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Abstract

Alleviating the burden of breast cancer has become in one of the biggest challenges
of our times. The advances in surgery, radiotherapy, and systemic therapy have
improved the survival rates of patients with breast cancer, but have also produced
a higher number of patients suffering short- and long-term side effects, with high
the risk of recurrence, developing comorbidities, and death. Therapeutic exercise
poses a means to address this issues; however, exercise interventions in patients with
cancer are often adhered to the same therapeutic exercise guidelines. This results
in one-size-fits-all exercise prescriptions for all adults, regardless their individual
exercise capabilities and needs, which may lead to inadequate training adaptation.

The mobile health (mHealth) paradigm has enabled the remote and individual mon-
itoring of health through wearable sensors and smartphones. Personalizing training
adaptation with an mHealth approach has already been successfully conducted in
sports settings, and the literature suggests that similar strategies may translated to
patients with chronic conditions such as breast cancer. However, recent works do
not target the adjustment of training doses to the individual needs of the patients.

This thesis presents three contributions to support the personalization of therapeutic
exercise intervention in patients with breast cancer. First, ATOPE+, an mHealth
system to support the remote monitoring of patients’ training load through heart
rate variability (HRV), self-reported wellness, and Fitbit physical activity and sleep
data. ATOPE+ also integrates a decision-support system with expert rules that
automatically trigger daily exercise recommendations for patients. Second, the
ATOPE+Breast dataset, an open dataset describing the continuous evolution of
training load during therapeutic exercise intervention for 23 patients with breast
cancer. Third, a clustering approach to assess training needs in patients with breast
cancer. Data science and artificial intelligence (AI) are leveraged in this approach
to better understand the different states of the patient throughout an exercise
intervention, and eventually serve as a tool to make more informed decisions when
prescribing an exercise dose.

The potential of these contributions may lead to new research directions in the
personalization of therapeutic exercise interventions in real-life scenarios, specially
regarding the application of mHealth and AI to improve chronic conditions.
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Resumen

Aliviar las secuelas del cáncer de mama se ha convertido en uno de los mayores
retos de nuestros tiempos. Los avances en cirugía, radioterapia y terapia sistémica
han mejorado las tasas de supervivencia en pacientes con cáncer de mama, pero
también han traído consigo un elevado número de pacientes que sufren de efectos
secundarios a corto y largo plazo, con elevado riesgo de recurrencia, de desarrollo
comorbilidades, y de mortalidad. El ejercicio terapéutico se plantea como una
solución para estos problemas; sin embargo, las intervenciones de ejercicio físico van
normalmente dirigidas bajo las mismas guías de ejercicio terapéutico para pacientes
con cáncer. Esto conlleva la entrega de la misma prescripción de ejercicio para todos
los adultos, independientemente de sus capacidades y necesidades de entrenamiento
específicas, lo que puede llevar a un mala adaptación durante el entrenamiento.

El paradigma de salud móvil (mSalud) ha permitido la monitorización remota e
individualizada de la salud a través de sensores vestibles y teléfonos inteligentes.
La personalización de la adaptación al entrenamiento con tecnologías mSalud ya
se ha llevado a cabo con éxito en entornos deportivos, y la literatura sugiere que
estrategias similares se pueden trasladar a pacientes con condiciones crónicas como
el cáncer de mama. Sin embargo, trabajos recientes se olvidan del ajuste individual
de las dosis de entrenamiento a las necesidades de cada paciente.

Esta tesis plantea tres contribuciones para la personalización de intervenciones de
ejercicio físico terapéutico en pacientes con cáncer de mama. Primero, ATOPE+,
un sistema mSalud para la monitorización remota de la carga de entrenamiento
en pacientes con cáncer mediante la medición de variabilidad de la frecuencia
cardíaca (VFC), bienestar autoreportado, y actividad física y sueño Fitbit. ATOPE+
también incluye un sistema de ayuda a la toma de decisiones que, mediante reglas
expertas, entrega recomendaciones de ejercicio diarias para las pacientes. Segundo,
ATOPE+Breast, un conjunto de datos abierto que describe la evolución continua de
la carga del entrenamiento a lo largo de una intervención de ejercicio terapéutico
para 23 pacientes con cáncer de mama. Tercero, un análisis, basado en algoritmos
de agrupamiento, orientado a la evaluación de necesidades de entrenamiento en
pacientes con cáncer de mama. La ciencia de datos y la inteligencia artificial (IA)
permiten desde este análisis mejorar el entendimiento de los diferentes estados
de la paciente a lo largo de una intervención en ejercicio físico, así como, en
última instancia, servir como herramienta para tomar decisiones más informadas al
preescribir dosis de ejercicio terapéutico.
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El potencial de estas contribuciones permite la apertura de nuevas líneas de investi-
gación dirigidas a la personalización de intervenciones de ejercicio terapéutico en
escenarios de la vida real, especialmente en la aplicación del mHealth y la IA en la
mejora de condiciones crónicas.
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Introduction 1
„Without deviation from the norm, progress is not

possible.

— Frank Zappa

1.1 Thesis Goal

The goal of this thesis is to investigate how to support personalized therapeutic
exercise interventions in patients with breast cancer using mobile technologies, data
science, and machine learning. In particular, this thesis focuses on the continuous
monitoring of training load in patients with breast cancer during a therapeutic
exercise intervention. This work aims to contribute with the development of systems
to support improved decision-making for experts when prescribing personalized
exercise doses for patients with breast cancer.

1.2 Context

1.2.1 Breast Cancer in the Last Years

Cancer is the plague of the 21st century; it is a chronic disease that affects all
populations regardless of wealth or social status. In 2018, cancer diagnoses raised
to 18.1 million people globally, and 9.6 million died from the disease (Bray et al.,
2018). Moreover, in 2020, cancer was responsible for one in six deaths globally, and
one in five people had already faced cancer diagnosis during their lifetime (World
Health Organization, 2020).

Population growth and aging may be the principal causes of the increase in cancer
incidence in the last years, but other factors related to social and economic growth
also play an essential role. These factors are mainly related to lifestyle habits in
diet and physical activity (World Health Organization, 2020; Wild, Weiderpass, &
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Stewart, 2020). For instance, a daily intake of red or processed meat may increase
the risk of colorectal cancer (World Health Organization, 2015); and lower levels
of physical activity may increase the risk of several types of cancer, such as bladder,
breast, colon, endometrial, esophageal, kidney, and stomach cancer (McTiernan
et al., 2019; Patel et al., 2019; Rezende et al., 2018). Such habits are typical of
richer countries (Popkin, Adair, & Ng, 2012), and Europe is a fair representation of
this case. With only 9% of the world population, the old continent held 23.4% of
cancer diagnoses and 20.3% of cancer-related deaths in 2018 (Bray et al., 2018).
This high magnitude of cancer in Europe made the European Union include it as one
of the Missions of the Horizon Europe program for 2030 (European Commission,
2021).

Breast cancer (BC) is one of the most prevailing types of cancer affecting the
population. Accounting for both sexes, BC was the most commonly diagnosed cancer
(11.6% of the total cases) in 2018, tied with lung cancer (11.6%), and followed by
colorectal (10.2%) and prostate (7.1%) cancer. Among females only, BC was the
leading cause of cancer incidence with 2.1 million new cases (24.2% of the total
cases) and mortality with 630 000 deaths (15.0% of the total deaths) (Bray et al.,
2018).

BC is present all around the globe. It is the most frequently diagnosed cancer in
most countries (154 of 185) and the leading cause of cancer mortality in more
than 100 countries. BC incidence rates are the highest in the more developed
countries, such as Australia and New Zealand, Northern Europe (e.g., Finland,
Sweden, Denmark), Western Europe (e.g., Belgium, The Netherlands), Southern
Europe (e.g., Spain, Italy, Portugal), and Northern America (Bray et al., 2018).
Although hereditary factors account for 5% to 10% of BC cases, the higher BC
incidence found in more developed countries is often associated with non-hereditary
factors (Wild et al., 2020; Ziegler et al., 1993). These risk factors are associated with
the socioeconomic context and lifestyle habits, such as reproduction (nulliparity, late
age at first birth, and fewer children), menstruation (early age at menarche, later
age at menopause), exogenous hormone intake (oral contraceptive use and hormone
replacement therapy), nutrition (alcohol consumption), and anthropometry (greater
weight, weight gain during adulthood, and body fat distribution) (Wild et al., 2020;
Ziegler et al., 1993). Conversely, physical activity and breastfeeding are known as
protective factors (Wild et al., 2020; Brinton, Gaudet, & Gierach, 2017; Ballard-
Barbash et al., 2012; Schmid & Leitzmann, 2014).

Despite the incidence increase in BC, its outcomes are improving. The advances
in BC detection and its treatment have resulted in decreased mortality within the
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last two decades (Bray et al., 2018). Nevertheless, this has also led to an increase
of patients and survivors that suffer significant short- and long-term side effects
(Patsou, Alexias, Anagnostopoulos, & Karamouzis, 2018), raising the risk of disease
recurrence, developing comorbidities, or death (Wild et al., 2020). In fact, by the
end of 2020, there were 7.8 million women alive who had been diagnosed with BC
in the previous five years, making it the most prevalent cancer in the world (Wild
et al., 2020). Hence, preventing or reducing the side effects of BC treatment is of
great importance (Peterson & Ligibel, 2018).

Therapeutic exercise (TE) poses a means to address the short and long-term side
effects of cancer and its treatment (Ballard-Barbash et al., 2012; Schmid & Leitz-
mann, 2014). TE is a subset of physical activity (PA) consisting of structured and
repetitive planned movements and activities with a therapeutic aim. On the other
hand, the definition of PA is broader; PA consists of any movement produced by
skeletal muscles involving energy expenditure. TE and PA have consistently reported
benefits to patients with cancer (Garcia & Thomson, 2014), and both are often
recommended for prevention and treatment purposes (American Cancer Society,
2016; World Health Organization, 2021; Patel et al., 2019). Together with medical
and surgical treatments, TE improves survival and reduces recurrence and mortality
risks (Pollán et al., 2020) due to its positive impact on factors related to the quality
of life (Lahart, Metsios, Nevill, & Carmichael, 2015; Cormie, Zopf, Zhang, & Schmitz,
2017; Peterson & Ligibel, 2018).

The benefits of TE interventions made the research community seek new means to
deliver TE interventions in remote environments leveraging mobile technologies
(Muller et al., 2018). To date, mobile health (mHealth) PA interventions are a
feasible, cost-effective way to improve overall activity levels, body composition,
quality of life, and self-reported symptoms in patients with cancer (Schaffer et al.,
2019) and survivors (Roberts, Fisher, Smith, Heinrich, & Potts, 2017).

1.2.2 Mobile Technologies in Breast Cancer Care

Mobile technologies have quickly spread around the globe in the last ten years. The
number of smartphone users worldwide raised from 751 million in 2011 to 4704
million in 2021, and it is expected to grow to 5575 million in 2025 (Statista - The
Statistics Portal, 2021b). More specifically, Europe raised from 125 million users in
2011 and 634 million in 2021, expecting to grow to 709 million in 2025 (Statista -
The Statistics Portal, 2021a). These absolute numbers translate into 60.4% of the
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world population and 84.8% of the European population having a smartphone in
2021.

A similar trend can be drawn for the number of wearable devices connected, such as
wearable wrist-worn activity trackers, smartwatches, or even smartrings. In 2021,
there were 928.8 million units connected in the world (11.9% of its population) and
215.3 million in Europe (28.8% of its population) (Statista - The Statistics Portal,
2021c). The wide adoption of mobile technologies and their sensing capabilities
offers new opportunities for continuous and personal monitoring.

Smartphones, smartwatches, and wrist-worn activity trackers —among other smart
devices— provide users with enormous capabilities for communication, access to
information, and personal sensing. These devices are typically equipped with sensors
like accelerometers and gyroscopes for activity recognition; barometric sensors to
measure altitude changes; GPS (Global Positioning System) for tracking services;
ambient light sensor for automatic screen brightness adjustment; front cameras
and fingerprint scanners for biometric authentication; or photoplethysmography for
heart rate monitoring. These embedded sensors enable the unobtrusive monitoring
of the users’ daily activities and their surrounding context. Besides, smartphones
provide an interface for communication, the connection of wearable sensors (e.g.,
via Bluetooth), and the self-report of people’s wellbeing. Smartphones and wearable
activity trackers have enabled advances for a more objective and personalized ap-
proach in several health applications such as promoting physical activity (Brickwood,
Watson, O’Brien, & Williams, 2019), monitoring mental health (Garcia-Ceja et al.,
2018), or even fighting the effects of the COVID-19 pandemic (Khan et al., 2021).

The promise of mobile technologies and wearable activity trackers in oncology has
been present in recent literature. Clinical experts’ defended that including contin-
uous, objective, and quantified measures of the physical activity and surrounding
context of patients could provide new advances into personalizing cancer treatment
(Kelly & Shahrokni, 2016; Beg, Gupta, Stewart, & Rethorst, 2017). Moreover, the
ergonomics and affordability of commercial wearable activity trackers could enable
longer monitoring times, instead the research-grade activity trackers typically used
(Peddle-Mcintyre et al., 2018). This potential led the research community to leverage
mobile and wearable technologies in numerous cancer-related studies successfully
(Martin et al., 2021; Faro et al., 2021; Beauchamp, Pappot, & Holländer-Mieritz,
2020; Dorri, Asadi, Olfatbakhsh, & Kazemi, 2020; Schaffer et al., 2019).

To date, patients with breast cancer and survivors are the main targets of mHealth
and eHealth studies related to cancer (Martin et al., 2021; Dorri et al., 2020;
Chung et al., 2020). Even in some of the systematic reviews targeting all cancer
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types and the use of mobile technologies, breast cancer gets most of the attention
(Schaffer et al., 2019; Gresham et al., 2018). The gathered evidence presents breast
cancer patients as an ideal target population for implementing these novel health
intervention paradigms.

Finally, the new coronavirus diseases (COVID-19) strike highlighted the need for
tools to deliver remote interventions. The recurrent saturation of hospital resources
and the risk of getting infected required new treatment strategies for immuno-
suppressed patients, like patients with cancer, who had a twofold increased risk of
getting infected with the COVID-19 compared to the general population (Yu, Ouyang,
Chua, & Xie, 2020). The inclusion of telemedicine strategies was strongly recom-
mended to minimize the exposure of the most vulnerable patients and prioritize
individual assistance (Al-Shamsi et al., 2020).

1.3 Motivation & Objectives

Therapeutic exercise poses a means to address the short- and long-term side effects of
cancer and its treatment; however, the personalization of exercise interventions still
presents a challenge. Personalizing a therapeutic exercise intervention consists of tai-
loring it to each patient’s needs, characteristics, or possibilities with an adapted and
evidence-based prescription following frequency, intensity, time, and type (Campbell
et al., 2019). Typically, the tailoring of an exercise intervention relies on patient’s
self-management to regulate the intensity of the sessions. Intervention programs
are already scheduled to meet the weekly exercise recommendations, while any
adjustment is only based on demographic variables (e.g., age, height, weight) and
surgery or systemic treatment (e.g., chemotherapy, radiotherapy) dates.

Mobile technologies may improve the personalization of exercise interventions for
patients with breast cancer through remote and real-time assessment of their status.
Smartphones and wearable sensors may enable the daily monitoring of biomarkers
to evaluate individual training needs. Furthermore, data science techniques and
machine learning algorithms may provide a means to understand such biomarkers’
role during a therapeutic exercise intervention. There are already available solu-
tions looking to optimize training and performance that leverage such tools to a
certain extent for amateur and professional athletes —even commercially, such as
HRV4Training or EliteHRV. However, there is little research focused on personalizing
therapeutic exercise interventions in patients with cancer.
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Hence, as its main objective, this thesis aims to investigate how to support personal-
ized therapeutic exercise interventions in patients with breast cancer using mobile
technologies, data science, and machine learning. To pursue its goal, this thesis
states the following supportive objectives.

Objective 1: Develop an mHealth expert system to support personalized
therapeutic exercise interventions in patients with breast cancer.

An mHealth intervention involves the use of mobile technologies from patients
and/or clinical experts. In order to make an mHealth intervention successful, it is
of utmost importance to meet both patients’ and experts’ needs from the beginning
(Marcolino et al., 2018). Moreover, the requirement analysis cannot be exclusively
addressed solely from a clinical (Granja, Janssen, & Johansen, 2018) or technological
(Banos, Villalonga, et al., 2015) perspective, but include both.

The clinical experts delivering a remote therapeutic exercise intervention (i.e.,
physiotherapists) may have multiple needs, from communicating with a patient
to displaying patients’ information. Nevertheless, the most critical requirement is
assessing the training needs of the patient, and just providing a wearable activity
tracker may not be enough to monitor patients’ health (Schaffer et al., 2019).
Patients’ assessments must be gathered with objective and quantifiable health status
measures with multiple biomarkers. Furthermore, the different monitoring methods
used (e.g., questionnaires, wearable sensors, activity trackers) must provide reliable
information to support medical decisions.

The patient’s health status must be presented to the experts in a clean and structured
manner to support their decisions regarding the prescription of exercise doses.
Knowledge-based systems provide an excellent framework to support the relation of
medical knowledge (e.g., a base of rules, an ontology) to match the data gathered
and, eventually, trigger recommendations. This expert-driven approach may work
in parallel with a machine-driven approach, in which data science techniques and
machine learning algorithms could provide different insights and perspectives for a
more refined analysis and decision-making process.

The patients with breast cancer receiving a remote therapeutic exercise intervention
have their own needs too. Patients must be able to record their health status au-
tonomously to inform the clinical experts on their status and, eventually, receive their
exercise prescription. However, this should be achieved in the most straightforward
manner. Any medical tool or system developed must be easy to use, reliable, and
never imply any risks for the patient. Simplicity-from-design may provide a friendly
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mHealth environment for patients with low technological skills —such as the often
found among the elderly, a part of the population with the highest cancer incidence
risks and rates.

The surgery, radiotherapy, and systemic treatment (e.g., hormonal therapy, targeted
therapy, or chemotherapy) of breast cancer care may translate into functional
limitations like impairments in the arm and shoulder (Hidding, Beurskens, Wees,
Laarhoven, & Sanden, 2014). Therefore, the sensors and protocols followed need to
consider such limitations to provide a safe mHealth intervention for the patients.

There are also shared requirements among patients and clinical experts. One of them
is acknowledging that technology cannot replace the contact with a clinical expert
(Granja et al., 2018). The supervision of an expert during exercise intervention is
necessary to ensure adherence to the protocol and its correct execution. The different
exercises need to be carefully instructed to be executed correctly, thus avoiding any
harm. Besides, the physiotherapist is responsible for supervising that the patient
is adjusting exercise intensity to the recommended levels. The developed mHealth
system must consider these needs to make the intervention successful. Another
shared requirement is that the patient sees the mHealth system as an assistant for
the clinical expert, not a substitute. Physiotherapists may use the information to
support their decisions and establish solid communication regarding the patient’s
status despite the remote environment. Such information and communication
channels may enable quick, personalized adjustments of the individual exercise
prescription.

With the spread of the COVID-19 pandemic, the availability of adequate mHealth
interventions has become essential. Due to the immunosuppression related to
cancer treatment, the general recommendation is to minimize patients’ exposure
and prioritize their individualized assistance to avoid any risk of getting infected
with COVID-19 (Al-Shamsi et al., 2020). Despite the current availability of vaccines,
the mHealth environment for the exercise intervention needs to be prepared for new
outbursts or variants of COVID-19. Thus, the set-up mHealth environment needs to
be prepared for in-situ assistance from the physical therapist, but also consider a
fully-remote intervention scenario.

Through this objective, this thesis aims to design and develop an mHealth expert
system capable of supporting personalized therapeutic exercise interventions in
patients with breast cancer. For it to be possible, the system must contain experts’
and patients’ needs, besides collecting the necessary biomarkers to assess the patients’
health state throughout a therapeutic exercise intervention.
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Objective 2: Conduct a monitorization experiment of patients with breast
cancer through therapeutic exercise intervention, and generate a
longitudinal dataset with training load measures.

Exercise interventions in patients with breast cancer typically rely on self-management
to adjust the intensity of the intervention. However, intervention response may differ
from one patient to another at a physiological level, especially regarding whether
the patient was already used to exercising or not, resulting in different individual
adaptations to the training intervention. Besides, exercise programs are predefined
and scheduled to meet a minimum of training amount a week, setting aside factors
the patient’s status at the moment of training. All these limitations may result in the
undertraining or overtraining of the patient throughout intervention (Jones, Eves, &
Scott, 2018; Carter et al., 2021).

The literature collects different attempts in personalizing mHealth exercise and
physical activity interventions with the help of smartphones and wearable activity
trackers (Beauchamp et al., 2020; Dorri et al., 2020; Schaffer et al., 2019). Some
of the studies leveraged the monitoring capabilities of digital activity trackers,
presenting the information to the expert to make more informed decisions and/or to
the patients to increase their self-awareness on daily physical activity levels. Other
studies even used activity tracker data to adjust the baseline for the physical activity
levels recommended during an intervention. These approaches came with several
benefits, such as increasing overall physical activity levels (Schaffer et al., 2019;
Dorri et al., 2020) and increasing adherence due to a sense of accountability (Gell,
Tursi, Grover, & Dittus, 2020). Nevertheless, the methods used did not mean an
improvement compared to the traditional scheduled exercise interventions (Uhm
et al., 2017), suggesting that self-monitoring with a wearable activity tracker or
leveraging steps-count for personalizing recommendations may not be enough to
personalize exercise interventions.

Exercise load monitoring poses a solution to assess individual training needs of
patients with breast cancer during an exercise intervention. Although it has been
well established for professional sports, exercise load monitoring principles may be
translated into clinical practice with measures of heart rate variability, wellness, and
physical activity levels to evaluate the readiness level to train (Carter et al., 2021).

Collecting quality and reliable longitudinal training load data in free-living envi-
ronments is one of the main challenges researchers face when assessing training
needs in patients. Clinical interventions often rely on sophisticated equipment that
limits measurements to lab settings. This limitation results in a lack of longitudinal
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descriptions of training load in interventions with chronic conditions such as breast
cancer, only reporting values such as pre-training, post-training, de-training, or
control (Y.-H. Lee, Lai, Lee, Tsai Lai, & Chang, 2018; Guo et al., 2015; Niederer
et al., 2012; Caro-Moran et al., 2016; Dias Reis et al., 2017; De Couck & Gidron,
2013; Freitag et al., 2018).

Through this objective, this thesis aims to design and conduct the longitudinal data
collection of training load in patients with cancer enrolled in a therapeutic exercise
intervention. This work plans to build and curate an open dataset available to the
scientific community to enable and share novel methodological approaches to the
longitudinal analysis of training needs in patients with breast cancer.

Objective 3: Identify the factors reflecting the individual readiness state of
patients with breast cancer during therapeutic exercise intervention using a
data science and machine learning approach.

Exercise load monitoring poses a solution to assess individual training needs of
patients with breast cancer during an exercise intervention. Exercise load moni-
toring is well established in professional sports to assess readiness levels to train
and perform; however, little is known about translating exercise load monitoring
principles into clinical practice (Carter et al., 2021). Professional athletes rely on
biomarkers like heart rate analysis, wellness questionnaires, and ratings of their
perceived recovery to evaluate how much impact the last training had on their
bodies (Miguel, Oliveira, Loureiro, García-Rubio, & Ibáñez, 2021). The role and
significance of such biomarkers when assessing training needs in patients with breast
cancer —or any other type— is still unknown.

The massive inflow of data that smartphones and wearable activity trackers provide
may be integrated into a digital phenotype for patients with cancer (Fonseka &
Woo, 2021; Carissa A. Low, 2020). Digital phenotyping is the moment-by-moment
quantification of the individual-level human phenotype in situ using data from
smartphones and other personal digital devices (Torous, Onnela, & Keshavan, 2017).
Eventually, the construct of digital phenotyping is nurtured by the several biomarkers
addressing the different health layers monitored in a patient. Digital phenotyping
is a prevalent field in mental health that focuses on assessing (Torous et al., 2017;
Insel, 2017), but it is less studied in oncology (Fonseka & Woo, 2021). Although
some studies show the possibilities of mobile technologies and machine learning in
cancer, these studies are mostly preliminary work. These works address different
dimensions of cancer, such as the assessment of symptom severity (Carissa A. Low
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et al., 2017; Carissa A. Low et al., 2021) or fatigue (Sada et al., 2021). The analysis
of biomarkers monitoring the exercise needs of patients with breast cancer may
contribute to the state of the art on digital phenotyping applied to cancer.

Through this objective, this thesis aims to identify factors reflecting the individual
readiness state of patients with breast cancer. Novel methodologies of analysis based
on data science and machine learning techniques may provide new insights on how
to translate exercise load monitoring into cancer care. Unsupervised learning may
enable the search of unknown patterns among the different variables presented
(e.g., clustering algorithms). Supervised learning may enable the search for factors
reflecting expert knowledge (e.g., logistic regression, random forests, support vector
machines) along with feature importance analysis (e.g., gini/entropy criteria).

1.4 Outline

This thesis is structured in six chapters:

Chapter 1 introduces the context for this thesis by presenting the state of breast
cancer in the last years and the state of the use of mobile technologies in breast
cancer care. Next, it lays out the motivation and objectives of this work, bringing up
the current challenges and opportunities in designing mHealth systems, collecting
longitudinal data during therapeutic exercise intervention, and identifying factors
reflecting the individual readiness state of patients during therapeutic exercise
intervention.

Chapter 2 provides an overview of the state of the art for digital health systems,
the role of physical activity and exercise in patients with breast cancer, and the
monitoring of exercise load in breast cancer. The section for digital health systems
describes the principal tools to design a digital health system, decision support
systems, the current status of mobile health systems and frameworks, especially
those applied to cancer, and commercial activity trackers. The section for physical
activity and exercise in patients with breast cancer lays out the benefits of these
approaches and the limitations found due to the lack of personalization strategies.
The section for exercise load monitoring in breast cancer describes the principal
technologies for assessing training load.

Chapter 3 presents the design of an mHealth system to support the personalization
of therapeutic exercise intervention in patients with breast cancer, describes the
development of the different elements composing the system, and provides a usability
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evaluation with physiotherapists experienced in therapeutic exercise and patients
with breast cancer and survivors.

Chapter 4 describes the longitudinal collection of training load measures for patients
with breast cancer during a therapeutic exercise intervention. This chapter also
opens the dataset collected to the research community.

Chapter 5 investigates the patterns for training load data across a therapeutic exercise
intervention. In particular, it describes a novel methodology to clean, process, and
select the most relevant features identifying the individual readiness level of breast
cancer patients to exercise.

Finally, Chapter 6 concludes stating the main achievements and contributions of this
thesis. It also presents future opportunities on the research directions opened by this
work.
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State of the Art 2
2.1 Digital Health Systems

In the last decades, information and communication technologies (ICT) have pro-
vided numerous solutions to challenging problems related to healthcare, such as
the administration of electronic health records (Dinh-Le, Chuang, Chokshi, & Mann,
2019), the use of machine learning for cancer detection in images (Ravì et al., 2017),
or the Internet of Things (IoT) paradigm for the remote monitoring of chronic
conditions using wearable sensors (Siow, Tiropanis, & Hall, 2018). All these systems
are known as digital health systems.

A digital health system (DHS) supports health interventions and management
through electronic and mobile technologies. A DHS rely on different approaches
to assist patients and healthcare providers in their needs. Some of these DHSs
are based on electronic health (eHealth) methods, such as storing and delivering
information or enabling doctor-patient communication through mail or websites. In
contrast, other DHSs are based on mobile health (mHealth) approaches, such as
SMS messaging, in-app communication, or sensor monitoring.

The mHealth approach may leverage smartphone and wearable sensors for activity
recognition (Nweke, Teh, Mujtaba, & Al-garadi, 2019) and context monitoring in
different applications, like mental health, diabetes, or cancer (Carissa A. Low, 2020).
These mobile interventions provide the possibility of obtaining large datasets gener-
ated by ecologically valid measures of behavior, thinking, emotion, and physiology
(i.e., in real-time and everyday contexts).

This section reviews the state of the art of DHSs applied to cancer, specifically the
mHealth approaches. First, this section covers how to design a digital health system.
Second, the concept of decision support systems is introduced. Third, a portfolio
of mobile health frameworks, systems, and applications is presented, focusing on
cancer. Finally, this section also provides a view on the role of commercial activity
trackers for health applications.
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2.1.1 Designing a Digital Health System

Crafting a DHS is far from trivial; it requires a refined analysis of a health challenge
to be addressed while considering the needs of the patients and healthcare providers.
There are several standards detailing the development processes of systems in gen-
eral, like the ISO/TC 215 for Health Informatics, the IEEE 1233-1998 for Developing
System Requirements Specifications, or the IEEE 1012-2016 for System, Software,
and Hardware Verification and Validation. However, these guidelines are closer to
the technical side than healthcare managers and providers. The WHO published
a taxonomy of digital health interventions (World Health Organization, 2018) to
ensure good communication among the different professionals involved in devel-
oping a DHS (i.e., funding stakeholders, engineers, clinicians, researchers) while
contemplating already defined standards. This taxonomy provides a framework with
bridging language for health professionals with ICT professionals, which is of utmost
importance to develop valuable systems targeting healthcare needs.

First, a health system challenge needs to be defined to design a DHS (i.e., the
problem to be addressed). Second, a digital health intervention is designed to
address that health system challenge. Third, a system category or type is assigned to
the necessary DHS delivering such intervention. Figure 2.1 shows the linkage for
the three elements. Finally, a detailed classification can be found for each element
in Appendix A.

Taxonomies like the WHO/RHR/18.06 advocate for the inclusion of users in the
design and development of mHealth systems. This co-design strategy aims to
avoid the pitfalls resulting from a lack of communication and integration among
stakeholders.

Fig. 2.1.: Linkages across Health System Challenges, Digital Health Interventions, and
System Categories (adapted from WHO/RHR/18.06 (World Health Organization,
2018)) .
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2.1.2 Decision Support Systems

A decision support system (DSS) is a type of recommender system that facilitate the
decision-making process in an organization by presenting helpful information from
a combination of raw or processed data (Aggarwal, 2016). DSSs inform a user or
an expert to make decisions, even suggesting a recommendation according to the
available data. For instance, a DSS may help a physician decide which drug is most
appropriate for a patient according to the patient’s history and a drug trial database.
A DSS may also be considered an implementation form of a knowledge management
system (Wiig, 1997) that facilitates organizational processes within a company or
workgroup. For instance, a DSS may help a paper company refill stock according to
information from the sales department and warehouse information.

DSSs are typically structured as knowledge-based systems relying on a knowledge
base and an inference engine (Figure 2.2). The knowledge base represents facts
about the world, which may be organized as a rule base or as an ontology. The
inference engine matches the available data with the knowledge base to trigger
the appropriate rules. This paradigm applied to health may support many different
applications, even allowing individual health recommendations for patients (Ertuğrul
& Elçi, 2019). In research, knowledge-based DSSs are also useful, allowing to
leverage domain knowledge while refining it (e.g., applying general rules to a
different cohort of patients, adding new observation variables that may relate to
the already known rules) (Karpatne et al., 2017). Moreover, a data-driven analysis
approach may work parallel to a knowledge-driven approach in these systems,
enabled by unsupervised or prediction methods (e.g., unsupervised machine learning
algorithms, time series prediction).

In order to leverage domain knowledge, most DSSs need sophisticated data process-
ing to transform the raw data into useful information. Recent works in the literature
address this issue, processing data through layered architectures until the generation
of recommendations —or support of decisions.

Mining Minds is an example of this combination of rich data processing to leverage
domain knowledge. Banos et al. (2016) developed the Mining Minds digital health
and wellness framework to provide personalized support leveraging the concepts of
context-awareness and knowledge-based reasoning with smartphones, wearables,
and the Internet of Things. Mining Minds presents a hierarchical multi-layer architec-
ture (Figure 2.3) to transform raw data from multimodal sources (e.g., smartphone
sensors, wearable ECG, external API). First, a data curation layer is responsible for
acquiring, curating, and persisting the data obtained in order to be processed for a
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Fig. 2.2.: Architecture of a knowledge-based decision support system.
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higher level of understanding. Second, the information curation layer represents the
core for the inference and modeling of the user context, translating the data from
the first layer into categories like physical activities, emotional states, locations, and
social patterns. Third, the knowledge curation layer enables the creation of health
and wellness knowledge using domain expert knowledge or engineered knowledge
through expert-driven or data-driven approaches. Finally, a service curation layer
provides service communication between layers, analytics, and rule-authoring tools
for the experts supervising an intervention conducted through Mining Minds.

Despite the flexibility and adaptability of Mining Minds to conduct health interven-
tions, the availability of this framework is closed to its developers in its research
facilities. Afzal et al. (2018) used Mining Minds (Banos et al., 2016) to generate
context-aware personalized recommendations in 40 contextually different scenarios
(e.g., home, sleeping, windy weather, and neutral emotion; restaurant, sleeping,
windy weather, sadness) tested in 50 participants. Ali et al. (2018) used Mining
Minds (Banos et al., 2016) with a knowledge-based reasoning and recommendation
framework to generate personalized recommendations to promote active lifestyles
and reduce sedentary behavior.

Mining Minds architecture participates from the mobile health paradigm to the
integration of multimodal mobile sources of data such as wearable and smart-
phone sensors. There are several mHealth frameworks and systems that leverage
the rich analysis of data with domain knowledge but also with machine learning
algorithms.
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Fig. 2.3.: Mining Minds architecture (Banos, Jaehun Bang, et al., 2015).

Once introduced the concept of DSS, in order to provide a better perspective of
its possibilities in mobile health, the following section presents a review of recent
mobile health frameworks, systems, and their health applications.

2.1.3 Mobile Health

Mobile health (mHealth) is the practice of medicine and public health supported
by mobile devices. mHealth is usually referred to as using mobile communication
devices (e.g., mobile phones, smartphones, tablets) and/or wearable devices (e.g.,
smartwatches, activity trackers) to assist health services or interventions. mHealth
applications include the use of mobile devices in collecting community and clinical
health data; the delivery or sharing of information with practitioners, patients, and
researchers; the real-time monitoring of patient’s health; the remote assistance and
provision of care; or the collaboration with health practitioners.

Mobile health has allowed a more objective and personalized approach to health,
and different definitions have been raised addressing this matter. For example, the
Quantified Self approach, by Swan (2009), aims to capture individuals’ contexts and
perceptions of their behaviors, health, and environments, practically in real-time.
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Another definition by Estrin (2014) is the small-data paradigm, which also focuses
on the individual, but, opposed to a so-called big-data approach, small-data proposes
to focus on individualizing treatments based on the specifics of a single subject. This
definition states that, although randomized control trials are our primary source
of truth (the so-called big-data approach), they also deny individuality in favor
of general domain knowledge. Therefore, shifting the mentality when applying
those rules to individuals is necessary. A combination of personal monitoring with
automatic data processing may provide improved individualization processes in
healthcare (Hekler et al., 2019).

Several mHealth frameworks and systems are addressing different multiple health
issues. Some of them even leverage —to some extent— these personalization
capabilities with intelligent adaptation of rules and mechanisms while providing
health support. These frameworks, systems, and applications are described in the
following subsections.

