessment (via the partial assessment and aggregation 

unctions) should not decrease. 

Monotonicity . For each i ∈ N, and each A, A ∈ A such that A =
 a i , a −i ) , if a i ≥ a i , then 

3 

f t i (a t i , a 
t 
−i ) ≥ f t i ( a 

t 
i , a 

t 
−i ) ∀ t ∈ P 

nd 

 i 

[
f 1 i (a 1 i , a 

1 
−i ) , . . . f 

p 
i 
(a p 

i 
, a p −i 

) 
]

≥ F i 
[

f 1 i ( a 
1 
i , a 

1 
−i ) , . . . f 

p 
i 
( a 

p 
i 
, a p −i 

) 
]
. 

The next requirement is sometimes needed for technical rea- 

ons. However, it makes considerable intuitive sense. Continuity 

tates that small changes in the achievements of agents should not 

ause large changes in their assessment. 

Continuity . For each sequence { A 

ν} of problems in A and each

 ∈ A , if { A 

ν} converges to A then { S(A 

ν ) } converges to S(A ) . 

The following property requires that, when an agent has no 

chievement at all in an attribute, the partial assessment (with re- 

pect to that attribute) must be zero. 

Null contribution . For each i ∈ N and each t ∈ P , if a t 
i 
= 0 then

must be such that f t 
i 
(a t ) = 0 . 

Notice that this property does not exclude the possibility of as- 

igning null assessment to other achievements a t 
i 

different from 

ero. This makes sense in situations where very low performances 

hould not even be taken into consideration. 

The null agent principle is quite straightforward, it simply says 

hat, if the achievements of an agent are all null, then her assess- 

ent must be zero. 

Null agent . For each i ∈ N, a i = 0 P then S i (A ) = 0 . 

The next condition is a minimal and natural requirement of im- 

artiality. It simply says that the identity of the agents should not 

lay any role in the assessment of the performance. More precisely, 
i i 
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f we permute the label of the agents, their assessments permute 

ccordingly. 

Anonymity . If π is a permutation of the set of agents, S i (A ) =
 π(i ) (π(A )) . 

In many situations where performances must be assessed, addi- 

ivity emerges as a desirable property. It states that the assessment 

ust be additive with respect to A . In this case, if new achieve-

ents are obtained by the agents, we just need to add the new 

core to the existing one, without having to re-assess the whole 

ituation from the beginning. 

Additivity . For each A, A ∈ A and each i ∈ N, 

(i) If f t 
i 
(a t + a t ) = f t 

i 
(a t ) + f t 

i 
( a t ) . 

(ii) If F i 
[

f 1 
i 
(a 1 ) + f 1 

i 
( a 1 ) , . . . , f p 

i 
(a p ) + f 

p 
i 
( a p ) 

]
=

F i 
[

f 1 
i 
(a 1 ) , . . . , f p 

i 
(a p ) 

]
+ F i 

[ 
f 1 
i 
( a 1 ) , . . . , f p 

i 
( a p ) 

] 
. 

As the following proposition illustrates, when caps exist for the 

artial assessment functions, additivity is extremely demanding. If 

t is required, the assessment function must be identically equal to 

ero. 

roposition 1. If S satisfies additivity then, for each i ∈ N, S i (A ) = 0

or all A ∈ A . 

We substitute additivity with a milder version (called restricted 

dditivity ) which essentially says that the assessment must be ad- 

itive as long as the model (this is, the caps) allows this. This al- 

ernative version avoids the drawbacks presented in the proof of 

roposition 1 . The new condition is in the line of the spirit of ad-

itivity and, simultaneously, can be applied to our setting. 

Restricted additivity . For each A, A ∈ A and each i ∈ N

(i) If f t 
i 
(a t ) + f t 

i 
( a t ) ≤ c t , then 

f t i (a t + a 
t 
) = f t i (a t ) + f t i ( a 

t 
) . 

(ii) If f t 
i 
(a t ) + f t 

i 
( a t ) ≤ c t for all t ∈ P , then 

F i 
[

f 1 i (a 1 ) + f 1 i ( a 
1 ) , . . . , f p 

i 
(a p ) + f p 

i 
( a p ) 

]
= F i 

[
f 1 i (a 1 ) , . . . , f p 

i 
(a p ) 

]
+ F i 

[
f 1 i ( a 

1 
) , . . . , f p 

i 
( a 

p 
) 
]
. 

Next, we present an alternative to additivity. Imagine that, for 

 particular attribute t ∈ P , the achievements change from a t to a t ,

hile all the other attributes remain constant. Attribute separability 

equires that any eventual variation in the assessments only de- 

ends on the values of a t and a t . 4 Formally, 

Attribute separability . For each i ∈ N and each t ∈ P , 

 i (x −t , x t ) − F i (x −t , ̄x t ) = ϕ(x t , ̄x t ) , for all x −t ∈ [0 , c 1 ] × . . . [0 , c t−1 ] ×
0 , c t+1 ] . . . × [0 , c p ] and for all x t , ̄x t ∈ [0 , c t ] . 

Using a similar approach, we can also consider agent separabil- 

ty , which states, if the achievement changes from a t 
i 

to a t i (keeping 

ll the others constant), any eventual variation in the assessments 

nly depends on the values of a t 
i 

and a t i . 

Agent separability . For each i ∈ N and each t ∈ P , f t 
i 
(a t −i 

, a t 
i 
) −

f t 
i 
(a t −i 

, a t i ) = ψ(a t 
i 
, ā t 

i 
) , for all a t −i 

∈ R 

n −1 
+ and for all a t 

i 
, ā t 

i 
∈ R + . 

. Main results: Characterizations of assessment functions 

We now provide our main characterizations, which identify the 

et of assessment functions that uniquely satisfy the properties 

iscussed in the previous section. These results are preceded by 

wo technical lemmas. 
4 The notion of separability has a long tradition of use in decision making (e.g. 

8] or [32] ). 

L

c  

[

5 
emma 1. If an assessment function satisfies restricted additivity and 

ull contribution then F i [0 , . . . , 0] = 0 for any i ∈ N. 

The next lemma is a kind of counterpart of the Cauchy’s func- 

ional equation when additivity is replaced by restricted additivity. 

n functional analysis it can be shown that a function φ : R + −→ 

0 , c] satisfies additivity ( φ(x + y ) = φ(x ) + φ(y ) ) if and only if φ
s linear. If we weaken the condition to restricted additivity the re- 

ult does not then hold. In fact, as the following lemma illustrates, 

ore requirements on the function φ are needed in order to re- 

over the linearity, or truncate linearity, to be more precise. 

emma 2. A continuous function φ : R + −→ [0 , c] satisfies that 

(i) If x > y then φ(x ) ≥ φ(y ) for all x, y ∈ R + . 
(ii) If φ(x ) + φ(y ) ≤ c then φ(x + y ) = φ(x ) + φ(y ) for all x, y ∈

R + . 
(iii) φ(0) = 0 . 

if and only if 

(x ) = 0 or φ(x ) = min 

{ 

c, 
c 

z 
x 

} 

, 

here z = min { x ∈ R + | φ(x ) = c} . 
Our main result states that, if continuity, restricted additivity, 

onotonicity, and null contribution are required, then the assess- 

ent function must work as follows. For each attribute, the partial 

ssessment function is the minimum between the cap and a linear 

ransformation of the achievement of the agent. The aggregation 

unction is the weighted sum of the partial assessment functions. 

n principle, both the linear transformation and the weights may 

iffer across attributes and across agents. 

heorem 1. An assessment function satisfies continuity, restricted ad- 

itivity, monotonicity, and null contribution if and only if, for each 

 ∈ N, there exist (β1 
i 
, . . . , β p 

i 
) ∈ R 

p 
+ and (λ1 

i 
, . . . , λp 

i 
) ∈ R 

p 
+ such that:

 i (A ) = F i 
(

f 1 i (a 1 ) , f 2 i (a 2 ) , . . . , f p 
i 
(a p ) 

)
= 

p ∑ 

t=1 

βt 
i min 

{
λt 

i a 
t 
i , c 

t 
}

(1) 

If, in addition to continuity, restricted additivity, monotonicity, 

nd null contribution we also impose the assessment function to 

e anonymous, then the weights and the linear transformations of 

he previous theorem must be the same for all agents, although 

hey may depend on the attribute. 

heorem 2. A non-degenerated assessment function satisfies con- 

inuity, restricted additivity, monotonicity, null contribution, and 

nonymity if and only if there exist (β1 , . . . , β p ) ∈ R 

p 
++ and 

λ1 , . . . , λp ) ∈ R 

p 
+ such that, for each i ∈ N, 

 i (A ) = F i 
(

f 1 i (a 1 ) , f 2 i (a 2 ) , . . . , f p 
i 
(a p ) 

)
= 

p ∑ 

t=1 

βt min 

{
λt a t i , c 

t 
}
. 

Next, we explore more general results. We find out that, if 

e replace restricted additivity by attribute separability and null 

gent, then the assessment function must be a weighted sum of 

he partial assessment functions. However, in contrast with the 

revious characterizations, these partial assessment function may 

e non-linear. Before presenting our characterizations, some tech- 

ical lemmas are necessary. 

emma 3. If an assessment function satisfies monotonicity, null 

ontribution, and null agent then F i (x 1 , . . . , x p ) ≥ 0 , for each x t ∈
0 , c t ] , t ∈ P , for all i ∈ N. 
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Fig. 1. Examples of partial assessment functions in Theorems 2 and 6 . 
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emma 4. If an assessment function S satisfies null contribution, null 

gent, and attribute separability then there exist functions { H 

t 
i 
} t∈ P 

i ∈ N de- 

ned on R 

n + , such that, for each i ∈ N, 

 i (A ) = 

∑ 

t∈ P 
H 

t 
i (a t ) , for all A ∈ A , 

here H 

t 
i 
(a t −i 

, 0) = 0 . 

The next result states that, if an assessment function satis- 

es monotonicity, continuity, null contribution, null agent, and at- 

ribute separability, then it must work as follows. For each at- 

ribute, the partial assessment function is the product of the cap 

nd a continuous and non-decreasing function that varies between 

 and 1. The aggregation function is the weighted sum of those 

artial assessment functions. Formally, 

heorem 3. A non-degenerated assessment function S satisfies mono- 

onicity, continuity, null contribution, null agent, and attribute separa- 

ility if and only if, for each i ∈ N, there exist (β1 
i 
, . . . , β p 

i 
) ∈ R 

p 
+ and

ontinuous and non-decreasing functions { h t 
i 
} t∈ P defined on R 

n + with 

mage on the interval [0,1] such that 

 i (A ) = 

∑ 

t∈ P 
βt 

i c 
t h 

t 
i (a t ) , 

here h t 
i 
(a t −i 

, 0) = 0 . 

If, in addition to the previous properties, we also require 

nonymity, then we obtain the following characterization. 

heorem 4. A non-degenerated assessment function S satisfies mono- 

onicity, continuity, null contribution, null agent, attribute separability, 

nd anonymity if and only if there exist (β1 , . . . , β p ) ∈ R 

p 
+ and con-

inuous and non-decreasing functions { h t } t∈ P defined on R 

n + with im- 

ge on the interval [0,1] such that, for each i ∈ N, 

 i (A ) = 

∑ 

t∈ P 
βt c t h 

t (a t ) 

here h t (a t −i 
, 0) = 0 . 

Now, we explore the implications of including agent separabil- 

ty as an additional requirement in Theorems 3 and 4 . 

emma 5. If an assessment function S satisfies null contribution and 

gent separability then there exist functions { g t 
i 
} t∈ P 

i ∈ N , such that, for 

ach i ∈ N, 

f t i (a t ) = g t i (a t i ) . 

The following theorem states that, if an assessment function 

atisfies monotonicity, continuity, null contribution, null agent, at- 

ribute separability, and agent separability then the aggregation 

unction is the weighted sum of those partial assessment functions. 
6 
nd, for each attribute, the partial assessment function is the prod- 

ct of the cap and a continuous cumulative distribution function 

efined on R + . Formally, 

heorem 5. A non-degenerated assessment function S satisfies mono- 

onicity, continuity, null contribution, null agent, attribute separabil- 

ty, and agent separability if and only if, for each i ∈ , there exist

β1 
i 
, . . . , β p 

i 
) ∈ R 

p 
+ and cumulative distribution functions { h t 

i 
} t∈ P of 

bsolutely continuous random variables with images on R + such that 

 i (A ) = 

∑ 

t∈ P 
βt 

i c 
t h 

t 
i (a t i ) , 

If, in addition to the previous properties, we also require 

nonymity, then we obtain the following characterization. 

heorem 6. A non-degenerated assessment function S satisfies mono- 

onicity, continuity, null contribution, null agent, attribute separa- 

ility, agent separability, and anonymity if and only if there exist 

β1 , . . . , β p ) ∈ R 

p 
+ and cumulative distribution functions { h t } t∈ P of 

bsolutely continuous random variables with images on R + such that 

 i (A ) = 

∑ 

t∈ P 
βt c t h 

t (a t i ) . 

It is worth noting that Theorem 6 ( Theorem 5 ) is more gen-

ral than Theorem 2 ( Theorem 1 ). In both cases the aggrega- 

ion function is a weighted average of the attributes. Neverthe- 

ess, the requirement of restricted additivity in Theorem 2 re- 

tricts the partial assessment functions to be essentially linear. 

f we replace restricted additivity by attribute separability and 

ull agent, Theorem 6 shows that many more alternatives emerge. 

ig. 1 illustrates the difference. While both Cases (a) and (b) (lin- 

ar and non-linear) are admissible partial assessment functions in 

heorem 6 , only Case (a) (linear) is compatible with the properties 

n Theorem 2 . 

It is obvious that the properties in Theorem 6 expands the alter- 

atives of the central authority to choose among, but it also makes 

ore difficult to select just one of them. 

. Case study 

The provision of many public services (including contracting 

orks, goods, services and personnel) are made by means of a 

ompetition in public procurement, in which tenders submit their 

ffers to be assessed according to several criteria. In order to de- 

ermine the best option bids are assessed and scored in each cri- 

erion/attribute, and the overall assessment of the bidder is the 

um of points across attributes. This process entails several diffi- 

ulties, some of which have ended up in judicial courts. In order 

o reflect the relative relevance of a criterion, maximum values for 
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Table 1 

Attributes and caps. 

Attribute Description Cap 

Price (b) Cost of the audit report. The reference bid price 

was 60,000 euros 

51 

Description (d) Methodology, timeline, and planning 1 

Partners (p) Working hours by partners of the auditing firm 11.4 

Others (o) Working hours by other members of the team 7.6 

Experience (e) Experience in similar contracts 20 

Improvements (i) Proposals to enhance the contract 9 

Table 2 

Initial offers of the companies in the public tender AD-13- 

009. The bids come in euros, while the rest of attributes 

are points obtained according to the committee’s assess- 

ment, which may or may not be above the cap. 

Attributes / Criteria 

Company b d p o e i 

A 14,452 1 9.16 4.24 16 3 

B 30,000 1 12.00 2.40 20 7 

C 39,000 1 0.00 0.00 16 1 

D 40,935 1 8.21 4.44 0 1 

E 51,000 1 7.89 8.00 14 3 

F 60,000 1 0.00 5.48 16 1 

t

f

c

o
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w
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t

t

w
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C

he score are usually established. The caps in our theoretical model 

epresent these maximum values. What to do when a bid exceeds 

he cap has been the main source of controversy. The three most 

pplied alternatives are truncation, proportionality, and linearity, 

hich have been formally introduced Section 2 . 

Notice that these three procedures correspond to three of the 

ssessment functions defined in Section 2 . In public tendering, the 

ost applied methods are truncation and normalization, and there 

xists a significant controversy between the supporters of each 

hem. To better understand this discussion, we highlight below the 

egal and judicial principles that are used to resolve for or against 

runcation. 