Mobile Health Frameworks

The broad applicability of an mHealth approach to different health conditions
encouraged researchers to develop and publish generic sensing mHealth frameworks.
These mHealth frameworks differ from the ad-hoc mHealth sensing applications in
their rich configuration capabilities, which enable the support of different conditions
or diseases —instead of a single one. A systematic review by Kumar, Jeuris, Bardram,
and Dragoni (2021) identified the existing mHealth frameworks up to 2018 and
which health studies, application areas, and stakeholders do they target.

This review found 37 frameworks in total (28 frameworks published in scientific
peer-reviewed literature, and 9 unpublished). Nevertheless, only 9 of them were
classified as end-to-end, i.e., capable of providing support for all aspects of run-
ning an mHealth study: data collection and storage, data processing, visualization,
participant recruitment, and monitoring study progress. Supplying all these func-
tionalities enables the integration of all stakeholders in an mHealth intervention.
The stakeholders are researchers, developers, and end-users.

The researcher —or study investigator— designs the mHealth study, deciding which
data to collect to answer a specific research question. They are typically domain
experts (e.g., physiotherapists) and inexperienced in software development. This
group requires support for setting up new studies, personalized interventions, fine-
tuning data sampling methods and frequencies, triggering surveys or questionnaires,
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requiring user consent, recruiting participants, and monitoring the progress of
ongoing studies.

The developer implements the mHealth application over a specific framework for
data collection and analysis. The use of an existing framework avoids implementing
everything from scratch. Developers expect the framework to provide secure, modu-
lar, and extensible application programming interfaces (APIs) for mobile phone and
server-side development.

End-users are the individuals (or patients) to whom the mHealth intervention is
targeted. End-users may expect the application to work seamlessly and not cause
troubles while using the mobile phone with other applications. Since they typically
use their personal phones, battery drain should be avoided.

Out of the 9 end-to-end selected frameworks, only 7 covered non-functional features
by ensuring extensibility, scalability, security, privacy, open, and documentation.
Finally, only 4 of them were selected for analysis since (AWARE (Ferreira, Kostakos,
& Dey, 2015), Beiwe (John Torous, Kiang, Lorme, & Onnela, 2016), Bridge (Sage
Bionetworks, 2019), and mCerebrum (Hossain et al., 2017)) were still maintained
and receiving updates.

Ferreira et al. (2015) developed AWARE as an Android-based open-source effort to
develop an extensible and reusable platform for capturing, inferring, and generating
context on mobile devices. AWARE provides a client-server framework that enables
the collection of unobtrusive passive sensor data from smartphones. AWARE follows
a modular approach with a client and a server side (Figure 2.4). First, the AWARE
client app (installed in the smartphone) enables sensor data acquisition and com-
munication with the server. Second, plugins can be added to the client to manage
different sensor acquisition processes. On the server side, data are stored while
providing an interface to manage the connected devices and the conduction of re-
search studies (e.g., enrolling participants, supervising data acquisition). AWARE has
been used in numerous studies, like monitoring symptom severity in cancer patients
during chemotherapy (Carissa A. Low et al., 2017) or monitoring the fluctuation of
affective states through experience sampling methods (Bailon et al., 2019).

John Torous et al. (2016) developed Beiwe, a research framework for transparent,
customizable, and reproducible biomedical research. Beiwe features a study portal,
smartphone app, database, and data modeling and analysis tools. Beiwe is supported
over an Android-based app, which provides a clean interface for passing validated
surveys such as the Patient Health Questionnaire 8 (PHQ-8), the General Anxiety
Disorder Questionnaire 7 (GAD-7), or the Pittsburg Sleep Quality Index (PSQI).
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Beiwe also supports experience sampling methods and the unobtrusive monitoring of
patient context trough smartphone sensors. Beiwe also provides a rich dashboard for
data visualization and analysis, and it was used to monitor schizophrenia spectrum
illness (John Torous et al., 2016).

Sage Bionetworks (Seattle – Washington, USA) developed Bridge (Sage Bionetworks,
2019), a research platform to support Android or iOS smartphone-based mHealth
interventions. Bridge’s architecture revolves around six key components: Bridge
services, iOS and Research Kit software development kits (SDKs), Android SDKs, Java
REST Client, Bridge Study Manager, and Synapse. Bridge services are a set of REST-
based web services that allow mobile apps to receive study configuration like surveys
or task schedules, besides managing participant registration and consent while
securely receiving participant data. The SDKs for iOS and Android provide open
source libraries for building mHealth apps for Android- and iOS-based smartphones.
The Java REST Client allows for integration with the Bridge server. The Bridge study
manager presents a web interface for managing and monitoring the mHealth study.
Finally, Synapse allows data scientists to carry out, track and communicate their
research in real time.

Hossain et al. (2017) developed mCerebrum, an open-source mobile sensing soft-
ware platform for developing and validating digital biomarkers in interventions.
mCerebrum supports high-rate data collections from Android-based smartphone
sensors with real-time data quality assessment. mCerebrum features a scalable
storage architecture to ensure quick response despite fast-growing data volumes, a

Fig. 2.4.: AWARE architecture (Ferreira, Kostakos, & Dey, 2015) .
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micro-batching efficient sharing of data to enable real-time computation of multiple
biomarkers without saturating CPU or memory, and a reconfigurable scheduler to
manage CPU-and-memory-load- and context-aware prompts to participants. The
evaluation of mCerebrum against other platforms shows that the design of mCere-
brum supports higher data rates, storage throughput, and lower CPU usage than
other platforms like AWARE (Ferreira et al., 2015).

Outside the systematic review by Kumar et al. (2021), other mHealth frameworks
were published later than when the review was conducted, like CAMS (Bardram,
2020). Bardram (2020) developed the CARP mobile sensing framework (CAMS) as
a cross-platform, reactive programming framework for digital phenotyping. CAMS
aims to provide unobtrusive monitoring of sensor data from smartphones in mHealth
interventions. CAMS ensures extensibility, maintainability, and adaptability, besides
supporting external wearable sensors such as Bluetooth ECG monitors. The design
of CAMS revolves around the concepts of reactive application programming inter-
faces (APIs) in order to allow non-blocking sensing and data processing through
stream-based programming. CAMS was compared against platforms like AWARE
(Ferreira et al., 2015) and mCerebrum (Hossain et al., 2017), outperforming them
in battery consumption. Since its mobile app client is based on Flutter (Google LLC,
Ireland), CARP is the only available (and active) cross-platform enabling mHealth
interventions simultaneously in Android and iOS devices. CAMS has been used to
develop MUBS 1 to support behavioral activation as part of treatment for depression
and to develop mCardia 2 for monitoring cardiovascular diseases.

Mobile Health Systems and Applications

An mHealth intervention involves the use of mobile technologies from the patient
and/or the clinical experts. In order to make an mHealth intervention successful,
it is essential to meet patients’ and experts’ needs, provide technical support, and
engage the users in the development and implementation of the tools from the
beginning (Marcolino et al., 2018). Several mHealth systems in the literature address
specific health issues and conditions with ad-hoc implementations, presented in the
following.

Burns et al. (2011) developed the mobile app Mobilyze! for a successful interven-
tion with patients with major depressive disorders. Mobilyze! enabled ecological

1Available in Google Play: https://play.google.com/store/apps/details?id=com.cachet.mubs01
2Available in Google Play: https://play.google.com/store/apps/details?id=com.cachet.reafelapp
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momentary intervention and context monitoring of patients’ mood, emotions, cogni-
tive/motivational states, activities, environmental context, and social context based
on at least 38 concurrent phone sensor values (e.g., global positioning system, ambi-
ent light, recent calls). A multilevel architecture enabled processing context data to
feed a machine learning model enabling a behavioral activation intervention.

Cinaz, Arnrich, La Marca, and Tröster (2013) used an ECG recorder to monitor in-
creased workload via analysis of HRV. Machine learning models (linear discriminant
analysis, k-nearest neighbors, and support vector machines) classified the workload
LEVEL during office work for seven subjects. Sympathetic nervous system activity
was associated with increased workloads through HRV parameters like RMSSD, HF,
and LF/HF ratio (HRV parameters will be detailed in subsection 2.3.1).

Banos, Moral-Munoz, et al. (2015) developed the mobile app mDurance to support
trunk endurance assessment. mDurance used wearable inertial sensors to track
patient posture and electromyography to measure the electrical activity produced by
trunk muscles. This information facilitated the expert’s assessment routine, reducing
the impact of human errors.

Alharthi, Alharthi, Guthier, and El Saddik (2019) developed a mobile-based context-
aware acute stress prediction system (CASP) to predict a user’s stress status based
on their current contextual data. CASP leveraged ECG signals, smartphone sensors,
and machine learning models to identify the stress status

Mehrotra, Tsapeli, Hendley, and Musolesi (2017) developed MyTraces to investigate
causality between users’ emotional states and mobile phone interaction. MyTraces
collected information related to phone interaction such as notifications, phone usage,
application usage, and communication.

Castro, Favela, Quintana, and Perez (2015) developed InCense to assess functional
status in older adults using mobile phones. InCense leveraged smartphone sensors
(accelerometer, Wi-Fi, GPS) to gather behavioral data. They detected activity types
(sedentary, light, moderate, and high) and time in each type to monitor habits and
symptoms related to frailty and decreased functional status.

Freigoun et al. (2017) developed the mobile app Just Walk to promote physical
activity in sedentary, overweight adults (Freigoun et al., 2017; Phatak et al., 2018).
Just Walk was designed on the basis of system identification and control engineer-
ing principles, featuring the use of multisine signals as pseudo-random inputs for
providing daily step goals and reward targets. The maximum-step goal was selected
as a factor of the initial baseline level of physical activity.
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Specifically for cancer, several mHealth approaches successfully targeted the promo-
tion of healthy habits, physical activity, and exercise, present in different reviews
(Dorri et al., 2020; Schaffer et al., 2019; Gomersall et al., 2019). However, most of
these applications limit their mHealth approach to personalized remote communica-
tion (e.g., in-app messages, SMS) and rarely leverage sensors or activity trackers
beyond improving patients’ self-management. This limitation is tied to the tiny
amount of research addressing how digital biomarkers (or digital phenotyping) may
work for cancer care (Carissa A. Low, 2020; Fonseka & Woo, 2021). Nevertheless,
we can find some examples in the literature.

Carissa A. Low et al. (2017) used AWARE (Ferreira et al., 2015) to develop a smart-
phone app to monitor severity symptoms during chemotherapy through context data
in gastrointestinal cancer patients (Figure 2.5). They leveraged smartphone sensors
and a Fitbit activity tracker to extract features reflecting mobility, activity, sleep,
phone usage (e.g., duration of interaction with phone and apps), and communica-
tion (e.g., number of incoming and outgoing calls and messages). They successfully
predicted symptom severity using machine learning models, namely random forests,
with different combinations of the features extracted. Machine learning models
allowed to build population (88.1% accuracy) and individual models (range 78.1%
to 100% accuracy) and measure the importance of each biomarker monitored at
predicting symptom severity.

Chung et al. (2020) used the smartphone app WalkON to promote exercise and
reduce stress in breast cancer survivors. They monitored physical activity with
daily steps measured with the smartphone and stress with the self-reported distress
thermometer questionnaire. The WalkON app allowed for a community-based
approach to boost patients’ engagement in physical activity. In this community-based
approach, all participants shared their step count with other patients.

Carissa A. Low et al. (2021) leveraged Fitbit and smartphone sensor data to esti-
mate daily symptom burden before and after pancreatic surgery in cancer patients
requiring it. They developed their app using AWARE (Ferreira et al., 2015) to collect
sensor data along with self-reported ratings of daily symptoms. Day-level behavioral
features reflecting mobility and activity patterns, sleep, screen time, heart rate, and
communication were used to classify severity symptom levels for the next day. The
machine learning models used (light gradient boosting machine) predicted high
severity with 73.5% accuracy. The most relevant digital biomarkers enabling this
prediction were related to physical activity bouts, sleep, heart rate, and location.
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Fig. 2.5.: Data collection and analysis for the estimation of symptom severity in patients
with cancer (Carissa A. Low et al., 2017).

2.1.4 Commercial Activity Trackers

An activity tracker is an electronic wearable device for monitoring fitness-related
metrics like step count, distance walked or run, calorie consumption, and, in some
cases, heart rate. Commercial activity trackers (CATs) are an affordable, off-the-shelf
solution that combines rich monitoring capabilities with ergonomics, ease of use,
and enhanced aesthetics. As opposed to research-grade activity trackers, commercial
activity trackers do not ensure the validity of the measures gathered, and their use
for medical purposes is not supported by the manufacturer. Figure 2.6 shows two
examples of commercial and research-grade activity trackers.

Activity trackers have been used in clinical activity trials for decades. Research-grade
activity trackers like ActiGraph GT3X (ActiGraph, LLC), OMRON HJ-72OITC (OM-
RON Corporation), or ActivPAL (PAL Technologies Ltd.), include 3-axis accelerome-
ters, gyroscopes, and magnetometers, to accurately monitor physical activity levels,
gait, and even postures. These hip-worn devices are the gold standard for activity
monitoring; however, their high cost and unattractiveness for patients often limited
its use to clinical trials driven by resourceful groups. Moreover, their traditional
lack of real-time syncing capabilities hampered leveraging the data for continuous
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(a) Fitbit Charge 5. (b) Actigraph GT9X Link.

Fig. 2.6.: Examples of commercial (a) and research-grade (b) activity trackers.

adaptive interventions. Although nowadays some research-grade activity monitors
include real-time syncing, like the wearable wrist-worn Empatica (Empatica Inc.,
Boston, USA), their high cost still limits its use in research.

The availability of CATs and its growing presence in the population gathered inter-
est from the research community to improve digital health interventions (Wright,
Collier, Brown, & Sandberg, 2017) since CATs may allow for continuous, scal-
able, unobtrusive, and ecologically valid data collection. CATs enable real-time
data syncing through smartphone connections, allowing real-time monitoring and
decision-making. The willingness of users to share CAT data with providers, family,
and friends (Rising, Gaysynsky, Blake, Jensen, & Oh, 2021) ease its inclusion in
digital health interventions and research. Moreover, using CATs as either the primary
component of an intervention or as part of a broader physical activity intervention
has the potential to increase physical activity participation (Brickwood et al., 2019).
However, most of these commercial devices reached the market without health
certificates or clinical validations, and the algorithms filtering and processing the
data are private and often hidden to the public. These constraints pose reliability
issues, requiring validation studies before using CATs in clinical settings (Fuller et al.,
2020).

Several brands reached the market in the last decade —although not all survived
the competition. Apple Inc, Fitbit, Garmin, Jawbone, Mio, Misfit, Polar, Samsung,
UnderArmour, Withings, and Xiaomi were the most used brands in clinical trials since
2013, according to a recent systematic review (Fuller et al., 2020). Validity varied
by study type (controlled or free-living), measurement type (step count, energy
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expenditure, heart rate), brand, and device. Fitbit was by far the most studied brand,
offering a cost-effective solution for valid step count (Fuller et al., 2020). Due to its
popularity among users and researchers, the following subsections will review the
validity of Fitbit devices by measure, besides describing its use in cancer care.

Fitbit Validity by Measure

Fitbit step count. Step count is a simple yet reliable measure of overall physical
activity levels (Migueles et al., 2021). The aforementioned systematic review found
Fitbit devices to accurately measure step count in both laboratory and free-living
settings, with a slight general underestimation close to -3% (Fuller et al., 2020).
This good overall accuracy in measuring step count matches previous research (Xie
et al., 2018; Straiton et al., 2018).

Another work shows how the accuracy of CATs to measure step count may be tied
to the overall mobility capacities of the patient (Wong, Mentis, & Kuber, 2018).
This limitation should be considered when monitoring a population with conditions
that may compromise overall mobility (Ummels, Beekman, Theunissen, Braun, &
Beurskens, 2018).

Energy expenditure. Although there are reasonable mean and median accuracy
values for energy expenditure, Fitbit devices provide inaccurate measures with the
gold standard (Fuller et al., 2020). Fitbit underestimated energy expenditure 48.4%
of the time and overestimated 39.5% of the time (Fuller et al., 2020). Machine
learning may bring a solution to correct the Fitbit misclassification by building
classification models with energy expenditure labels from a gold standard like the
Actigraph GT3X (Winfree & Dominick, 2018). However, such a solution would
require the prior building of a classification model with data from patients with the
same characteristics as patients in which the final digital health interventions would
take place.

The aggregation of moderate and vigorous intensity levels as moderate-to-vigorous
physical activity (MVPA) time, often used in physical activity guidelines, poses as a
solution to the inaccuracies of Fitbit when classifying the intensity of physical activity.
There is agreement on using MVPA measures as sufficiently reliable indicators (Reid
et al., 2017; Redenius, Kim, & Byun, 2019) to, for instance, promote PA goals in
breast cancer patients (Hartman, Nelson, Myers, et al., 2018).

Heart rate. Fitbit showed an acceptable measurement error for heart rate within
the ±3% range in most of the studies included in the systematic review (Fuller et al.,
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2020). This validity has even been tested in children undergoing surgery (Pelizzo
et al., 2018). Nevertheless, Fitbit may also underestimate heart rate depending on
activity intensity, presumably due to movement and presence of artifacts (Thiebaud
et al., 2018; Fuller et al., 2020). Due to the HR measuring changes among Fitbit
devices, it is essential to report a sample description including wearable details such
as device, firmware, and sensor type (Nelson et al., 2020).

Sleep. Fitbit uses HR and movement to detect sleep and classify its stages. Fitbit
sleep measurements are reasonably satisfactory for general purposes, especially
to measure the onset and offset of sleep, total sleep time, sleep quality, and sleep
efficiency (Haghayegh, Khoshnevis, Smolensky, Diller, & Castriotta, 2019; Liang &
Martell, 2018). However, measuring sleep structure (light, deep, and REM sleep)
still presents moderate results and requires further research to assess its validity
(Haghayegh et al., 2019).

Fitbit Use in Cancer Care

Although the validity of Fitbit measures is limited, various researchers have tried
to leverage Fitbit devices differently. The most common objectives were to monitor
physical activity levels, promote physical activity, and reduce sedentary behavior.
Moreover, using Fitbit activity trackers may increase adherence and commitment in
trial participation, hence beneficial for monitoring purposes; however, it may not be
enough to promote physical activity levels.

Nyrop et al. (2018) used Fitbit Zip to monitor 127 patients with breast cancer who
were instructed to walk at least 150 min/week during chemotherapy for 6 to 12
weeks. They collected analyzable data for 79% of their patients; however, only 24%
attained the objective.

Hartman, Nelson, and Weiner (2018) used Fitbit One along with ActiGraph GT3X+
accelerometer in 42 patients with breast cancer and, although greater adherence to
Fitbit was associated with greater increases in ActiGraph-measured MVPA, there was
no general increase in physical activity for the patients adhered to wearing the Fitbit.
The mean adherence was 88.13% of valid days over 12 weeks of monitoring.

Dreher et al. (2019) used Fitbit devices to promote physical activity levels in patients
with breast cancer during the entire chemotherapy (6 to 9 months). Adherence was
very low, with a mean number of valid days across the 9-month study period of
44.5%; besides, sustained adherence was only present in patients already used to

2.1 Digital Health Systems 27



wearable activity trackers. The long monitoring periods may have also damaged
adherence.

Within the context of an exercise rehabilitation program, the role of Fitbit devices
may be different. Gell et al. (2020) completed a 12-week exercise intervention in 19
female cancer survivors involving the use of tailored messages, Fitbit, and scheduled
health coach interventions to support independent physical activity maintenance.
Patients reported high acceptance and satisfaction with the remote monitoring
of their physical activity, and communication, hence attributing physical activity
maintenance to the accountability enabled by technology despite being anonymous
and remote.

Few works leveraged Fitbit data as digital biomarkers (Carissa A. Low, 2020).
Carissa A. Low et al. (2017) used Fitbit data (along with smartphone sensor data) to
predict symptom burden in 14 patients undergoing chemotherapy for gastrointestinal
cancer during 4 weeks. Several day-level features were extracted from Fitbit data
reflecting behavior, physical activity, and sleep. A machine learning model (random
forests) based only on Fitbit features obtained 77.6% accuracy when predicting
symptom severity. Carissa A. Low et al. (2021) later used a similar approach with 44
cancer patients requiring pancreatic surgery. A machine learning model (LightGBM)
predicted high severity symptom rates with 73.5% accuracy. They found that features
reflecting activity patterns (e.g., number, total duration, and maximum duration of
active bouts) were very relevant to that model and that they could be extracted from
Fitbit data. Carissa A Low et al. (2018) also used Fitbit to predict the risk of 30-day
ad 60-day readmission after cancer surgery. The possibilities posed by Fitbit data in
providing relevant behavioral biomarkers have recently made it a primary source in
data analysis libraries (Vega et al., 2021).

2.2 Physical Activity and Exercise in Breast Cancer
Care

The overall benefits of physical activity and exercise are widely known; however,
there are subtle differences between them. Physical activity (PA) consists of any
movement produced by skeletal muscles involving energy expenditure, whereas ex-
ercise is a subset of PA that consists of structured and repetitive planned movements
of activities. The controlled, systematic nature of exercise prescriptions allows for
a therapeutic aim when targeting populations with chronic conditions or specific
needs.
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Psychiatric, neurological, metabolic, cardiovascular, and pulmonary diseases, along
with musculoskeletal disorders and cancers, benefit from the prescription of exercise
in their treatment (Pedersen & Saltin, 2015). In cancer care, physical activity and
exercise pose a means to address the short- and long-term side effects related to
cancer and its treatment (Ballard-Barbash et al., 2012; Cormie et al., 2017; Fong
et al., 2012; Garcia & Thomson, 2014; Bluethmann, Vernon, Gabriel, Murphy,
& Bartholomew, 2015; Pollán et al., 2020), and are generally recommended for
prevention and treatment purposes (American Cancer Society, 2016; World Health
Organization, 2021; Patel et al., 2019; McTiernan et al., 2019). Moreover, the
benefits of exercise are not exclusive of the moment of cancer treatment. Exercising
is beneficial before, during, and after cancer treatment, across all cancer types, and
for a variety of cancer-related impairments (Stout, Baima, Swisher, Winters-Stone,
& Welsh, 2017). Particularly for breast cancer care, exercise plans typically involve
cardio and muscle strengthening. The prescribed exercises need to consider the
impact of mastectomy (i.e., the surgical removal of one or both breasts), hence the
design of specific exercises like Codman’s pendulum to prevent postoperative edema
of the upper limb.

Breast cancer treatment often combines surgery with radiotherapy and/or systemic
therapy such as hormonal therapy, targeted therapy, or chemotherapy (Moo, Sanford,
Dang, & Morrow, 2018). Unfortunately, these treatments involve high levels of toxic-
ity and numerous short and long-term side effects for the patient, such as fatigue,
heart problems, infertility, or cancer recurrence (Brinton et al., 2017). The underly-
ing mechanisms are not yet fully understood, but accumulated evidence includes
cardiotoxicity, chronic inflammation, autonomic imbalance, HPA-axis dysfunction,
and/or mitochondrial damage (LaVoy, Fagundes, & Dantzer, 2016). Fortunately,
exercise programs may influence such mechanisms towards reducing the burden of
cancer treatment (Ginzac et al., 2019; Scott, Nilsen, Gupta, & Jones, 2018; Dias Reis
et al., 2017; LaVoy et al., 2016). For breast cancer care, the evidence of physical
activity and exercise interventions reducing the risk of death and recurrence is clear
(Schmid & Leitzmann, 2014; Lahart et al., 2015), besides being beneficial for fatigue,
depression, and sleep disturbance (Tomlinson, Diorio, Beyene, & Sung, 2014).

Exercise interventions before, during, and after breast cancer therapy are feasible
and effective (K. Lee, 2021); however, more exercise is not always better. First of all,
overtraining may provide drug-like effects that cause significant perturbation to the
subject homeostasis (i.e., an alteration of the relatively stable state of equilibrium of
the organism, maintained by self-regulating processes) (Hawley, Hargreaves, Joyner,
& Zierath, 2014). Hence, the exercise needs to be adjusted (dosed) to the target
patient population, so it is safe and tolerable (Jones, 2015), besides considering its
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correct adoption and maintenance (Garcia & Thomson, 2014). Moreover, the rela-
tionship between exercise and exercise-related benefits is not directly proportional;
there is often a saturation point in which the benefits do not increase with more
exercise. For instance, a review with meta-analysis (Pedisic et al., 2020) found that
running participation was associated with a 23% reduced risk of cancer mortality.
This significant reduction in mortality can be expected for any dose of running, even
just once a week or 50 minutes a week, but there was no evidence for more reduced
risk with higher amounts of running.

The possibilities of the mobile health (mHealth) and the Internet of Things (IoT)
paradigms applied to cancer care motivated researchers to seek for more person-
alized intervention approaches. In fact, to date, mHealth exercise interventions
with digital activity trackers are feasible and effective in patients with breast cancer
(Schaffer et al., 2019; Dorri et al., 2020). Nevertheless, the proposed personalization
mechanisms found in the literature still present several limitations.

Gell, Grover, Humble, Sexton, and Dittus (2017) aimed to promote physical activity
with personalized text messages and Fitbit self-monitoring of physical activity levels
in breast cancer survivors. Text messages were tailored with information from the
Fitbit activity tracker, written in an informative voice, with inspirational content,
or as a voice of authority, depending on the patient’s preferences. The integration
of Fitbit information within the messages was performed manually by the clinical
experts, who checked that the physical activity records matched the exercise recom-
mendations for the population. This intervention successfully promoted physical
activity to the recommended levels; however, the personalization did not really
target the physical activity levels adequate for that person —they were still just
following general recommendations. The only personalized method was text-based
communication, which ultimately activated the behavior-change mechanisms of the
patients. Hartman, Nelson, and Weiner (2018) delivered a similar intervention and
obtained similar results, but replacing the text messages with emails and scheduled
telephone calls.

The importance of tailored communication with the patient is highlighted when the
results of the studies above (Gell et al., 2017; Hartman, Nelson, & Weiner, 2018) are
compared to others that exclusively relied on self-monitoring with wearable activity
trackers. In these other studies (Dreher et al., 2019; Nyrop et al., 2018; Mendoza
et al., 2017), just providing the patient with a wearable activity tracker was not
associated with increased physical activity levels during cancer treatment.

Moreover, Gomersall et al. (2019) conducted an exercise rehabilitation program
with 40 cancer patients and survivors. Although patients did not wear a commercial
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activity tracker for self-monitoring, the results showed that, compared to standard
procedure, delivering personalized text messages during the trial was associated
with higher physical activity levels and less sitting time. Other works prefer to rely on
more sophisticated behavior change methods to boost physical activity levels, such
as social cognitive theory (Duan et al., 2021; Chung et al., 2020; Maxwell-Smith
et al., 2018), even combining it with systems engineering (Phatak et al., 2018).

The works mentioned above suggest a small to irrelevant effect of just giving a
wearable activity tracker to a patient for physical activity or exercise promotion.
The work of Uhm et al. (2017) aligns with this statement. They compared a self-
monitored exercise intervention (using wearable activity trackers) against a standard
scheduled intervention in patients with breast cancer (no activity trackers). The
self-monitoring arm used a smartphone and a pedometer to provide information
and monitor the prescribed exercises, aiming to increase participation; however,
there were no significant differences in physical activity levels, physical function,
and quality of life between both arms of the study.

The mechanisms for personalizing exercise and physical activity interventions in
patients with breast cancer are dominated by behavior change techniques in which
tailored communication is essential. Although such methods may introduce objective
monitoring of physical activity levels, its sole presence when promoting exercise or
physical activity levels may not be significant. Moreover, despite the heterogeneity
in their designs, most of the studies mentioned adhered to the national exercise
guidelines for patients with cancer (Campbell et al., 2019). The application of the
same guidelines in all studies results in the delivery of the same exercise prescription
for all adults, ignoring the adequate exercise needs of each patient, hence increasing
the risk for wrong training adaptation due to overtraining or undertraining. The
following section will introduce how a sports science approach may enable adaptive
dosing during exercise intervention in patients with breast cancer.

2.3 Exercise Load Monitoring for Breast Cancer Care

Exercise guidelines for patients with breast cancer and survivors (Campbell et al.,
2019) prescribe aerobic exercise alone or combined with resistance training at
moderate intensity (i.e., 50% to 70% of a pre-established physiological parameter,
such as age-predicted maximum heart rate). The exercise prescription must be
distributed in two to five sessions per week, with 10 to 60 minutes per session,
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aiming at achieving 150 minutes of moderate-intensity exercise or 75 minutes of
vigorous-intensity exercise a week.

Such exercise prescription ends up as a one-size-fits-all solution, making all patients
receive a similar frequency, intensity, time, and type, of exercise intervention, besides
setting aside factors like age, histology, or oncogenic somatic genotype (Jones et al.,
2018). This application of general exercise guidelines to the individual characteristics
of patients may result in their undertraining or overtraining during the intervention
(Jones et al., 2018; Carter et al., 2021). To improve the exercise dosing, it is of
utmost importance to consider the individual physiologic status during intervention
—and not only in the beginning to gather baseline measures.

Exercise load monitoring poses a solution to tailor exercise programs for patients
with cancer (Jones et al., 2018). Exercise load (or training load) monitoring is the
description of the amount of exercise done by a patient. A baseline assessment of a
patient’s physiologic status may enable a first adaptation to the exercise programs.
However, continuous follow-up, with a daily assessment of the training needs or
capabilities of the patient, may enable undulating (i.e., adaptive) exercise programs
(Carter et al., 2021).

Exercise load measures are typically categorized as internal or external (Bourdon
et al., 2017), depending on whether such measures refer to health aspects occurring
internally or externally. External training load (ETL) gathers objective, comparable
measures of the exercise done such as time and distance run, number of sprints, or
number of jumps (Bourdon et al., 2017). ETL measures are often recorded leveraging
GPS, accelerometers, and gyroscopes embedded in activity trackers. Such measures
are helpful to compare the amount of exercise performed by different trainees3.
However, ETL does not consider the internal processes of training assimilation
(Wallace, Slattery, & Coutts, 2009). Internal training load (ITL) is the individual and
relative physiological and psychological stress felt by the trainees due to training
and the rest of the demands in their daily lives (Bourdon et al., 2017; Halson, 2014).
ITL enables monitoring training adaptation by looking into physiological biomarkers
(e.g., average heart rate, heart rate variability, or saliva tests) and/or perceived
self-reported status (e.g., rating of perceived exertion after training; or rating of
perceived fatigue, muscle soreness, stress and sleep satisfaction before training)
(Miguel et al., 2021).

3The literature addressing exercise load monitoring often refers to athletes or healthy people, and
rarely to patients under chronic conditions. In order to adapt the nomenclature to patients without
misleading the reader, the text will refer to trainees when discussing about methods tested in
healthy people that may be applied to patients with cancer and survivors.
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Fig. 2.7.: ECG trace for HRV extraction. HRV is composed successive R-R intervals, where
R is the peak of the QRS complex found in the ECG wave (source: http://www.
markwk.com/hrv-for-beginners.html).

The study of training principles and variations of ITL and ETL is mainly based on
research with professional athletes (Bourdon et al., 2017; Wallace et al., 2009;
Halson, 2014; Miguel et al., 2021). Little attention has been given to patients with
cancer in this matter, but there is evidence on how exercise has shown improvements
in HRV parameters linked to cardiac autonomic balance (Niederer et al., 2012;
Dias Reis et al., 2017). Moreover, the lack of exercise is linked to worsened HRV
parameters for patients with breast cancer (Caro-Moran et al., 2016), and changes
in HRV have been used to determine whether the body is responding to physical
exercise (i.e., as a measure in ITL) (Borresen & Lambert, 2008; Kaikkonen, 2015).

Short-term (5 min) measures of resting HRV aimed at capturing cardiac parasym-
pathetic activity (Buchheit, 2014) is one of the most useful monitoring variables
for training adaptation. However, measures of HR and HRV may not report on all
aspects of wellness, fatigue, and performance, so their use is recommended with
training logs and wellness questionnaires to monitor training status fully (Buch-
heit, 2014). The following subsections will extend the information on HRV and
self-reported wellness for ITL monitoring.

2.3.1 Heart Rate Variability

Heart rate variability (HRV) is the measure of variations in time intervals between
consecutive heartbeats. These intervals are measured as R-R intervals, i.e., the time
between R peaks in ECG waves (Figure 2.7). HRV is controlled by the autonomic
nervous system (ANS) (Shaffer & Ginsberg, 2017). The ANS is the main homeostatic
regulator of our body, controlling physiologic tasks like heart rate, blood pressure,
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and breathing. The ANS is divided into two different components: the sympathetic
and parasympathetic nervous systems (Simó, Navarro, Yuste, & Bruna, 2018).

The sympathetic nervous system prepares the body to fight or run from danger
(Simó et al., 2018). When sympathetic activity is dominant, blood is shunted away
from the internal organs and sent into the muscles and limbs of the body (e.g.,
arms, legs) to enable quick action. Sympathetic activity involves increased use of
nutrients and hormones, as well as greater tissue destruction, thus resulting in a
catabolic effect on the body (i.e., a breakdown), which requires subsequent recovery.
Sympathetic activity is dominant while exercising or working on something that
requires an increased delivery of blood to muscles, including stress.

The parasympathetic nervous system controls the digestion and elimination processes
(Simó et al., 2018). An increased parasympathetic activity provokes an anabolic
effect, i.e., the rebuilding and repair of the body. Parasympathetic activity also
stimulates immune function while sleeping at night.

Maintaining the balance between sympathetic and parasympathetic activity is es-
sential for the body’s health, especially for patients with cancer (Simó et al., 2018).
Since HRV reflects the status of both branches of the ANS, HRV is useful to assess the
balance of sympathetic and parasympathetic activity (Shaffer & Ginsberg, 2017).

Overview of HRV metrics

HRV measures are classified according to their duration as long-term (24 h), short-
term (5 min), or ultra-short-term (less than 5 min). There are several ways to
analyze HRV. Time-domain, frequency-domain, and non-linear features can be
extracted from HRV recordings; however, the availability of such features and their
interpretation vary according to the duration and measurement conditions (Shaffer
& Ginsberg, 2017). Since lying-down resting 5-min monitoring of HRV is one of the
most reliable measures of training adaptation (Buchheit, 2014), this overview of
HRV metrics focuses on features extracted in such conditions.

Time-domain features. Time-domain features of HRV measure the amount of
variability in RR intervals (see Table 2.1). These values may be expressed in original
units or as the natural logarithm (Ln) of original units to obtain a normal-like
distribution.

The standard deviation of the time interval between successive R-R intervals (SDNN)
is measured in ms. Both sympathetic activity and parasympathetic activity contribute
to SDNN. However, the primary source of variation in short-term resting conditions is
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Tab. 2.1.: HRV time-domain features.

Parameter Unit Description

SDNN ms Standard deviation of the time interval between successive
R-R intervals.

SDSD ms Standard deviation of differences between succesive R-R
intervals.

RMSSD ms Root mean square of the succesive differences of R-R inter-
vals.

NN50 au Number of successive R-R intervals differences greater than
50ms.

pNN50 % Percentage of successive R-R intervals differences greater
than 50ms.