Law 9/2017 [ 25 ], of November 8, on Public Sector Contracts, by 

hich the Directives of the European Parliament and of the Coun- 

il 2014/23/EU and 2014/24/EU, of February 26th, are transposed 

nto the Spanish legal system, establishes in its Art [ 11 ]. 131 that

The award will be made, ordinarily using a plurality of award crite- 

ia based on the principle of best quality/price ratio,... ”. These crite- 

ia can be objective, i.e., quantifiable or value judgment, that is, 

ubjective assessment (Art. 145). Law 9/2017 [ 25 ] does establish 

n Art.146.3 the use of thresholds to indicate indirectly the rele- 

ance of each criterion in the adjudication of the contract. How- 

ver, nothing is specified on how to operate with those thresh- 

lds/caps. Therefore, these rules and regulations (both at national 

nd European level) leave the choice between truncation or nor- 

alization to the decision maker’s interpretation. 

Which are the arguments for and against truncation? In or- 

er to disentangle this issue, we use as a guide the seminar by 

oménech Pascual [13] . The arguments against truncation are: 

• It prevents more advantageous or better offers from obtaining 

higher scores (R/45/2016, R/40/2018) [ 34,35 ]. The only justifi- 

cation is to assume ex-ante that the offer is unreliable as ab- 

normal or disproportionate. 5 But, for those cases, there already 

exists a procedure set forth in the Law (R/45/2016, R/40/2018, 

R/75/2020) [ 34–36 ]. 
• It breaks proportionality in score (R/40/2018, R/143/2019, 

R/75/2020) [ 34,36,37 ]. 
• It leads to the paradox that abnormal or disproportionate offers 

are awarded maximum score (R/40/2018) [ 34 ]. 
• It eliminates the real weight of the criteria because many ties 

may occur (R/143/2019, R/75/2020) [ 36,37 ]. 
• It implies that scores can be known ex ante (R/40/2018, 

R/75/2020) [ 34,36 ]. 
• It discourages competitiveness because the effort required to 

submit better offers does not result in extra score (R/45/2016, 

R/40/2018, R/75/2020) [ 34–36 ]. 

In summary, all previous resolutions consider that truncation 

reaks proportionality in the assessment and violates the princi- 

les of equal treatment and efficiency. 

However, supported by the Directive 2014/24/UE which 

as been transposed into the Law 9/2017, recent resolutions 

/976/2018 [ 40 ], R/484/2019 [ 38 ], R/853/2019 [ 39 ] establish that

he criterion “price” in no way is always and in any case equiv- 

lent to “lower price”. The criteria are related and linked to each 

ther and are defined by the contracting authority, which can de- 

ermine how they operate and are applied, and if the cost factor 

an take the form of a fixed price not subject to improvement due 

o a reduction according to the Directive 2014/24/UE, for a greater 

eason a non-fixed price must be admitted, but limited by a sati- 

ty threshold, which could be reduced beyond that limit, but with- 

ut being favored by an increase of points in its valuation. There- 

ore, satiety thresholds are admissible when more than one cri- 
5 See [18] . 

a

t

7 
erion is used. Likewise, better offers in a criterion do not obtain 

ewer points than others. Furthermore, satiety thresholds can be 

onsidered as a complementary measure that discourage abnormal 

r disproportionate offers which can be excluded from the com- 

etition, because if you can do the most, you can do the least, 

hich is, compared to the exclusion of the abnormal offer, the 

on-allocation of more points to the offers of price below the es- 

ablished threshold. Thus, if the contracting authority can reduce 

he weight of the price criterion with respect to the other objec- 

ive and subjective criteria, with greater reason it can increase the 

eighting of that and set a maximum limit of the price reduction 

hat the bidders can bid but from which they do not obtain ad- 

itional points. Of course, when there is only one criterion then 

 satiety threshold makes no sense, since many ties may occur, 

eaving the decision to the subjective discretion of the decision 

aker. Even with all these arguments, R/976/2018 considers that 

he use of satiety thresholds is not the best practice [ 40 ], because

t is preferable to let the prices offered by the different bidders be 

hose that they freely decide, based on their forecast costs and ex- 

ectations of profit. 

Now, we present the case study to make a comparative anal- 

sis of the three discussed methods (truncation, normalization, 

nd range normalization). To this end we consider the public ten- 

er AD-13-009 of the Sociedad Urbanística Municipal de Vitoria - 

asteizco Udal Hirigintza Elkartea, Ensanche 21 Zabalgunea, S.A. 

he purpose of this contract was to carry out the reports of ac- 

ounts auditing and financial control actions of the public com- 

any. The criteria used in the awarding and their corresponding 

aps are in Table 1 . Six tenders submitted their offers. The award- 

ng committee assigned scores to each of the applicants, resulting 

n the matrix of achievements represented in Table 2 . The method 

pplied to this particular public procurement process was propor- 

ionality. 

Table 3 shows the results of the application of the trunca- 

ion, proportional, and linear assessment functions for the pub- 

ic tender we study. 6 The first column is the name of the tender, 

olumns 2 to 7 are the result of applying the assessment functions 
6 The formal expressions of these functions are in Section 2 . Since lower prices 

re preferred to higher prices, we have considered the inverse of the bid, so that, 

he best offer (the lowest price) gets the highest score in this attribute. 
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Table 3 

Ranking comparisons of the initial offers depending on the methodology. 

Attributes / Criteria 

Company b d p o e i Total Ranking 

Truncation 

A 38.72 1.00 9.16 4.24 16.00 3.00 72.12 1 

B 25.50 1.00 11.40 2.40 20.00 7.00 67.30 2 

C 17.85 1.00 0.00 0.00 16.00 1.00 35.85 4 

D 16.21 1.00 8.21 4.44 0.00 1.00 30.86 5 

E 7.65 1.00 7.89 7.60 14.00 3.00 41.14 3 

F 0.00 1.00 0.00 5.48 16.00 1.00 23.48 6 

Proportionality 

A 51.00 1.00 8.70 4.03 16.00 3.86 84.59 1 

B 24.57 1.00 11.40 2.28 20.00 9.00 68.25 2 

C 18.90 1.00 0.00 0.00 16.00 1.29 37.18 4 

D 18.01 1.00 7.80 4.22 0.00 1.29 32.31 6 

E 14.45 1.00 7.50 7.60 14.00 3.86 48.41 3 

F 12.28 1.00 0.00 5.21 16.00 1.29 35.78 5 

Linearity 

A 51.00 1.00 8.70 4.03 16.00 3.00 83.73 1 

B 33.59 1.00 11.40 2.28 20.00 9.00 77.27 2 

C 23.51 1.00 0.00 0.00 16.00 0.00 40.51 4 

D 21.35 1.00 7.80 4.22 0.00 0.00 34.37 5 

E 10.08 1.00 7.50 7.60 14.00 3.00 43.18 3 

F 0.00 1.00 0.00 5.21 16.00 0.00 22.21 6 

(
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Table 4 

Ranking comparisons after Company A’s update. 

Attributes / Criteria 

Company b p t t e i Total Ranking 

Truncation 

A 14.15 1.00 9.16 4.24 16.00 3.00 47.55 2 

B 25.50 1.00 11.40 2.40 20.00 7.00 67.30 1 

C 17.85 1.00 0.00 0.00 16.00 1.00 35.85 4 

D 16.21 1.00 8.21 4.44 0.00 1.00 30.86 5 

E 7.65 1.00 7.89 7.60 14.00 3.00 41.14 3 

F 0.00 1.00 0.00 5.48 16.00 1.00 23.48 6 

Proportionality 

A 35.29 1.00 8.70 4.03 16.00 3.86 68.88 2 

B 51.00 1.00 11.40 2.28 20.00 9.00 94.68 1 

C 39.23 1.00 0.00 0.00 16.00 1.29 57.52 4 

D 37.38 1.00 7.80 4.22 0.00 1.29 51.68 5 

E 30.00 1.00 7.50 7.60 14.00 3.86 63.96 3 

F 25.50 1.00 0.00 5.21 16.00 1.29 49.00 6 

Linearity 

A 28.31 1.00 8.70 4.03 16.00 3.00 61.04 2 

B 51.00 1.00 11.40 2.28 20.00 9.00 94.68 1 

C 35.70 1.00 0.00 0.00 16.00 0.00 52.70 3 

D 32.41 1.00 7.80 4.22 0.00 0.00 45.43 5 

E 15.30 1.00 7.50 7.60 14.00 3.00 48.40 4 

F 0.00 1.00 0.00 5.21 16.00 0.00 22.21 6 

Table 5 

Modified offers of the companies in the public tender AD-13- 

009. Changes with respect to the initial data are underlined. 

Attributes / Criteria 

Company b d p o e i 

A 14,452 1 4.10 3.03 4 0 

B 30,000 1 12.00 2.40 16 3 

C 39,000 1 0.00 0.00 16 1 

D 40,935 1 10.00 6.20 20 8 

E 51,000 1 7.89 8.00 10.00 3 

F 60,000 1 0.00 5.48 16 1 
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o

truncation, proportionality, or linearity) to each attribute. Column 

 is the lump sum of points, and Column 9 is the position in the

anking. As can be observed, these three methods lead to differ- 

nt orderings on the overall assessment of the tenders. Company A 

ould win the contract with any of the methods employed. This is 

ostly due to the aggressive price offered by A, less than a half of 

he price proposed by the tender with the next lowest bid (Com- 

any B). Even though truncation and proportionality provides the 

ame winner, the overall assessments of A and B are much closer 

o the truncation assessment function than to the proportional as- 

essment function. By definition, both proportionality and linearity 

lways assign the cap to the firm with the best offer, artificially 

verweighting the impact of, in this case, the price. Truncation, 

n the contrary, behaves differently, the cap may or may not be 

chieved (see Column b in Table 3 ) and thus the overweighting is 

ess problematic. 7 

The EU regulations, for example, foresee the inclusion of clauses 

f abnormality or disproportionality so that an excessively low bid 

an be considered as reckless and excluded from the process [3] . 

n the case we study there was no such clause. However, the com- 

anies had the possibility to submit an updated offer within an 

stablished period. Company A did this, increasing the price from 

he original 14,452 euros to 43,350 euros (almost triple). No other 

odification was made, and the rest of the tenders kept their ini- 

ial offers. Table 4 contains the results for the new situation. In 

his case truncation and proportionality provide the same ordering 

ut linearity differs. In all three cases Company B is the new win- 

er. After A’s modification we arrive at two conclusions. One, un- 

er truncation the assessments of all companies except A remain 

nvariant. And two, under proportionality and linearity, a change 

n A’s offer alters the relative ordering of third tenders. Under pro- 

ortionality, before A’s modification, F’s offer is better than D’s of- 

er (35.78 vs. 32.31), but after A’s modification, D’s offer is better 

han F’s offer (51.6 8 vs. 4 9.00). An analogous argument applies to 

inearity, also affecting Companies D and F. 

In general, it can be proved that truncation does not alter the 

ssessments of tenders other than the one affected by the change 
7 Notice that in Table 3 we apply the assessment functions as they are defined in 

ection 2 . For sake of exposition we assume that all attributes are equally relevant. 

he same reasoning can be done with alternative sets of weights. 

s

o

t

t

e

8 
n one of the attributes. As Table 4 shows, both proportionality 

nd linearity do not. In the literature on social choice it is very 

sual to impose methods which satisfy independence of third alter- 

atives . This property states that the relative position of two firms 

that have not modified their offers) is not affected by a change in 

 third. Truncation does fulfill this requirement, but proportional- 

ty and linearity do not. As we will show below, the violation of 

his property may be specially harmful in public procurement pro- 

esses. 

Consider, just for illustration, the same public tender but with 

ome, but realistic, changes in the offers of companies A, B and D. 

ew data are in Table 5 . 

As mentioned above, clauses to exclude abnormal or dispropor- 

ionate bids are very usual in public tender. One of its goals is to 

void the adjudication to a tender whose bid is so low and un- 

ealistic that the completion of the project is not guaranteed. A 

ommon clause of abnormality or disproportionality would be the 

ollowing: An offer is considered abnormal if it is either 25% lower 

han the tender base price or 10% lower than the average of the bids. 

n this case, the bidding companies have to justify that they can carry 

ut the contract with the bid submitted . When this happens, tenders 

ay end up being expelled from the process if she can not justify 

n a satisfactory manner the low level of price. What is the impact 

f the exclusion of a company on the rest of the contestants? We 

ay that a method satisfies the exclusion property if the exclusion 

f a tender does not alter the ordering of the other tenders. In par- 

icular, if a non-winning company is excluded then the winner of 

he contract should not change. Otherwise, the process would be 

asily manipulable, some tenders may have the incentive to invite 
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Table 6 

Ranking comparisons for the new situation. 

Attributes / Criteria 

Company b p t t e i Total Ranking 

Truncation 

A 38.72 1.00 4.10 3.03 4.00 0.00 50.85 3 

B 25.50 1.00 11.40 2.40 16.00 3.00 59.30 2 

C 17.85 1.00 0.00 0.00 16.00 1.00 35.85 5 

D 16.21 1.00 10.00 6.20 20.00 8.00 61.41 1 

E 7.65 1.00 7.89 7.60 10.00 3.00 37.14 4 

F 0.00 1.00 0.00 5.48 16.00 1.00 23.48 6 

Proportionality 

A 51.00 1.00 3.90 2.88 4.00 0.00 62.77 2 

B 24.57 1.00 11.40 2.28 16.00 3.38 58.62 3 

C 18.90 1.00 0.00 0.00 16.00 1.13 37.02 5 

D 18.01 1.00 9.50 5.89 20.00 9.00 63.40 1 

E 14.45 1.00 7.50 7.60 10.00 3.38 43.93 4 

F 12.28 1.00 0.00 5.21 16.00 1.13 35.62 6 

Linearity 

A 51.00 1.00 3.90 2.88 0.00 0.00 58.77 3 

B 33.59 1.00 11.40 2.28 15.00 3.38 66.65 2 

C 23.51 1.00 0.00 0.00 15.00 1.13 40.64 4 

D 21.35 1.00 9.50 5.89 20.00 9.00 66.74 1 

E 10.08 1.00 7.50 7.60 7.50 3.38 37.05 5 

F 0.00 1.00 0.00 5.21 15.00 1.13 22.34 6 

Table 7 

Ranking comparisons for the new situation after the exclusion of Company A. 

Attributes / Criteria 

Company b p t t e i Total Ranking 

Truncation 

A - - - - - - - - 

B 25.50 1.00 11.40 2.40 16.00 3.00 59.30 2 

C 17.85 1.00 0.00 0.00 16.00 1.00 35.85 4 

D 16.21 1.00 10.00 6.20 20.00 8.00 61.41 1 

E 7.65 1.00 7.89 7.60 10.00 3.00 37.14 3 

F 0.00 1.00 0.00 5.48 16.00 1.00 23.48 5 

Proportionality 

A - - - - - - - - 

B 51.00 1.00 11.40 2.28 16.00 3.38 85.06 1 

C 39.23 1.00 0.00 0.00 16.00 1.13 57.36 4 

D 37.38 1.00 9.50 5.89 20.00 9.00 82.77 2 

E 30.00 1.00 7.50 7.60 10.00 3.38 59.48 3 

F 25.50 1.00 0.00 5.21 16.00 1.13 48.84 5 

Linearity 

A - - - - - - - - 

B 51.00 1.00 11.40 2.28 12.00 2.57 80.25 1 

C 35.70 1.00 0.00 0.00 12.00 0.00 48.70 3 

D 32.41 1.00 9.50 5.89 20.00 9.00 77.80 2 

E 15.30 1.00 7.50 7.60 0.00 2.57 33.97 4 

F 0.00 1.00 0.00 5.21 12.00 0.00 18.21 5 
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hird companies to participate with disproportionately low offers 

n order to alter the contest. 

Table 6 shows the application of truncation, proportionality, and 

inearity to data in Table 5 . As we can observe, in all three cases

ompany D receives the adjudication of the contract, and, depend- 

ng on the methods, the second tender in the ranking is either A 

r B. Now, notice that the price offered by A is unrealistically low, 

elow the 25% of the tender reference price -60,0 0 0 euros- and 

ess than a half of the next lowest price. According to a clause of 

bnormality or disproportionality, Company A would be excluded. 8 

f that happens, all the scores must be recalculated ( Table 7 ). Un-

er proportionality, the winner of the contract has changed after 

he exclusion of A, Company D originally received the adjudication 

nd now it goes to Company B. The same issue applies to linear- 

ty. Thus, the disqualification of a tender has modified the bidding 
8 This would be an extreme but illustrative situation hat will only happen if Com- 

any A is not able to provide a satisfactory justification for the low price. 

p

p

o

t

9 
f the contract. Therefore, both proportionality and linearity vio- 

ate the exclusion property. Truncation, on the contrary, satisfies 

his requirement, always. In fact, among all the assessment func- 

ions presented in Section 2 , truncation is the only one that fulfills 

xclusion and is immune to manipulations. 