NN20 au Number of successive R-R intervals differences greater than
20ms.

pNN20 % Percentage of successive R-R intervals differences greater
than 20ms.

Mean NN ms Mean of R-R intervals.
Median NN ms Median of R-R intervals.
Range NN ms Difference between maximum and minimum R-R intervals.
CVSD % Coefficient of variation of succesive differences (RMSSD

divided by Mean NN)
CVNN % Coefficient of variation of R-R intervals (SDNN divided by

Mean NN)
Mean HR bpm Mean HR.
Max HR bpm Maximum HR.
Min HR bpm Minimum HR.
SD HR bpm Standard deviation of HR.

parasympathetic activity, especially with slow-paced breathing (Shaffer & Ginsberg,
2017).

The standard deviation of differences between successive RR intervals (SDSD) is
measured in ms. Variations of SDSD are primarily mediated by parasympathetic
activity and present strong correlations with HF and RMSSD (Shaffer & Ginsberg,
2017).

The root mean square of successive differences of RR intervals (RMSSD) is measured
in ms. RMSSD is the primary time-domain measure to estimate parasympathetic
activity, preferred over the rest of the features due to its stability and low sensitivity
to breathing patterns across different measuring conditions (Shaffer, McCraty, &
Zerr, 2014). Moreover, the logarithm of the RMSSD (LnRMSSD) is the gold standard
to monitor training conditioning in professional athletes (Buchheit, 2014; Plews
et al., 2017).
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The number of successive RR-interval differences greater than 50 ms (NN50) and
its percentage (pNN50) are mediated by parasympathetic activity. pNN50 may be a
more reliable index than SDNN. The number of successive RR-interval differences
greater than 20 ms (NN20) and its percentage (pNN20) are also mediated by
parasympathetic activity (Shaffer & Ginsberg, 2017).

The mean (Mean NN), median (Median NN), and range (Range NN) of RR intervals
describe where are the variations of other HRV parameters placed, and they are
useful to compute other statistical parameters such as coefficient of variation and
measure the presence of parasympathetic plateau (Kiviniemi et al., 2004). The
coefficient of variation of the successive differences (CVSD) is the RMSSD divided
by Mean NN is measured as a percentage. The CVSD is valid to assess adequate
adaptations win training (Plews, Laursen, Stanley, Kilding, & Buchheit, 2013). The
coefficient of variation of RR intervals (CVNN) is the SDNN divided by Mean NN.
The CVNN is also helpful to measure training adaptations; however, the CVSD is
preferred (Shaffer & Ginsberg, 2017).

The mean, maximum, minimum, and standard deviation of HR are measured in
beats per minute. In resting short-term HR measurements, these variables represent
the overall conditioning of the body and may be treated as basal conditions in the
short term (Shaffer & Ginsberg, 2017). Changes in such parameters during training
interventions are slow, hence making them baseline variables rather than indicators
of ANS activity (Plews et al., 2013; Buchheit, 2014).

Frequency-domain features. Frequency-domain features of HRV estimate the dis-
tribution of absolute or relative power into four frequency bands (see Table 2.2).
Fast Fourier Transformation (FFT) or autoregressive (AR) modeling can be used to
separate HRV into the ultra-low frequency (ULF, ≤ 0.003 Hz), very-low frequency
(VLF, 0.003 – 0.04 Hz), low frequency (LF, 0.04 – 0.15 Hz), and high frequency (HF,
0.15 – 0.40 Hz) bands. Higher power in higher frequencies is normally associated
with parasympathetic activity, whereas higher power in lower frequencies with sym-
pathetic activity —although measurement conditions may alter this interpretation.

ULF (≤ 0.003 Hz) requires at least 24 h recordings to be analyzed, and there is
disagreement about the degree of contribution of parasympathetic and sympathetic
activity to this band (Shaffer & Ginsberg, 2017).

VLF (0.003 – 0.04 Hz) requires at least 5 min of recording. VLF power may be
fundamental to health. Low power on this band is associated with adverse outcomes
such as all-cause mortality and high inflammation. This band appears to be regulated
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Tab. 2.2.: HRV frequency-domain features.

Parameter Unit Description

TP ms² Total power of the spectral density.
ULF ms² Absolute power of the ultra low frequency band (≤ 0.003

Hz).
VLF ms² Absolute power of the very low frequency band (0.003 – 0.04

Hz).
LF ms² Absolute power of the low frequency band (0.04 – 0.15 Hz).
HF ms² Absolute power of the high frequency band (0.15 – 0.40 Hz).
LF/HF % Ratio of LF and HF power.
LF nu nu Normalized LF power (HF divided by the sum of LF and HF).
HF nu nu Normalized HF power (HF divided by the sum of LF and HF).

by the heart’s intrinsic nervous system and sympathetic activity (Shaffer & Ginsberg,
2017).

LF (0.04 – 0.15 Hz) requires at least 2 min of recording. LF power may be influenced
by parasympathetic and sympathetic activity. However, in resting conditions, LF
power mainly reflects baroreflex activity (Shaffer & Ginsberg, 2017). Its normalized
version (LF nu) divides LF by the sum of HF and LF.

HF (0.15 – 0.40 Hz) requires at least 1 min of recording. HF mainly reflects parasym-
pathetic activity. Lower HF power is correlated with stress and anxiety. Breathing
rates may influence HF, causing a misrepresentation of vagal tone; however, under
controlled conditions at stable breathing rates, the natural logarithm of HF (LnHF)
can be used to estimate vagal tone (Shaffer & Ginsberg, 2017). Its normalized
version (HF nu) divides LF by the sum of HF and LF.

The LF/HF ratio may estimate the ratio between sympathetic and parasympathetic ac-
tivity under resting lying-down conditions. A high LF/HF ratio indicates sympathetic
dominance (Shaffer & Ginsberg, 2017).

Total power (TP) is the sum of the energy in the four bands for 24h recordings and
VLC, LF, and HF for short-term recordings (Shaffer & Ginsberg, 2017).

Non-linear features. Non-linear features of HRV describe the unpredictability of
a time series (see Table 2.3). For RR analysis, a Poincaré plot is a graph of RR(n)
on the x-axis versus RR(n + 1) on the y-axis. In other words, the RR intervals plot
against the immediate following RR intervals. The purpose is to measure non-linear
estimations. All the dots are fitted into an ellipse, for which two parameters are
required: SD1 and SD2. SD1 is the standard deviation of the projection of the
Poincaré plot on the line perpendicular to the line of identity, SD2 is the standard
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Tab. 2.3.: HRV non-linear features.

Parameter Unit Description

SD1 ms Standard deviation of the projection of the Poincaré plot on
the line perpendicular to the line of identity.

SD2 ms Standard deviation of the projection of the Poincaré plot on
the line of identity.

SD2/SD1 % Ratio between SD2 and SD1

deviation of the projection of the Poincaré plot on the line of identity. SD1 is identical
to RMSSD, and SD2 correlates with LF. The ratio SD1/SD2 requires a minimum of 5
min recordings, measures unpredictability of the series, and may be used to assess
balance between sympathetic and parasympathetic activity (Shaffer & Ginsberg,
2017).

Monitoring Training Adaptation with HRV

Measures of HRV have enabled the monitoring of training adaptation in professional
athletes (Buchheit, 2014; Plews et al., 2013). First, autonomic balance (equilibrium
between sympathetic and parasympathetic nervous activity) is tightly bound to
the workload/recovery processes of training (Kluess, Wood, & Welsch, 2000); and
second, HRV is capable of reflecting changes in autonomic balance (Borresen &
Lambert, 2008; Buchheit, 2014; Kaikkonen, 2015).

Daily monitoring of resting (supine) short-term HRV is one of the most reliable
measures of parasympathetic activity, and it can track acute and chronic responses to
training adaptation (Buchheit, 2014; Plews et al., 2013). The analysis of LnRMSSD
4 variability is the gold standard for monitoring training adaptation, and several
reasons support it (Buchheit, 2014). First, LnRMSSD may be captured over minimal
periods of time —typically 5 min, but it can be reduced to 1 min measurements
under certain conditions (Forner-Llacer et al., 2020)— and remain comparable to
longer recordings. Second, the sensitivity of LnRMSSD to breathing patterns is very
low. Third, the day-to-day variations of time-domain variables (e.g., LnRMSSD,
SDNN) are likely lower than frequency-domain variables (e.g., LF/HF). Fourth,
the probability of finding outliers and ectopic beats is scarce in resting conditions,
yet RMSSD supports degree zero (mean), linear, polynomial, and cubic spline
interpolation without being affected (Giles & Draper, 2018).

4The analysis of LnRMSSD over RMSSD is preferred due to its similarity with a normal distribution.
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In order to adjust training loads, it is crucial to determine the smallest worthwhile
change (SWC) of a health or performance measure of the trainee (Will G Hopkins,
2004). The idea behind SWC is that we can measure a minimal change in relevant
variables to the athlete status or performance, like LnRMSSD, to assess the impact of
training in athletes (Buchheit, 2014). It is known that, during training adaptation,
LnRMSSD may decrease the day after high-intensity training. Thus, it is essential to
assess how significant changes are and the minimal change enabling the adjustment
of training intensities. However, since many factors may interfere with HRV, the
interpretation of such changes is not trivial (Buchheit, 2014). There are different
approaches in the literature describing different SWC calculations, all of them
aiming for within-trainee individual variations of the LnRMSSD. These approaches
are described in the following.

Determining SWCwith the coefficient of variation of the LnRMSSD. Some researchers
rely on the analysis of the coefficient of variation (CV) of the LnRMSSD (Plews et al.,
2013; Plews, Laursen, Kilding, & Buchheit, 2012; Buchheit, 2014). The coeffi-
cient of variation of a variable results from dividing the standard deviation of this
variable during a time window by the mean computed for the same time window.
Equation 2.1 describes CV for LnRMSSD.

CVLnRMSSD = LnRMSSDstd

LnRMSSDmean
(2.1)

Plews et al. (2013) and Plews et al. (2012) used a 7-day rolling window to compute
the CV of LnRMSSD and track if there was a change greater than 0.5 on it (Will G
Hopkins, 2004). In general, a lower CV of LnRMSSD indicates a reduced perturbation
in homeostasis, and therefore trainees showing increased CV may benefit from a
reduced training load.

Plews et al. (2014) studied how changes in CV of the LnRMSSD correlate with
performance changes for professional and recreational runners. They found that, for
recreational runners, a minimum of 5 measures in a week are required to establish
solid LnRMSSD baselines against performance, and, for professional triathletes, it is
a minimum of 3 measures.

Determining SWC with the standard deviation of the LnRMSSD. Other researchers
(Vesterinen et al., 2016; Javaloyes, Sarabia, Lamberts, & Moya-Ramon, 2019) and
commercial applications (HRV4Training) defined the SWC of the LnRMSSD for
a determined rolling time window (e.g., 30 days) as a factor (f) of its standard
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Fig. 2.8.: Example of individual response of HRV in a cyclist during training conditioning.
SWC range thresholds are calculated out of 4-weeks baseline monitoring. If
LnRMSSD7day−roll−avg fell outside SWC, training levels were readjusted (Javal-
oyes, Sarabia, Lamberts, & Moya-Ramon, 2019).

deviations (LnRMSSDrolling_std) around its mean (LnRMSSDrolling_mean). SWC
thresholds are defined in Equation 2.2.

SWC = LnRMSSDrolling_mean ± f · LnRMSSDrolling_std (2.2)

Then, a smaller window (e.g., 7 days) is used to compute the mean measure of
LnRMSSD. This averaged measure (LnRMSSD7days_rolling_mean) is checked to be
inside the SWC to ensure adequate training.

The idea behind this SWC method is to monitor changes of the LnRMSSD outside
the normality of its distribution in the previous days. Thus, if changes outside that
normality curve are found, it may imply a perturbation in homeostasis, and therefore
trainees would benefit from a reduced training load.

Vesterinen et al. (2016) used a 4-weeks rolling window of the RMSSD with a
factor f = 0.5 to compute SWC. Javaloyes et al. (2019) used the averaged 30-
days rolling window of the LnRMSSD with a factor f = 0.5 to compute SWC
(Figure 2.8). The scientifically validated smartphone app HRV4Training5 uses a
30-days rolling window and a factor f that may be adjusted to 0.5 or 1 depending
on user preferences.

5HRV4Training: https://www.hrv4training.com/blog/the-big-picture
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Role of other HRV parameters in training conditioning. The LF/HF was long consid-
ered a representation of sympathetic and parasympathetic activity balance; however,
this view has been highly criticized. Among the most critical aspects is the loose rela-
tionship between LF power and sympathetic nerve activation, besides the non-linear
and non-reciprocal relationship between sympathetic and parasympathetic activity
(Billman, 2013). These limitations of LF and LF/HF encouraged researchers to shift
their evaluations of parasympathetic activity to other parameters like the RMSSD
and HF alone (Laborde, Mosley, & Thayer, 2017).

Other parameters like the SDNN, VLF, LF, HF, LF/HF ratio, SD1, and SD2, although
they may be affected by respiration rate (Shaffer & Ginsberg, 2017), can be measured
with reliability under resting (lying) conditions with the same outlier and ectopic
beat treatment as RMSSD (Giles & Draper, 2018).

2.3.2 Self-Reported Wellness

HRV is useful to assess training needs; however, HRV measurements may be in-
fluenced by other factors such as physiological and genetic conditions, diseases,
lifestyle habits, and even external factors (Shaffer et al., 2014; Sammito & Böck-
elmann, 2016). The impact of stress (Kim, Cheon, Bai, Lee, & Koo, 2018), sleep
(Sajjadieh et al., 2020), and fatigue (Tran, Wijesuriya, Tarvainen, Karjalainen, &
Craig, 2009) are the modulating factors of HRV getting more attention from the
research community (Ltd., 2014; Plews et al., 2012).

High stress and elevated anxiety are frequently associated with low parasympathetic
activity. Decreases in HF and RMSSD or increases in LF may characterize this
association (Sajjadieh et al., 2020). High fatigue in healthy individuals may be
associated with increased sympathetic arousal (Tran et al., 2009), hence associating
it with higher LF/HF ratios. Similar results can be found in patients with breast
cancer, focusing on parameters like HF and SDNN (Y.-H. Lee et al., 2018). Poor sleep
quality is also associated with autonomic imbalance and worsened HRV parameters,
like reduced SDNN and RMSSD (Sajjadieh et al., 2020).

Evaluating these stress-inducing factors is essential to assess recovery. Recovery peri-
ods are regularly needed to replenish the body physiologically and psychologically,
but they only occur when physiological arousal diminishes, and parasympathetic
activity dominates over sympathetic activity (Ltd., 2014).

Self-reported perceived wellness questionnaires like the Hooper Index (Hooper &
Mackinnon, 1995) were defined to measure ITL by taking into account several factors
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like stress, fatigue, sleep quality, and muscle soreness. The Hooper Index has been
associated with HRV; however, it has not been found significant enough to enable
training intensity adjustment (Rabbani, Clemente, Kargarfard, & Chamari, 2019).
Self-perceived wellness may influence performance; however, due to its subjective
nature, it cannot provide enough reliability in assessing training needs. Therefore,
the use of perceived wellness may be used for complementing the interpretation of
physiological markers like the LnRMSSD (Buchheit, 2014).

The variables forming the Hooper Index have been studied separately in athletes.
Stress may be associated with overtraining and underperformance (Gleeson, 2002;
Aguilar Cordero et al., 2014). Sufficient sleep time and high sleep quality are
associated with adequate recovery from training sessions (Carney et al., 2012; Beck,
Schwartz, Towsley, Dudley, & Barsevick, 2004). High fatigue —which may be
present in patients with cancer during and/or after systemic treatment (Cantarero-
Villanueva et al., 2014)— is related to overtraining in athletes (Roldán-Jiménez,
Bennett, & Cuesta-Vargas, 2015).

Plews et al. (2012) monitored Hooper Index and HRV in elite triathletes during
training preparation for competition. They found that sleep quality presented
consistent decline during non-functional over-reaching (i.e., being worse than the
previous week), an already known relation with overtraining (Hooper & Mackinnon,
1995). Nevertheless, the rest of the factors monitored (stress, fatigue, muscle
soreness) could not identify the manifestation of non-functional over-reaching or
poor performance. Therefore, such subjective measures should be subject to the
experts’ interpretation and according to the physiological status reflected by HRV.

For patients with cancer, there are already successful experiences measuring the
factors composing the Hooper Index (fatigue, muscle soreness, stress, and sleep
quality) in remote environments with patients with cancer (Cantarero-Villanueva
et al., 2014; Lozano-Lozano et al., 2018; Børøsund et al., 2020; Børøsund et al.,
2018; Min et al., 2014), although they have been mainly related to factors like
quality of life.
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Preceding Note

This chapter presents an extension of the work published in the work described
above. Specifically, the following sections include a more detailed analysis of the
requirements (subsection 3.3.1), an improved description the ATOPE+ app imple-
mentation (section 3.3.3), an extension of usability results with patients with breast
cancer (section 3.4.1), and a discussion addressing these new results (section 3.5).
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3.1 Introduction

Therapeutic exercise (TE) poses a means to address the short- and long-term side ef-
fects of cancer and its treatment (Ballard-Barbash et al., 2012; Schmid & Leitzmann,
2014). TE and PA had consistently reported benefits to patients with cancer (Garcia
& Thomson, 2014) and they are generally recommended for both prevention and
treatment purposes (American Cancer Society, 2016; World Health Organization,
2021; Patel et al., 2019; McTiernan et al., 2019). Combined with medical and
surgical treatments, TE improves quality of life (Lahart et al., 2015; Cormie et al.,
2017; Peterson & Ligibel, 2018), reduces mortality risks, and reduces recurrence
(Pollán et al., 2020). This has driven the research community to seek after new
means to deliver TE interventions in remote environments by leveraging mobile
technologies (Schaffer et al., 2019). In fact, to date, mHealth PA interventions
are considered a feasible, cost-effective approach to improve overall activity levels,
body composition, quality of life and self-reported symptoms in patients with cancer
(Schaffer et al., 2019) and survivors (Roberts et al., 2017).

The personalization of TE interventions still presents a challenge. Personalizing (or
tailoring) a TE intervention consists in fitting it to the needs, characteristics or possi-
bilities of each patient with an adapted and evidence-based prescription following
for frequency, intensity, time, and type (Campbell et al., 2019). Personalization
strategies in remote TE interventions are often overlooked. Most of recent exercise
interventions in patients with cancer adhered to the national exercise guidelines
(Campbell et al., 2019), resulting in the the delivery of the same amount of ex-
ercise prescription for every patient. The common method to personalized a TE
intervention is relying on patients’ self-management (Campbell et al., 2019). This
gap opens up opportunities to introduce mobile technologies to monitor objective,
comparable, and quantifiable data about each patient’s health and performance
during the intervention process (Kelly & Shahrokni, 2016; Beg et al., 2017).

Internal training load (ITL) is the individual and relative physiological and psycho-
logical stress felt by the trainees due to training and the rest of the demands in
their daily lives (Bourdon et al., 2017; Halson, 2014). Measures of ITL are widely
used and established in sports to assess training conditioning (Miguel et al., 2021).
Therefore, ITL measure may enable the monitoring of patient’s training adaptation
during TE. This approach may provide a way to optimize exercise prescription
in an undulating manner (i.e., adaptive, flexible) to avoid the negative effects of
undertraining or overtraining (Jones et al., 2018).
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Heart rate variability (HRV) may provide reliable measures of ITL due to its rela-
tionship with reflecting autonomic balance (Shaffer & Ginsberg, 2017). Autonomic
balance (i.e., the balance of sympathetic and parasympathetic nervous activity) plays
a key role in the workload-recovery ratios of training (Kluess et al., 2000). This has
made HRV a reliable tool to estimate ITL and monitor training adaptation (Buchheit,
2014, 2014; Kaikkonen, 2015). Nevertheless, HRV measurements typically require
lab equipment like a Holter monitor to measure ECG (electrocardiography), hence
any personalization process often becomes tedious and expensive. Fortunately, the
remote monitoring of HRV has been consistently validated with different wearable
devices and types of participants (Caminal et al., 2018; Hernando, Roca, Sancho,
Alesanco, & Bailón, 2018; Perrotta, Jeklin, Hives, Meanwell, & Warburton, 2017),
thus enabling its use in TE interventions. There are studies using HRV in patients
with cancer (Dias Reis et al., 2017; Ha, Malhotra, Ries, O’Neal, & Fuster, 2019);
however, and to the best of our knowledge, these works used HRV as an impact
measure of a TE intervention (baseline and follow-up measures), and never as an
ITL measure to adjust training prescription.

Other factors modulating HRV need to be taken into account. The impact of stress
(Kim et al., 2018), sleep (Sajjadieh et al., 2020), and fatigue (Tran et al., 2009) are
the modulating factors of HRV getting more attention from the research community
(Ltd., 2014; Plews et al., 2012). There are already successful alternative previous
experiences when measuring self-perceived wellness in patients with cancer in
remote environments (Lozano-Lozano et al., 2018; Min et al., 2014; Børøsund et al.,
2018; Børøsund et al., 2020). Nonetheless, there are no systems integrating HRV
and self-reported measures adapted to patients with breast cancer.

In light of these opportunities, this chapter presents ATOPE+, an mHealth system
to support personalized therapeutic exercise interventions in patients with cancer.
ATOPE+ represents the technological drive of the ATOPE trial (ClinicalTrials.gov,
NCT03787966; Postigo-Martin et al., 2021) by enabling the remote assessment of
training load in patients with cancer and recommending optimal exercise dosage by
means of a knowledge-based system. With the automatic generation of personalized
training prescriptions, ATOPE+ is capable of providing undulating nonlinear exercise
prescription, minimizing the risk of undertraining and overtraining throughout the
TE intervention. To our knowledge, ATOPE+ is the first mHealth system combining
measures of exercise load (HRV), modulating factors of HRV (recovery, sleep, distress,
fatigue), and daily and training-specific physical activity levels (Fitbit activity tracker)
to personalize TE interventions in patients with cancer. The contributions of this
chapter are the following:
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1. A novel approach to the personalization of TE interventions in patients with
cancer using physiological variables related to training load in a remote con-
text.

2. A novel mHealth architecture, and a description of its implementation, sup-
porting the requirements of a TE intervention in patients with breast cancer,
consisting of:

• Heterogeneous physiological data collection: Bluetooth HRV for exercise
load, in-app questionnaires for the modulating factors of HRV, and the
Fitbit cloud for daily and in-training physical activity levels.

• A multilevel architecture to transform physiological data into useful
knowledge: data, information, and knowledge management layers.

• An intelligent knowledge-based system to support the automatic genera-
tion of personalized training prescriptions.

3. A usability evaluation of ATOPE+ with experts (physical therapists with TE
experience) and breast cancer patients using the Systems Usability Scale (SUS)
and a semi-structured interview with the experts.

Overall, ATOPE+ allows clinical experts to simplify knowledge management and the
decision-making process within the context of a TE intervention with the automatic
pairing of data and diagnosing rules assessing the individual exercise needs of
patients.

The rest of the chapter is structured as follows. Section 3.2 gathers related work to
mHealth systems in general and applied to cancer. Section 3.3 describes ATOPE+
in its entirety: requirements, architecture, implementation, and use. Usability
results with experts, patients with cancer, and survivors are presented in Section 3.4.
Section 3.5 discusses the findings system and usability results. Section 3.6 closes the
chapter with final conclusions and remarks.

3.2 Materials and Methods

3.2.1 Considerations for Design

The requirements of digital health systems are well-discussed in the literature,
ranging from pure technical aspects (Banos, Villalonga, et al., 2015; Banos et
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al., 2016) to security concerns (O’Connor, Rowan, Lynch, & Heavin, 2017), or
addressing what is necessary to deliver a successful intervention (Granja et al.,
2018). The requirements of ATOPE+ thrive on them, but more specifically on the
need to deliver personalized TE intervention in patients with breast cancer. The
definition of these requirements was conducted through several meetings among the
computer scientists, engineers and physical therapy professionals co-authoring the
work referred in the beginning of the chapter. The WHO (World Health Organization,
2018) taxonomy of digital health interventions (described in Section 2.1.1) helped
to ensure good communication among the different professionals involved in the
development of a ATOPE+ by stating the health types of system challenges, system
categories, and digital health interventions supported by ATOPE+. The European
General Data Protection Regulation (GDPR) is also included in the requirements
from design.

The mHealth systems and frameworks described in Section 2.1.3 inspired the design
choices and requirements for ATOPE+. Specifically, the multilevel architecture
described in works like Mining Minds (Banos et al., 2016) was considered to
leverage data transformations into useful knowledge. Moreover, the combination of
such architecture with an inference engine (e.g., a base of rules) was set as the basis
for supporting personalized recommendations.

The different frameworks found were analyzed in depth (Kumar et al., 2021); how-
ever, none of the frameworks available supported our most relevant requirements
fully. The first of these prior requirements was simplicity-from-design. Frameworks
like AWARE (Ferreira et al., 2015) integrate context-aware measures by leveraging
smartphone sensors. This feature would have introduced a significant overhead for
the main monitoring target of the system, ITL. ITL can be measured integrating HRV
and self-reported wellness (as described in Section 2.3), and these measures only
depend on wearable Bluetooth ECG device and in-app questionnaires. The second
prior requirement was enabling cross-platform deployment of the app in Android
and iOS. Technical limitations had to be close to zero when targeting a restricted
population such as patients with breast cancer. CAMS (Bardram, 2020) would have
been an ideal choice, since it provides flexibility on designing apps and enables
cross-platform; however, CAMS was not available at the time of developing ATOPE+.
For the previous reasons, ATOPE+ was developed from scratch using Flutter.

Flutter (Google LLC, Ireland) is a framework that enables the fast development of
natively compiled, cross-platform applications. Flutter ensures full native perfor-
mance on both iOS and Android operating systems since it compiles Flutter code
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into native ARM machine code using Dart’s compilers. Flutter has an extensive
community supporting different features through a plenty of packages1.

3.2.2 Usability Evaluation

Usability was evaluated using the Systems Usability Scale (SUS) (Brooke, 1996) and
conducting a semi-structured interview (Adams, 2015). The purpose of using these
two methods was to provide a comprehensive vision of the usability of ATOPE+
with an objective and comparable result (SUS) and a less constrained and more
descriptive evaluation (semi-structured interview). The usability of the app and the
web dashboard were addressed separately by the experts. In addition, patients with
breast cancer and survivors evaluated the usability of the app alone.

The SUS scale is a ten-item Likert scale that gives a global view of subjective
assessments of usability. Each item of the scale is scored from 1, strongly disagree,
to 5, strongly agree, and the total SUS score is computed out of them, ultimately
ranging from 0 to 100. The SUS is easy to administer, performs reliably on small
sample sizes, and can effectively differentiate between usable and unusable systems.
The SUS allows for usability comparison among systems in research and industry
(ISO 9241-11). Sixty-eight points represent the minimum score to ensure good
usability (Sauro, 2011).

SUS Questions

The SUS questions are as follows.

Q1. I think that I would like to use this system frequently.

Q2. I found the system unnecessarily complex.

Q3. I thought the system was easy to use.

Q4. I think that I would need the support of a technical person to be able to use
this system.

Q5. I found the various functions in this system were well integrated.

Q6. I thought there was too much inconsistency in this system.

Q7. I would imagine that most people would learn to use this system very quickly.

1Dart packages for Flutter are available at https://pub.dev/
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Q8. I found the system very cumbersome to use.

Q9. I felt very confident using the system.

Q10. I needed to learn a lot of things before I could get going with this system.

Semi-Structured Interview

The items conforming the semi-structured interview for experts addressed the smart-
phone app and dashboard of ATOPE+, and they are presented in the following.

I1. What were your general sensations using the ATOPE+ smartphone app?

I2. How do you consider ATOPE+ may help compared to traditional treatment?

I3. Do you think the measurement protocol is complex?

I4. Do you think the tutorials are clear enough?

I5. Do you think that patients may be enrolled in the daily use of the app?

I6. Is there anything from the ATOPE+ app that draw your attention? For good or
bad.

I7. What is your opinion about patients following the app autonomously, using an
app and wearable sensors in remote?

I8. Do you think this methodology could be applied to other populations, for in-
stance, patients with other conditions)?

I9. Would you add extra functionalities to improve user experience?

I10. Do you think ATOPE+ could be used during restricted situations like the
COVID-19 pandemic?

I11. What were your general sensations using the ATOPE+ dashboard?

I12. Is there anything from the ATOPE+ dashboard that draw your attention? For
good or bad.

I13. Do you think the ATOPE+ dashboard may be helpful for the follow-up of
patients and quick decision-making?

I14. What other features would you like to see in the dashboard?
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3.3 ATOPE+

3.3.1 Requirements

Patients must follow the data gathering protocol under similar conditions every
day. Patients should record their HRV in the morning right after waking up and
emptying their bladder. HRV must be recorded in a lying position (Javaloyes et
al., 2019), and a minimum of 5 minutes are required for analysis (Niederer et
al., 2012). To establish a reliable baseline for HRV comparison, a minimum of 5
measures are required in the previous 7 days (Plews et al., 2014). Next, patients
must record their perceived recovery status, distress, sleep quality, and fatigue using
questionnaires. Patients must also use a wearable activity tracker to collect their
overall and training-specific physical activity levels. These data will be used in post-
intervention analysis to differentiate patients depending on the fulfillment of general
physical activity guidelines (Dias Reis et al., 2017), and the level of agreement
between the training intensity performed and the one indicated in the personalized
exercise prescriptions.

First, to automatically generate the personalized exercise prescriptions according
to expert knowledge, a knowledge-based system is required. The base of rules
will determine the frequency, intensity, time and type of the exercise prescription
depending on every day patient’s data. Nevertheless, some rules may not always
apply, so ATOPE+ must provide expert tools to be able to check and change the
exercise prescription according to the expert’s criteria on how patient’s health is
evolving. Two interfaces must be available to address the needs of patients and
clinical personnel separately and interact with the knowledge-based system.

Patients must have access to an smartphone app to gather their data, interact with
the experts, and receive the personalized exercise prescriptions. The smartphone
app must allow connection to external devices, such as Bluetooth ECG, and to
ask for recovery, distress, sleep quality and fatigue perceptions through in-app
questionnaires. Besides, the app must collect and process the minimum amount
of data required for the intervention trial, thus meeting the GDPR minimization
principle. Patients should be able to follow the data gathering protocol every day,
thus the smartphone app must provide a very clear and intuitive flow through it.
The number of wearable devices used must be as reduced as possible, as well as
the number of questions asked, so that the protocol complexity and amount of time
needed to follow it are minimized.
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Clinical experts must be able to check patients’ data and modify their exercise rec-
ommendations. A web interface must provide meaningful visual display of data
related to the workload-recovery ratio of every patient along with the exercise pre-
scriptions. The same web interface must provide means for checking and modifying
the personalized exercise prescriptions.

ATOPE+ must be able to manage the heterogeneous data sources noted before:
Bluetooth ECG, in-app questionnaires, and commercial activity tracker. Moreover,
ATOPE+ should be able to transform the raw data into useful information, that is, the
personalized exercise prescriptions. This collection of data must be as unobtrusive
as possible for the patients to facilitate their engagement in the intervention.

Since ATOPE+ is to be used in a context of a randomized trial with multiple pa-
tients at the same time, it must be able to deal with high data volumes and the
structured, semi-structured, or unstructured nature of the collected data. Conse-
quently, data must be stored and processed efficiently to provide agile and efficient
responsiveness.

Data persistence must be carefully managed to avoid data loss in likely deviations
from the ideal scenario, like no internet connection or Bluetooth ECG disconnection.
Therefore, data must be stored locally in the patients’ smartphone before being sent
to the cloud or server.

Data reliability must be ensured. Some scenarios might be prone to error, specially
those regarding HRV measurement, such as ECG misplacement or ECG recording
disruption by external events (e.g., a loud noise, a flash light or a phone call). ECG
misplacement may be avoided with training and displaying in-app reminders on how
to use the ECG device. Disruption risk may be minimized by lowering notification
volume levels during the recording. Last, to ensure HRV reliably, HRV signals must be
filtered by detecting, removing and interpolating outliers and ectopic beats (Peltola,
2012; Giles & Draper, 2018). Patients should be given the choice to record their
HRV again voluntarily if they considered the recording conditions were not to be
ideal, or if the automatic HRV processing rejects the validity of the measures.

The vast amount of data generated may help to assess the validity and pertinence
of the training plans assigned to each patient. Thus, this data can be used to re-
fine the existing expert-based rules or even create new ones. On the one hand,
unsupervised learning algorithms may reveal these unforeseen relationships among
the participants and their recovery process using clustering, anomaly detection or
rule generation algorithms. On the other hand, supervised learning, specifically
classification models combined with feature selection, may help to highlight the
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most relevant features for the recovery of patients. Building prediction models
to assess the recovery of the patients may also help experts in deciding the best
exercise prescriptions for patients when comparing best-case vs worst-case sce-
narios. Consequently, ATOPE+ must be able to implement intelligent automatic
data-driven analysis and provide means to introduce new rules commanding the
recommendations.

Finally, it is of utmost importance to ensure the security and privacy of the data. All
online communications must be secured and encrypted with available standards.
Access to the ATOPE+ centralized server must be protected through firewall. All the
data within the system pseudoanonymized and encrypted. The risk for malicious
data usage is increasing as sensitive data-driven systems like ATOPE+ emerge.
Fortunately, regulatory and legal policies are already taking this into account such
as the European GDPR, which is of mandatory application for our system.

According to this requirement analysis and the taxonomy for digital health systems
published in (World Health Organization, 2018), the following types of health
system challenges, system categories, and digital health interventions were identified.
This classification helped during the reassessment of requirements in the different
iterations of the process.

Health system challenges. (1) Information: lack of quality/reliable data, lack of
access to information or data, and insufficient utilization of data and information;
(3) Quality: poor patient experience, and inadequate supportive supervision; and (6)
Efficiency: Inadequate workflow management. Challenges related to (1) Information
and (3) Quality address the need for data-driven therapeutic exercise interventions
that really assess the individual needs of patients. Challenge related to (6) Efficiency
address the need for automatic integration of data with expert knowledge, besides
the provision of appropriate tools for patients (smartphone app) and experts (web
interface).

System categories. (Q) Knowledge management system, and (Y) Telemedicine.
ATOPE+ is belongs to (Q) Knowledge management systems due to the incorporation
of expert’s knowledge to automatically diagnose exercise needs according to the data
collected (knowledge-based system). ATOPE+ also belongs to a (Y) Telemedicine
system (more specifically to an mHealth approach) due to the remote assessment of
training needs with a smartphone app and wearable sensors.
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Digital health intervention. (1.0) Clients: (1.1) Targeted client communication
(transmit diagnostics results, or availability of result), and (1.4) Personal health
tracking (self monitoring of health or diagnostic data by client). (2.0) Healthcare
Providers: (2.3) Healthcare provider decision support (scree clients by risk or
other health status), and (2.4) Telemedicine (remote monitoring of client health or
diagnostic data by healthcare provider, transmission of medical data to healthcare
provider). The type of digital health intervention according to the (1.0) Clients or
patients feature the individual capabilities of self-monitoring exercise needs with
ATOPE+; according to (2.0) Healthcare Providers; ATOPE+ represent a means for
the remote monitoring of patients exercise needs and the support of decision-making
during an exercise intervention.