. Final remarks 

In this work, we have considered the problem of providing a 

ardinal assessment of the performance of a group of agents across 

everal issues. As done in practice in many situations, we have fo- 

used on scoring methods that are the composition of two steps. 

irst, each agent is scored in each attribute, with the limitation 

hat the score cannot exceed an upper bound of points exoge- 

ously set (the cap). This score may potentially depend on the own 

erformance and other individuals’ achievements. In the second 

tep, the scores are aggregated in order to obtain the agents’ over- 

ll assessment. The first step is formalized by a partial assessment 

unction , and the second by an aggregation function . An assessment 

unction is simply the composition of a partial assessment and an 

ggregation function. 

There are many possible partial assessment and aggregation 

unctions, and therefore many more assessment functions. For in- 

tance, the partial assessment may simply truncate the achieve- 

ent when it exceeds the cap, scoring all agents equally when 

hey perform above the cap. As an alternative, we may also rescale 

he scores, in order to keep, up to certain level, the disparities in 

he achievements. As for the aggregation function, we may con- 

ider the arithmetic or geometric mean (weighted or unweighted), 

he maximum, etc. It is obvious that, depending on the choices we 

ake, the assessment function will have more or less appealing 

roperties. 

We have analyzed this problem from an axiomatic perspective. 

n order to do that, we have presented several axioms that are suit- 

ble for this framework. Some of them relates to principles of fair- 

ess, while other applies notions of stability. In the first group we 

ave anonymity, monotonicity, null contribution , and null agent. Con- 

inuity, restricted additivity, attribute separability , and agent separa- 

ility are in the second group. We have two main characterizations. 

irst, we find that, if we impose monotonicity, null contribution, 

ontinuity, and restricted additivity, then we must use a particular 

lass of assessment functions. These assessment functions are very 

imple. For each agent, do the weighted sum of a linear transfor- 

ation of her achievements, truncated if they exceed the caps. In 

his family of assessment functions, both the weights and the lin- 

ar transformations are degrees of freedom, since they may vary 

cross individuals and attributes. If, in addition to the previous ax- 

oms, we also require anonymity, we obtain that the weights and 

he linear transformation must be the same for all agents, although 

hey may differ for attributes. Secondly, we show that the combi- 

ation of monotonicity, null contribution, null agent, continuity, at- 

ribute separability, and agent separability also leads to assessment 

unctions whose aggregate functions are weighted sums. However, 

he partial assessment functions are more general than in the pre- 

ious case. If we also imposed anonymity, then the partial assess- 

ent functions are probability distribution functions adjusted by 

he caps. It still remains as an open question how to determine the 

eights for the aggregation function. However, Theorems 1 to 6 are 

eneral enough to leave the choice to the discretion of the cen- 

ral planner, who may accommodate, for each procurement pro- 

ess, the specificities and characteristics of considered attributes. 

One may argue that, in practice, restricted additivity is less ap- 

ealing than additivity. Proposition 1 states that if a procurement 

rocess imposes maximum thresholds (caps) in the evaluation of 

ne or several attributes, then any assessment function (other than 

he null rule) will violate additivity. That is, the mere presence of 
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aps entails a reformulation of this property. In this line, restricted 

dditivity reconciles the existence of caps with the principle un- 

erlying additivity. Restricted additivity states that the assessment 

unction must be additive anywhere but in those situations where 

he caps apply. 

In the case study we have analyzed a public procurement to 

ake an audit on the financial situation of a public company. We 

ave compared the three most applied assessment functions (trun- 

ation, proportionality, and linearity), and we conclude that trun- 

ation is the best option of all those three methods. It provides 

ssessments that do not artificially outweigh some attributes, and 

t is immune to manipulations because it satisfies the exclusion 

roperty (the exclusion of a bidder with an abnormal offer does 

ot change the winner of the contract). 

In our characterizations the weights of the formula are not 

pecified, leaving to the central authority the choice on which at- 

ributes should be more relevant in the scoring. One may wonder 

bout the possibility of endogenizing those weights. Even though 

e did not carry out an exhaustive analysis, we have explored sev- 

ral methods, and we have obtained that none those are compat- 

ble with the properties in Theorems 1 and 5 . Our findings sug- 

est that none of the assessment functions in these results would 

dmit endogenous weights. For sake of illustration, let us follow 

26] to analyze the application of the average least favorable and 

verage most favorable methods. Let us consider the following ma- 

rix of achievements, with three agents and three attributes: 

 = 

( 

1 6 5 

3 5 3 

2 2 4 

) 

et us suppose that [ W 

1 , W 

′ 1 ] = [0 . 5 , 1] , [ W 

2 , W 

′ 2 ] = [0 , 2] , and

 W 

3 , W 

′ 3 ] = [0 . 2 , 1] are the intervals for Attributes 1, 2, and 3, re-

pectively. Then, the vectors of least favorable weights are v 1 = 

0 , 0 . 2 , 0 . 8) , v 2 = (0 . 5 , 0 , 0 . 5) , and v 1 = (0 . 5 , 0 . 3 , 0 . 2) for Agents

, 2, and 3, respectively. In any average least favorable method 

 1 = Q 2 = Q 3 = 

1 
3 . Then, v 1 = 

1 
3 , v 

2 = 

0 . 5 
3 , and v 3 = 0 . 5 . Therefore,

 1 = 

4 . 5 
3 , h 2 = 

11 . 5 
3 , and h 3 = 

12 . 5 
3 . That is, the project is assigned

o Agent 3. Now, imagine that the achievement of Agent 3 at At- 

ribute 1 increases from 2 to 10. The new matrix of achievements 

s 

 

′ = 

( 

1 6 5 

3 5 3 

10 2 4 

) 

he new vectors of least favorable weights are v 1 = (0 . 8 , 0 , 0 . 2) ,

 2 = (0 . 5 , 0 , 0 . 5) , and v 1 = (0 . 5 , 0 . 3 , 0 . 2) . Then, v 1 = 0 . 6 , v 2 = 0 . 1 ,

nd v 3 = 0 . 3 . Therefore, h 1 = 3 . 9 , h 2 = 4 . 7 , and h 3 = 4 . 5 . The

roject is now assigned to Agent 2. To summarize, Agent 1 

as modified her achievements and, as a result, the winner has 

hanged from Agent 2 to Agent 3, even though none of them have 

ltered their scores. If, instead, we apply the average most favor- 

ble methods, we get similar behaviors. 

On one hand, the previous endogenizing methods lead to the 

iolation of the principle of independence of third alternatives 

which may be a problem by itself). On the other hand, any as- 

essment function in Theorems 1 and 5 satisfies this property. 

herefore, the weights in the family of assessment functions char- 

cterized in Theorems 1 and 5 could not be endogenized. In 

ther words, there is a trade-off between the properties required 

n Theorem 1 and 5 and the endogenous determination of the 

eights. We must choose either one of the other. 

We acknowledge that there are still some open issues we do 

ot address in this paper and deserve a deeper analysis in fu- 

ure works. We suggest two potential extensions to be explored. 

ne, the properties on additivity, or separability, may not be ad- 

quate for several situations. Even though separability provides 
10 
any more alternatives that additivity, in both cases the aggrega- 

ion function is an additive mean (excluding the geometric mean, 

or example). Further research would address the question of iden- 

ifying the family of assessment functions that satisfy monotonic- 

ty, null contribution, continuity, and some other appealing axioms, 

ut without imposing restricted additivity or separability. And two, 

ven though the proportional and linear assessment functions are 

ot the focal mechanisms in our study, they are quite used in prac- 

ice. Therefore, it is natural to wonder which are the properties 

hat characterize these two assessment functions. 
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ppendix A. Appendix 

1. Proof of Proposition 1 

roof. Suppose that there exist A ∈ A , i ∈ N, and t ∈ P such that

f t 
i 
(a t ) = x > 0 . On the one hand, by additivity , we know that

f t 
i 
(kA ) = kx for any k ∈ Z + . If k is large enough the value of kx ex-

eeds the cap c t , which contradicts the definition of partial assess- 

ent function. Therefore, f t 
i 
(a t ) = 0 for any a t ∈ R 

n + and any i ∈ N.

n the other hand, it must happen that F i [0 , . . . , 0] = 0 for any i ∈
. Indeed, let x = F [0 , . . . , 0] . By additivity , 2 x = F [2 · 0 , . . . , 2 · 0] =
 [0 , . . . , 0] = x . And thus, x = 0 . �

2. Proof of Lemma 1 

roof. Let us consider the null matrix 0 n ×p ∈ A . Let i ∈ N. Be-

ause of null contribution f t 
i ( 0 n ) = 0 for all t ∈ P . Hence, in appli-

ation of restricted additivity , 2 F i [0 , . . . , 0] = F i [0 , . . . , 0] . Therefore,

 i [0 , . . . , 0] = 0 . �

3. Proof of Lemma 2 

roof. It is straightforward to check that the functions in the state- 

ent are continuous and satisfy Conditions (i) to (iii). We prove 

he converse. Let φ be a continuous function that fulfills the three 

onditions of the statement. 
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The function φ must satisfy that, either it is identically equal 

o zero, or there exists ˆ x ∈ R + such that φ( ̂  x ) > 0 . If the former

appens, we have already concluded the proof and φ is of one of 

he types of the statement. If the latter happens, let us define the 

alues z and w as 

 = min { x ∈ R + | φ(x ) = c } and w = min 

{ 

x ∈ R + 
∣∣∣φ(x ) = 

c 

2 

}
hose values w and z exist. Indeed, we distinguish two cases: 

• If ˆ x is such that φ( ̂  x ) ≥ c 
2 . Since φ is continuous and φ(0) = 0

by Condition (iii), in application of the intermediate value the- 

orem, there exists w ∈ [0 , ̂  x ] such that φ(w ) = 

c 
2 . As an imme-

diate implication of Condition (ii), the value z must also exist. 
• If ˆ x is such that φ( ̂  x ) < 

c 
2 . By Condition (ii) we know that

φ(2 ̂ x ) = 2 φ( ̂  x ) . And now we repeat the argument, if φ(2 ̂ x ) is

above c 
2 the intermediate value theorem ensures the existence 

of w , but if φ(2 ̂ x ) is below we can again apply Condition (ii)

to obtain that φ(4 ̂ x ) = 4 φ( ̂  x ) . Applying this argument itera-

tively, there must be an iteration where we can use the previ- 

ous case to conclude that w exists. Otherwise, we would obtain 

that 2 m φ( ̂  x ) = φ(2 m ˆ x ) < 

c 
2 for any m ∈ Z ++ . Or, equivalently,

φ( ̂  x ) < 

c 
2 m + a for any m ∈ Z ++ . But this is impossible for a posi-

tive integer m arbitrarily large (unless φ( ̂  x ) = 0 ). 

By Condition (ii) we know that φ(2 w ) = 2 φ(w ) = c = φ(z) .

ow, we show that it must happen that z = 2 w . Supposing that

t is not the case, there are only two possibilities 

• If z > 2 w . This contradicts the definition of z because φ(2 w ) =
c. 

• If z < 2 w . Notice that z − w < w , and hence φ(z − w ) ≤ c 
2 . Thus,

φ(w ) + φ(z − w ) ≤ c. Condition (ii) implies that 

φ(z) = φ(w ) + φ(z − w ) ≡ c = 

c 

2 

+ φ(z − w ) ≡ φ(z − w ) = 

c 

2 

By definition of w , z − w ≥ w , which contradicts the assumption 

that z < 2 w . 

Therefore, z = 2 w . We distinguish now several cases: 

• Let x, y ∈ [0 , w ] . Because of monotonicity, φ(x ) , φ(y ) ≤ φ(w ) =
c 
2 . In application of Condition (ii) (since φ(x ) + φ(y ) ≤ c 

2 + 

c 
2 = c) we obtain that, within this interval, φ(x + y ) = φ(x ) +
φ(y ) . This is the Cauchy’s equation of a continuous and non- 

decreasing function, and thus φ(x ) = λx for some λ ∈ R + . 9 

Since φ(w ) = 

c 
2 and z > w , we conclude that 

φ(x ) = 

c 

z 
· x 

• Let x ∈ [ w, 2 w ] . Condition (ii) implies that φ(x ) = φ(w ) + φ(x −
w ) (because x − w ∈ [0 , w ] and φ(w ) + φ(x − w ) ≤ c). Hence, 

φ(x ) = φ(w ) + φ(x − w ) = 

c 

2 
+ 

c 

z 
(x − w ) = 

c 

2 
− c 

z 

(
x − z 

2 

)
= 

c 

z 
· x

• Let x ∈ [ z, + ∞ [ . Since φ is non-decreasing and upper bounded

by the value c we have that φ(x ) = c. 

Considering all cases together, we conclude that 

(x ) = min 

{ 

c, 
c 

z 
x 

} 

. 

o conclude the argument we need to show that the value z exists, 

hich amounts to saying that w exists (since z = 2 w ). �
9 See [1] for several results on Cauchy’s equation. 

11 
4. Proof of Theorem 1 

roof. It is clear from Eq. (1) that 

 i 

(
f 1 i (a 1 ) , f 2 i (a 2 ) , . . . , f p 

i 
(a p ) 

)
= 

p ∑ 

t=1 

βt 
i f 

t 
i (a t ) 

nd 

f t i (a t , c t ) = min 

{
λt 

i a 
t 
i , c 

t 
}

e first check that any assessment function in the statement of 

he problem satisfies the four properties. 

• Continuity. It is obvious because both F and f t 
i 

are continuous. 
• Monotonicity. It is obvious that functions f t 

i 
are monotonic with 

respect to a t 
i 
, and that the function F i is also monotonic. 

• Null contribution. If a t 
i 
= 0 then, by definition, f t 

i 
((a t 

i 
, a t −i 

)) = 0 .

• Restricted additivity. Let us suppose that f t 
i 
(a t ) + f t 

i 
( a t ) ≤ c t for

some a t , a t ∈ R 

n . In such a case f t 
i 
(a t ) = λt 

i 
a t 

i 
, f t 

i 
( a t ) = λt 

i 
a t i , and

λt 
i 
a t 

i 
+ λt 

i 
a t i ≤ c t . Thus, we have that 

f (a t + a 
t ) = min { λt 

i (a t i + a 
t 
i ) , c 

t } 
= λt 

i (a t i + a 
t 
i ) = min { λt 

i a 
t 
i , c 

t } + min { λt 
i a 

t 
i , c 

t } 
= f t i (a t ) + f t i ( a 

t 
) 

Now, if f t 
i 
(a t ) + f t 

i 
( a t ) ≤ c t for all t ∈ P , then 

F i 
[

f 1 i (a 1 ) + f 1 i ( a 
1 
) , . . . , f p 

i 
(a p ) + f p 

i 
( a 

p 
) 
]

= 

p ∑ 

t=1 

βt 
i ( f t i (a t ) + f t i ( a 

t 
)) = 

F i 
[

f 1 i (a 1 ) , . . . , f p 
i 
(a p ) 

]
+ F i 

[
f 1 i ( a 

1 ) , . . . , f p 
i 
( a p ) 

]

Let us see the converse. We distinguish three possible cases de- 

ending on the structure of the matrix A . 

ase (1) . Let A 

r 
k 

∈ A be a matrix all whose entries but one ( a r 
k 
) are

null: 

A 

r 
k = 

(
a r 

k 
; 0 ; 0 ; 0 n ;

)
By definition, 

S i (A 

r 
k ) = F i 

[
f 1 i 

(
a 1 

)
, . . . , f r i ( a 

r ) , . . . , f 
p 
i ( a 

p ) 
]

= F i 
[

f 1 i ( 0 n ) , . . . , f 
r 
i 

(
0 , . . . , a r k , . . . , 0 

)
, . . . , f p 

i ( 0 n ) 
]

In application of null contribution , we know that f t 
i ( 0 n ) = 

0 for all t ∈ P and f r 
i 

(
0 , . . . , a r 

k 
, . . . , 0 

)
= 0 when i � = k .