3.3.2 System Architecture

The architecture of ATOPE+ is shown in Figure 3.1. The first and fundamental
element of the architecture is the smartphone app (hereon, just app). The app is
the main communication channel with the patient, for both gathering data and
receiving exercise prescriptions. The app collects data from three sources: wearable
Bluetooth ECG, in-app questionnaires, and a Fitbit device. ECG and questionnaire
data are collected directly through the app, and stored in a local database to ensure
persistence of data. If Internet connection is available, data are sent to the server to
generate an exercise prescription. The generated prescription is then communicated
to the patient’s app almost immediately. Last, Fitbit data collected in the Fitbit Cloud
through the Fitbit app. A description of all the data available is found in Table 3.1.
The ECG variables collected are the time domain, frequency domain and Poincaré
plot features, all of them useful for short-HRV measurement (5-min) and to estimate
workload-recovery ratio (Kaikkonen, 2015; Buchheit, 2014). The modulating factors
of HRV are gathered through the in-app questionnaire features (Kim et al., 2018;
Sajjadieh et al., 2020; Tran et al., 2009; Ltd., 2014; Plews et al., 2012), already
successfully measured in patients with cancer in remote environments (Lozano-
Lozano et al., 2018; Min et al., 2014; Børøsund et al., 2018; Børøsund et al., 2020).
Fitbit’s physical activity and sleep data are collected in its entirety as an objective
and comparable measure of the exercise load performed by the patient during the
day and within training sessions.

The second element of the system is the centralized secure server, and it embodies
the knowledge-based system and the clinical web interface stated in the requirements.
Several modules comprise the centralized secure server. ATOPE+ downloads Fitbit
data with the Fitbit querier and incorporates it into the database with the Fitbit data
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adapter. The Fitbit querier interacts directly with the Fitbit web API (Fitbit Inc, n.d.)
to download the fine-grained activity data of every participant, while the Fitbit data
adapter adapts and inserts the JSON files returned by the Fitbit API into the relational
database. A secured and authenticated RESTful API enables communications with the
smartphone app to capture patient’s ECG and questionnaire data. The API also serves
as a means to deliver the personalized exercise prescriptions, which are stored once
generated. Before building the exercise prescriptions, the raw heterogeneous data
needs to be processed in order to extract meaningful information out of it. Raw data
enters the data manager to be preprocessed and time-synced. Besides, this module
cleans the ECG data by automatically detecting, removing, and interpolating outliers
(Giles & Draper, 2018) and ectopic beats (Nabil & Bereksi Reguig, 2015), required
to ensure correct short-HRV analysis (Giles & Draper, 2018). The information
manager transforms the processed data into useful information related to different
health domains of the patient: sleep analyzer, active and sedentary behavior analyzer,
training load analyzer, fatigue analyzer and distress analyzer (modules not shown in
figure for the sake of simplicity). All the information generated gets stored and serves
as input to the knowledge manager to generate the individual exercise prescriptions.
This information comes through the information adapter to feed simultaneously
the feature selector and recommendation builder. The recommendation builder is the
inference engine that generates personalized recommendations2 according to the
expert knowledge in the base of rules. The cascading feature selector and machine
learning prediction model represent an active part of the data-driven knowledge by
providing recovery predictions for each patient individually. This tool may even
assist the expert in evaluating the fitness of rules to patients individually.

The remaining modules of the system revolve around the expert, in our case, a
physiotherapist. The Web interface allows the expert to: visualize the patient’s data
gathered; generate new recommendations or modify existing ones for the patients
through the recommendation manager; and introduce, modify or remove rules in the
system through the rule editor.

3.3.3 System Implementation

This section details the implementation of ATOPE+ for the smartphone app and the
centralized secured server, and provides insight on the use of ATOPE+ from the both
patients’ and experts’ perspectives.

2In the case of ATOPE+, the term recommendation matches the personalized exercise prescription. For
the sake of simplicity, the text will only refer to recommendations in the description of the ATOPE+
system.
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Fig. 3.1.: ATOPE+ architecture.
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Tab. 3.1.: Data collected by ATOPE+. All variables are timestamped. ECG data are extracted
from raw R-R signal with the Aura-healthcare hrvanalysis package (Champseix &
contributors, 2020). Fitbit data are retrieved from its Web API (Fitbit Inc, n.d.)
using the python-fitbit package (Orcas & contributors, 2019).

Source Data Type Description

ECG

hr int Heart rate (beats per minute).
rr int R-R interval in milliseconds.
cvnni float Coefficient of variation equal to the ratio of sdnn divided by mean_nni.
cvsd float Coefficient of variation of successive differences (rmssd divided by

mean_nni.)
cv_lnrmssd float Coefficient of variation of LnRMSSD 7-day rolling average.
hf float Variance in R-R intervals in the high frequency (0.15 to 0.40 Hz).
hfnu float Normalized hf power.
lf float Variance in R-R intervals in the low frequency (0.04 to 0.15 Hz).
lf_hf_ratio float lf/hf ratio as a quantitative mirror of the sympatho/vagal balance
lfnu float normalized lf power.
lnrmssd float Natural log of the root mean square of the successive differences.
max_hr float Maximum heart rate.
mean_hr float Mean heart rate.
median_nni float Mean of R-R intervals.
min_hr float Minimum heart rate.
nni_20 int Number of differences in successive R-R intervals greater than 20 ms.
nni_50 int Number of differences in successive R-R intervals greater than 50 ms.
pnni_20 float Proportion of NN20 divided by the total number of NN (R-R) intervals.
pnni_50 float Proportion of NN50 divided by the total number of NN (R-R) intervals.
range_nni float Difference between the maximum and the minimum nn_interval
ratio_sd2_sd1 float Ratio between sd2 and sd1.
sd1 float Standard deviation of Poincare plot projection on the perpendicular to the

line of identity.
sd2 float Standard deviation of Poincare plot projection on the line of identity.
sdnn float Standard deviation of the NN (R-R) intervals
sdsd float Standard deviation of differences between adjacent R-R intervals.
std_hr float Standard deviation of heart rate.
swc_lnrmssd float Smallest worthwhile change of LnRMSSD 7-day rolling average.
total_power float Total power density spectral.
vlf float Variance in R-R intervals in the very low frequency (0.003 to 0.04 Hz).

Wellness
questionnaires

sleep_satisfaction float Sleep satisfaction in continuous Likert scale (0.0 – 10.0).
sleep_time int Reported sleep time (minutes)
distress float Distress in continuous Likert scale (0.0 – 10.0).
recovery float Recovery in continuous Likert scale (0.0 – 10.0).
fatigue float Fatigue in continuous Likert scale (0.0 – 10.0).

Fitbit’s
activity

steps int Steps count.
intensity int PA level (0, sedentary; 1, lightly active; 2, fairly active; 3 very active)
mets int METs (metabolic equivalents of task) expended
calories float Calories expended.

Fitbit’s
sleep

sleep_level string Sleep stage (‘deep’, ‘light’, ‘rem’ and ‘wake’).
nap int Number of sleep nap that day (0 is main sleep
seconds int Duration in sleep stage (seconds).

Fitbit’s
training
sessions

name string Name of activity.
logtype string Type of activity (‘auto_detected’, ‘manual’, ‘fitstar’, ‘mobile_run’, ‘tracker’).
active_duration int Duration of physical activity during session
duration int Duration of session.
calories int Calories expended in session.
sed_time int Sedentary time in session.
light_time int Light intense activity time in session.
fair_time int Fair intense activity time in session.
very_time int Very intense activity time in session.
max_hr_normal int Max HR in normal level.
max_hr_cardio int Max HR in cardio level.
max_hr_fatburn int Max HR in fatburn level.
max_hr_peak int Max HR in peak level (and in session).
mean_hr int Mean hr in session.
min_hr_cardio int Minimum HR in cardio level.
min_hr_fatburn int Minimum HR in fatburn level.
min_hr_normal int Minimum HR in normal level.
min_hr_peak int Minimum HR in peak level.
time_hr_cardio int Time in cardio zone.
time_hr_fatburn int Time in fatburn zone.
time_hr_normal int Time in normal zone.
time_hr_peak int Time in peak zone.
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Smartphone app

Taking into account the importance of cross-platform app development (essentially,
Android and iOS), the ATOPE+ app was implemented using Flutter (Google LLC,
Ireland) and it is shown in Figure 3.2. An exemplary use of the app is pictured in
Figure 3.2a, it shows the ECG Polar H10 (Polar USA) position (1) and the start of
the HRV recording protocol (2 and 3). Opening the app, the main view (Figure 3.2b)
welcomes the patient with a message, instructions, and the option to start the
protocol. Once the protocol has started, the app scans for available Bluetooth ECG
devices to select one. Once the ECG is connected, the view lets the patient to start
recording their HRV by pressing a Play button Figure 3.2c. The HRV recording
is framed in a 7 minute countdown, out of which only the central 5 minutes are
analyzed. Right after the countdown, the app notifies the patient with sound and
vibration and the HRV data are sent to the server to be processed. The protocol is
followed by the questions for sleep quality, recovery, fatigue and distress perception.
Questions for sleep quality, fatigue and recovery perception (Hooper & Mackinnon,
1995) follow the design pictured in Figure 3.2d, a continuous Likert scale ranging
0 to 10 with labels in its extreme values. The distress view (Figure 3.2e) adapts
the clinically validated NCCN Distress Thermometer (Cutillo et al., 2017) with a
continuous slider too. Once the questions are finished, the responses are sent to the
server to join the HRV data already processed and receive an automatic personalized
exercise prescription, as shown in Figure 3.2f. This last view also provides the
patient with the option to record their HRV again voluntarily, for example, if they
think the HRV recording conditions were not ideal.

The ATOPE+ app includes some mechanisms to ensure data transfer to the server.
All data are stored locally before being sent. If connection fails at the time of sending
HRV or question data, the app will ask the patient to check the Internet connection
and try again. Once the Internet connection is back, the data previously stored is
sent to the server. This will only happen at the end of the HRV recording or after
the last question is answered, thus avoiding disruptions of the protocol in the case
of connection loss. Besides, if the patient were to exit the app in the middle of the
protocol, a warning dialog would pop up to alert the patient they are about to exit
the app, and inviting them to continue the protocol.

To ensure data reliability, different strategies are used to handle the HRV and the
questions. Regarding HRV, first of all, the ECG Polar H10 (Polar USA) was selected
due to being validated for HRV monitoring in at rest and during exercising (Gilgen-
Ammann, Schweizer, & Wyss, 2019). If the server detects a problem while processing
the HRV signal (e.g. less than 5 minutes recorded or an excessive amount of outliers
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(a) ATOPE+ app in use. (b) Main view. (c) ECG recording.

(d) Recovery perception. (e) Distress. (f) Exercise prescription.

Fig. 3.2.: ATOPE+ smartphone app. The figures show an exemplary use of the app (a), the
most representative views seen throughout the protocol (b-e), and the display of
an exercise prescription once the protocol is finished (f).

and/or ectopic beats), its response will trigger in the app an error message, asking
the patient again to record their HRV. Phone notifications can be very disruptive, thus
the smartphone is automatically set up to silent mode while recording HRV; however
in order to make the app not too obtrusive, silent mode is just applied to notifications
and messages, while the volume of phone calls’ ring remains unmodified. Volumes
are brought back to the previous state once finished. Regarding the questions, the
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Fig. 3.3.: BLoC Design Pattern

patient is forced to answer them before advancing to the next question. This is done
by disabling the Next buttons at the moment questions are presented, only enabling
the Next button once the patient has actively selected a score on the slider. Moreover,
the initial position of the slider is randomized for every question, which has proven
to be an effective mechanism to mitigate anchoring in the responses (Gehlbach &
Barge, 2012).

The ATOPE+ smartphone app is built following the BLoC Design Pattern (Business
Logic Component) (Felix Angelov, n.d.)). BLoC is a design pattern to address
state management in Flutter applications. BLoC serves to separate the states, and
therefore the views, from the business logic of the app. Every communication
between BLoC elements is performed via asynchronous data streams, making the
logic responsive to events in the user interface (reactive programming).

Figure 3.3 depicts the BLoC design pattern. The business logic in the bloc is triggered
by events captured in the user interface (UI) (e.g. tap), then, the bloc handles the
data with the logic programmed in it. After this task is finished, the bloc sends a
new state to rebuild the UI with a new view. BLoC was implemented in the app
using the bloc and flutter_bloc Dart packages (Felix Angelov, n.d.).

Figure 3.4 describes the implementation of the BLoC design pattern in the the
ATOPE+ app from the bloc–state–UI perspective. The app structure revolves around
4 main blocs: Authentication, Login, Recommendation and Protocol.

The Authentication bloc manages the verification, use and request of OAuth 2.0
client credentials to be able to send data and retrieve recommendations safely and
unambiguously. When valid credentials are found, the Authentication bloc yields the
Authenticated state to allow the Recommendation bloc to manage. If no credentials
are found or there are connection or authentication problems, the bloc yields the
Unauthenticated state thus releasing the Login bloc to command.

The Login bloc handles the required user interaction to the OAuth 2.0 authentication,
in our case Authorization Code Grant. LoginPage and ContinuePage are the main
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Authentication
Bloc

Login Bloc Recommendation
Bloc

Protocol Bloc

LoginPage HomePage SplashPage

Authenticated defaultUnauthenticated

LoginPage ContinuePage

NoInternetPage FailurePage

NoRecommPage CompleteRecomm
Page

IncompleteRecomm
Page SmthWrongPage

HrvPage SleepPage ...

NoRecommendation

IncompleteRecommendation SmthWrong

CompleteRecommendationdefault LoginSuccess

NoInternet LoginFailure

Hrv Sleep

Fig. 3.4.: Bloc–state–UI structure of the ATOPE+ app. Blocs connect with UI (pages or
views) through states.

60 Chapter 3 ATOPE+: An mHealth System to Support Personalized Therapeu-
tic Exercise Interventions in Patients with Cancer



views handling this interaction using a WebView to interact with the server webapp.
Conversely, NoInternetPage and FailurePage deal with connection problems and
exceptions that might occur when trying to use already saved OAuth 2.0 credentials,
such as no internet connection, the expiration of refresh tokens, or any malformation
of client credentials. Depending on the issue, Authentication bloc may need to renew
OAuth 2.0 credentials (e.g. refresh token is revoked or outdated) or not (e.g. no
internet connection).

The Recommendation bloc manages the app once OAuth 2.0 credentials are verified.
This bloc handles communication with the server API when fetching patient’s recom-
mendations, and tells the ProtocolBloc (if available) the data to ask the patient in the
protocol. This allows a more responsive experience for both experts and patients, so
that questions are asked depending on the rules applied to each patient. If there is
no recommendation available, Recommendation bloc yields the NoRecommendation
state, thus allowing Protocol bloc to start the data gathering process and go through
the different views that define it. If the recommendation is missing because there
is missing or corrupted data, the IncompleteRecommendation state yields a view
to communicate the Protocol bloc which data should ask again for. If all data is
retrieved successfully to generate a recommendation in the server, Recommendation
bloc yields a CompleteRecommendation state where the corresponing message is
shown.

The CompleteRecommendation state also allows the patient to voluntarily record
a new HRV session in the case of an involuntary disruption that may void HRV
recording, for example, a phone call.

Finally, if OAuth 2.0 authentication works and yet there is a problem on the server
side, the Recommendation bloc yields a SmthWrong state that displays a comforting
message to the patient, and sends the issue directly to the server administrator.

Another main concern while implementing the app was usability. The number of
interactions was minimized by including the least amount of elements in the screens
(see snapshots in Figure 3.2). Patients are only required to login the first time they
use the app to start using it. The protocol follows a straightforward path in the
scheme of one view, one question, with icons to ease question identifying. There
are no preferences to configure, all are controlled from the server side. Font and
element sizes are high and controlled to avoid disruption of accessibility options that
the smartphone might have enabled.

ATOPE+ was implemented using Flutter (Google LLC, Ireland). The app uses SQLite
for data storage and AES encryption to secure it. The communications with the
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server are unambiguously authorized with OAuth 2.0 authorization protocol. OAuth
2.0 credentials are first obtained using Deep Linking (Nielsen, 2002) in Android and
Universal Links (Apple, n.d.) in iOS. The ATOPE+ smartphone app was tested and
built for Android versions over 4.4 (API 19) and iOS 8.0. HRV recordings were tested
with a Polar H10 (Polar USA) device over BLE (bluetooth low energy) protocol.

Centralized secure server

The centralized secure server of ATOPE+ is responsible for storing and processing
the data along with providing communication means for both patients and experts.
As stated in the system architecture, the different layers conforming the system
transform the data into useful information to, eventually, trigger the expert rules
and provide the patients with personalized exercise prescriptions.

Data processing is different for HRV and the Fitbit data. For HRV processing, the
data manager checks if its length is a minimum of 5 minutes. If so, the data manager
looks for outliers in the HRV signal to be removed and linearly interpolated (Giles
& Draper, 2018); ectopic beats are also detected and linearly interpolated (Nabil
& Bereksi Reguig, 2015). Next, the information manager extracts time domain,
frequency domain and Poincare features out of the clean HRV signal. Relevant
features for estimating the workload-recovery ratio like the smallest worthwhile
change (SWC) (Will G Hopkins, 2004; Javaloyes et al., 2019; Vesterinen et al., 2016)
of the natural log of the root mean square of the successive differences (LnRMSSD)
and the coefficient of variation (CV) (Buchheit, 2014; Plews et al., 2013) of the
LnRMSSD are also extracted for a 7-day time window. The minute-by-minute Fitbit
data are aggregated to match daily time windows and the training periods to extract
features referred to both time windows.

The base of rules permits defining rules depending on thresholds referred to question
responses, HRV features and Fitbit features. For instance, an expert rule may define
a high intensity exercise prescription if SWC is negative and sleep satisfaction value is
greater or equal to 7.

The server implements a Dashboard as the expert web interface (Figure 3.5). The
dashboard displays patient data and the exercise prescriptions given. The main
view is shown in Figure 3.5a. Data are shown in a paginated table that groups
the exercise prescriptions day by day. Data can be filtered by patient’s name, date
and the attempt to record HRV signal. The first column indicates if the exercise
prescription shown has been manually added through the modification dialog. The
second column shows the exercise description levels (to showcase, three different
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levels are defined). The table follows with patient’s name, date and time of the
exercise prescription. LnRMSSD, SWC and CV variables follow are the HRV features
presented. Last, all the responses to the questions are presented under the wellness
heading.

A dialog to create or modify exercise prescriptions is shown in Figure 3.5b. The
dialog allows the expert to create or modify the exercise prescription for the day
checked, by selecting the user and the intensity level of it. The expert can also
provide a free comment on why the modification was necessary.

In order to ensure speed, stability, modularity and scalability, the different services
composing the ATOPE+ server are implemented using Docker (Merkel, 2014).
Docker enables the execution of programs in isolated environments by directly
leveraging the host operating system resources. The implementation is divided in
three services: relational database, web application and reverse proxy. Each service is
a Docker container. All the containers are interconnected through a Docker network.
The relational database runs on a MySQL 5.7 container. All its ports are closed to
the outside, and its communications with the web application service are done via
a Docker network. To ensure high speed performance in queries, data tables are
partitioned to the number of participants to be enrolled in the ATOPE trial. The web
application service is built over Flask 1.0.2 in a Python 3.7 container. This service
features role-based authorization for users, an OAuth 2.0 authenticated RESTful API
to connect with the ATOPE+ app, and the ATOPE+ dashboard. Last, the reverse
proxy service exposes the web application securely to the internet over HTTPS
through an uWSGI interface. The host machine runs Ubuntu 18.04 as operating
system.

Regarding data security and privacy, Patients’ data are gathered and stored meeting
the European General Data Protection Regulation. The server is located within the
facilities of the University of Granada (Granada, Spain) and its physical access is lim-
ited to the researchers participating in the ATOPE project and system administrators.
All the data stored is pseudoanonymized (random UUID generation) and encrypted
(LUKS1 with aes-xts-plain64 encryption). All online communications of the ATOPE+
system (ATOPE+ application and server) are secured via HTTPS connections with
SSL/TLS encryption. Moreover, all the communications between the ATOPE+ smart-
phone app and the server are tokenized via OAuth 2.0 authorization to provide a
secure delegated access for every patient. All communications with the database are
made locally through a secured (HTTPS) web application. A firewall in the server
limits the number of available ports for connections, only enabling ports 22 (SSH)
and 443 (HTTPS).
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(a) Main view.

(b) Dialog for exercise prescription modification.

Fig. 3.5.: ATOPE+ Dashboard.
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3.4 Results

3.4.1 Usability Evaluation

Experts’ Evaluation

Eight experts (6 female, 2 male; age 34.00± 7.03 years old), physiotherapists with
TE experience in patients with cancer and survivors, used the ATOPE+ app and
dashboard for seven days to test the whole system.

All the experts filled the SUS individually (Figure 3.6). The scores were computed
and averaged for the app and the dashboard of ATOPE+. Both scored A, excellent,
that is, over 80.3 points, 90th percentile. The app scored 91.6± 7.8 points (mean ±
standard deviation) and the web dashboard 85.6± 20.9.

The answers to the app SUS are shown in Figure 3.7a. All the experts found the
app likely to be used frequently (Q1), did not find it unnecessarily complex (Q2)
and thought of it easy to use (Q3). Six of the experts did not consider the support
of a technical person necessary to use the app (Q4). Every expert considered the
functions of the app were well integrated (Q5) and that there was no inconsistency
(Q6). Seven out of the eight experts imagined most people could learn to use the
system very quickly (Q7). None of the experts found the app cumbersome to use
(Q8), all of them were confident using it (Q9) and did not need to learn many things
before using the system (Q10).

The results to the dashboard SUS evaluation are shown in Figure 3.7b. Seven of
the experts found the dashboard likely to be used frequently (Q1), did not find it
unnecessarily complex (Q2) and thought of it easy to use (Q3). Six of the experts did
not consider necessary the support of a technical person to use the dashboard (Q4).
Seven out of the eight experts considered the functions of the dashboard were well
integrated (Q5), that there was no inconsistency (Q6), and that most people could
learn to use the system very quickly (Q7). One of the experts found the dashboard
cumbersome to use (Q8). Seven experts were confident when using the dashboard
(Q9) and five did not need to learn many things before using the system (Q10).

The semi-structured interview was conducted to showcase the impressions of the
experts from a more qualitative perspective. Regarding the app, all experts reported
from “good” to “very good sensation using the app.” For example, expert #2 said,
“The overall sensation was very good, very intuitive to follow and with a very good
connection to the Polar (ECG device)”, and expert #8 said, “Quite a good sensation.

3.4 Results 65



1 2 3 4 5 6 7 8
expert

0

20

40

60

80

100

SU
S 

sc
or

e

91.6

85.6

ATOPE+ SUS Score 
by Experts

app mean
dashboard mean
app
dashboard
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(a) Experts’ app evaluation.
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(b) Experts’ dashboard evaluation.

Fig. 3.7.: Experts’ SUS evaluation of ATOPE+ detailed by question. Each bar shows the
score count for each of the ten SUS questions. Each color represents the type of
answer.

Very simple to use, clean, with no (unnecessary) ornaments and very intuitive.” All
the experts highlighted the straightforwardness in the use of the app during the
interviews. Experts also contemplated the need for training on how to use the app
for some of the less skilled patients. As expert #2 reported, “It is plenty accessible. It
will always depend a little on the technological skills of the patient, but they can always
receive training during the first and second week of the intervention.”
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To further detail the impressions on the use of the app, the experts were asked about
protocol complexity, the clarity of the instructions given and the perspective of the
patients using the app during the entire TE intervention. They all agreed on the
simplicity of the protocol, the clarity of the in-app instructions and the ease for
patients to use it daily.

Some of the experts underlined the importance of delivering and adequate feedback.
Quoting expert #4, “The app may foster patient’s autonomy and adherence thanks to
the personalized feedback, thus improving her results at the end of intervention.” Expert
#6 reported, “Patients can learn to use this app easily and engage well, specially if the
feedback presented to them is realistic and useful, and they actually see it translated
into the (TE) intervention.”

Taking into account the use of monitoring devices such as the wearable ECG (Polar
H10), expert #3 said, “It is not complicated (to attach the Polar H10), it may be even
preferable to sleeping with the wristband (the Fitbit). For patients with breast cancer
before surgery this would not be a problem. For those after surgery, they may need
some extra attention and be carefully trained on how to use it.” Conversely, expert
#4 addressed, “ATOPE+ needs to be careful in the number of elements participating
within the measures, since each one represents a higher grade of complexity, thus rising
the probability of errors,” right after highlighting the potential of using portable
monitoring devices.

Along with the positive feedback, there was place to express concerns, constructive
critiques and suggestions. Expert #1 was “worried if patients could maintain the
daily use of the app.” “They can just forget, specially once you are in the middle of
the treatment and stressed,” she continued. Next, the expert suggested, “A daily
notification in the morning could help to remind the patients to start the protocol right
after waking-up.” Expert #4 was concerned about the validity of the HRV measures,
since measuring conditions can be critical. He proposed, aside from the technical
issues of filtering and processing the HRV signal, “You can ask the participant, right at
the start of the protocol, if the environment conditions are actually ideal, in the form of
a checklist: 1) did you empty your bladder? 2) did you drink coffee/tea? 3) are you in
a calm settled environment?.” Most of the experts agreed that a chat/video-chat with
the participant would be also very useful to establish a more solid communication,
and the feedback messages could be improved just by mentioning the patient’s name.
Expert #6 even contemplated the idea of including “gamification elements to foster
patient’s engagement, with very visual feedback.”

Regarding the web dashboard, all experts reported a good experience while using it
and that it was useful to check patients’ assessment and make quick decisions on
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their TE intervention. They all found the option to modify the exercise prescription
very intuitive. Expert #3 said, “The dashboard is pretty intuitive, you can easily take a
quick look at the evaluations of each patient.” Some of them requested some features
such as the display of data in graphics with trends and visual alerts of anomalies or
values out of range.

All the experts agreed on the potential of ATOPE+ to improve the TE intervention
process compared to the traditional treatment. In words of expert #7, “ATOPE+ may
provide a further objective and personalized assessment.” Expert #4 said, “ATOPE+
addresses the personalization and monitoring process in a new and unprecedented way.”
Expert #1 added that using ATOPE+ would mean an optimization of resources for
both patients and medical personnel:

The dashboard is very convenient, it saves a lot of time. The remote
personalized assessment alleviates a lot of evaluation tasks from the experts
and saves unnecessary journeys from the patients at the medical center to
be assessed, thus saving time and resources for us all. Patients could be sent
home again due to not being in optimal conditions to perform TE that day.
(Expert #1)

All the experts acknowledged the possibility of using ATOPE+ in a 100% remote
environment such as the COVID-19 pandemic context. They also agreed on the need
to make some minor adjustments. Expert #7 commented, “Since ATOPE+ is focused
mainly now in (workload-recovery ratio) assessment, it would be necessary to provide
more material to complete the TE program.” Expert #6 added, “The engagement
with the program would need to be carefully studied. It is not trivial, maybe via
technical means such as gamification and/or available communication channels, and
also individual supervision by medical personnel.”

The experts also foresaw the possibility of extrapolating the use of ATOPE+ to other
kinds of patients. Quoting expert #5, “This methodology could be used with patients
with other types of cancer (different to breast cancer), cardiopathy or neurological
conditions.”

Patients’ Evaluation

Twenty-five breast cancer patients and survivors (8 patients, 17 survivors; age 49.00
± 7.21 years old) filled the SUS individually after using it for a minimum of 7 days
(Figure 3.8). The scores were computed and averaged for the ATOPE+ app. The app

68 Chapter 3 ATOPE+: An mHealth System to Support Personalized Therapeu-
tic Exercise Interventions in Patients with Cancer



0 5 10 15 20 25
patient/survivor

0

20

40

60

80

100

SU
S 

sc
or

e

90.70

ATOPE+ App SUS Score 
by Patients and Survivors

app mean
app

Fig. 3.8.: SUS score for the ATOPE+ app by patients with breast cancer and survivors.

scored A, excellent, i.e., over 80.3 points, 90th percentile. The app scored 90.7± 8.9
points (average ± standard deviation).

The answers to the app SUS are shown in Figure 3.9. Twenty-four (96%) of the
patients and survivors found the app likely to be used frequently (Q1), and did not
find it unnecessarily complex (Q2). All of them thought the app was easy to use
(Q3). Twenty-one (84%) of the patients and survivors did not consider the support
of a technical person necessary to use the app (Q4). Twenty-three (92%) of them
considered the functions of the app were well integrated (Q5) and that there was no
inconsistency (Q6). Twenty-two (88%) patients and survivors imagined most people
could learn to use the system very quickly (Q7). None of the patients and survivors
found the app cumbersome to use (Q8). Finally, twenty-three (92%) of them were
confident using the app (Q9) and did not need to learn many things before using
the system (Q10).

At the end of the SUS questionnaire, patients and survivors were also asked for
voluntary comments in a free-text cell. Nine of them (36%) wrote something on it.
Seven patients and survivors highlighted the straight-forwardness of the app, that
it was easy to use, quick, and reliable; and five of these seven also appreciated the
initial training on how to use the app. One patient pointed out that it would be
interesting to access the app without the need for an ECG band, and another that
the band may produce itching in the skin in some days.
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Fig. 3.9.: Patients’ and survivors’ app evaluation.

3.5 Discussion

3.5.1 Principal Findings

This chapter presented ATOPE+, an mHealth system to support personalized thera-
peutic exercise interventions in patients with cancer. The system architecture and
implementation were thoroughly described. A usability evaluation was conducted
by clinical experts, patients with breast cancer and survivors to show the potential
of the system and the usability of its elements. The system, the results obtained,
implications and recommendations for future studies are further discussed in this
section.

ATOPE+ Development

A system like ATOPE+ can only emerge from the interdisciplinary cooperation
among the physical therapy, medical, engineering and computer science fields. On
the clinical side, the relevance of ATOPE+ is rooted in enabling individual remote
monitoring of key variables to workload-recovery in patients with cancer. On the
technological side, the relevance of ATOPE+ is drawn from the integration of com-
mercial wearable monitoring devices, a data processing pipeline and clinical expert
knowledge into a knowledge-based system to automatically provide personalized
prescriptions of exercise dosage. Overall, ATOPE+ allows clinical experts to simplify
knowledge management and decision-making within the context of a TE intervention
by integrating in one tool the process of diagnosing and providing patients’ with
their individual exercise needs.
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ATOPE+ is heavily inspired by the systems presented in the State of the Art (Chapter
2). The multilevel architecture present in most of the mHealth systems referenced
(Banos, Amin, et al., 2015; Ferreira et al., 2015; Mehrotra et al., 2017; Castro et al.,
2015; Alharthi et al., 2019) demonstrated its added value handling knowledge
management, specially after being tested in different health applications such as
promoting physical activity, general wellbeing and mental health. The small presence
of similar approaches with patients with cancer in TE interventions served as a major
impulse for this work, specially noting the lack of sophisticated personalization strate-
gies. Most of the personalization strategies found were based on self-management
and/or self-monitoring of physical activity with wearable devices (Schaffer et al.,
2019). ATOPE+ takes a different approach by rooting its personalization strategy in
the physiological foundations of workload-recovery ratio assessment by means of
HRV (and its most relevant modulating factors: sleep satisfaction, distres, recovery
perception and fatige.)

Despite the availability of general and open frameworks for the development of
health applications such as AWARE (Ferreira et al., 2015), Beiwe (John Torous et al.,
2016) or Bridge (Sage Bionetworks, 2019), an ad-hoc implementation of ATOPE+
provided a better support for our requirements. First, these frameworks present
some limitations on handling knowledge with a base of rules and delivering recom-
mendations. Although they provide dashboards for the monitoring of variables, their
architecture does not include a knowledge based nor an inference engine. Second,
none of the frameworks available at the moment were cross-platform (Android and
iOS), they were all Android-based, hence limiting the patient recruitment capabilities
of the application. Only Bridge (Sage Bionetworks, 2019) provided the tools to
develop two apps for each platform (Android and iOS); however Flutter provided a
simpler solution by supporting cross-platform with the same SDK (software develop-
ment kit). Finally, these frameworks provide plenty of options for the users in their
preferences. Despite some of them could be hidden to the end-use, the aim was to
provide the most simple experience for patients from design.

Usability

Usability results were consistent and promising for ATOPE+. For the experts, the
overall good scores in the SUS scale matched the answers to the semi-structured
interview, for both the app and the dashboard. All the experts agreed on the
potential of ATOPE+ to improve the personalization process in a TE intervention
with patients with cancer. Moreover, while there was some critique pointing out
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possible improvements for ATOPE+, none of the commentaries or suggestions were
deemed as major issues.

All experts agreed on the ease of use of the ATOPE+ app and the straightforwardness
of the data collection protocol. The experts also reported that there was no need
for the support of a technical person, that patients would only require a training
period to use the app. This is an important result for ATOPE+, since providing
an intuitive app experience is imperative to make the system accessible to all the
patients, specially those with less technology skills such as the elder generations.

These comments match the usability evaluation of patients and survivors, who also
reported very good app usability. Patients highlighted the simplicity and straight-
forwardness of the protocol, and there was no evaluation below 68 points, the
minimum usability score. These results shows that the inclusion of from-design
simplicity into ATOPE+ was successful for the two end-users of the system, and
ATOPE+ can be presented as ready to be used in the context of a clinical trial.

The experts agreed on the possibility of using ATOPE+ in a fully remote environment,
only requiring some adjustments on the intervention protocol. Experts’ expectations
on this topic were confirmed, since patients successfully evaluated the usability
of ATOPE+ in a completely remote scenario.This is particularly relevant now in
a COVID-19 pandemic context. The immunosuppression often related to cancer
treatment may put patients at the very high risk of getting infected with COVID-
19. Patients with cancer appear to have an estimated twofold increased risk of
contracting SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) than
the general population (Yu et al., 2020). Recent literature already recommended
reducing this risk by minimizing exposure and prioritizing individualized assistance,
suggesting the inclusion of telemedicine strategies as a means to do so (Al-Shamsi
et al., 2020). Hence, a tool like ATOPE+ may become of interest in the uncertainty
of the following times until the COVID-19 disease is set under control.

The experts shared their ideas on the need for providing objective feedback to
patients on their performance. On the one hand, some of the experts were reluctant
to include more information than the daily exercise prescription. These experts were
concerned about patients becoming too self-aware on their performance and even
trying to figure out the inner logic of ATOPE+. On the other hand, other experts
were supportive of providing the maximum amount of feedback by wrapping it in a
game-based context. These experts considered that a gamification strategy might
provide them with tools to promote the fulfillment of the exercise prescriptions.
Nevertheless, they also acknowledged that gamification strategies might need to
be as tailored as the exercise prescription to become effective (Zhao, Arya, Orji, &
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Chan, 2020). Since ATOPE+ is not a system that focuses on patient’s self-regulation,
future use of ATOPE+ will limit its feedback to the one provided by the commercial
wearable used and the daily exercise prescriptions in the near term.

The SUS dashboard evaluation by expert #5 stands out as an outlier in Figure 3.6.
This expert was particularly interested in the visual display of data, its trends,
the presence of outliers and alerts. Future efforts will focus on providing these
tools effectively. The rest of the experts considered that these extra tools would
be valuable, but also that the information displayed was sufficient to evaluate the
adequacy of the exercise prescriptions.

3.5.2 Limitations and Future Work

Our usability results present some limitations. Usability results were gathered be-
tween March and September of 2021, a period in which COVID-19 still menaced
the health of immunosuppressed people such as patients with cancer despite its
lower incidence at the time. Moreover, the clinical saturation caused by the rush
of new cases, and the fear of patients of getting infected, hindered the recruit-
ment possibilities. This situation forced the usability evaluation to be conducted
combining the experience of breast cancer patients and survivors in a fully remote
scenario. Although exercise interventions are conducted similarly for both patients
and survivors (Campbell et al., 2019; Pollán et al., 2020), their psychological states
may differ due to the stage of their recovery.

Future work may not be limited to patients with breast cancer. All the experts
foresaw extending the use of ATOPE+ to other types of cancer and diseases, thus
opening other lines of work such as lung or colorectum cancer —both hold the
highest incidence in Europe and in the United States. Our long-term research will
also aim to describe the most relevant variables related to the workload-recovery
ratio that influence the decision making when prescribing exercise dosage in patients
with cancer.

3.6 Conclusion

This chapter described ATOPE+, an mHealth system to support personalized thera-
peutic exercise interventions in patients with cancer. ATOPE+ enables the remote
assessment of workload-recovery ratio to provide optimal exercise dosage by means
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of a knowledge-based system. Thus, ATOPE+ allows for undulating adaptive pre-
scription of exercise, minimizing the risk of overtraining and undertraining through-
out the TE intervention. To our knowledge, ATOPE+ is the first mHealth system
combining measures of exercise load (HRV), modulating factors of HRV (recovery,
sleep, distress, fatigue), and daily and training-specific physical activity levels (Fitbit
activity tracker) to personalize therapeutic exercise interventions in patients with
cancer. Overall, ATOPE+ allows clinical experts to simplify knowledge management
and decision-making within the context of a TE intervention.

ATOPE+ presents a novel concept to personalization in TE interventions in patients
with cancer, by using physiological variables related to training load in a remote
context. The architecture of ATOPE+ is designed to collect physiological data from
heterogeneous sources (wearable ECG, in-app questionnaires, Fitbit cloud), trans-
form the data into useful information, and provide individual exercise prescriptions
by means of an knowledge-based system.

Multiple tests with patients with breast cancer in TE intervention were conducted suc-
cessfully. A usability evaluation was conducted to determine how medical personnel,
and patients and survivors would receive ATOPE+. Results showed good satisfaction
with the tool as simple, straightforward and easy to use. The experts perceived
ATOPE+ as a promising tool to improve therapeutic exercise evaluations.
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ATOPE+Breast: Continuous
Monitoring of Training Load in
Patients with Breast Cancer
during Therapeutic Exercise
Intervention

4

Publication Details

Reference: Moreno-Gutiérrez, S., Postigo-Martín, P., Damas, M., Banos, O., Po-
mares, H., Arroyo-Morales, M., & Cantarero-Villanueva, I. (2022). ATOPE+Breast,
Continuous Monitoring of Training Load in Patients with Breast Cancer during Ther-
apeutic Exercise Intervention. Zenodo, Dataset. https://doi.org/10.5281/zenodo.
6322773

Preceding Note

The aim of this chapter is to contribute with an open dataset describing the contin-
uous monitoring of training load in patients with breast cancer. The dataset was
published in Zenodo in the reference above.

Nevertheless, for this dataset to be helpful, the reliability of ATOPE+ had to be
assessed first (besides the usability presented in the previous chapter). The reliability
of ATOPE+ was done in a separate work (Postigo-Martin et al., 2022) that is not
part of this thesis. In such work, ATOPE+ was found as a valid and reliable tool to
assess autonomic balance (LnRMSSD), sleep satisfaction, emotional distress, and
potentially fatigue in breast cancer survivors. This reliability assessment enabled the
publication of these data.
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4.1 Introduction

Multiple studies address therapeutic exercise interventions in patients with cancer
(Y.-H. Lee et al., 2018; Niederer et al., 2012; Caro-Moran et al., 2016; Dias Reis
et al., 2017; Schaffer et al., 2019); however, these works typically measure the
impact of the intervention by comparing health assessments (e.g., HRV) before and
after the intervention. There are no available datasets describing the status of breast
cancer patients during an exercise intervention. Hence, the objective of this chapter
is to introduce a dataset of such nature: the ATOPE+Breast dataset.

ATOPE+Breast (ATOPE+ for patients with breast cancer) describes the daily status
of patients with breast cancer during therapeutic exercise intervention with daily
measures of HRV, self-reported wellness, physical activity, and sleep. Besides, the
ATOPE+Breast dataset contains information about training sessions, such as intensity
recorded, demographic data, treatment details, initial evaluations of quality of life,
physical activity levels, previous medical conditions, and risk factors.

This chapter is structured as follows. Section 4.2 presents the materials and methods
used to collect the dataset, describing the different variables and how they are coded.
Section 4.3 provides notes on data availability (source), and a description of the
data collected. Finally, section 4.4 provides an overview of the limitations presented
by the dataset.

4.2 Materials and Methods

4.2.1 Study Design

The ATOPE trial (registration number NCT03787966, Clinicaltrials.gov; protocol
published by Postigo-Martin et al., 2021) aims to compare the beneficial effects of a
therapeutic exercise intervention in patients with breast cancer during treatment
versus a therapeutic exercise intervention in patients before treatment.

The ATOPE program is a 12-to-18-sessions program lasting 6 to 8 weeks, depending
on the treatment scheduled for each patient, supervised (1-on-1) program of thera-
peutic exercise that consists of multimodal therapeutic exercise (aerobic, strength,
motor control exercises, myofascial techniques, and breathing exercises) imple-
mented by a physical therapist expert in therapeutic exercise. Recovery strategies
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are followed at the end of each session. The whole duration of the sessions is
approximately 1 hour.

ATOPE+ supports the ATOPE program enabling a personalized therapeutic exercise
intervention. ATOPE+ provides daily tailored recommendations of the exercise needs
for every patient depending on training load data (HRV and self-reported wellness)
according to expert rules already protected by intellectual property (registration
number 2010285737407; SafeCreative ATOPE+, 2020). The physical therapists
used the recommendations and the data collected to support their decision-making
process when prescribing exercise doses. The first two weeks of the intervention
were scheduled with 2-3 training sessions to obtain solid HRV baselines and for
patients to learn the exercises.

4.2.2 Participants

The participants were 23 patients with breast cancer (48.8 ± 12.2 years old) from
the ATOPE trial. Through questionnaires, patients reported their demographic data,
quality of life, and initial physical activity levels. Previous conditions and risk factors
were noted by a physician after an initial screening. Patients were provided with
a Polar H10 ECG monitor (Polar Electro Ltd.) and the ATOPE+ app installed on
their smartphones to record their HRV and self-reported wellness every day. In
addition, patients were provided with a Fitbit Inspire HR to monitor their daily
physical activity levels and sleep patterns. A description of the collection of the
ATOPE+Breast dataset is shown in Figure 4.1.

4.2.3 Eligibility

The inclusion criteria contained women with newly diagnosed, histologically con-
firmed, unresected stage I–IIIa BC. In addition, all had to be: (1) >18 years old; (2)
scheduled for surgery, chemotherapy, and/or radiotherapy; and (3) predisposed to
developing cardiotoxicity, as described by the American Society of Clinical Oncology
Guidelines (Armenian et al., 2017).

The exclusion criteria were: (1) a previous history of malignancy; (2) having under-
gone previous cancer treatment; (3) pregnancy; (4) having a psychiatric or cognitive
disorder that prevents patients from following exercises correctly, and/or acute or
chronic condition that prevents exercise; and (5) any absolute contraindication for
high-intensity exercise.
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Fig. 4.1.: ATOPE+Breast dataset collection.

4.2.4 Data Collection

ATOPE+ was used with a Bluetooth ECG Polar H10 and a Fitbit Inspire HR to record
HRV, self-reported wellness, physical activity, and sleep data. Physicians and physical
therapists —experts in therapeutic exercise— collected demographic and medical
history data, along with training session details. A total of 306 training sessions
were conducted —and noted— with the 23 patients; also, 681 measurements of
HRV and self-reported wellness were recorded daily during the monitoring period.
In addition, 845 measures of Fitbit daily physical activity, and 687 measures of Fitbit
sleep were collected. A summary of the monitoring and training data collected is
illustrated in Figure 4.2.
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Fig. 4.2.: Description of monitoring sample by participants.

Heart Rate Variability

Patients were instructed to measure their HRV in a lying position and answer the
self-reported wellness questionnaires with the ATOPE+ app every morning at home,
right after waking up and emptying their bladder, and before starting the day (e.g.,
drinking coffee, having breakfast, checking emails), to avoid influences of circadian
rhythm (Plews et al., 2012; Buchheit, 2014).

HRV measurements consisted of 10 minutes of R-R intervals. Outliers and ectopic
beats of HRV signal were replaced with linear interpolation (Peltola, 2012; Giles &
Draper, 2018). ATOPE+ removed the first and last 2.5 minutes of the recording,
using the 5 minutes in the middle of the R-R signal for short-term HRV analysis
(Shaffer & Ginsberg, 2017). ATOPE+ extracted the daily logarithm of the RMSSD
(LnRMSSD) for every recording since it is the most accepted and reliable rest-
ing HRV-related parameter to measure the adaptation of in response to training
(Plews et al., 2013; Buchheit, 2014). ATOPE+ also extracted the remaining time-
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domain, frequency-domain, and Poincaré plot HRV features previously described in
Table 3.1.

HRV signals were checked before its computation. If Bluetooth disconnections were
detected, or there was insufficient HRV data for short-HRV analysis, the patient was
automatically asked for second monitoring of her HRV signals.

SWC of the LnRMSSD. ATOPE+ calculated the smallest worthwhile change (SWC)
(Will G Hopkins, 2004) of the LnRMSSD out of a fixed number of standard devia-
tions around the mean LnRMSSD (Vesterinen et al., 2016; Javaloyes et al., 2019).
Nevertheless, the criteria defined for SWC slightly differed from those used for pro-
fessional athletes. Because of the fragile psychological state of being diagnosed with
a potentially terminal illness like breast cancer, the frail physiological state induced
by systemic treatment, and the possible lack of exercise habits, training adaptation
in patients with breast cancer may be subject to higher variability than the one
found in professional athletes. Moreover, the objective of professional athletes is to
improve performance, while for patients is to achieve an adequate training load to
reduce toxicity levels —and avoid overtraining, which may cause more damage to
the patient.

Hence, the observing window for SWC was reduced from comparing the evolution
of a 7-day-rolling-mean window of the LnRMSSD against the SWC computed for a
4-weeks-rolling window of LnRMSSD measures (Figure 2.8, Javaloyes et al., 2019)
to comparing the daily values of LnRMSSD against the SWC computed for a 5-to-
7-days-rolling window. SWC thresholds were defined with a factor f of 0.5 as in
(Vesterinen et al., 2016; Javaloyes et al., 2019):

SWCthresholds = LnRMSSDrolling_mean ± 0.5 · LnRMSSDrolling_std (4.1)

where LnRMSSDrolling_mean and LnRMSSDrolling_std are the mean and standard
deviation computed for the available LnRMSSD of the previous 7 days, with at least
5 of them available (Plews et al., 2014).

The categorical variable SWCok was True if the LnRMSSD did not fell outside the
SWC thresholds; however, to provide a continuous variable of the SWC approach
proposed, the following normalized SWC variable was defined:

SWC =
LnRMSSD − LnRMSSDrolling_mean

LnRMSSDrolling_std
(4.2)
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CV of the LnRMSSD. ATOPE+ calculated the CV of the LnRMSSD (W. G. Hopkins,
2000) using a 5-to-7-days-rolling window to establish sufficiently solid baselines for
the comparison of daily measures of LnRMSSD (Plews et al., 2014), as previously
defined in Equation 2.1.

Self-Reported Wellness

As described in subsection 2.3.2, stress (Kim et al., 2018), sleep (Sajjadieh et al.,
2020), and fatigue (Tran et al., 2009) are the modulating factors of HRV getting
more attention from the research community (Ltd., 2014; Plews et al., 2012). Such
factors were successfully measured in remote conditions in patients with cancer
(Cantarero-Villanueva et al., 2014; Lozano-Lozano et al., 2018; Børøsund et al.,
2020; Børøsund et al., 2018; Min et al., 2014).

ATOPE+ recorded perceived recovery, sleep time, sleep satisfaction, emotional
distress, and peripheral fatigue using self-reported in-app questionnaires. Features
were previously described in Table 3.1. Participants were required to actively answer
every item in the questionnaire before advancing to the next question. This was done
by enabling the Next button only once the participant had actively selected a score on
the slider. Moreover, the initial position of the Likert-like sliders was randomized for
every question to mitigate anchoring or learning effects in the responses (Gehlbach
& Barge, 2012).

Recovery. ATOPE+ used the gold standard Perceived Recovery Scale (Laurent
et al., 2011) to assess the level of recovery perceived by the patients every morning.
ATOPE+ used a self-reported continuous Likert-type scale, with scores from 0 (Very
tired) to 10 (Very energetic) labeled on the extremes, to measure recovery.

Sleep. ATOPE+ used the gold standard consensus diary to measure sleep patterns
and sleep quality (Carney et al., 2012). ATOPE+ used a self-reported continuous
Likert-type scale, with scores from 0 to 10, and labeled on the extremes, to measure
recovery; besides, ATOPE+ used a digital-clock-like counter to enable the self-report
of sleep time. In addition, ATOPE+ incorporated sleep data (time and stages) from
a Fitbit Inspire HR when used during the night.
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Emotional Distress. ATOPE+ used the gold standard NCCN Emotional Distress
Thermometer (Cutillo et al., 2017) to measure emotional distress. ATOPE+ used
a self-reported continuous Likert-type scale, with scores from 0 (No distress) to
10 (Extreme distress) labeled on the extremes and embedded in the picture of the
original NCCN Distress Thermometer.

Peripheral Fatigue. ATOPE+ used the gold standard Borg-CR 10 scale (Soriano-
Maldonado et al., 2015) to evaluate the level of perceived fatigue after a physical
exertion test. Participants performed 10 repetitions at 40 beats per minute (marked
by a metronome sound included in ATOPE+) of the Sit to Stand Test, frequently
used to induce fatigue in lower extremities (Hatton, Menant, Lord, Lo, & Sturnieks,
2013). ATOPE+ used a self-reported continuous Likert-type scale, with scores from
0 (No fatigue) to 10 (Extreme fatigue) labeled on the extremes.

Demographics and Initial Screening

Patients were asked about their age, sex, ethnic origin, studies, marital status,
employment situation, number of members in the family unit, income level, smoking
habits, alcohol intake habits, menopause stage, dominant side, operation side, and
cancer history in the family.

Ongoing medical conditions were assessed and checked with medical history: hy-
pertension, dyslipidemia, diabetes, and cardiovascular diseases. Weight (kg), body
fat mass (FM; kg), percentage of body fat (PBF, %), visceral fat area (VFA, cm²),
and body mass index (BMI; kg/m²) were estimated using an InBody 720 impedan-
ciometer, which provides reliable results (McLester, Nickerson, Kliszczewicz, &
McLester, 2020). Hypertension was assessed using the clinically validated OM-
RON M3 (HEM-7200-E2 (V)). Treatment details during the intervention were also
noted if they were receiving chemotherapy, radiotherapy, or still waiting for surgery
(treatment-naive).

Quality of Life

Quality of life was assessed with the gold standard European Organization for
Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire (QLQ-
C30) (Giesinger et al., 2016). The QLQ-C30 computes several items addressing
different health facets: physical, tasks, emotional, cognitive, social, fatigue, nausea,
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pain, dyspnoea, insomnia, appetite, constipation, diarrhea, and economics. A
combination of all scores may compute a total value for global health.

Physical Activity

Daily physical activity levels were monitored with a Fitbit Inspire HR, counting
steps, calories, METs (metabolic equivalent of task), and the intensity of the activity
recorded, as well as the timing for each variable.

Moreover, patients evaluated their baseline physical activity levels in a week by filling
the gold standard International Physical Activity Questionnaire (IPAQ) (Wanner
et al., 2016). The IPAQ assigns different MET values for the minutes dedicated to an
activity a predefined number of days. These activities are reduced to three levels of
intensity: walking, moderate, and vigorous. These levels ultimately may compute a
total MET score.

METs/week = WalkMETs+ModMETs+ V igMETS =

= 3.3 · walkmin/week + 4.0 ·modmin/week +

+ 8.0 · vigmin/week

(4.3)

These levels enable physical activity classification into low, moderate, and vigorous,
as described elsewhere (Wanner et al., 2016).

Training Sessions

Training sessions aimed for determined intensities depending on the status of the
patients. Physical therapists directed training sessions, double-checking the intensity
given with the patient’s sensations during and at the end of every session. Post-
exercise BORG intensities (Soriano-Maldonado et al., 2015) were recorded for every
session.
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4.3 Data Records

4.3.1 Data Availability

Study data were stored and made openly available at Zenodo (https://zenodo.org/
record/6322773). Anonymity was ensured by changing original IDs and removing
dates from medical appointments (e.g., training, chemotherapy, and radiotherapy
sessions). All data records were stored in three comma-separated values (CSV) files,
described below.

4.3.2 Data Description

Aggregated

Demographics, initial screening, QLQ-C30, and IPAQ data were stored in the file
demographics.csv. Table 4.1 describes the coding of demographics and initial
screening, and Table 4.2 describes the coding of QLQ-C30 and IPAQ data. A visual
summary of demographic and initial screening data is illustrated in Figures 4.3, and
4.4. Figure 4.5 describes QLQ-C30 and IPAQ data.

ATOPE+ data (HRV, self-reported wellness, Fitbit’s sleep and physical activity, and
training session) were stored in records.csv. HRV and self-reported data were
previously described in Table 3.1. Training data, SWC and CV variables, and daily
aggregated Fitbit variables of sleep and steps are described in Figure 4.6, and
self-reported wellness with Fitbit steps and Fitbit sleep in Figure 4.7.

Detailed physical activity Fitbit data were stored in fitbit_activity.csv, including
the steps, mets, calories and time in each intensity level of physical activity detected.
Table 4.4 describes the coding of Fitbit physical activity variables. Figure 4.8
describes the sample.
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Tab. 4.1.: Demographic and initial screening features in demographics.csv.

Variable Unit Type Description

age years int Age.
sex category string Sex.
ethnic_origin category string Ethnic origin.
studies category string Level of studies.
marital_status category string Marital or civil status.
employment_situation category string Employment situation.
n_family_unit members int Number of members in the family

unit.
income category string Level of income.
smoking category string Smoking habits.
alcohol category string Alcohol consumption habits.
menopause category string Menopausal status.
dominant_side category string Left- or right-handed.
operation_side category string Side for breast surgery.
cancer_history_family category string History of cancer in family.
breast category string Breast cancer in family.
colon category string Colon cancer in family.
prostate category string Prostate cancer in family.
lung category string Lung cancer in family.
bladder category string Bladder cancer in family.
ovary category string Ovary cancer in family.
stomach category string Stomach cancer in family.
intestine category string Intestine cancer in family.
throat category string Throat cancer in family.
thyroid category string Thyroid cancer in family.
leukemia category string Leukemia in family.
blood category string Blood cancer in family.
hypertension category string Hypertension in medical condi-

tions.
dyslipidemia category string Dyslipidemia in medical condi-

tions.
diabetes category string Diabetes in medical conditions.
cardiovascular_disease category string Cardiovascular disease in medical

conditions.
height cm int Height.
weight kg float Weight.
bmi kg/m² float Body mass index (BMI).
body_fat_mass kg float Fat mass.
body_fat_percentage % float Percentage of body fat.
visceral_fat_area cm² float Visceral fat area.
treatment category string Treatment during intervention.
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Tab. 4.2.: QLQ-C30 and IPAQ features in demographics.csv.

Variable Unit Type Description

qlqc30_physical % float Physical activity score.
qlqc30_tasks % float Tasks score.
qlqc30_emotional % float Emotional score.
qlqc30_cognitive % float Cognitive score.
qlqc30_social % float Social score.
qlqc30_fatigue % float Fatigue score.
qlqc30_nausea % float Nausea score.
qlqc30_pain % float Pain score.
qlqc30_dyspnoea % float Dyspnoea score.
qlqc30_insomnia % float Insomnia score.
qlqc30_appetite % float Appetite score.
qlqc30_constipation % float Constipation score.
qlqc30_diarrhoea % float Diarrhoea score.
qlqc30_economic % float Economic score.
qlqc30_global_health % float Global health score.
ipaq_walking METs/week int METs a week for walking-like ac-

tivities.
ipaq_moderate METs/week int METs a week for moderate activi-

ties.
ipaq_vigorous METs/week int METs a week for vigorous activi-

ties.
ipaq_sitting METs/week int METs a week for sitting-like activ-

ities.
ipaq_total_met METs/week int Total METS a week.
physical_activity_level category string IPAQ level of physical activity.
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Fig. 4.3.: Description of participants (1/2).
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20

40

60

80

100
QLQ-C30 Global Health

qlq
c3

0_
ph

ys
ica

l

qlq
c3

0_
tas

ks

qlq
c3

0_
em

oti
on

al

qlq
c3

0_
co

gn
itiv

e

qlq
c3

0_
so

cia
l

qlq
c3

0_
fat

igu
e

qlq
c3

0_
na

us
ea

qlq
c3

0_
pa

in

qlq
c3

0_
dy

sp
no

ea

qlq
c3

0_
ins

om
nia

qlq
c3

0_
ap

pe
tite

qlq
c3

0_
co

ns
tip

ati
on

qlq
c3

0_
dia

rrh
oe

a

qlq
c3

0_
ec

on
om

ic

0

25

50

75

100

va
lu

e

QLQ-C30 Items

0

1000

2000

3000

4000

IPAQ Total METs

ipaq_walking ipaq_moderate ipaq_vigorous ipaq_sitting

0

1000

2000

3000

4000

IPAQ Items

Fig. 4.5.: Initial physical activity (IPAQ) and quality of life (QLQ-C30) data for participants.

88 Chapter 4 ATOPE+Breast: Continuous Monitoring of Training Load in Pa-
tients with Breast Cancer during Therapeutic Exercise Interven-
tion



Tab. 4.3.: Training data, Fitbit steps, and Fitbit sleep stored in records.csv. The label
n.u. is for normalized units. Fitbit sleep data may be categorized in classic or
stages. Classic sleep data are retrieved from Fitbit API during the first days of
monitoring; once Fitbit has enough sleep, it infers sleep stages, replacing the
classic categories.

Variable Unit Type Description

study_day days int Study day.
session_type category string Type of training session or relevant event.
session_number session int Training session number.
training_borg points float Post-training BORG intensity.
swc_lnrmssd_ok bool True if LnRMSSD inside SWC thresholds.
cv_lnrmssd_ok bool True if CV below defined threshold.
swc_lnrmssd n.u. float Normalized SWC of the LnRMSSD.
cv_lnrmssd % float Coefficient of variation of the LnRMSSD.
sleep_asleep seconds int Asleep sleep time (classic).
sleep_awake seconds int Awake sleep time (classic).
sleep_restless seconds int Restless sleep time (classic).
sleep_deep seconds int Deep sleep time (stages).
sleep_light seconds int Light sleep time (stages).
sleep_rem seconds int REM sleep time (stages).
sleep_unknown seconds int Unknown sleep time (stages).
sleep_wake seconds int Wake sleep time (stages).
sleep_total seconds int Total sleep time.
steps_sedentary steps int Sedentary steps.
steps_light steps int Light-intensity steps.
steps_moderate steps int Moderate-intensity steps.
steps_vigorous steps int Vigorous-intensity steps.
steps_total steps int Total steps.

Tab. 4.4.: Fitbit physical activity data by intensity level (light, moderate, sedentary, vigorous)
and in total in fitbit_activity.csv.

Variable Unit Type Description

intensity category string Level of intensity detected.
steps steps int Number of steps detected.
mets METs float Number of METs inferred.
calories cal float Number of calories inferred.
activity_time seconds int Time in each intensity level.
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Fig. 4.6.: Description of HRV data.
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Fig. 4.7.: Description of self-reported wellness and Fitbit data.
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Fig. 4.8.: Description of Fitbit activity data by intensity level.

4.3.3 Longitudinal Analysis

The dataset provides means for individual longitudinal visualizations. Figure 4.9
draws an example for patient AT86. The remaining figures are attached as supple-
mentary material in Appendix B.

4.4 Limitations and Future Work

The first limitation of the ATOPE+Breast dataset is the restricted sample size, out of
which only preliminary results may be drawn. The COVID-19 restrictions impeded
a faster recruitment of patients in the past two years. Future versions of the
ATOPE+Dataset will extend the sample with data from more patients as the ATOPE
trial continues. Second, the interpretation of the SWC used to decide the intensity
of exercise recommendations is slightly different from the SWC methods found in
sport. Future work will assess the validity of such SWC interpretation when the
ATOPE trial is finished and post-intervention results are available.
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Fig. 4.9.: Longitudinal visualization of selected data for AT86.
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A Clustering Approach to
Assess Training Needs in
Patients with Breast Cancer

5

Preceding Note

This chapter aims to contribute with a novel approach to assess training needs in
patients with breast cancer by leveraging data science and AI algorithms. Despite
the possibilities of these tools, and in order to ensure their reliability and high
quality, the nature of unsupervised learning algorithms (e.g., clustering) requires
results to be contrasted by experts with their finest interpretation and discussion.
Therefore, the crafting and interpretation of the results presented in this chapter
were conducted along with Irene Cantarero-Villanueva (PhD), Paula Postigo-Martín
(MSc), and Manuel Arroyo-Morales (PhD, MD), all of them experts in therapeutic
exercise in patients with cancer, and with affiliation to the Department of Physical
Therapy and the Unit of Excellence on Exercise and Health (UCEES) in the University
of Granada.

All the results can be run with the code available in GitHub (https://github.com/
salvador-moreno/atope-breast-clustering-analysis).

5.1 Introduction

Machine learning (ML) algorithms have provided numerous advances in precision
medicine. ML is a subset of artificial intelligence that enables the building of models
based on sample data (or training data) in order to make predictions or assist in
decisions. For instance, ML has provided means to predict severity symptoms in
patients with cancer out of context-monitoring data (Carissa A. Low et al., 2017;
Carissa A. Low et al., 2021); to enhance tumor diagnostic capabilities through
automatic image analysis (D’Amore, Smolinski-Zhao, Daye, & Uppot, 2021); or to
remotely monitor and diagnose chronic conditions (Castelyn, Laranjo, Schreier, &
Gallego, 2021).
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Fig. 5.1.: Supervised vs. unsupervised learning. In this example, the objective of the su-
pervised learning algorithm is to build a model able to discern between the data
points manually labeled as circles and crosses. For that, the model computes a
boundary in the space domain of the input variables. Conversely, the unsuper-
vised learning algorithm seeks for non-described patterns in the data, namely,
sufficiently separated groups of data to be considerate separate clusters. (source:
https://tinyurl.com/2w5f24ak).

Supervised and unsupervised learning are the most common approaches to leverage
ML algorithms. Supervised learning trains a model with a training set of data
that assigns a specific set of inputs to the desired output to predict or classify. For
instance, an ML algorithm may be trained to find if a magnetic resonance image
(MRI) contains a tumor when trained with a sufficient number of MRI labeled with
tumors and their locations. In other words, in a supervised learning approach, an ML
model is explicitly told what to learn out of a specific set of data. This output may be
a continuous variable (a regression problem) or a categorical variable with a fixed
number of labels (a classification problem). Logistic regression, decision-tree-based,
support vector machine (SVM), and deep learning algorithms are ML algorithms
typically used for supervised learning.

Conversely, unsupervised learning algorithms provide a more exploratory approach.
Unsupervised learning seeks for patterns, structures, or clusters among the input
data, without any explicit target or indication besides the configuration of the
algorithm used and the codification of input data. Association rules, clustering
techniques, and dimensionality reduction (e.g., principal component analysis) are
typical examples of unsupervised learning algorithms. Figure 5.1 provides a visual
example of supervised vs. unsupervised learning.

The evolution of training load parameters (like the LnRMSSD) during training
adaptation has been widely studied in professional athletes (Plews et al., 2012;
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Plews et al., 2013; Buchheit, 2014; Javaloyes et al., 2019). Nevertheless, little is
known about the training adaptation process in patients with breast cancer while
undergoing a therapeutic exercise intervention (Carter et al., 2021). The objective
of this chapter was to analyze the data presented in the previous chapter with an
unsupervised learning approach in order to seek for training adaptation patterns
during an exercise intervention in patients with cancer. Specifically, this chapter uses
a clustering approach to find different profiles training adaptation out of the most
features found in the dataset.

This chapter is structured as follows. Section 5.2 describes the methods used
for analyzing the ATOPE+Breast dataset. Next, section 5.3 reports the results
delivered by data cleaning, feature selection, and clustering analysis processes.
Finally, section 5.4 discusses the principal findings, practical implications, and
outlook.

5.2 Materials and Methods

5.2.1 ATOPE+Breast Dataset

The data analyzed was the ATOPE+Breast dataset, described in Chapter 4. Specifi-
cally, the analysis focused on 681 instances containing complete HRV measurements
and self-reported wellness from 23 patients. In addition, part of the analysis fo-
cused on 488 measures containing Fitbit steps for the previous day and on 328
measures also including both Fitbit steps and sleep. The analysis was preceded by
data cleaning and preprocessing methods described in subsection 5.2.3.

5.2.2 Clustering Algorithms

Data clustering is the unsupervised classification of samples into groups. In other
words, clustering algorithms provide a means to group similar samples into one
group called cluster. Each cluster has a maximum within-cluster similarity and a
minimum between cluster similarity based on certain indexes that depend on the
algorithms used (Saxena et al., 2017).

In order to allow the clustering algorithms to identify relevant clusters correctly, two
basic principles must be taken into account. First, the clustering algorithm must
be selected according to the nature of the data used (e.g., integer/float numbers,
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categorical variables, images), the relationship among clusters desired (i.e., parti-
tional or hierarchical), and how the data may be distributed among the clusters
(e.g., into small/big clusters, different geometries, dense/sparse clusters, or a com-
bination of such conditions). Second, finding clusters in high-dimensional spaces
(i.e., with several features) is computationally expensive and may degrade learning
performance. Therefore, a feature selection process should precede the training of
clustering models. Moreover, although data-driven methods may select the features
feeding the clustering algorithm (e.g., maximum correlation), it is highly advisable
to include expert knowledge in the process —especially in health applications— to
enable meaningful discussions and interpretations of the results achieved (Alelyani,
Tang, & Liu, 2018). Both approaches were combined into the feature selection
process of the data used.

For clustering analysis, the general-purpose K-means clustering algorithm (Saxena
et al., 2017) was used. The centroid initialization algorithms k-means++ was used
to ensure the best centroid initialization for clustering (Arthur & Vassilvitskii, 2007).
Clustering algorithms were run using scikit-sklearn (0.24.2) over Python 3.6.9.

K-Means Clustering

The K-Means algorithm is the most known and benchmarked clustering algorithm
available (Saxena et al., 2017) to explore groups of data in a given dataset automat-
ically. The K-Means algorithm clusters the data by separating samples in k groups of
equal variance by minimizing a criterion known as the inertia or within-cluster sum-
of-squares (described below). Although K-Means requires the number of clusters k
to be manually specified, it scales well to a large number of samples and has been
used in a wide range of application areas in several fields.

Let xi be any observation in X ⊂ Rm,m ∈ N, with i ∈ [1, n], n ∈ N; and µj the
centroids of clusters C ⊂ Rm, with j ∈ [1, k], k ≤ n. The K-Means algorithm divides
the set of n observations of X into k disjoint clusters. Each one of these clusters is
described by the mean of the samples (µj) conforming the cluster. These means
are called centroids. Usually, these centroids are not present in X, although they
share the same space. A flow diagram of the K-Means algorithm is pictured in
Figure 5.2. The K-means algorithm aims to choose centroids that minimize the
inertia, or within-cluster sum-of-squares criterion

n∑
i=1

min
µj∈C

(||xi − µj ||2) (5.1)
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Inertia is commonly interpreted as a measure of how internally coherent clusters are.
However, it suffers from some drawbacks. First, inertia assumes that clusters are
convex and isotropic, therefore this measure responds poorly to elongated clusters
or manifolds with irregular shapes. The methods described in the next section aim
to lower the effect of this limitation. Second, inertia is not a normalized metric.
Lower inertia values are better, with zero being optimal, but inertia does not allow
comparison when using different datasets or even different feature sets.

5.2.3 Data Cleaning and Preprocessing

According to the No Free Lunch concept (Wolpert & Macready, 1997), no algorithm
can be good under all circumstances. Each algorithm has its merit under some
specific data natures but fails on others. K-means uses distance-based measurements
to determine the similarity between data points; therefore, in order to avoid intro-
ducing noise and skew into the clustering process, the data input needs to be as
clean as possible.

K-means is very sensitive to outliers and noisy data; hence the first step for cleaning
was to remove outliers. This step is crucial since extreme outliers may impact
centroid calculation and cluster shapes. The detection of outliers was done using
interquartile range (IQR) for univariate distributions. Let x ∈ X ⊂ R, where X is
one of the continuous variables of the dataset:

outlier(x) =


True, if x > Q3(X) + 1.5 · IQR(X)

True, if x < Q1(X)− 1.5 · IQR(X)

False, otherwise

(5.2)

Choose number of
cluster K

Compute 
centroids

Compute datapoint
distances to centroids

Group datapoints
based on minimum

distance

Can centroids  
change?

Yes

No

EndStart

Fig. 5.2.: Flow diagram of the K-Means algorithm.
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where Q1 and Q3 are the first and third quartile functions, and IQR is the interquar-
tile range function, IQR(X) = Q3(X)−Q1(X).

Outliers were replaced with a k-nearest-neighbors (KNN) model (Aggarwal, 2015).
KNN algorithm looks for similar instances within the dataset to infer a new value to
replace the outliers.

To further help find isometric clusters, data were transformed into normal-like distri-
butions using logarithmic and power operations for left-skewed and right-skewed
distributions, respectively. Skewness thresholds greater than 1 and lower than −1
were set to determine if transformations were needed (Gravetter & Wallnau, 2014).
These transformations resulted in more isometric distributions, with more symme-
try around the means. Moreover, since IQR outlier detection assumes normality
of the distribution, these transformations were done before outlier detection and
replacement.

In order to assign the same importance to all variables during the computing of
distances, we standardized the data by removing the mean and scaling to unit
variance (also known as z-score normalization). Let x be an observation in X ⊂ R,
where X is one of the continuous variables of the dataset, and µ, σ the mean and
variance functions, respectively:

z(x) = x− µ(X)
σ(X) (5.3)

Finally, variance and correlation analysis were used for feature selection. A maximum
variance threshold was defined in order to ensure a variable could provide enough
information to the algorithm. Let x be an observation in X ⊂ R, where X is one of
the continuous variables of the dataset, and p ∈ [0, 1]:

V ar(X) = p(1− p) (5.4)

Variance threshold was set for p=0.8, which, broadly, means that at least 20%
of the observations in X should differ enough from the remaining 80%. Those
who did not meet the criteria were removed. Highly correlated variables (r > 0.8)
were also discarded in order to feed the clustering algorithm with the least amount
of redundant information. Gold-standard variables for training conditioning like
LnRMSSD were selected over the rest when removing highly correlated variables.