Therefore, 

S i (A 

r 
k ) = 

{
F i 
[
0 , . . . , f r 

i 

(
0 , . . . , a r 

k 
, . . . , 0 

)
, . . . , 0 

]
if i = k 

F i [ 0 , . . . , 0 ] if i � = k 

By applying Lemma 1 , we obtain that 

S i (A 

r 
k ) = 

{
F i 
[
0 , . . . , f r 

i 

(
0 , . . . , a r 

k 
, . . . , 0 

)
, . . . , 0 

]
if i = k 

0 if i � = k 

Now, let us define the functions φr 
k 

and 	r 
k 

as follows 

φr 
k (a r k ) = f r k 

(
0 , . . . , a r k , . . . , 0) 

)
and 

	r 
k (a r k ) = F k 

[
0 , . . . , φr 

k (a r k ) , . . . , 0 

]
Then, 

S i (A 

r 
k ) = 

{
	r 

k 
(a r 

k 
) if i = k 

0 if i � = k 
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Monotonicity implies that 0 ≤ 	r 
k 
(a r 

k 
) ≤ γ r 

k 
, where γ r 

k 
= 

F k [0 , . . . , c 
r , . . . , 0] . Let z r 

k 
= min 

{
x ∈ R + | φr 

k 
(x ) = c r 

}
and 

w 

r 
k 

= min 

{
x ∈ R + | φr 

k 
(x ) = 

c r 

2 

}
. Notice that z r 

k 
= 2 w 

r 
k 
. 10 

Since φr 
k 

satisfies the conditions of Lemma 2 , we know 

that either φr 
k 

is identically equal to zero or 11 

φr 
k (a r k ) = min 

{
c r , 

c r 

z r 
k 

a r k 

}
= 

⎧ ⎨ 

⎩ 

c r 

z r 
k 

a r k if a r 
k 

≤ z r 
k 

c r if a r 
k 

≥ z r 
k 

• If x, y ∈ [0 , w 

r 
k 
] . Notice that φr 

k 
(x ) + φr 

k 
(y ) = 

c r 

z r 
k 

x +
c r 

z r 
k 

y = 

x + y 
2 w 

r 
k 

c r ≤ c r . In application of restricted additivity 

we have that 	r 
k 
(x + y ) = 	r 

k 
(x ) + 	r 

k 
(y ) . This is the

Cauchy’s functional equation, whose solution in this 

context is: 

	r 
k (x ) = 

F k 
[
0 , . . . , c 

r 

2 
, . . . , 0 

]
w 

r 
k 

x = 

S k ( ̂  A 

r 
k 
, c) 

w 

r 
k 

x, 

where ˆ A 

r 
k 

is such that ˆ a r 
k 

= 

c r 

2 . 
• If x ∈ [ w 

r 
k 
, 2 w 

r 
k 
] = [ w 

r 
k 
, z r 

k 
] . Since φr 

k 
(w 

r 
k 
) + φr 

k 
(x − w 

r 
k 
) ≤

c r (because of the definition of w 

r 
k 

and the fact that 

x − w 

r 
k 

∈ [0 , w 

r 
k 
] ), restricted additivity implies that 

	r 
k (x ) = 	r 

k (w 

r 
k ) + 	r 

k (x − w 

r 
k ) = 

F k 
[
0 , . . . , c 

r 

2 , . . . , 0 
]

w 

r 
k 

x = 

S k ( ̂  A 

r 
k 
, c) 

w 

r 
k 

x, 

where ˆ A 

r 
k 

is such that ˆ a r 
k 

= 

c r 

2 . 
• If x ∈ [ z r 

k 
, + ∞ [ then, by monotonicity , 	r 

k 
(x ) ≥

	r 
k 
(z r 

k 
) = γ r 

k 
. Since 	r 

k 
is upper bounded by γ r 

k 
, 

we conclude that in this case 

	r 
k (x ) = γ r 

k , 

being γ r 
k 

= S k ( A 

r 

k ) , where A 

r 

k is such that a r k = c r 

Therefore, 

S i (A 

r 
k ) = 

{
	r 

k 
(a r 

k 
) if i = k 

0 if i � = k 
, 

where 

	r 
k (a r k ) = 

{
αr 

k 
a r 

k 
if a r 

k 
∈ [0 , z r 

k 
] 

γ r 
k 

if a r 
k 

∈ [ z r 
k 
, + ∞ [ 

, (A.1) 

αr 
k 

= 

F k 

[ 
0 , ... , c 

r 

2 
, ... , 0 

] 
w 

r 
k 

= 

F k [ 0 , ... ,φ
r 
k 
(w 

r 
k 
) , ... , 0 ] 

w 

r 
k 

, and γ r 
k 

= 

F k [0 , . . . , c 
r , . . . , 0] . 

ase (2) . Let A 

r ∈ A be a matrix all whose columns but one ( a r )

are null: 

A 

r = 

(
0 n ; a r ; 0 n ;

)
Using an argument similar to the previous case, we have 

that 

S i (A 

r ) = F i 
[
0 , . . . , f r i 

(
a r i , . . . , a 

r 
n ) 

)
, . . . , 0 

]
We can easily express A 

r as a sum of matrices like those 

in Case (1): A 

r = 

∑ n 
k =1 A 

r 
k 
, where each A 

r 
k 

has all the en-

tries equal to zero except, eventually, a r 
k 
. Notice that, 

because of null contribution , 
∑ n 

k =1 f 
r 
i 

(
0 , . . . , a r 

k 
, . . . , 0 

)
= 

f r 
i 

(
0 , . . . , a r 

i 
, . . . , 0 

)
≤ c r . Then, in application of restricted 
10 The argument has already been showed in the proof of Lemma 2 . 
11 We now focus on the case when φr 

k 
is not null and will discuss the other pos- 

ibility further down the proof. 

w

S

12 
additivity , S i (A 

r ) = 

∑ n 
k =1 S i (A 

r 
k 
) . Since, by Case (1), we al-

ready know the expression of each S i (A 

r 
k 
) , we can write: 

S i (A 

r ) = 

n ∑ 

k =1 

S i (A 

r 
k ) = S i (A 

r 
i ) = 	r 

i (a r i ) , 

where 	r 
i 

is given by Eq. (A.1) . 

ase (3) . Let A ∈ A be a general matrix without any restriction on 

its entries. Notice that 

A = 

p ∑ 

r=1 

A 

r , 

where each A 

r is a matrix all whose columns, except 

a r , are null. Notice that, because of null contribution ∑ p 
r=1 

f t 
i 

(
(A 

r ) t 
)

= f t 
i 

(
(A 

t ) t 
)

≤ c t for all t ∈ P . Because of re- 

stricted additivity , S i (A ) = 

∑ p 
r=1 

S i (A 

r ) . Since, by Case (2),

we already know the expression of each S i (A 

r ) , we can 

write: 

S i (A ) = 

p ∑ 

r=1 

S i (A 

r ) = 

p ∑ 

r=1 

S i (A 

r 
i ) = 

p ∑ 

r=1 

	r 
i (a r i ) , 

where 	r 
i 

is given by Eq. (A.1) . 

It remains to see what happens when φr 
k 

is null in Case (1). 

f φr 
k 
(a r 

k 
) = 0 then S i (A 

r 
k 
) = 	r 

k 
(a r 

k 
) = 0 . Therefore, using the argu-

ent of Case (2), we have that for attribute r it holds that S i (A 

r ) =
r 
i 
(a r 

i 
) = 0 . 

Finally, let us define βr 
i 

∈ R and λr 
i 
∈ R as follows 

r 
i ∈ 

{
0 , 

γ r 
i 

c r 

}
and λr 

i = αt 
i 

c r 

γ r 
i 

hen 	r 
i 
(a r 

i 
) = βr 

i 
· f r 

i 
(a r , c r ) where 

f r i (a r , c r ) = min { λr 
i a 

r 
i , c 

r } = 

{ 

λr 
i 
a r 

i 
if a r 

i 
≤ z r 

i 

c r if a r 
i 
≥ z r 

i 

�

5. Proof of Lemma 3 

roof. Le i ∈ N. By null contribution and null agent , F i (0 , . . . , 0) =
 . Now, by monotonicity F i (x 1 , . . . , x p ) ≥ 0 for each x t ∈ [0 , c t ] , t ∈
 . �

6. Proof of Lemma 4 

roof. Since S satisfies attribute separability , we know that there 

xist functions G 

t 
i 

such that 

 i (x 1 , . . . , x p ) = 

∑ 

t∈ P 
G 

t 
i (x t ) . 

herefore, we have that 

 i (A ) = 

∑ 

t∈ P 
G 

t 
i ( f t i (a t )) = 

∑ 

t∈ P 
g t i (a t ) , 

here g t 
i 
= G 

t 
i 
◦ f t 

i 
. 