Data cleaning involved interpreting missing data and zeroes, further explained in
the results section for each variable assessed. Data cleaning and preprocessing used
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pandas (1.1.5) and numpy (1.19.5) over Python 3.6.9. Visualizations were made
with matplotlib (3.3.4), pandas (1.1.5), and seaborn (0.11.2).

5.2.4 Clustering Validation

The formation of clusters is important, but it is also necessary to assess their quality
and validity. Several evaluation criteria have been developed (Saxena et al., 2017;
Aggarwal, 2015), all of them falling into internal and external validation criteria,
depending on the reference taken.

Internal validation criteria examine the clustering structure directly from the orig-
inal data, not taking into account any prior knowledge. These methods are very
dependent on the clustering algorithms used. Nevertheless, most of them are based
on the concept of testing how similar are the objects conforming a cluster and how
different and distanced those clusters are. Conversely, external validation criteria
are based on some pre-defined structure, knowledge, or ground truth about the data,
hence requiring interpretation to validate them.

For this analysis, the internal validation criteria used was the silhouette score
(Rousseeuw, 1987) to measure the coherence of the clusters found. The silhouette
coefficient is an internal clustering quality method that measures how similar an
object is to their own cluster compared to other clusters. Silhouette coefficient ranges
from –1 to +1. The higher (positive) the value, the better the objects are matched
to its own cluster; lower (negative) values indicate wrong clustering. Nonetheless,
despite finding a high value of silhouette score for a determined number of clusters,
post-hoc analysis is required to determine its accuracy when representing the reality
of the problem addressed. Silhouette coefficient may be calculated with any distance
metric like Euclidean or Manhattan distance. The results presented used Euclidean
distance.

External validation relied primarily on analyzing the feature values displayed in the
clusters against the state of the art in the Discussion (section 5.4). Nevertheless,
the different clustering results for HRV and Wellness were compared with confusion
matrices to assess their coherence. The comparison among clusters with a confusion
matrix (Aggarwal, 2015) involved comparing clustering applied to HRV, baseline
wellness, and z-scored wellness separately, along with the interpretation of the
feature values displayed for every cluster.
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5.2.5 Feature Importance Analysis for Clustering

Clustering models assign objects to a cluster based on its distance to the centroids of
the clusters. All the features participate in this process; however, it is often difficult
to assess which features are the most relevant to assign an object to a cluster. The
most common approach is to use supervised learning with the results obtained after
clustering, as shown in Figure 5.3. After training a clustering model with the data,
the resulting dataset contains all entries labeled with the cluster assigned to each
object. These labels may be used as a target to learn for a supervised learning
algorithm (e.g., linear regression, random forests, support vector machines). This
approach enables the analysis of feature importance for the classification model
trained.

For this analysis, and for the sake of interpretability, feature importance analysis used
random forests with bootstrapping as classifiers to train the models. Classifiers were
trained with 5-Fold Cross-Validation. Finally, feature importance was assessed by
accounting which features provided the highest reduction of Gini impurity (Aggarwal,
2015).

Training Supervised Classification Models

Random forests are a combination of decision tree classifiers in which randomness
has explicitly been inserted into the building process of each decision tree. Random
forests are done by selecting different variables and bootstrapping the dataset at the
moment of building each one of the trees composing the model. These mechanisms
ensure a low correlation between the different decision trees conforming the model,
hence making random forests robust to errors, outliers, and overfitting (Aggarwal,

K-Fold Validation

Unsupervised

K-Means

1

Supervised

Classifier Feature 
Importance  

Clustering

Labels

3
2

2

1

Data

Fig. 5.3.: Feature importance analysis of clustering results with a supervised approach.
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2015). Once the random forest model is built, predictions are computed as the mode
of the outputs delivered by every decision tree.

Decision-tress predict the value of a target variable by learning linear rules inferred
from the data features. The combination of multiple decision trees into a random
forest enables non-linear combinations of the variables used to predict the target.

To ensure the robustness of feature importance analysis, 5-Fold Cross-Validation
(CV) was used to train the supervised classifier. CV divides the dataset into N-1 parts
for training the model and 1 for testing, using all data points for testing at least once.
The CV process used in this analysis used N=5, thus dividing the dataset into 5
folds. Weighted F1-score was used to optimize and assess the quality of classification
results in each iteration. F1-score is the harmonic mean of precision ( TP

TP+FP , where
TP is for true positive, and FP is for false positive) and recall ( TP

TP+FN , where FN
is for false negative):

F1 score = 2
( 1
precission

+ 1
recall

)−1
= 2 precission · recall

precission+ recall
(5.5)

Weighted F1-score computed a total score by weighting the F1-scores of every
class with its number of instances relative to the total amount of data, which is
recommended when classes are imbalanced.

Assessing Feature Importance

In each split of the trees conforming the Random Forests, the chosen features are
the ones that maximize the reduction of pre-defined error criteria, such as Gini
Impurity or Entropy (Aggarwal, 2015). This selection process ranks the features
according to the reduction of error achieved in each split for every decision tree
while building the model. Finally, in order to find the importance of each feature,
this metric is averaged across all decision trees in the model. The analysis presented
in this chapter used Gini Impurity.

Linear support vector machines (SVM) were also used to contrast unexpected feature
analysis results (Aggarwal, 2015). Linear SVM can be used as classifiers dividing the
search space with a linear kernel. The coefficients resulting from the training process
indicate how much relevance each feature has to determine the mathematical space
in which the cluster classes are contained.
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5.3 Results

All the results presented can be drawn with the code published in GitHub (https:
//github.com/salvador-moreno/atope-breast-clustering-analysis).

5.3.1 Data Cleaning and Preprocessing

Skewness was calculated for all ATOPE+ variables, shown in Table 5.1, and visually
inspected in order to decide transformations. A summary of the outlier detection and
replacement process is described in Table 5.2. The following subsections describe in
detail the cleaning process followed for HRV, wellness, and Fitbit data.

Tab. 5.1.: Skewness for HRV, wellness, and Fitbit variables. Values with absolute value
higher than 1 are marked in bold.

Skewness Skewness

lnrmssd –0.26 pnni_50 1.09
lnrmssd_ref_mean –0.19 range_nni 2.14
lnrmssd_ref_std 1.42 ratio_sd2_sd1 1.62
swc_lnrmssd –0.23 sd1 1.79
cv_lnrmssd 1.14 sd2 1.93
sdnn 1.88 std_hr 3.76
sdsd 1.79 total_power 7.69
cvnni 2.74 vlf 5.75
cvsd 2.41 sleep_satisfaction -0.22
hf 6.95 sleep_time -0.10
hfnu 0.60 distress 1.03
lf 8.58 recovery 0.24
lf_hf_ratio 1.73 fatigue -0.44
lfnu –0.60 steps_light_yesterday 0.26
max_hr 2.66 steps_moderate_yesterday 1.37
mean_hr 0.64 steps_total_yesterday 0.28
mean_nni 0.39 steps_vigorous_yesterday 1.20
median_nni 0.37 sleep_deep 0.00
min_hr 0.43 sleep_light 0.13
nni_20 –0.35 sleep_rem -0.06
nni_50 0.95 sleep_wake 0.49
pnni_20 –0.21 sleep_total 0.19
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Tab. 5.2.: Summary of outliers detected and replaced (absolute and percentage) for HRV,
wellness, and Fitbit variables.

Outliers % Outliers %

lnrmssd 3 0.44 pnni_50 9 1.32
lnrmssd_ref_mean 0 0.00 range_nni 9 1.32
lnrmssd_ref_std 26 3.82 ratio_sd2_sd1 3 0.44
swc_lnrmssd 33 4.85 sd1 3 0.44
cv_lnrmssd 0 0.00 sd2 6 0.88
sdnn 3 0.44 std_hr 19 2.79
sdsd 3 0.44 total_power 6 0.88
cvnni 8 1.17 vlf 14 2.06
cvsd 5 0.73 sleep_satisfaction 6 0.88
hf 1 0.15 sleep_time 4 0.59
hfnu 4 0.59 distress 33 4.85
lf 9 1.32 recovery 15 2.20
lf_hf_ratio 3 0.44 fatigue 5 0.73
lfnu 0 0.00 sleep_deep 3 0.44
max_hr 50 7.34 sleep_light 7 1.03
mean_hr 17 2.50 sleep_rem 0 0.00
mean_nni 10 1.47 sleep_wake 12 1.76
median_nni 12 1.76 sleep_total 16 2.35
min_hr 8 1.17 steps_light_yesterday 29 4.26
nni_20 0 0.00 steps_moderate_yesterday 4 0.59
nni_50 4 0.59 steps_total_yesterday 14 2.06
pnni_20 0 0.00 steps_vigorous_yesterday 21 3.08

HRV

Skewness was computed for HRV variables (Table 5.1) and visually inspected
with Figure 4.6. The variables cv_lnrmssd, sdnn, sdsd, cvnni, cvsd, hf, lf,
lf_hf_ratio, range_nni, ratio_sd2_sd1, sd1, sd2, std_hr, total_power,
vlf, and lfnu were selected for its transformation using logarithmic and square
transformations (square only used for lfnu). Transformed HRV variables are shown
in Figure 5.4. All variables except (cv_lnrmssd and swc_lnrmssd) were then in-
spected for outliers with IQR, and replaced using KNN (example shown in Figure 5.5,
results in Table 5.2).

Since cv_lnrmssd and swc_lnrmssd were extracted from multiple lnrmssd values
(time-dependent), KNN outlier replacement did not provide good results. Hence,
cv_lnrmssd was only transformed, and its outliers were not removed nor replaced
due to its dependency with lnrmssd. For swc_lnrmssd, it was not transformed due
to its low skew, and its outliers were detected using IQR. Instead of using KNN
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Fig. 5.4.: Transformed HRV variables.

for replacement, outliers were replaced with uniformly-distributed random values
between 1x and 1.5x times the IQR distance below Q1, for lower values, and over
Q3, for higher values (shown in Figure 5.6, results in Table 5.2).

Wellness

Skewness was calculated for wellness (Table 5.1) and visually inspected in Figure 4.7.
Only distress presented high skewness and needed transformation. An anchoring
effect was found for value 0 in distress and fatigue. In order to reduce the
amount of bias in the clustering algorithm, zero values were uniformly replaced with
uniformly-distributed random values within (0, 0.5]. The transformation and outlier
replacement of distress is shown in Figure 5.7. The results for outlier detection
and replacement are in Table 5.2.

Due to the subjective nature of perceived wellness, the distributions of self-reported
wellness were expected to vary among individuals. These differences may hinder
inter-individual comparisons and the extraction of generalized results. Thus, in

106 Chapter 5 A Clustering Approach to Assess Training Needs in Patients with
Breast Cancer



Fig. 5.5.: Outlier detection, removal, and imputation for max_hr.

Fig. 5.6.: Outlier detection, removal, and imputation for swc_lnrmssd.

order to allow the search of comparative experiences among participants, we added
individually z-scored wellness variables to our dataset (Figure 5.8), named adding
“_zscored” at the end (e.g., recovery_zscored).
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Fitbit Steps and Sleep

Fitbit steps variables were first shifted in date to align with the steps done the
previous day (hence variables were renamed adding “_yesterday” in the end; e.g.,
steps_vigorous_yesterday). This change was made since the steps data available
at the moment of HRV and wellness recordings were gathered the previous day.
Fitbit sleep classic variables were removed from cleaning and analysis due to its high
number of missing data. The reason for this is that the Fitbit API only provides such
sleep classification during the first nights of sleeping (e.g., 4 nights); then, once their
algorithm has sufficient data, it provides the more detailed stages labels.

For sleep, a high number of instances had value 0 for sleep_deep (70), sleep_light
(65), sleep_rem (68), and sleep_wake (67). Entries with sleep_total or sleep_light
equal to zero were discarded for analysis with Fitbit data. Zero values for sleep_deep,
sleep_rem, and sleep_wake were replaced by NA to avoid skewing the clustering
algorithm.

For steps, a high number of instances also had zero values for steps_light_yesterday
(229), steps_moderate_yesterday (409), steps_total_yesterday (204), and
steps_vigorous_yesterday (461). Entries with steps_total_yesterday equal to
zero were discarded from analysis with Fitbit data; for the rest, zero values were
replaced with NA.

Fig. 5.7.: Outlier detection, removal, and imputation for distress after logarithmic trans-
formation.
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Fig. 5.8.: Raw and z-score normalization of wellness variables. Both versions of are pre-
served for the analysis.

Skewness was calculated for Fitbit steps and sleep variables (Table 5.1) and visu-
ally inspected against Figure 4.7. The variables steps_vigorous_yesterday and
steps_moderate_yesterday were selected to be transformed with a logarithm.
Outliers were detected with IQR and replaced with KNN for all Fitbit variables, a
summary of it is described in Table 5.2.
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Fig. 5.9.: Correlation matrix after feature selection.

5.3.2 Feature Selection

Variance and correlation analysis provided the first step for feature selection. For
correlation analysis, lnrmssd was used as reference for the rest of features since it is
the gold standard to measure training adaptation.

Variance analysis discarded cv_lnrmssd_ok, lnrmssd_ref_std, ratio_sd2_sd1.
Correlation analysis discarded several variables. Fifteen features were discarded due
to its high correlation (> 0.8) with lnrmssd: sdnn, sdsd, cvsd, hf, lf, min_hr,
nni_20, nni_50, pnni_20, pnni_50, range_nni, sd1, sd2, total_power and
lnrmssd_ref_mean. Two features were discarded due to its high correlation with
cvnni: vlf and std_hr. Two features were discarded due to its high correlation
with lf_hf_ratio: hfnu and lfnu. Two features were discarded due to its high
correlation with mean_hr: mean_nni and median_nni. The resulting features and its
correlation matrix are shown in Figure 5.9.
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5.3.3 Classic Clustering

This subsection describes the different clustering experiments run, the hypothesis on
which each experiment is based, the interpretations of the results, and its limitations.
The objective is to find groups of measures that may define the intervention process
across time. In other words, the target is to find groups of training load measures
indicating how are patients coping with training adaptation at the moment of
the measure, and how prepared are they for a new training session on that day.
This may be done by taking into account how variables describe patients’ status.
Some variables refer to the state of the patient at the moment of measurement
(e.g., lnrmssd, lf_hf_ratio, cvnni, recovery, distress), whereas some others
reflect an evolution of these parameters in time (swc_lnrmssd, cv_lnrmssd), and
to the overall status of the patient mean_hr, max_hr.

To avoid skewing the algorithm with the accumulated effect of the intervention
in the patients, the experiments avoided to include any temporal reference to
the data (study_day) and any reference to the treatment received by the pa-
tients (treatment, session_type), as well as any other condition gathered in
demographics.csv.

Classic clustering experiments were labeled as CXX-K, being XX the number of the
clustering experiment, and K the number of clusters set for training. Besides, all the
data fed to the algorithms was normalized with z-score normalization.

C01. All features: HRV, Wellness, and Fitbit

Experiment C01 tests if all features may be valuable to clustering when used at
the same time. The results for 3 clusters (C01-3) are presented in the following
(Figure 5.10). However, since 2 to 5 clusters were tested, the results are detailed in
Appendix C, section C.1.

Three clusters (C01-3) were representative of the limitations of this first clustering ex-
periment (Figure 5.10). At first sight, features like sleep_satisfaction, distress,
recovery, fatigue, cv_lnrmssd, lnrmssd, cvnni, steps_total_yesterday, and
sleep_total are of clear importance to separate the measures in 3 clusters. More-
over, checking how clustering labels are heterogeneously distributed by patient,
clusters may not be clearly assessing changes during the intervention, but rather
profiling types of patients. For instance, cluster 1 is mainly associated with measures
of AT59, AT73, and AT85.
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Fig. 5.10.: K-Means clustering experiment C01-3.

This result is replicated for clusters 0 and 2, and it is unlikely that most of patients
were so adhered to just one profile during the entire intervention (e.g. the lnrmssd
may start high, but it may also decrease with exercise, then go up again in the end).
For instance, patients AT75, AT76, and AT101 were mainly associated with cluster 0;
and patients AT62, AT65, and AT86 with cluster 2.

Another limitation is that the inclusion of all variables previously selected (HRV,
wellness, and Fitbit steps and sleep) restricted the data sample to 328 measures. The
intersection of HRV and self-reported wellness with Fitbit data limits this approach.
Since HRV measures are the ones better able to reflect training adaptations, the next
approach discards the use of Fitbit data.
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C02. HRV and Wellness

Experiment C02 aimed to overcome the limitations posed by the restricted data
sample in C01. This was done by removing Fitbit features, hence raising the data
sample to 681 measures (almost twice than for C01). The focus was shifted to
the analysis of HRV and Wellness variables, both typically used to monitor training
adaptation. Two to five clusters were tested. The results are pictured in detail in
Appendix C, section C.2.

As well as for C01, the clustering results for 3 clusters (Figure 5.11) may be repre-
sentative of the C02 approach. However, in this case, the relevance of each variable
is not as clear to the eye. Therefore, a feature importance analysis is shown in
Table 5.3.

Although all variable presented more separation for every cluster compared to C01-3,
the distribution of labels was still very skewed by participant. For instance, label
1, which may be associated to bad training adaptation (i.e., low lnrmssd, high
cv_lnrmssd, low recovery, low sleep_satisfaction), was almost exclusive of
participants AT65, AT86 and AT102.

Feature importance was analyzed with random forests classifiers in 5-Fold CV
with a weighted F1-core of 86.96%. The top six most relevant features were
mean_hr, recovery, fatigue, lnrmssd, sleep_satisfaction, and distress. The
self-reported wellness in this top gathered 42.42% of importance, whereas all the
z-scored wellness features only 13.22%.

Checking how raw wellness features are distributed across participants (Figure 5.8),
it is clear that every participant perceives their wellness in way different forms, with
different ranges and different mean values. This may compromise the clustering
results, since the algorithm is getting its main skew from the patients’ perception
of training adaptation, instead of their physiological training adaptation. This is
why a patient like AT59 was assigned the cluster label with better wellness (e.g.,
high recovery) and HRV features (e.g., low cv_lnrmssd, high lnrmssd) in C01 and
C02.
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Fig. 5.11.: K-Means clustering experiment C02-3.

Tab. 5.3.: Feature importance for K-Means clustering experiment C02-3.

feature importance (%)
CV1 CV2 CV3 CV4 CV5 Mean

cv_lnrmssd 4.72 6.98 3.31 5.58 6.25 5.37
swc_lnrmssd 0.84 1.05 0.90 0.91 0.79 0.90
lnrmssd 13.03 12.76 11.13 13.95 14.34 13.04
cvnni 1.39 1.03 0.81 1.21 1.45 1.18
lf_hf_ratio 2.41 1.60 2.28 2.24 1.92 2.09
max_hr 4.73 4.59 5.72 2.98 4.40 4.48
mean_hr 15.48 13.66 13.83 16.58 13.87 14.68
sleep_satisfaction 10.59 7.31 7.49 9.61 9.82 8.96
sleep_time 2.56 2.32 3.20 2.54 2.45 2.61
distress 7.93 8.18 8.32 6.50 8.10 7.81
recovery 12.96 14.72 11.58 12.81 12.40 12.89
fatigue 10.39 15.13 13.97 11.31 12.99 12.76
sleep_satisfaction_zscored 2.56 2.77 3.01 2.36 2.73 2.68
sleep_time_zscored 0.62 0.75 0.39 0.79 0.48 0.60
distress_zscored 1.11 0.96 1.54 1.46 1.16 1.25
recovery_zscored 1.90 2.34 2.13 2.94 1.24 2.11
fatigue_zscored 6.77 3.86 10.39 6.24 5.64 6.58
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5.3.4 Layered Clustering

The previous clustering experiments revealed skew problems due to the nature of
self-reports. To overcome this limitation, this section describes a layered clustering
approach in which each layer matches a dimension of patients’ health. The layers are
physiological status (L01) for HRV features, baseline perceived-wellness status (L02)
for raw wellness features, and relative perceived-wellness status (L03) for normalized
wellness. Fitbit steps and sleep were discarded from these analysis due to the
reduced sample found that joins HRV and well measures (328 measures with Fitbit
data, 681 measures without Fitbit data).

Clustering experiments were labeled as LXXY-K, with XX referring to the layer
number or health dimension (e.g., L01 for physiological status), Y being an A–Z
letter indicating the iteration in feature selection, and K pointing out the number of
clusters found.

The selection of the final K for each experiment was done checking silhouette
coefficients and making interpretations of the clusters found. Although a higher
silhouette score represents a better structured clustering, it does not necessarily
mean a better representation of the reality. That is why all the selected results are
complemented with its interpretation.

L01. Physiological Status

Assessing the physiological status is essential to understand the patient’s adaptation
to training during exercise intervention. For this purpose, HRV features pose the
best option. Different combinations of HRV features are described in the following
feature selection process combined with the interpretation of the results.

A trade-off analysis comparing silhouette scores (Table C.3, Table C.5, and Table C.7
in Appendix C) and interpretations against the state of the art with different values
of k (2 to 5) for the following experiments resulted in choosing 4 clusters for L01.

Graphic descriptions of the three clustering approaches for L01 with k = 4 clusters
are displayed in Figures 5.12, 5.13, and 5.14. Their respective feature importance
analysis are detailed in Tables 5.4, 5.5, and 5.6. Their numerical description are
detailed in Tables C.4, C.6, and C.8.

The legend for interpretations is ↑ for high values, ↓ for lower values, ∼ for inter-
mediate values, and l to indicate wide distributions (prone overlapping with other
clusters).
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L01A. All HRV features. The clustering results for L01A with 2 to 5 clusters are
detailed in Appendix C, section C.3. The results with 4 clusters are representative
of the possibilities of this approach (Figure 5.12). Cluster labels are balanced, and
its distribution across participants is not as skewed as in previous experiments. An
interpretation of the clusters is presented in the following:

Cluster 0 (R↓). Regular-to-bad overall status (↓ lnrmssd, ↓ cvnni, ↓ max_hr, ↓
mean_hr) with recent (↓l cv_lnrmssd) physiological stress (↓ swc_lnrmssd,
∼l lf_hf_ratio)

Cluster 1 (G). Good overall status (↑↑ lnrmssd, ↑ cvnni, ↓ max_hr, ↓ mean_hr)
recently (↓l cv_lnrmssd) recovering from physiological stress (↑ swc_lnrmssd,
↓ lf_hf_ratio)

Cluster 2 (B). Bad overall status (↓↓ lnrmssd, ↓ cvnni, ↑ max_hr, ↑ mean_hr)
with accumulated (↑ cv_lnrmssd) and recent physiological stress (↓ swc_lnrmssd,
↑ lf_hf_ratio)

Cluster 3 (R↑). Regular-to-good overall status (↑↑ lnrmssd, ↑↑ cvnni, ↑ max_hr,
↑ mean_hr) without accumulated (↓ cv_lnrmssd) physiological stress and un-
certain recent stress (∼l swc_lnrmssd, ∼l lf_hf_ratio)
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Fig. 5.12.: K-Means clustering experiment L01A-4. A numerical description is in Table C.4.
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Tab. 5.4.: Feature importance for K-Means clustering experiment L01A-4.

Feature importance (%)
CV1 CV2 CV3 CV4 CV5 Mean

cv_lnrmssd 9.43 10.41 7.64 6.78 11.59 9.17
swc_lnrmssd 9.36 6.45 9.96 9.42 6.92 8.42
lnrmssd 24.72 24.40 21.38 24.85 24.22 23.91
cvnni 15.21 16.17 16.44 15.62 13.88 15.46
lf_hf_ratio 3.08 3.76 3.58 4.26 3.91 3.72
max_hr 22.53 23.69 24.90 24.72 25.54 24.28
mean_hr 15.67 15.12 16.10 14.34 13.95 15.04

Feature importance analysis (random forests mean weighted-F1-score 87.63%) in
Table 5.4 revealed that max_hr and mean_hr accumulated a 39.32% importance.
Such level of reliance may jeopardize the quality of the clusters, since both features,
measured in resting conditions, cannot assess acute training adaptation in the short
term (Buchheit, 2014; Plews et al., 2013; Shaffer & Ginsberg, 2017).

L01B. All HRV features except max_hr andmean_hr. The clustering results for L01B
with 2 to 5 clusters are detailed in Appendix C, section C.4. The results with 4 clusters
are representative of the possibilities of this approach, illustrated in Figure 5.13,
and numerically described in Appendix C, Table C.6. Clustering labels are balanced
and its distribution across participants seems less skewed compared to previous
experiments. Moreover, attending to the distribution of clusters, all features seem to
be contributing to the clustering. An interpretation of the clusters is presented in
the following:

Cluster 0 (G). Good overall status ( ↑↑ lnrmssd, ↑↑ cvnni), no accumulated physi-
ological stress (↓ cv_lnrmssd), and recent recovery from physiological stress
(↑↑ swc_lnrmssd, ∼l lf_hf_ratio)

Cluster 1 (B). Bad overall status ( ↓↓ lnrmssd, ↓ cvnni), accumulated (↑ cv_lnrmssd)
and recent physiological stress (↓ swc_lnrmssd, ↑↑ lf_hf_ratio)

Cluster 2 (R↑). Regular-to-good overall status ( ↑ lnrmssd, ↑ cvnni), no accumu-
lated (↓ cv_lnrmssd) but recently increased physiological stress (↓ swc_lnrmssd,
∼l lf_hf_ratio)

Cluster 3 (R↓). Regular-to-bad overall status ( ↓ lnrmssd, ↓ cvnni), accumu-
lated (↑ cv_lnrmssd) but low recent physiological stress (∼ swc_lnrmssd,
↓ lf_hf_ratio)
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Fig. 5.13.: K-Means clustering experiment L01B-4. A numerical description is in Table C.6.

Tab. 5.5.: Feature importance for K-Means clustering experiment L01B-4.

feature importance (%)
CV1 CV2 CV3 CV4 CV5 Mean

cv_lnrmssd 14.51 16.32 15.12 14.17 13.43 14.71
swc_lnrmssd 22.62 21.43 24.11 20.77 22.19 22.22
lnrmssd 24.01 26.85 23.68 26.07 25.15 25.15
cvnni 19.48 15.91 17.75 19.99 20.52 18.73
lf_hf_ratio 19.38 19.49 19.35 19.00 18.71 19.19

Feature importance analysis (random forests mean weighted-F1-score 88.92%)
detailed in Table 5.5 revealed that all features are making a balanced contribution to
the clustering, being lnrmssd the most relevant with 25.15% mean importance.

L01C. All HRV features except max_hr, mean_hr, and lf_hf_ratio. Due to controver-
sies on the use of lf_hf_ratio (Billman, 2013), this feature was removed for the
last version of L01. The clustering results for L01C with 2 to 5 clusters are detailed
in Appendix C, section C.5. The results with 4 clusters are representative of the
possibilities of this approach, illustrated in Figure 5.14, and numerically described in
Appendix C, Table C.8. Labels are balanced across the clustering, and its distribution
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Fig. 5.14.: K-Means clustering experiment L01C-4. A numerical description is in Table C.8.

across participants is not as skewed as in previous experiments. Moreover, attending
to the distribution of clusters, all variables seem to be contributing to the clustering.
An interpretation of the clusters is presented in the following:

Cluster 0 (R↓). Regular overall status (∼ lnrmssd, ∼ cvnni), no accumulated (↓
cv_lnrmssd) but recent physiological stress (↓ swc_lnrmssd)

Cluster 1 (G). Good overall status (↑ lnrmssd, ↑ cvnni), no accumulated physio-
logical stress (↓ cv_lnrmssd), and recovery from recent physiological stress (↑
swc_lnrmssd)

Cluster 2 (B). Bad overall status (↓ lnrmssd, ↓ cvnni) with accumulated (↑ cv_lnrmssd)
and recent physiological stress (↓ swc_lnrmssd)

Cluster 3 (R↑). Regular overall status (∼ lnrmssd, ∼ cvnni) with accumulated (↑
cv_lnrmssd) physiological stress but recent recovery (↑ swc_lnrmssd)

Feature importance analysis (random forests mean weighted-F1-score 87.48%)
detailed in Table 5.6 revealed that all features made a balanced contribution to the
clustering, being lnrmssd the most relevant with 25.15% mean importance.
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Tab. 5.6.: Feature importance for K-Means clustering experiment L01C-4.

feature importance (%)
CV1 CV2 CV3 CV4 CV5 Mean

cv_lnrmssd 19.39 23.93 22.16 21.23 19.14 21.17
swc_lnrmssd 26.98 26.36 27.47 25.97 25.64 26.49
lnrmssd 38.54 33.69 36.22 36.85 38.46 36.75
cvnni 15.08 16.02 14.16 15.94 16.76 15.59

L02. Baseline Wellness

The psychological status of patients may play an important role in their adherence
to a TE intervention. Raw wellness features pose a solution to identify the baseline
wellness status of patients. Different combinations of features are described in the
following feature selection process combined with their interpretation.

After interpreting the distribution of clusters for k = 2, 3, 4, 5 against the state of
the art, and comparing the silhouette scores obtained (Table C.9 and Table C.11
in Appendix C), clustering with k = 3 clusters was considered the best option for
L02. Graphic descriptions of the two clustering approaches for L02 are displayed in
Figures 5.15 and 5.16. Feature importance analysis are summarized in 5.7 and 5.9.
Numerical descriptions of the main clusters are detailed in Tables C.10 and C.12.

L02A. Raw wellness features. The clustering results for L02A with 2 to 5 clusters
are detailed in Appendix C, section C.6. The results with 3 clusters are representative
of the possibilities of this approach, illustrated in Figure 5.15, and numerically
described in Appendix C, Table C.10. Labels are balanced across the clustering labels,
but, as expected, its distribution among participants is skewed to their perception
levels. All variables seem to be contributing to the clustering, with the exception of
sleep_time, which may not be helping to differentiate label 1 from 2, and fatigue,
which may not be helping to differentiate label 0 from 2. An interpretation of the
clusters is presented in the following:

Cluster 0 (B). Bad wellness status (↓ sleep_satisfaction, ↓ sleep_time, ↑ distress,
↓ recovery, ↑ fatigue)

Cluster 1 (G). Good wellness status (↑ sleep_satisfaction, ∼l sleep_time, ↓
distress, ↑ recovery, ↓ fatigue)

Cluster 2 (R). Regular wellness status (∼ sleep_satisfaction, ↑ sleep_time,
∼l distress, ∼ recovery, ↑ fatigue)
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Fig. 5.15.: K-Means clustering experiment L02A-3. A numerical description is in Table C.10.

Tab. 5.7.: Feature importance for K-Means clustering experiment L02A-3.

Feature importance (%)
CV1 CV2 CV3 CV4 CV5 Mean

sleep_satisfaction 24.79 18.78 25.13 26.60 22.23 23.51
sleep_time 20.17 23.69 21.38 17.78 18.52 20.31
distress 8.00 8.01 7.06 7.29 9.54 7.98
recovery 19.74 19.90 17.97 19.36 21.65 19.72
fatigue 27.30 29.62 28.46 28.98 28.06 28.48

Feature importance analysis (random forests mean weighted-F1-score 89.88%) in
Table 5.7 revealed that all features made a balanced contribution to the clustering
except for distress.

Despite the high relevance reported for sleep_time in the feature analysis for
L02A-3, after a visual inspection of its distribution in clusters a second feature
importance analysis was performed. A secondary feature importance analysis based
on linear SVM (SVM mean weighted-F1-score 96.80%) in Table 5.8 indicated that the
relevance of distress may be higher. In addition, the overlapping of sleep_time
for cluster labels 1 and 2 suggest that it may not be relevant to distinguish good
from regular baseline wellness.
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Tab. 5.8.: Feature importance (Linear SVM) for K-Means clustering experiment L02A-3.

Feature importance (%)
CV1 CV2 CV3 CV4 CV5 Mean

sleep_satisfaction 23.95 21.58 23.55 25.11 23.44 23.53
sleep_time 17.22 16.20 16.63 16.32 17.35 16.74
distress 15.21 16.31 17.14 14.93 16.72 16.06
recovery 23.39 25.04 24.03 23.96 24.69 24.23
fatigue 20.23 20.87 18.64 19.68 17.80 19.44

L02B. Raw wellness features except sleep_time. The clustering results for L02B
with 2 to 5 clusters are detailed in Appendix C, section C.7. The results with 3 clusters
are representative of the possibilities of this approach, illustrated in Figure 5.16, and
numerically described in Appendix C, Table C.12. Labels are balanced across the
clustering labels, but, as expected, its distribution among participants is skewed to
their perception levels. All variables seem to be contributing to the clustering in a
balanced way. An interpretation of the clusters is presented in the following:
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Fig. 5.16.: K-Means clustering experiment L02B-3. A numerical description is in Table C.12.
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Tab. 5.9.: Feature importance for K-Means clustering experiment L02B-3.

Feature importance (%)
CV1 CV2 CV3 CV4 CV5 Mean

sleep_satisfaction 34.78 29.38 34.79 38.09 29.34 33.28
distress 10.11 11.52 15.35 9.23 11.59 11.56
recovery 24.86 28.77 20.09 19.68 26.72 24.02
fatigue 30.25 30.34 29.77 33.00 32.35 31.14

Cluster 0 (R). Regular wellness status (∼ sleep_satisfaction, ∼l distress, ∼
recovery, ↑ fatigue)

Cluster 1 (B). Bad wellness status (↓ sleep_satisfaction, ↑ distress, ↓ recovery,
↑ fatigue)

Cluster 2 (G). Good wellness status (↑ sleep_satisfaction, ↓ distress, ↑ recovery,
↓ fatigue)

Feature importance analysis (random forests mean weighted-F1-score 92.03%) in
Table 5.9 revealed that all features made a balanced contribution for the classifier.

L03. Relative Wellness

Normalized wellness features pose a solution to identify the wellness levels relative
to their baseline. The features selected for these layers are the same selected as
for L02 to allow coherent comparisons. Using k = 3 clusters allowed to find lower,
normal, and higher values than compared to baseline.

L03A. Normalized wellness features except sleep_time. The clustering results for
L03A with 2 to 5 clusters are detailed in Appendix C, section C.8. The results
with 3 clusters are representative of the possibilities of this approach, illustrated
in Figure 5.17, and numerically described in Appendix C, Table C.14. Labels are
balanced across the clustering labels, but, as expected, its distribution among
participants is skewed to their perception levels. All variables seem to be contributing
to the clustering in a balanced way. An interpretation of the clusters depicted in
Figure 5.17 is presented in the following:
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Fig. 5.17.: K-Means clustering experiment L03A-3. A numerical description is in Table C.14.

Cluster 0 (W). Worsened relative wellness status (↓ sleep_satisfaction_zscored,
↑distress_zscored, ↓ recovery_zscored, ↑ fatigue_zscored)

Cluster 1 (I). Improved relative wellness status (↑ sleep_satisfaction_zscored,
↓distress_zscored, ↑ recovery_zscored, ↓ fatigue_zscored)

Cluster 2 (M). Maintained relative wellness status (∼ sleep_satisfaction_zscored,
↑distress_zscored, ∼ recovery_zscored, ∼ fatigue_zscored)

Feature importance analysis (random forest mean weighted-F1-score 89.98%) in
Table 5.10 revealed that all features made a balanced contribution for the classifier.

Tab. 5.10.: Feature importance for K-Means clustering experiment L03A-3.

Feature importance (%)
CV1 CV2 CV3 CV4 CV5 Mean

sleep_satisfaction_zscored 29.30 30.57 28.82 26.00 27.50 28.44
distress_zscored 27.13 31.61 27.67 29.85 31.69 29.59
recovery_zscored 26.90 26.10 27.38 29.92 27.26 27.51
fatigue_zscored 16.68 11.71 16.13 14.22 13.55 14.46
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Clustering Coherence Among Layers

Looking for an internal validation of the clustering results, HRV, baseline wellness,
and relative wellness were paired into confusion matrices for its interpretation.
The confusion matrix for HRV and baseline wellness is in Table 5.11; for HRV and
normalized wellness in Table 5.12. The clustering results matched were L01C-4 for
HRV, L02B-3 for baseline wellness, and L03A-3 for relative wellness.

First, Table 5.11 showed that, HRV label 0 (regular status, recent physiological
stress) had higher coincidence (46.82%) with baseline wellness label 1 (bad wellness
status). Second, HRV label 1 (good status, positive adaptation to training) also
shared a high amount of instances (48.40%) with baseline wellness label 1 (bad
wellness status). Conversely, HRV label 2 (bad status, sustained physiological stress)
had the least amount of coincidence (8.49%) with baseline-wellness label 1 (bad
wellness status), having more presence with baseline-wellness label 0 (42.54%,
regular wellness status) and label 2 (48.98%, good wellness status). Finally, HRV
label 3 (regular status, positive adaptation to training) had the higher coincidence
with baseline-wellness label 2 (41.26%, good wellness status), followed by label 0
(34.16%, regular wellness status), and label 1 (24.58%, bad wellness status).

These results are not aligned with the typical expectations that would match good
(HRV label 1) or regular (HRV label 3) HRV profiles with the best wellness cluster
label (baseline wellness label 2).

The confusion matrix for HRV and relative wellness did not match that expectation
either (Table 5.11). In fact, the incidence of the three relative wellness clusters was
almost uniformly distributed (∼ 33%) across the four HRV labels.

This is a sign of how much skewness wellness variables can introduce in the analysis.
For the sake of exemplifying this result, the incidence of HRV label 2 (bad overall
status, accumulated physiological stress) is analyzed in the following. Despite HRV

Tab. 5.11.: Confusion matrix for HRV (L01C-4) and baseline wellness (L02B-3) clusters.
All values are expressed as percentage (%) of the total amount of instances for
each HRV label (i.e., the values in a row must sum 100%).

Label baseline wellness

Label HRV 0 (R) 1 (B) 2 (G)

0 (R↑) 26.44 46.82 26.74
1 (G) 31.59 48.40 20.01
2 (B) 42.54 8.49 48.98
3 (R↓) 34.16 24.58 41.26
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Tab. 5.12.: Confusion matrix for HRV (L01C-4) and normalized wellness (L03A-3) clusters.
All values are expressed as percentage (%) of the total amount of instances for
each HRV label (i.e., the values in a row must sum 100%).

Label normalized wellness

Label HRV 0 (W) 1 (I) 2 (M)

0 (R↑) 31.95 33.50 34.55
1 (G) 32.39 35.28 32.33
2 (B) 37.37 35.12 27.51
3 (R↓) 31.80 29.89 38.31

label 2 was distributed across all participants (Figure 5.14), the patients AT86, AT65,
and AT102 recorded its highest incidence, in this order. These patients were very
different among them.

AT86 was a patient undergoing chemotherapy, with vigorous physical activity levels,
QLQ-C30 global health score of 75%, and low adherence to the protocol (5 training
sessions, BORG intensity 6.20± 0.44).

AT65 was a patient undergoing chemotherapy, with low physical activity levels,
QLQ-C30 global health score of 16.67%, and medium adherence to the protocol (12
sessions, BORG intensity 6.42± 0.80).

AT102 was a patient undergoing chemotherapy, with moderate levels of physical
activity, a QLQC30 global health of 58.33% and high adherence to the protocol (23
training sessions, BORG intensity 6.52± 1.18).

The common factor across these three patients was undergoing chemotherapy treat-
ment, hence a deteriorated overall status due to the secondary effects. Figure 5.18
displays the evolution of HRV labels found for the three patients across the inter-
vention; and Figure 5.19 displays the evolution of baseline wellness. The three
patients mostly reported good (cluster 1) and regular (cluster 0) wellness status;
however, the HRV profiles were typically stuck at HRV cluster 2 (bad overall status,
accumulated physiological stress), with some oscillations to cluster 3 (regular overall
status, recent recovery from physiological stress) for the whole intervention. The
only exception was for AT102, who continued her improvement until the end of the
intervention.
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Fig. 5.18.: Longitudinal clustering exploration for HRV (L01C-4) for patients AT65, AT86,
and AT102.
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Fig. 5.19.: Longitudinal clustering exploration for baseline wellness (L02B-3) for patients
AT65, AT86, and AT102.
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5.4 Discussion

5.4.1 Principal Findings

Feature Selection & Clustering

The feature selection process showed high levels of redundant information across
HRV variables. Therefore, it was of utmost importance to take into account expert
knowledge when selecting the most relevant variables. Since the literature on HRV
analysis already stated that resting short-HRV measures of the LnRMSSD were the
most solid assessment training load (Buchheit, 2014; Plews et al., 2013; Shaffer &
Ginsberg, 2017), it was used to cascade the feature selection process.

The clustering process revealed how the different variables may play multiple roles in
the assessment. Moreover, an approach like the layered clustering was mandatory to
fully leverage the data without introducing skew in the analysis. Domain knowledge
about the variables was needed during the clustering process in order to remove
features like max_hr or mean_hr, which may skew the clusters due to its slow changes
in time (Shaffer & Ginsberg, 2017), or lf_hf_ratio, due to its discussed inability to
reflect balance between sympathetic and parasympathetic activity (Billman, 2013).
This process enabled finding clusters of training load representative of the training
adaptation processes of patients with breast cancer during TE intervention.

HRV Clusters

Clustering results for HRV (L01) are coherent with the HRV norms found in the state
of the art, specially for L01B-4 (section C.4, Table C.6) and L01C-4 (section C.5,
Table C.8). First of all, both address the physiological status of the patient from
different temporal perspectives at the same time. The features cv_lnrmssd and
swc_lnrmssd incorporate the dimension of time by leveraging measures of the previ-
ous 7 days, whilst lnrmssd, cvnni (and lf_hf_ratio for L01B-4) are representative
of the acute state of the patient at the moment of the recording. According to dis-
crepancies with the use of LF/HF to represent autonomic balance (Billman, 2013),
the use of an approach like L01C-4 is discouraged in favor of L01B-4. Nevertheless,
the results obtained for both approaches are discussed in the following.
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CVof LnRMSSD. Clusters 0 (G) and 2 (R↑) for L01B-4 had low values of cv_lnrmssd
(6.66± 3.78% and 4.89± 1.69%, respectively), which are close to the ones found for
healthy people like elite triathletes at baseline (Plews et al., 2012; cv_lnrmssd< 4%.
Plews et al., 2014; cv_lnrmssd= 6.7 ± 2.9%). The cv_lnrmssd values in L01C-4
for clusters 0 (R↓) and 1 (G) (4.75± 1.56% and 5.59± 2.66%, respectively) are also
comparable in the same manner.

Conversely, clusters 1 (B) and 3 (R↓) for L01B-4 had higher values for cv_lnrmssd
(11.42± 4.65% and 11.38± 4.61%, respectively), comparable to the ones found for
athletes during non-functional overreaching (Plews et al., 2012; mean cv_lnrmssd≈
8%), and to recreational runners during the first week of training (Plews et al., 2014;
cv_lnrmssd= 10.1 ± 3.4%). Clusters 2 (B) and 3 (R↑) for L01C-4 (12.95 ± 4.54%
and 9.76± 4.19%, respectively) are also comparable in the same manner.

LnRMSSD. Clusters 0 (G) and 2 (R↑) for L01B-4 had high values of lnrmssd (4.04±
0.38 ms and 3.65± 0.33 ms) that are comparable to patients with increased survival
(Guo et al., 2015; 4.02 ± 3.85 ms), cancer patients after an exercise intervention
(Freitag et al., 2018; 3.66 ms), and healthy women (Caro-Moran et al., 2016;
4.07± 3.10 ms. De Couck and Gidron, 2013; 3.74± 2.71 ms). The lnrmssd values
in L01C-4 for clusters 0 (R↓), 1 (G) and 3 (R↑) (3.51± 0.40 ms and 4.15± 0.32 ms,
3.48± 0.32 ms respectively) are also comparable in the same manner.

Conversely, clusters 1 (B) and 3 (R↓) for L01B-4 had low values of lnrmssd (2.66±
0.40 ms and 3.29± 0.34 ms) that are comparable to patients with reduced survival
(Guo et al., 2015; 3.26± 2.56 ms), cancer patients before an exercise intervention
(Freitag et al., 2018; 2.77 ms), cancer patients without exercise intervention (Caro-
Moran et al., 2016; 3.36± 3.16 ms. De Couck and Gidron, 2013; 3.16± 3.21 ms).
The lnrmssd values in L01C-4 for cluster 2 (B) (2.69±0.38 ms) are also comparable
in the same manner.

SWC of LnRMSSD. Clusters 0 (G), 1 (B) and 2 (R↑) for L01B-4 had high absolute
values for the normalized swc_lnrmssd (1.31± 1.02, −0.8± 1.13, and −0.98± 0.96)
that are comparable to one of the factors used by HRV4Training to compute SWC
(f = 1). This higher value than the typically used (f = 0.5) may come as a result
of shrinking the window for LnRMSSD analysis to 1 week, instead of the typical 4
weeks for professional athletes (Buchheit, 2014; Plews et al., 2013; Javaloyes et al.,
2019). Cluster 3 sits on the fence with a value of 0.17± 0.92. For L01C-4, clusters
are also comparable and are better divided. L01C-4 presented clusters 0 (R↓) and

5.4 Discussion 129



2 (B) with negative values (−1.27± 0.97 and −0.81± 0.89), and 1 (G) and 3 (R↑)
with positive values (1.06± 1.14 and 0.77± 0.90) for swc_lnrmssd.

Positive values of swc_lnrmssd may be found in clusters 0 (G) and 3 (R↓) for L01B-4,
and in clusters 1 (G) and 3 (R↑) for L01C-4, may be associated with good training
adaption if they are not too high (Buchheit, 2014). Otherwise, negative values of
swc_lnrmssd (clusters 1 (B), 2 (R↑) and 3 (R↓) for L01B-4, and in clusters 0 (R↓)
and 2 (B) for L01C-4) may be associated with accumulated fatigue; however, such
interpretations may be done assessing its relation to HR changes (Buchheit, 2014).
Therefore a measure like cvnni is adequate to accompany this measure.

CVNNI. Cluster 0 (G) for L01B-4 had the highest values of cvnni (0.0906±0.0293),
which were in company of the highest lnrmssd values. Cluster 2 (R↑) for L01B-4 had
middle values for cvnni (0.0648± 0.0192), also in company of high lnrmssd values.
Clusters 1 (B) and 3 (R↓) L01B-4 had the lowest cvnni values (0.0437± 0.0140 and
0.0441± 0.0121). A different pattern was found for L01C-4. Cluster 1 (G) had the
highest values of cvnni (0.0965 ± 0.0285), which were in company of the highest
lnrmssd values. Clusters 0 (R↓) and 3 (R↑) had middle values (0.0589± 0.0171 and
0.0574± 0.0163), also with middle values for lnrmssd. Finally, cluster 2 (B) had the
lowest values for cvnni (0.0384± 0.0114).

cvnni is the SDNN divided by the mean duration of RR intervals. There is a point
of saturation in which measures like SDNN and the RMSSD do not raise linearly
with the duration of RR intervals Plews et al., 2013. Therefore, cvnni may provide
robustness and finer interpretation to RMSSD values. High lnrmssd values should
be in company of high cvnni in order to be outside saturation point; conversely,
if high lnrmssd values are in company of lower cvnni values, that may indicate
accumulated fatigue Plews et al., 2013.

LF/HF. L01B-4 used lf_hf_ratio during clustering. Cluster 1 (G) reported the
highest values for lf_hf_ratio (6.23 ± 1.92), which are values for sympathetic
activity (Shaffer & Ginsberg, 2017). Clusters 0 (R↓) and 2 (B) displayed intermediate
values (2.42±2.02 and 2.85±1.90), also implying certain level of sympathetic activity.
Finally, cluster 3 (R↑) reported the lowest values for lf_hf_ratio (1.55 ± 0.75),
which may reflect higher parasympathetic activity.

All the values reported for lf_hf_ratio are inside the typically reported values in
the literature (Shaffer and Ginsberg, 2017; 2.8±2.6 range 1.1−11.6), even for breast
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cancer survivors undergoing an exercise intervention (Dias Reis et al., 2017; control
group and detraining means ranging 1.3− 2.3, exercise group scoring 1.04± 0.54).

Wellness Clusters

Coherence analysis among clustering layers revealed that wellness data may be too
skewed by the personal perception or attitudes of patients towards cancer and its
treatment. Therefore, wellness data may not be useful to monitor training adaptation
and adjust training prescriptions.

The baseline wellness clustering found different profiles in which each patient was
typically reporting good, regular, or bad overall wellness status. This presence of
different baseline profiles is aligned with other works in the literature for patients
with cancer. For instance, Li et al. (2017) identified 3 classes of of copers using latent
profile analysis. Adaptive coper had the best psychological adjustment, negative
coper had the worst, and inconsistent coper had relatively high levels of psychological
stress. Guimond, Ivers, and Savard (2020) identified 2 to 3 clusters of patients using
latent profile analysis, finding that higher levels of avoidance were related to more
severe symptoms.

This result contrast with the use of wellness in sports. Self-reported wellness
may provide a complementary measure to HRV when adjusting training needs in
professional athletes (Hooper & Mackinnon, 1995; Buchheit, 2014). This may be
tied to the strong differences of training for a competition and fighting against cancer.
The psychological states of patients with cancer may be more fragile and volatile
compared to athletes’, hence self-reported wellness measures cannot be interpreted
in the same manner.

Finally, these baseline wellness clusters may be combined with the relative wellness
of patients across the intervention in order to develop adherence strategies that
consider the psychological status besides the physiological one. It is of utmost
importance to break the asthenia cycles in which patients fall during systemic
treatment. For this to happen, adherence to the therapeutic needs to be as higher as
possible, and wellness measures may provide extra information to HRV on how to
deal with patients at the moment of facing another exercise session.
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5.4.2 Practical Implications

The methodology followed for data cleaning, preprocessing, and feature selection,
joined with the layered clustering approach, may be put to use in other treatment
scenarios. Such approach is not limited to patients with breast cancer, it could be
put to use with patients with other conditions and be leveraged for interventions.

The clusters presented may be used directly in ATOPE+ as the ML prediction model
module in the knowledge manager (see ATOPE+ architecture in Figure 3.1). This
classification may enable a better assessment of patients’ training needs. Moreover,
different feature groups may be used for the clustering depending on the needs of
the expert driving the intervention, since they may provide different interpretations
of exercise load (for instance, using or not using lf_hf_ratio). The separation of
HRV and wellness clusters may enable a better informed decision-making for experts
with the individualization of training load and adherence strategies.

HRV clusters may enable an improved decision support for experts when assessing
training exercise needs for patients. Figures 5.18 and 5.19 are representative of
the information display that may be given while delivering an exercise intervention.
Moreover, the values found for each feature in the clusters set narrower preliminary
norms than the ones typically found in the literature for such profiles.

Wellness profiles may play a role into psychological intervention with the patients,
or even into the designing of specific enrollment strategies to improve adherence to
therapeutic exercise programs. Relative levels of wellness —which did not match
any pattern with HRV clusters— can also be useful to this purpose. For instance,
for a patient typically found in the "bad wellness" profile, it may be helpful to take
advantage of those moments in which she is better than usual (despite being worse
than the rest of patients), to foster her participation in the therapeutic exercise
program.

5.4.3 Limitations and Future Work

The results presented should be considered preliminary. They are based on a sample
of 23 patients with breast cancer with different adherence profiles during an exercise
intervention. Future work should extend the results with the data from more patients.
The methodology presented may be used with patients with other chronic conditions,
such as other types of cancer, cardiovascular, or neurological conditions.
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Future work may study the impact of training sessions in the recovery of patients,
i.e., the evolution of patient across the different HRV profiles found. Moreover,
future work should asses the validity and degree of improvement of different per-
sonalized interventions based on the assistance given by these tools and analysis.
In particular, the efficacy of the rules registered for the ATOPE trial (registration
number 2010285737407; SafeCreative ATOPE+, 2020) will be assessed.

Factors facilitating adherence to the program may be studied by taking into account
demographics and the wellness profiles found (which should be complemented with
measures related to the coping strategies of the patients), as well as its interaction
with HRV profiles.

The relevance of Fitbit measures into this context may be studied too. The use of
recent novel tools (Vega et al., 2021) may enable the collection of sophisticated
context-aware measures describing the behavior or patients beyond physical activity
and sleep levels.
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Conclusion 6
6.1 Achievements

Therapeutic exercise poses a means to address the short- and long-term side effects of
cancer and its treatment. Nevertheless, tailoring the exercise intervention to patients’
training needs and capabilities has not been sufficiently addressed. Training load
monitoring already provided means to personalize training intensities in professional
athletes; however, this approach did not reach other potential targets such as patients
with breast cancer in therapeutic exercise interventions. In order to maximize
the tailoring of therapeutic exercise interventions, it is mandatory to improve the
understanding of the training/recovery processes of patients. Therefore, longitudinal
studies that monitor the patients’ training/recovery processes are necessary to pursue
personalization improvements.

These opportunities bring us back to the primary goal of this thesis: to investigate
how to support personalized therapeutic exercise interventions in patients with
breast cancer using mobile technologies, data science, and machine learning. This
goal could only be achieved with the support of a robust interdisciplinary collabora-
tion involving oncologists, physical therapists, engineers, and computer scientists
capable of developing the necessary tools to conduct longitudinal studies in real-life
scenarios. Conforming this collaboration is, without any doubt, the most relevant
achievement of this thesis. None of the stated objectives would have been ful-
filled without a strong partnership that enabled conducting longitudinal monitoring
studies with patients with breast cancer during therapeutic exercise intervention.

We live in unprecedented times where data are more present and available than
ever. Data science techniques and machine learning algorithms are still evolving
and improving exponentially, delivering us the best tools to acquire new knowledge.
Nonetheless, such techniques on their own may not be helpful without adequate
context and interpretation. This thesis represents how, in the synergy of interdisci-
plinary collaborations, science can trace a better way towards more individualized,
information-driven, and human-centered research.
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This thesis intended to contribute to the state of the art relying on such collaboration
principles. More precisely, this work aimed to provide valuable information on the
design and development of data collection tools, the conduction of longitudinal
experiments, and novel analysis approaches to the continuous assessment of training
needs —all applied to patients with breast cancer in a therapeutic exercise interven-
tion. The following describes the achievements of the objectives established for this
thesis.

Objective 1: Develop an mHealth expert system to support personalized
therapeutic exercise interventions in patients with breast cancer.

The traditional health assessment tools employed in therapeutic exercise interven-
tions were designed to be used in a controlled environment with lab equipment,
primarily in pre- and post-intervention situations. Nowadays, the availability of
mobile devices and wearable sensing have improved the possibilities for the remote
and reliable monitoring of training load. Nevertheless, these tools primarily target
athletes or healthy populations aiming to improve their sports performance. In
order to apply such methodology to therapeutic exercise intervention, patients’ and
experts’ needs have to be considered from design.

In this work, the ATOPE+ mHealth expert system has been developed. ATOPE+
supports personalized therapeutic exercise interventions in patients with breast
cancer, providing an end-to-end solution for the remote monitoring of training
load (HRV and self-reported questionnaires), physical activity, and sleep using a
smartphone and wearable sensors. ATOPE+ enables the automatic generation of
personalized recommendations through data processing and pairing with expert
rules. These recommendations allow experts to provide undulating nonlinear ex-
ercise prescriptions, hence adapting the intervention to the exercise needs of the
patient. In addition, ATOPE+ provides the functionalities of an expert system with a
dashboard, presenting information regarding the daily training/recovery status of
patients and training recommendations triggered by expert rules.

ATOPE+ has been evaluated with the conduction of a pilot study, assessing its validity
and usability. This thesis presented a usability evaluation conducted with physical
therapists experienced in delivering therapeutic exercise intervention, patients with
breast cancer, and survivors. Usability assessment presented excellent acceptability
for both patients and experts, highlighting the simplicity and straightforwardness
of using ATOPE+. Nevertheless, some difficulties were faced during the usability
evaluation due to the strike of the COVID-19 pandemic. The rush of new COVID-19
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cases and the fear of getting infected —especially for immunosuppressed populations
like patients with cancer— hindered recruitment possibilities. This limitation forced
the usability evaluation to be conducted with a mixture of breast cancer patients
and survivors. On the other hand, assessing usability in a fully remote environment
may be interpreted as a strength to the usability evaluation. In sum, ATOPE+ has
been proved to simplify the knowledge management and decision-making process
within the context of a therapeutic exercise intervention by enabling the remote and
reliable monitoring of training load in patients with breast cancer.

Through these achievements, the first objective of this thesis has been fulfilled since
a functional mHealth system has been designed, developed, and tested in a real-
life scenario with patients with breast cancers, survivors, and physical therapists
experienced in therapeutic exercise.

Objective 2: Conduct a monitorization experiment of patients with breast
cancer through therapeutic exercise intervention, and generate a
longitudinal dataset with training load measures.

Continuous training load monitoring has often been ignored in therapeutic exercise
interventions. Performing individual daily assessments of training load depended
on time-consuming tasks and sophisticated lab equipment. To date, most of the
research has focused on ensuring that the minimum levels of recommended physical
activity are met. In order to improve the tailoring approaches, there is a need to
describe and understand the training/recovery processes of patients with breast
cancer through therapeutic exercise interventions; however, there are no available
examples of longitudinal monitoring of training load.

In this work, this lack of examples has been addressed by conducting a longitudi-
nal experiment involving a population of patients with breast cancer enrolled in a
therapeutic exercise intervention. Heart rate variability and self-reported wellness
assessed training load, besides including daily physical activity levels and sleep
patterns from wearable activity trackers. Patients were enrolled in an intervention
lasting 6 to 8 weeks in which they monitored their daily status with ATOPE+. More-
over, the monitoring was maintained for some patients even after the intervention.
This experiment has resulted in one of the first openly available longitudinal datasets
with daily measures of training load (HRV and self-reported wellness), physical
activity, and sleep, including information about training sessions, demographic data,
quality of life, and treatment details too. The presented data were curated to enable
different types of analysis and explorations.
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Prior to the conduction of this study, the reliability of ATOPE+ was successfully
assessed in separate work. ATOPE+ was found as a valid and reliable tool to assess
autonomic balance (LnRMSSD), sleep satisfaction, emotional distress, and, poten-
tially, fatigue in breast cancer survivors. This reliability provides the dataset with
high applicability despite the reduced sample size. Moreover, this work also provides
details on the conduction of the experiment, such as study design, the participants,
eligibility criteria, and data collection, in order to facilitate the conduction of similar
experiments in the future to the research community.

Through these achievements, the second objective of this thesis has been fulfilled
with the publication of an openly available dataset describing the longitudinal
evolution of training load, physical activity, and sleep of patients with breast cancer
through therapeutic exercise intervention.

Objective 3: Identify the factors reflecting the individual recovery state of
patients with breast cancer during therapeutic exercise intervention using a
data science and machine learning approach.

Training adaptation has been widely studied in professional athletes to adjust to
individual training needs. Nevertheless, little is known about the training adaptation
process in patients with breast cancer during therapeutic exercise intervention.
Although the same principles may be applied to patients with cancer and athletes,
there is no previous knowledge on the evolution and the daily adaptation to training
for patients. The frailty and immunosuppression induced by cancer and its treatment
may play a role in the training/recovery process that still remains uncovered.

In this work, a novel methodology for the analysis of the longitudinal training
load data is presented. This methodology consists of a clustering approach in
which each dimension of the patient’s recovery is grouped in different layers to
support tailored information-driven decision-making support for the prescription of
exercise. Three layers were drawn out of the analysis. The first layer was conformed
by features representing the physiological status of the patient (i.e., HRV); the
second layer by wellness features representing the baseline self-reported wellness
status of the patient; and the third layer by z-scored (individually normalized)
wellness features, which represented variations of wellness around the results of
the second layer. Preliminary results for each layer represent the potential of this
methodology and how its application may enable the personalized prescription of
training intensities and the development of tailored adherence strategies. Moreover,
the results also suggest how self-reported wellness may be prone to individual
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skewness in perception, highlighting the need to rely on physiological markers to
assess training needs.

In addition, this methodology describes the data cleaning and preprocessing used
to introduce the least amount of possible skew. A data-driven feature selection
process is explained and later combined with an expert-driven interpretation of
clustering results. This combination of data- and expert-driven methods helped
narrow down the most relevant features for assessing training/recovery cycles in
patients. Moreover, this process also showed how a traditional clustering approach,
in which all features were part of the analysis, could derive skewed results that were
not representative of the patients’ conditions.

Through this achievement, the third objective of this thesis has been fulfilled by
presenting a novel approach to study training adaptation in patients with breast
cancer through therapeutic exercise intervention. Moreover, this work presented
different approaches to assessing training needs, along with the interpretations and
norms for the variables used in each clustering approach. This methodology may be
used in other target populations such as patients with other types of cancer or even
other chronic conditions such as cardiovascular or neurological.

6.2 Contributions

Section 6.1 described the fulfillment of the objectives of this thesis. Now, the main
contributions of this thesis are listed:

• Identification of the requirements and challenges posed by the systems ad-
dressing the personalization of therapeutic exercise interventions in patients
with cancer.

• Definition and development of an mHealth system (ATOPE+) to support the
requirements of a therapeutic exercise intervention in patients with breast
cancer.

• Evaluation of usability of an ATOPE+ in a real scenario with physiotherapists
experts in therapeutic exercise and with patients with breast cancer and
survivors.

• Collection and curation of a dataset describing the continuous monitoring of
training load in patients with breast cancer enrolled in a therapeutic exercise
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intervention. This dataset includes training load data, as well as demograph-
ics, treatment, and intervention details from the participants, enabling the
investigation of the effects of therapeutic exercise intervention individually
in patients. The dataset is publicly available to the research community in
Zenodo (https://doi.org/10.5281/zenodo.6322773).

• Identification of readiness profiles in patients with breast cancer during ther-
apeutic exercise intervention using data science and machine learning. The
profiles obtained may serve to establish preliminary norms on the follow-up
of future interventions with patients with breast cancer. Besides, the method-
ology followed may be used in other and broader cohorts of patients. The
code for the analysis is publicly available to the research community in GitHub
(https://github.com/salvador-moreno/atope-breast-clustering-analysis).

6.3 Outlook

The contributions of this thesis open up multiple research directions to continue and
extend the work presented. This section describes some of the possible outlooks.

The design and development of mHealth systems for personalized intervention in
patients with cancer pose multiple improvements. Defining adherence strategies
along with personalization may lead to better interventions in those patients less
eager to exercise. Gamification and behavior-change techniques may serve this
purpose.

The personalization of therapeutic exercise should not be limited to patients with
breast cancer. There are plenty of chronic conditions that may benefit from regular
exercising, and mHealth systems addressing it may contemplate, from design, the
inclusion of different cohorts of patients. This perspective would enable the investi-
gation of the personalization of therapeutic exercise in patients with other types of
cancer, cardiovascular diseases, or neurologic impairments.

The possibilities of AI in assisting data analysis and exploration are endless. An-
alyzing the impact of individual training sessions in patients’ training adaptation
employing supervised ML algorithms is a natural continuation of the work presented.
The inclusion of prediction models and risk assessment would assist experts in
decision-making when prescribing exercise doses. Finally, a reinforcement learning
strategy might further individualize the prescription of exercise needs with an exten-
sive definition of the metrics to optimize during therapeutic exercise intervention.
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Conclusión 7
7.1 Logros

El ejercicio terapéutico se plantea como una solución para paliar los efectos secundar-
ios del cáncer y su tratamiento a corto y largo plazo. Sin embargo, las necesidades
de personalización durante una intervención de ejercicio terapéutico no se han
trabajado lo suficiente. La monitorización de la carga de ejercicio es crucial para
la personalización del entrenamiento en atletas profesionales; pero, a pesar de su
utilidad, estos métodos aún se han intentado trasladar a otros escenarios, como
pacientes con cáncer de mama en intervención de ejercicio terapéutico. Para poder
mejorar la adaptación del ejercicio terapéutico a las necesidades de las pacientes, es
necesario aumentar el nivel de entendimiento de los procesos de entrenamiento y
recuperación en el que se ven envueltas las pacientes. Por ello, es necesario realizar
estudios longitudinales que monitoricen estos procesos de forma continua para, en
última instancia, buscar mejoras en la personalización de la intervención.

Estas oportunidades nos devuelven al principal objetivo de esta tesis: investigar
cómo asistir en la personalización de las intervenciones de ejercicio terapéutico en
pacientes con cáncer de mama utilizando las tecnologías móviles, la ciencia de datos
y la inteligencia artificial. Este objetivo sólo podría alcanzarse bajo el paraguas de
una colaboración interdisciplinar sólida que integrara profesionales de la oncología,
fisioterapia, ingeniería e informática, una colaboración capaz de desarrollar las
herramientas para llevar a cabo estudios longitudinales con pacientes en un entorno
real y fuera del laboratorio. Sin duda alguna, consolidar esta colaboración ha sido el
logro más importante de esta tesis, y ninguno de los objetivos dispuestos habrían
sido posibles sin la fuerte relación entre todo el equipo.

Vivimos en una época sin precedentes en la que los datos están más presentes
y disponibles que nunca. La ciencia de datos y la inteligencia artificial siguen
evolucionando de manera exponencial, proporcionando las mejores herramientas
para adquirir nuevos conocimientos. Aun así, estas técnicas pueden no ser tan
útiles si su aplicación se da sin un contexto e interpretación adecuados. Esta tesis
representa cómo, en la sinergia de las colaboraciones interdisciplinares, la ciencia
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puede trazar un mejor camino hacia una investigación más centrada en las personas
y la asistencia en salud de manera informada para hacerla aún más personalizada.

La intención de esta tesis ha sido contribuir al estado de la materia desde los princi-
pios de colaboración dispuestos. Concretamente, este trabajo ha perseguido proveer
a la comunidad científica con información valiosa referida al diseño y desarrollo de
herramientas para la recogida de datos, a la conducción de experimentos longitudi-
nales, y al desarrollo de nuevos métodos para el análisis continuo de las necesidades
de entrenamiento —todo esto aplicado a pacientes con cáncer de mama en interven-
ción de ejercicio terapéutico. A continuación se describen los logros referidos a cada
uno de los objetivos de esta tesis.

Objetivo 1: Desarrollar un sistema experto de mSalud para asistir
intervenciones de ejercicio terapéutico personalizado en pacientes con
cáncer de mama.

Tradicionalmente, los métodos para evaluar a las pacientes durante una intervención
de ejercicio terapéutico han dependido de equipamiento de laboratorio y mediciones
en entornos controlados exclusivamente en situaciones de pre- y post-intervención.
A día de hoy, los dispositivos móviles y sensores vestibles han mejorado las posibili-
dades para la monitorización remota y fiable de la carga del ejercicio. Sin embargo,
estas herramientas han sido desarrolladas principalmente para atletas profesionales
y gente sana que busca mejorar su rendimiento deportivo. Por tanto, de cara a
aplicar dichos métodos en un contexto de intervención de ejercicio terapéutico, las
necesidades de pacientes y expertos tienen que considerarse desde el principio.

En este trabajo se ha desarrollado el sistema experto de mSalud (salud móvil)
ATOPE+. ATOPE+ permite intervenciones de ejercicio terapéutico personalizadas
en pacientes con cáncer de mama, otorga una solución para la monitorización re-
mota de la carga del ejercicio (variabilidad de la frecuencia cardíaca y bienestar
auto-reportado), actividad física y sueño utilizando teléfonos móviles inteligentes
y sensores vestibles. ATOPE+ permite generar recomendaciones de ejercicio ter-
apéutico de manera automática gracias al procesamiento de datos y su empare-
jamiento con reglas expertas. Estas recomendaciones permiten a los expertos dar
prescripciones de ejercicio no lineales y ondulatorias, es decir, que se adaptan a
las necesidades de ejercicio de las pacientes de forma continua. Además, ATOPE+
provee las funcionalidades de un sistema experto con un tablero de mandos para
el profesional desempeñando la intervención. Este tablero de mandos presenta
información relacionada con los ciclos de entrenamiento y recuperación, y con las
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recomendaciones de ejercicio diarias para cada una de las pacientes y cada uno de
los factores que la provocan.

ATOPE+ se ha evaluado con un estudio piloto, midiendo su validez y usabilidad.
Esta tesis recoge la evaluación de usabilidad realizada con fisioterapeutas expertos
en ejercicio terapéutico, pacientes con cáncer de mama y supervivientes. Se encontró
una usabilidad excelente para pacientes y expertos, destacando la simplicidad y
facilidad a la hora de utilizar ATOPE+, tanto su aplicación móvil como su tablero de
mandos web. La pandemia del COVID-19 conllevó ciertas dificultades en su evalu-
ación. El rápido aumento de casos unido al miedo a contagiarse —especialmente
relevante para población inmunodeprimida como pacientes con cáncer— mermaron
la velocidad de reclutamiento. Esta limitación forzó que la evaluación de usabilidad
se realizase con una mezcla de pacientes con cáncer de mama y supervivientes. Por
otro lado, también implicó evaluar la usabilidad en un entorno completamente re-
moto, lo cual es una fortaleza de cara a los buenos resultados. En suma, ATOPE+ se
ha demostrado útil al simplificar la gestión del conocimiento y la toma de decisiones
en el contexto de una intervención de ejercicio terapéutico con pacientes con cáncer
de mama a través de la monitorización remota y fiable de la carga del ejercicio.

Con estos logros, el primer objetivo de la tesis se ha cumplido ya que un sistema
experto mSalud ha sido exitosamente diseñado, desarrollado, y testado en un
entorno real con pacientes con cáncer de mama, supervivientes, y fisioterapeutas
expertos en ejercicio terapéutico.

Objetivo 2. Llevar a cabo un experimento de monitorización con pacientes
con cáncer de mama durante una intervención de ejercicio terapéutico, y
generar un conjunto de datos longitudinal con mediciones de la carga del
ejercicio.