Since S satisfies null agent and null contribution , 

 i ((a t −i , 0) t∈ P ) = 

∑ 

t∈ P 
g t i (a t −i , 0) = 

∑ 

t∈ P 
g t i (0 

t ) = 0 . 

e now define the following functions 

 

t 
i (a t ) = g t i (a t ) − g t i (a t −i , 0) . 

n one hand, it is obvious that H 

t 
i 
(a t −i 

, 0) = 0 . On the other hand,

e have that 

 i (A ) = 

∑ 

t∈ P 
g t i (a t ) = 

∑ 

t∈ P 
g t i (a t ) −

∑ 

t∈ P 
g t i (a t −i , 0) = 

∑ 

t∈ P 
H 

t 
i (a t ) . 
�
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7. Proof of Theorem 3 

roof. We consider the following assessment function S: 

 i (A ) = F i 
(

f 1 i (a 1 ) , f 2 i (a 2 ) , . . . , f p 
i 
(a p ) 

)
= 

p ∑ 

t=1 

βt 
i f 

t 
i (a t ) , 

nd 

f t i (a t ) = c t h 

t 
i (a t ) . 

irst, we check that any assessment function defined as in the 

tatement satisfies the five properties. 

• Monotonicity. It is obvious that functions f t 
i 

are monotonic with 

respect to a t 
i 
, and that the function F i is also monotonic. 

• Continuity. It is obvious because both F i and f t 
i 

are continuous. 
• Null contribution. If a t 

i 
= 0 then, by definition, f t 

i 
(a t −i 

, 0) =
c t h t 

i 
(a t −i 

, 0) = 0 . 

• Null agent. It is obvious because h t 
i 
(a t −i 

, 0) = 0 , for all i ∈ N and

t ∈ P . 
• Attribute separability. This is obvious because of the definition 

of F i . 

Let us see the converse. Let S be an assessment function satis- 

ying the five properties with partial assessment functions f t 
i 

and 

ggregations functions F i . Let i ∈ N. On the one hand, in application

f attribute separability , there exist functions { G 

t 
i 
} t∈ P such that 

 i (x 1 , . . . , x p ) = 

∑ 

t∈ P 
G 

t 
i (x t ) , 

here each G 

t 
i 

is non-decreasing because of monotonicity . On the 

ther hand, in application of Lemma 4 there exist functions { H 

t 
i 
} t∈ P 

uch that 

 i (A ) = F i ( f 1 i (a 1 ) , . . . , f p 
i 
(a p )) = 

∑ 

t∈ P 
H 

t 
i (a t ) , 

here H 

t 
i 

= G 

t 
i 
◦ f t 

i 
and H 

t 
i 
(a t −i 

, 0) = 0 . Again, by monotonicity , we

now that each H 

t 
i 

is non-decreasing. Since S satisfies continuity , 

hese functions must be also continuous. 

Now, let us define h t 
i 

as follows: 

 

t 
i (a t ) = 

H 

t 
i 
(a t ) 

G 

t 
i 
(c t ) 

. 

otice that, monotonicity and the definition of partial assessment 

unction imply that H 

t 
i 
(a t ) ≤ G 

t 
i 
(c t ) for all a t ∈ R 

p 
+ . That is, h t 

i 
(a t ) ∈

0 , 1] for all a t ∈ R 

p 
+ . Finally, let us define βt 

i 
= 

G t 
i 
(c t ) 

c t 
. Then, 

 i (A ) = 

∑ 

t∈ P 
H 

t 
i (a t ) = 

∑ 

t∈ P 
βt 

i c 
t h 

t 
i (a t ) 

�

8. Proof of Lemma 5 

roof. On the one hand, since S satisfies agent separability , 

f t 
i 
(a t ) = 

∑ 

j∈ N g t i j 
(a t 

i 
) . On the other hand, since S satisfies null con-

ribution , for all a t −i 
∈ R 

n −1 
+ , we have that 

f t i (a t −i , 0) = 0 = g t ii (0) + 

∑ 

j∈ N\ i 
g t i j (a t j ) . 

his implies that 
∑ 

j∈ N\ i g t i j 
(a t 

j 
) = g t 

ii 
(0) , for all a t −i 

∈ R 

n −1 
+ , there-

ore, we can rewrite f t 
i 

as follows 

f t i (a t ) = g t ii (a t i ) − g t ii (0) . 

t t t t t t 
ow, we define g 
i 
(a 

i 
) = g 

ii 
(a 

i 
) − g 

ii 
(0) , for all a 

i 
∈ R + . �

13 
9. Proof of Theorem 5 

roof. We consider the following assessment function S: 

 i (A ) = F i 
(

f 1 i (a 1 ) , f 2 i (a 2 ) , . . . , f p 
i 
(a p ) 

)
= 

p ∑ 

t=1 

βt 
i f 

t 
i (a t ) , 

nd 

f t i (a t ) = c t h 

t 
i (a t i ) . 

irst, we check that any assessment function defined as in the 

tatement satisfies the six properties. 

• Monotonicity. It is obvious that functions f t 
i 

are monotonic with 

respect to a t 
i 
, and that the function F i is also monotonic. 

• Continuity. It is obvious because both F i and f t 
i 

are continuous. 
• Null contribution. If a t 

i 
= 0 then, by definition, f t 

i 
(a t −i 

, 0) =
c t h t 

i 
(0) = 0 . 

• Null agent. It is obvious because h t 
i 
(0) = 0 , for all i ∈ N and t ∈

P . 
• Attribute separability. This is obvious because of the definition 

of F i . 
• Agent separability. It is obvious by definition of h t 

i 
, for all i ∈ N

and t ∈ P . 

Let us see the converse. Let S be an assessment function satis- 

ying the six properties with partial assessment functions f t 
i 

and 

ggregations functions F i . Let i ∈ N. On the one hand, in application

f attribute separability , we have that there exist functions G 

t 
i 
, t ∈ P 

uch that 

 i (x 1 , . . . , x p ) = 

∑ 

t∈ P 
G 

t 
i (x t ) , 

here each G 

t 
i 

is non-decreasing because of monotonicity . On the 

ther hand, in application of Lemma 5 there exist functions { g t 
i 
} t∈ P 

uch that 

f t i (a t ) = g t i (a t i ) . 

gain, by monotonicity , we know that each g t 
i 

is non-decreasing. 

herefore, we have that 

 i (A ) = 

∑ 

t∈ P 
G 

t 
i (g t i (a t i )) . 

et us define H 

t 
i 

= G 

t 
i 
◦ g t 

i 
. Since S satisfies continuity , these func- 

ions must be also continuous. Furthermore, since S satisfies null 

gent and monotonicity , H 

t 
i 
(0) = 0 for any t ∈ P . 

Now, let us define h t 
i 

as follows: 

 

t 
i (a t i ) = 

H 

t 
i 
(a t 

i 
) 

F i (0 , . . . , 0 , c t , 0 , . . . , 0) 
. 

otice that, monotonicity and the definition of partial assessment 

unction imply that H 

t 
i 
(a t 

i 
) ≤ F i (0 , . . . , 0 , c t , 0 , . . . , 0) for all a t 

i 
∈ R + .

hat is, h t 
i 
(a t ) ∈ [0 , 1] for all a t 

i 
∈ R + . Finally, let us define βt 

i 
=

F i (0 , ... , 0 ,c t , 0 , ... , 0) 

c t 
. Then, 

 i (A ) = 

∑ 

t∈ P 
H 

t 
i (a t i ) = 

∑ 

t∈ P 
βt 

i c 
t h 

t 
i (a t i ) , 

here the βt 
i 
’s and the functions h t 

i 
’s are in the conditions of the 

tatement of the theorem. �
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