La monitorización continua de la carga del ejercicio ha sido normalmente ignorada
en intervenciones de ejercicio terapéutico. Realizar mediciones diarias dependía
de tareas prolongadas en el tiempo y equipamiento de laboratorio muy específico.
Hasta la fecha, la mayor parte de las intervenciones se han centrado en asegurar
el cumplimiento de los niveles de ejercicio físico mínimos recomendados. De cara
a mejorar la personalización de la prescripción de ejercicio, hay que mejorar la
descripción y el entendimiento de los procesos de entrenamiento y recuperación
de las pacientes con cáncer de mama a lo largo de las intervenciones de ejercicio
terapéutico adaptado.
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En esta tesis se ha trabajado para suplir la falta de ejemplos que describan la evolu-
ción de las pacientes a lo largo de una intervención de ejercicio terapéutico. La
variabilidad del ritmo cardíaco y el bienestar auto-reportado midieron la carga
del ejercicio; además se incluyó la monitorización de niveles de actividad física
y patrones de sueño diario desde monitores de actividad vestibles. Las pacientes
participaron en una intervención de entre 6 y 8 semanas de duración en la que
monitorizaron su estado diario con ATOPE+. Además, la monitorización fue man-
tenida para algunas de las pacientes después de la intervención. Este experimento
ha resultado en el primer dataset longitudinal con mediciones diarias de la carga
interna, actividad física y sueño, además de incluir información sobre las sesiones
de entrenamiento, datos demográficos, calidad de vida, y detalles del tratamiento.
Los datos ATOPE+Breast se presentan curados y listos para permitir distintos tipos
de análisis y exploraciones.

Antes de la realización de este estudio, la fiabilidad de ATOPE+ había sido cor-
rectamente evaluada en un trabajo previo. ATOPE+ se presenta así como una
herramienta válida y fiable para la medición de equilibrio en el sistema nervioso
autónomo (LnRMSSD), satisfacción del sueño, estrés emocional y, potencialmente,
fatiga en supervivientes de cáncer de mama. Esta fiabilidad provee al dataset
ATOPE+Breast de una alta aplicabilidad a pesar de las restricciones de la muestra.
Además, este trabajo provee detalles en el diseño del estudio, participantes, criterio
de elegibilidad y recogida de datos de cara a facilitar la realización estudios futuros
por parte de la comunidad científica.

A través de estos logros, se ha cumplido el segundo objetivo de esta tesis. Se
ha publicado el dataset ATOPE+Breast describiendo la evolución de la carga del
ejercicio en pacientes con cáncer de mama a lo largo de una intervención de ejercicio
físico, además de sus niveles de actividad física y patrones de sueño.

Objetivo 3: Identificar los factores reflejando el estado de recuperación
individual de las pacientes con cáncer de mama durante una intervención
de ejercicio terapéutico utilizando técnicas de ciencia de datos y
aprendizaje automático.

La adaptación al entrenamiento ha sido ampliamente estudiado en atletas profe-
sionales para ajustar las necesidades de entrenamiento individuales. Aun así, poco
se conoce sobre los procesos de adaptación al entrenamiento en pacientes con
cáncer de mama durante una intervención de ejercicio terapéutico. A pesar de que
se pueden aplicar los mismos principios fisiológicos entre atletas y pacientes con
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cáncer, no hay investigaciones que estudien la evolución y adaptación diaria de los
pacientes durante el entrenamiento. La fragilidad e inmunosupresión inducida por
el cáncer y su tratamiento pueden jugar un rol aún desconocido en los procesos de
entrenamiento y recuperación.

En este trabajo se presenta una metodología novedosa para el análisis de la carga in-
terna de las pacientes con cáncer de mama. Esta metodología consiste en aprovechar
algoritmos de agrupamiento de forma laminar, es decir, agrupando cada dimensión
de la recuperación de las pacientes en diferentes capas para mejorar la personal-
ización de las prescripciones de ejercicio asistiendo en la toma decisiones con una
información mejor y más completa. Tres capas conforman este análisis. La primera
capa la componen características que reflejan el estado fisiológico de la paciente
(variabilidad del ritmo cardíaco); la segunda el bienestar auto-reportado por las
pacientes; y la tercera el bienestar auto-reportado normalizado individualmente para
todas las pacientes (z-score). Esta última capa representa variaciones del bienestar
en comparación con la segunda capa. Los resultados preliminares para cada capa
representan el potencial de esta metodología, y cómo su aplicación puede permitir la
personalización del ejercicio terapéutico y el desarrollo de estrategias de adherencia
más sofisticadas. Además, los resultados sugieren que el bienestar auto-reportado
puede estar muy sesgado por la percepción de las pacientes durante su recuperación,
y que no se corresponden con los patrones encontrados en atletas, resaltando así la
importancia que los marcadores fisiológicos pueden tener al medir las necesidades
de entrenamiento.

Este trabajo también describe el proceso de limpieza y preprocesamiento de los
datos para reducir los sesgos lo máximo posible. Se explica un proceso de selección
de características que además se combina con la interpretación de expertos de cada
uno de los resultados de clustering. Esta combinación de métodos basados en datos
y en conocimiento experto permite discernir las variables más relevantes para medir
los ciclos de entrenamiento y recuperación en pacientes. Este proceso también
muestra cómo un abordaje clásico de agrupamiento, en el que todas las variables
seleccionadas son parte del análisis, puede resultar en resultados sesgados que no
sean verdaderamente representativos para las condiciones de las pacientes.

A través de estos logros, se ha cumplido el tercer objetivo de esta tesis. Se ha
presentado una metodología novedosa para el estudio de la adaptación al entre-
namiento en pacientes con cáncer de mama durante una intervención de ejercicio
terapéutico. Además, este trabajo presenta distintas propuestas para la evaluación
de las necesidades de entrenamiento, así como sus interpretaciones y los valores
encontrados para cada una de las variables utilizadas en los resultados de agru-
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pamiento. Esta metodología podría utilizarse en otras poblaciones, como pacientes
con otros tipos de cáncer u otras condiciones de tipo crónico, como cardiovasculares
o neurológicas.

7.2 Contribuciones

La sección 7.1 describió el cumplimiento de los objetivos de esta tesis. A continuación,
se listan las principales contribuciones de esta tesis:

• Identificación de los requerimientos y retos mostrados por los sistemas utiliza-
dos hasta la fecha para la personalización del ejercicio terapéutico en pacientes
con cáncer.

• Definición y desarrollo de un sistema mSalud (ATOPE+) para asistir en inter-
venciones de ejercicio terapéutico en pacientes con cáncer de mama.

• Evaluación de la usabilidad de ATOPE+ en un escenario real de intervención
de ejercicio terapáutico con pacientes con cáncer de mama, supervivientes y
fisioterapeutas expertos en ejercicio terapéutico.

• Coleción y curación del dataset ATOPE+Breast describiendo la monitorización
de la carga del ejercicio en pacientes con cáncer de mama durante una interven-
ción de ejercicio terapéutico. Este dataset incluye datos de la carga del ejercicio,
así como detalles demográficos, de tratamiento, de la intervención y de las
pacientes, permitiendo el estudio de los efectos de la intervención de manera
particular en cada paciente. Este dataset está públicamente disponible para la
comunidad científica en Zenodo (https://doi.org/10.5281/zenodo.6322773).

• Identificación de perfiles de recuperación en pacientes con cáncer de mama
durante el ejercicio terapéutico utilizando ciencia de datos y la inteligen-
cia artificial. Los perfiles obtenidos pueden servir para establecer valores
preliminares para el seguimiento de pacientes con cáncer de mama en inter-
venciones futuras. Además, la metodología empleada podría utilizarse en
otras cohortes de pacientes. El código para el análisis está disponible para
la comunidad científica en GitHub (https://github.com/salvador-moreno/
atope-breast-clustering-analysis).
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7.3 Trabajo Futuro

Las contribuciones de esta tesis abren múltiples líneas de investigación para contin-
uar y extender el trabajo presentado. Esta sección describe algunas de estas posibles
líneas de trabajo.

El diseño y desarrollo de sistemas mSalud para intervenciones personalizadas en
pacientes con cáncer aún presenta un amplio grado de mejora. Incluir el desar-
rollo de estrategias de adherencia en la personalización puede conllevar mejores
intervenciones en aquellas pacientes menos dispuestas a hacer ejercicio. Integrar
herramientas desde la gamificación y el cambio conductual pueden ayudar a este
propósito.

La personalización del ejercicio terapéutico no debe limitarse a pacientes con cáncer
de mama. Existen multitud de condiciones crónicas que pueden beneficiarse del
ejercicio, y los sistemas mSalud pueden incluir en su diseño distintas cohortes de
pacientes desde el principio para facilitar su uso. Esta perspectiva facilitaría la inves-
tigación de estos métodos de ejercicio físico en otros tipos de cáncer, enfermedades
cardiovasculares o neurológicas, por ejemplo.

Las posibilidades de la inteligencia artificial en el análisis y exploración de los datos
recogidos son inmensas. La continuación natural de este trabajo sería analizar
el impacto de las sesiones de ejercicio en la adaptación al entrenamiento de las
pacientes utilizando algoritmos de aprendizaje automático supervisado. La inclusión
de modelos de predicción y evaluación del riesgo asistirían mejor a los expertos
a la hora de prescribir ejercicio. Finalmente, una estrategia de aprendizaje por
refuerzo podría terminar de ayudar a la individualización del ejercicio tras una
definición exhaustiva de las métricas a optimizar durante una intervención de
ejercicio terapéutico.
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Digital Health Systems
Taxonomy

A

This appendix gathers the classification for health system challenges, digital health
interventions and system categories defined for digital health interventions by the
WHO/RHR/18.06 taxonomy (World Health Organization, 2018).

Health System Challenges

The health system challenges defined in the taxonomy (World Health Organization,
2018) are presented in the following.

1. Information. Lack of population denominator; delayed reporting of events;
lack of quality/reliable data; communication roadblocks; lack of access to
information or data; insufficient utilization of data and information; lack of
unique identifier.

2. Availability. Insufficient supply of commodities; insufficient supply of ser-
vices; insufficient supply of equipment; insufficient supply of qualified health
workers.

3. Quality. Poor patient experience; Insufficient health worker competence;
low quality health commodities; low health worker motivation; insufficient
continuity of care; inadequate supportive supervision; poor adherence to
guidelines.

4. Acceptability. Lack of alignment with local norms; programs which do not
address individual beliefs and practices.

5. Utilization. Low demand for services; geographic inaccessibility; low adher-
ence to treatments; loss to follow up.

6. Efficiency. Inadequate workflow management; lack of or inappropriate refer-
rals; poor planning and coordination; delayed provision of care; inadequate
access to transportation.
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7. Cost. High cost of manual processes; lack of effective resource allocation;
client-side expenses; lack of coordinated payer mechanism.

8. Accountability. Insufficient patient engagement; unaware of service enti-
tlement; absence of community feedback mechanisms; lack of transparency
in commodity transactions; poor accountability between levels of the health
sectors; inadequate understanding or beneficiary populations.

System Categories

The system categories defined in the taxonomy (World Health Organization, 2018)
–which adapted from the International Standards Organization (International Stan-
dards Organization (ISO), 2014)– are described in the following.

A. Census, population, information and data warehouse. Stores data regarding
information of the population in a certain region.

B. Civil registration and vital statistics. Provides information to epidemiologists,
statisticians, demographers, and others working in public health about vital
statistics from the people in a region.

C. Client applications. Client program that targets an end-user (e.g., patient,
healthcare provider) that consumes services provided by a server program.

D. Client communication system. Manages communication between healthcare
providers and patients.

E. Clinical terminology and classifications. Utilized by consumers, healthcare
providers, quality and utilization management personnel, researchers, and
other administrative staff (accounting, billing, and coding personnel), to
facilitate communication between healthcare providers and consumers in
healthcare for data collection purposes.

F. Community-based information system. Involves data collection, management,
and analysis of health services that exist within a community outside of health
facilities.

G. Data interchange interoperability and accessibility. Enables automatic, inter-
organizational computer-to-computer communication without the need for
human interaction.
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H. Electronic medical record. Allows to create, gather, manage, and consult the
electronic health records of patients by authorized clinicians and staff within
one health care organization.

I. Emergency response system. Connects an user (patient) with a response
coordinator to assesses the situation and send urgent assistance if necessary.

J. Environmental monitoring system. Provides facility managers the ability to
monitor their entire site to help prevent environmental disasters capable of
causing costly damages.

K. Facility management information system. Supports workflow processes, pro-
viding facility managers with data to assist decision-making and to help mea-
sure management performance.

L. Geographic information system. Contains geographic data, combined with
software tools for management, analysis and visualization.

M. Health finance and insurance information system. Ensure the raise of suffi-
cient funds and providing financial risk protection.

N. Health management information system. Supports planning, management,
and decision-making in health facilities and organizations, as well as tracking
service quality.

O. Human resource information system. Enables the data entry, tracking, and
information needs of the human resources department, payroll, management,
and accounting functions of a business.

P. Identification registries and directories. Provide information about healthcare
members and registrants, including data like registration and membership
status, identification, city, state, province and country.

Q. Knowledge management system. Enables the process of knowledge manage-
ment by storing and retrieving knowledge to improve understanding, collabo-
ration, and process alignment within an organization or team.

R. Laboratory and diagnostics information system. Receives and stores requests
for tests, as well as results from laboratory technicians or laboratory instru-
ments.

S. Learning and training system. Enables the creation and management of
educational courses, lessons, and training materials for employees to improve
and develop in their career.
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T. Logistics management information system. Stores logistics information and
provides reports that aggregate, analyze, validate and display data to support
logistic decision-making and management in the supply chain.

U. Pharmacy information system. Stores and retrieves information in a pharmacy,
enabling services like prescription management, inventory management, or
drug interaction monitoring.

V. Public health and disease surveillance system. Provides ongoing, systematic
collection, analysis, and interpretation of health-related data critical to the
planning, implementation, and evaluation of public health.

W. Research information system. Captures information about the current re-
search activities of a unit (e.g., university, hospital), aggregating, curating,
managing and utilizing information and metadata to summarize a view of
research output and its impact.

X. Shared health record and health information repositories. Enable the col-
lection and storage of electronic health records of individual patients in a
centralized server, capable of being shared across different healthcare environ-
ments.

Y. Telemedicine. Allows the distribution of health-related services and informa-
tion using ICT, enabling long-distance patient-clinician contact, care, advice,
reminders, education, intervention, monitoring, and remote assistance.

Digital Health Intervention Types

The digital health intervention types defined in the taxonomy (World Health Orga-
nization, 2018), depend on the stakeholders involved and functionalities needed:
clients, healthcare providers, health system managers, and data services. Clients
and healthcare providers are described in the following.

Clients:

1. Targeted client communication. Transmit health event alerts to specific
population groups; transmit targeted health information to client(s) based
on health status or demographics; transmit targeted alerts and reminders to
client(s); transmit diagnostics result or availability of result to client(s)

182 Appendix A Digital Health Systems Taxonomy



2. Untargeted client communication. Transmit untargeted health information
to an undefined population; transmit untargeted health event alerts to unde-
fined group.

3. Client to client communication. Peer group for clients.

4. Personal health tracking. Access by client to own medical records; self
monitoring of health or diagnostic data by client; active data capture/docu-
mentation by client.

5. Citizen based reporting. Reporting of health system feedback by clients;
reporting of public health events by clients.

6. On-demand information services to clients. Client look-up of health infor-
mation.

7. Client financial transactions. Transmit or manage out of pocket payments by
clients; transmit or manage vouchers to client(s) for health services; transmit
or manage incentives to client(s) for health services.

Healthcare Providers:

1. Client identification and registration. Verify client unique identity; enrol
client for health services/clinical care plan.

2. Client health records. Longitudinal tracking of clients’ health status and ser-
vices; manage client’s structured clinical records; manage client’s unstructured
clinical records; routine health indicator data collection and management.

3. Healthcare provider decision support. Provide prompts and alerts based
according to protocol; provide checklist according to protocol; screen clients
by risk or other health status.

4. Telemedicine. Consultations between remote client and healthcare provider;
remote monitoring of client health or diagnostic data by healthcare provider;
transmission of medical data to healthcare provider; consultations for case
management between healthcare providers.

5. Healthcare provider communication. Communication from healthcare providers
to supervisor; communication and performance feedback to healthcare providers;
transmit routine news and workflow notifications to healthcare providers;
transmit non-routine health event alerts to healthcare providers; peer group
for healthcare providers.
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6. Referral coordination. Coordinate emergency response and transport; man-
age referrals between points of service within health sector; manage referrals
between health and other sectors.

7. Health worker activity planning and scheduling. Identify clients in need of
services; schedule healthcare providers activities.

8. Healthcare provider training. Provide training content to healthcare providers;
assess capacity of healthcare providers.

9. Prescription and medication management. Transmit or track prescription
orders; track client’s medication consumption; report adverse drug events.

10. Laboratory and diagnostics imaging management. Transmit diagnostic
result to healthcare provider; transmit and track diagnostic orders; capture
diagnostic results from digital devices; track biological specimens.
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Longitudinal Visualizations B
Longitudinal visualizations for for clean HRV, Wellness and Fitbit data are shown
in the following pictures for all participants. The features lnrmssd, the SWC of the
lnrmssd as in Equation 4.1, recovery, fatigue, distress, sleep_satisfaction,
training_borg, session_type, steps_total_yesterday, and sleep_total data
of participants are shown in this section.
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Clustering Experiments C
Clustering experiments were labeled as CXX-K, being XX the number of the clustering
experiment, and K the number of clusters set for training. K-Means run over scikit-
sklearn (0.24.2) with the following configuration:

sklearn.cluster.KMeans(n_clusters=K, init=’k-means++’, n_init=10, max_iter=300,
tol=0.0001, verbose=0, random_state=42, copy_x=True, algorithm=’auto’)

Feature importance analysis were conducted analyzing gini importance out of Ran-
dom Forests classifiers with its parameters optimized over a grid to reach the highest
weighted f1-score:

sklearn.ensemble.RandomForestClassifier(n_estimators=100, criterion=’gini’,
max_depth=5, min_samples_leaf=5, min_samples_split=10, max_features=’auto’,
bootstrap=True, oob_score=True, random_state=42, class_weight=’balanced’)

C.1 C01. All Variables: HRV, Wellness, and Fitbit

Results for C01 with all features selected (HRV, Wellness, Fitbit) are displayed in
Table C.1, Figure C.1, Figure C.2, Figure C.3 and Figure C.4.

Tab. C.1.: Silhouette scores for K-Means clustering experiment C01.

n_clusters silhouette

2 0.113564
3 0.111387
4 0.105895
5 0.101964
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Fig. C.1.: K-Means clustering experiment C01-2.
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Fig. C.2.: K-Means clustering experiment C01-3.
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Fig. C.3.: K-Means clustering experiment C01-4.
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Fig. C.4.: K-Means clustering experiment C01-5.
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C.2 C02. HRV and Wellness

Results for C02 with HRV and Wellness features are displayed in Table C.2, Figure C.5,
Figure C.6, Figure C.7 and Figure C.8.

Tab. C.2.: Silhouette scores for K-Means clustering experiment C02.

n_clusters silhouette

2 0.155735
3 0.136509
4 0.130735
5 0.114407
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Fig. C.5.: K-Means clustering experiment C02-2.
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Fig. C.6.: K-Means clustering experiment C02-3.
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Fig. C.7.: K-Means clustering experiment C02-4.
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Fig. C.8.: K-Means clustering experiment C02-5.
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C.3 L01A. All HRV features

Results for L01A with HRV and Wellness features are displayed in Table C.3, Fig-
ure C.9, Figure C.10, Figure C.11 and Figure C.12.

Tab. C.3.: Silhouette scores for K-Means clustering experiment L01A.

n_clusters silhouette

2 0.252863
3 0.212174
4 0.187604
5 0.177786
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Fig. C.9.: K-Means clustering experiment L01A-2.
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Fig. C.10.: K-Means clustering experiment L01A-3.
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Fig. C.11.: K-Means clustering experiment L01A-4.
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Fig. C.12.: K-Means clustering experiment L01A-5.
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Tab. C.4.: Numerical description of features (de-normalized) for L01A-4.

label 0 1 2 3

cv_lnrmssd count 164.00 183.00 174.00 160.00
mean 6.73 7.50 13.19 5.73
std 3.27 3.91 4.60 3.02
min 1.26 1.63 2.96 0.94
25% 4.58 5.24 10.03 3.55
50% 5.92 6.32 12.91 4.99
75% 8.10 8.76 16.33 6.93
max 25.07 28.92 25.74 23.09

swc_lnrmssd count 164.00 183.00 174.00 160.00
mean -0.74 1.12 -0.54 0.21
std 1.11 1.09 1.15 1.34
min -3.49 -1.35 -3.36 -3.18
25% -1.49 0.37 -1.21 -0.69
50% -0.63 0.98 -0.49 0.22
75% 0.04 1.83 0.16 0.99
max 1.85 3.47 3.27 3.48

lnrmssd count 164.00 183.00 174.00 160.00
mean 3.29 3.98 2.73 3.88
std 0.32 0.39 0.40 0.35
min 2.37 3.21 1.74 3.11
25% 3.13 3.72 2.48 3.59
50% 3.30 3.92 2.77 3.94
75% 3.51 4.27 3.01 4.14
max 4.05 4.89 3.76 4.88

cvnni (x100) count 164.00 183.00 174.00 160.00
mean 4.36 7.05 4.58 9.47
std 1.22 2.27 1.42 2.83
min 1.85 2.45 1.76 5.00
25% 3.61 5.46 3.57 7.53
50% 4.26 6.58 4.45 8.82
75% 5.14 8.35 5.42 10.95
max 7.80 16.51 8.90 19.29

lf_hf_ratio count 164.00 183.00 174.00 160.00
mean 2.97 1.96 5.03 2.66
std 2.60 1.65 3.08 1.75
min 0.28 0.31 0.70 0.32
25% 1.19 1.03 2.66 1.58
50% 2.13 1.46 4.41 2.30
75% 3.77 2.25 7.07 3.25
max 15.03 10.99 15.06 12.16

max_hr count 164.00 183.00 174.00 160.00
mean 71.63 72.61 88.32 90.12
std 6.17 6.84 8.78 7.86
min 51.24 53.81 71.60 76.82
25% 68.42 68.42 82.33 84.71
50% 71.64 74.07 86.27 88.31
75% 75.81 76.97 92.59 93.64
max 84.63 97.72 113.42 112.78

mean_hr count 164.00 183.00 174.00 160.00
mean 62.37 59.16 76.30 69.17
std 5.77 6.30 5.69 5.39
min 48.54 43.94 64.21 55.05
25% 58.65 56.09 71.95 65.70
50% 62.73 59.29 76.26 69.47
75% 65.88 62.42 80.63 72.07
max 74.23 82.23 89.63 86.47
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C.4 L01B. All HRV features except max_hr and
mean_hr

Results for L01B with HRV and Wellness features are displayed in Table C.5, Fig-
ure C.13, Figure C.14, Figure C.15 and Figure C.16.

Tab. C.5.: Silhouette scores for K-Means clustering experiment L01B.

n_clusters silhouette

2 0.273946
3 0.204155
4 0.199767
5 0.196936
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Fig. C.13.: K-Means clustering experiment L01B-2.
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Fig. C.14.: K-Means clustering experiment L01B-3.
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Fig. C.15.: K-Means clustering experiment L01B-4.
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Fig. C.16.: K-Means clustering experiment L01B-5.
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Tab. C.6.: Numerical description of features (de-normalized) for L01B-4.

label 0 1 2 3

cv_lnrmssd count 211.00 148.00 165.00 157.00
mean 6.66 11.42 4.89 11.38
std 3.78 4.65 1.69 4.61
min 0.94 2.96 1.26 3.75
25% 4.39 7.81 3.63 8.03
50% 5.98 11.55 4.58 10.34
75% 7.82 15.09 6.03 14.03
max 28.92 23.42 10.62 25.74

swc_lnrmssd count 211.00 148.00 165.00 157.00
mean 1.31 -0.80 -0.98 0.17
std 1.02 1.13 0.96 0.92
min -0.44 -3.36 -3.49 -2.02
25% 0.52 -1.48 -1.54 -0.47
50% 1.08 -0.85 -0.82 0.16
75% 2.03 -0.00 -0.28 0.67
max 3.48 3.27 0.96 3.29

lnrmssd count 211.00 148.00 165.00 157.00
mean 4.04 2.66 3.65 3.29
std 0.38 0.40 0.33 0.34
min 3.13 1.74 2.80 2.45
25% 3.76 2.42 3.42 3.04
50% 4.07 2.67 3.62 3.27
75% 4.32 2.96 3.94 3.52
max 4.89 3.60 4.48 4.08

cvnni (x100) count 211.00 148.00 165.00 157.00
mean 9.06 4.37 6.48 4.41
std 2.93 1.40 1.92 1.21
min 3.27 1.76 2.66 1.86
25% 6.85 3.47 5.16 3.65
50% 8.56 4.24 6.21 4.43
75% 10.33 5.10 7.62 5.06
max 19.29 8.90 13.31 7.87

lf_hf_ratio count 211.00 148.00 165.00 157.00
mean 2.42 6.23 2.85 1.55
std 2.02 2.82 1.90 0.75
min 0.31 1.40 0.46 0.28
25% 1.21 4.21 1.60 0.94
50% 1.84 5.44 2.39 1.43
75% 2.91 8.23 3.65 2.04
max 15.06 15.03 12.22 3.97
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C.5 L01C. All HRV features except max_hr, mean_hr,
and lf_hf_ratio

Results for L01C with HRV and Wellness features are displayed in Table C.7, Fig-
ure C.17, Figure C.18, Figure C.19 and Figure C.20.

Tab. C.7.: Silhouette scores for K-Means clustering experiment L01C.

n_clusters silhouette

2 0.311806
3 0.257434
4 0.234708
5 0.238176
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Fig. C.17.: K-Means clustering experiment L01C-2.
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Fig. C.18.: K-Means clustering experiment L01C-3.
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Fig. C.19.: K-Means clustering experiment L01C-4.
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Fig. C.20.: K-Means clustering experiment L01C-5.
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Tab. C.8.: Numerical description of features (de-normalized) for L01C-4.

label 0 1 2 3

cv_lnrmssd count 146.00 178.00 161.00 196.00
mean 4.75 5.59 12.95 9.76
std 1.56 2.66 4.54 4.19
min 1.26 0.94 4.82 3.75
25% 3.63 3.72 9.05 6.48
50% 4.54 5.38 12.71 8.84
75% 5.78 6.72 15.91 11.71
max 9.94 23.09 25.07 28.92

swc_lnrmssd count 146.00 178.00 161.00 196.00
mean -1.27 1.06 -0.81 0.77
std 0.97 1.14 0.89 0.90
min -3.49 -1.17 -3.14 -1.29
25% -1.82 0.22 -1.33 0.13
50% -1.14 0.86 -0.82 0.60
75% -0.61 1.91 -0.13 1.18
max 0.78 3.48 1.16 3.47

lnrmssd count 146.00 178.00 161.00 196.00
mean 3.51 4.15 2.69 3.48
std 0.40 0.32 0.38 0.32
min 2.10 3.22 1.74 2.49
25% 3.26 3.97 2.46 3.25
50% 3.52 4.18 2.71 3.49
75% 3.79 4.36 2.98 3.73
max 4.31 4.89 3.40 4.81

cvnni (x100) count 146.00 178.00 161.00 196.00
mean 5.89 9.65 3.84 5.74
std 1.71 2.85 1.14 1.63
min 2.66 3.27 1.76 2.45
25% 4.78 7.79 3.01 4.62
50% 5.64 9.02 3.82 5.38
75% 6.74 11.00 4.48 6.72
max 12.88 19.29 7.66 10.69

218 Appendix C Clustering Experiments



C.6 L02A. Wellness features

Results for L02A with HRV and Wellness features are displayed in Table C.9, Fig-
ure C.21, Figure C.22, Figure C.23 and Figure C.24.

Tab. C.9.: Silhouette scores for K-Means clustering experiment L02A.

n_clusters silhouette

2 0.374903
3 0.271060
4 0.223430
5 0.211223
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Fig. C.21.: K-Means clustering experiment L02A-2.
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Fig. C.22.: K-Means clustering experiment L02A-3.
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Fig. C.23.: K-Means clustering experiment L02A-4.
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Fig. C.24.: K-Means clustering experiment L02A-5.
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Tab. C.10.: Numerical description of features (de-normalized) for L02A-3.

label 0 1 2

sleep_satisfaction count 212.00 136.00 333.00
mean 4.37 8.36 6.31
std 1.24 1.19 1.04
min 1.11 2.66 3.67
25% 3.75 7.73 5.56
50% 4.53 8.50 6.39
75% 5.14 9.23 7.06
max 8.65 10.00 8.69

sleep_time count 212.00 136.00 333.00
mean 5.93 7.17 7.53
std 0.91 1.10 0.74
min 3.33 5.00 5.75
25% 5.00 6.29 7.00
50% 6.00 7.00 7.50
75% 6.58 8.00 8.00
max 8.50 9.67 9.58

distress count 212.00 136.00 333.00
mean 4.02 1.07 2.43
std 1.80 0.85 1.51
min 1.10 0.24 0.26
25% 2.63 0.50 1.38
50% 3.75 0.82 2.09
75% 5.08 1.35 2.85
max 9.13 6.10 8.18

recovery count 212.00 136.00 333.00
mean 4.53 8.17 5.83
std 1.07 1.21 1.01
min 1.75 4.70 2.64
25% 3.97 7.24 5.26
50% 4.61 8.20 5.83
75% 5.21 9.24 6.53
max 7.73 9.90 9.38

fatigue count 212.00 136.00 333.00
mean 4.93 1.33 5.05
std 1.11 1.10 1.32
min 1.26 0.00 1.46
25% 4.43 0.31 4.13
50% 4.96 1.31 4.99
75% 5.54 2.17 6.04
max 7.88 3.74 8.56
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C.7 L02B. Wellness features except sleep_time

Results for L02B with HRV and Wellness features are displayed in Table C.11,
Figure C.25, Figure C.26, Figure C.27 and Figure C.28.

Tab. C.11.: Silhouette scores for K-Means clustering experiment L02B.

n_clusters silhouette

2 0.442257
3 0.279222
4 0.248510
5 0.248656
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Fig. C.25.: K-Means clustering experiment L02B-2.

C.7 L02B. Wellness features except sleep_time 223



sleep_satisfaction distress recovery fatigue
3

2

1

0

1

2

va
lu

e

0 1 2
Clustering label

0

50

100

150

200

250

co
un

t

AT
59

AT
62

AT
63

AT
65

AT
66

AT
68

AT
73

AT
75

AT
76

AT
77

AT
82

AT
85

AT
86

AT
88

AT
89

AT
93

AT
94

AT
95

AT
99

AT
10

1
AT

10
2

AT
10

3

username

0

20

40

60

80

co
un

t

Fig. C.26.: K-Means clustering experiment L02B-3.
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Fig. C.27.: K-Means clustering experiment L02B-4.
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Fig. C.28.: K-Means clustering experiment L02B-5.
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Tab. C.12.: Numerical description of features for L02B-3.

label 0 1 2

sleep_satisfaction count 275.00 272.00 134.00
mean 6.57 4.54 8.39
std 0.91 1.20 1.18
min 3.19 1.11 2.66
25% 5.96 3.92 7.76
50% 6.54 4.68 8.53
75% 7.18 5.20 9.24
max 8.69 8.65 10.00

distress count 275.00 272.00 134.00
mean 2.25 3.86 1.04
std 1.40 1.78 0.84
min 0.26 0.98 0.24
25% 1.32 2.35 0.49
50% 1.91 3.55 0.80
75% 2.72 4.84 1.29
max 8.18 9.13 6.10

recovery count 275.00 272.00 134.00
mean 6.08 4.58 8.17
std 0.93 0.98 1.22
min 2.89 1.75 4.70
25% 5.54 3.99 7.23
50% 6.07 4.72 8.22
75% 6.67 5.20 9.29
max 9.38 7.73 9.90

fatigue count 275.00 272.00 134.00
mean 5.00 4.98 1.32
std 1.39 1.09 1.12
min 1.46 1.26 0.00
25% 3.96 4.43 0.30
50% 5.03 4.95 1.28
75% 6.04 5.59 2.15
max 8.56 8.07 4.74
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C.8 L03A. Normalized wellness features except
sleep_time

Results for L03A with HRV and Wellness features are displayed in Table C.13,
Figure C.29, Figure C.30, Figure C.31 and Figure C.32.

Tab. C.13.: Silhouette scores for K-Means clustering experiment L03A.

n_clusters silhouette

2 0.266132
3 0.210561
4 0.196307
5 0.201947
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Fig. C.29.: K-Means clustering experiment L03A-2.

C.8 L03A. Normalized wellness features except sleep_time 227



sleep_satisfaction_zscored distress_zscored recovery_zscored fatigue_zscored

4

2

0

2

4

va
lu

e

0 1 2
Clustering label

0

50

100

150

200

250

co
un

t

AT
59

AT
62

AT
63

AT
65

AT
66

AT
68

AT
73

AT
75

AT
76

AT
77

AT
82

AT
85

AT
86

AT
88

AT
89

AT
93

AT
94

AT
95

AT
99

AT
10

1
AT

10
2

AT
10

3

username

0

10

20

30

40

co
un

t

Fig. C.30.: K-Means clustering experiment L03A-3.

sleep_satisfaction_zscored distress_zscored recovery_zscored fatigue_zscored

4

2

0

2

4

va
lu

e

0 1 2 3
Clustering label

0

25

50

75

100

125

150

175

200

co
un

t

AT
59

AT
62

AT
63

AT
65

AT
66

AT
68

AT
73

AT
75

AT
76

AT
77

AT
82

AT
85

AT
86

AT
88

AT
89

AT
93

AT
94

AT
95

AT
99

AT
10

1
AT

10
2

AT
10

3

username

0

5

10

15

20

25

30

35

co
un

t

Fig. C.31.: K-Means clustering experiment L03A-4.
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Fig. C.32.: K-Means clustering experiment L03A-5.
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Tab. C.14.: Numerical description of features for L03A-3.

label 0 1 2

sleep_satisfaction_zscored count 181.00 224.00 276.00
mean -1.03 0.68 0.17
std 0.80 0.74 0.59
min -3.80 -2.14 -1.49
25% -1.47 0.27 -0.22
50% -0.96 0.65 0.18
75% -0.50 1.17 0.52
max 1.25 3.10 2.22

distress_zscored count 181.00 224.00 276.00
mean 0.43 -0.84 0.42
std 0.69 0.70 0.69
min -1.70 -3.35 -1.24
25% -0.07 -1.28 -0.04
50% 0.41 -0.87 0.32
75% 0.87 -0.41 0.80
max 2.38 0.86 3.69

recovery_zscored count 181.00 224.00 276.00
mean -1.00 0.63 0.16
std 0.76 0.66 0.60
min -3.39 -1.25 -1.86
25% -1.39 0.30 -0.19
50% -0.90 0.68 0.16
75% -0.50 1.06 0.52
max 0.72 2.50 2.13

fatigue_zscored count 181.00 224.00 276.00
mean 0.58 -0.62 0.19
std 0.79 0.80 0.73
min -1.93 -2.98 -2.07
25% 0.14 -1.07 -0.29
50% 0.62 -0.62 0.16
75% 1.11 -0.23 0.66
max 2.96 2.57 4.02
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